Свечение у светляков служит для коммуникации между особями[3]. У представителей данного семейства выделяют практически все сигналы, которые так или иначе связаны с половым поведением, защитные и территориальные сигналы: будь то призывные и поисковые сигналы самцов, сигналы «согласия», «отказа» и «посткопулятивные» сигналы самок, а также сигналы агрессии и даже световую мимикрию. Однако, не каждый вид имеет весь спектр вышеперечисленных сигналов. Некоторые виды, например, Lampyris noctiluca, способны испускать только призывные сигналы, а у большинства представителей родов Photinus и Photuris различия между призывными и поисковыми сигналами у самцов отсутствуют. При этом, только у самок рода Photuris наблюдается явление световой мимикрии, при которой самки испускают сигналы характерные для видов рода Photinus. Самцы Photinus, привлечённые подобными сигналами, являются пищей для хищных самок рода Photuris[4][5][6].
В световой коммуникации светляков выделяют две базовые коммуникативные системы[7][8]. При первом типе системы особи одного пола (преимущественно это нелетающие самки) производят видоспецифичные коммуникативные сигналы, привлекающие особей противоположного пола, и выполняющие тем самым функцию «маяка». Такой тип системы характерен для светляков родов Lampyris, Phengodes, Diplocadon, Dioptoma, Pyrophorus и многих других. При этом наличие собственных световых сигналов у летающих особей противоположного пола является необязательным.
При системе второго типа летающие особи одного пола (преимущественно это самцы) производят видоспецифичные световые сигналы, в ответ на которые особи другого пола производят видоспецифичные или полоспецифичные ответы. Подобный тип коммуникативной системы встречается у многих видов светляков, в основном у подсемейств Lampyrinae и Photurinae, обитающих на территории Северной и Южной Америки[3].
Существуют также виды с промежуточными формами коммуникативных систем. У светляка Phausis reticulata и самцы, и самки испускают долговременное свечение, а в случае опасности самки способны прекращать свечение[4]. У вида Dioptoma adamsi нелетающие самки привлекают неиспускающих световые сигналы самцов длительным свечением. Однако самцы этого вида при сексуальном возбуждении испускают вспышки зелёного света[9]. У некоторых синхронизирующихся видов из рода Pteroptix присутствуют обе коммуникативные системы, которые используются жуками при различных условиях. Синхронные вспышки больших количеств особей для сбора их в стаи, внутри которых используется обмен коммуникативными сигналами между самцами и самками[10][11]. Сходное поведение отмечается также у видов Luciola discicollis и Luciola obsolenta[12].
Органы свечения светляков (лантерны) представлены одним крупным световым органом на последних абдоминальных стернитах, либо множеством мелких световых органов, которые расположены более-менее равномерно по всему телу. Форма, расположение и количество световых органов у различных видов светляков сильно варьирует. Например, у представителей рода Phengodes, Diplocladon, Harmatelia и ряда других тропических видов мелкие световые органы находятся на дорсальной стороне каждого из абдоминальных стернитов. У европейских, африканских, американских, азиатских и дальневосточных видов светляков обычно имеется один крупный орган свечения, расположенный на вентральной стороне двух последних абдоминальных стернитов.
Личинки преобладающего большинства видов также имеют на своём теле парные или множественные мелкие органы свечения.
Выделяют шесть типов морфологического строения органов свечения[13]. Первые три типа строения светового органа характеризуются отсутствием между трахеями и фотоцитами т. н. концевых клеток. Они являются специфичными для фотогенной ткани и не встречаются в других органах[14][15][16][17]
В реакции свечения участвуют несколько химических соединений. Одно из них, устойчиво к нагреванию и присутствует в небольшом количестве — люциферин. Другое вещество — фермент люцифераза. Также для реакции свечения необходима ещё и аденозинтрифосфорная кислота (АТФ). Люцифераза представляет собой белок, богатый сульфгидрильными группами.
Свет образуется при окислении люциферина. Без люциферазы скорость реакции между люциферином и кислородом крайне низкая, катализация люциферазой значительно повышает её скорость. В качестве кофактора требуется АТФ.[30]
Реакция, катализируемая люциферазой светлячка, проходит в две стадии:
Свет возникает при переходе оксилюциферина из возбуждённого состояния в основное. При этом оксилюциферин связан с молекулой фермента и в зависимости от гидрофобности микроокружения возбуждённого оксилюциферина испускаемый свет варьирует у различных видов светлячков от жёлто-зелёного (при более гидрофобном микроокружении) до красного (при менее гидрофобном). Дело в том, что при более полярном микроокружении часть энергии рассеивается. Люциферазы из различных светляков генерируют биолюминесценцию с максимумами от 548 до 620 нм. В целом энергетическая эффективность реакции очень высокая: практически вся энергия реакции трансформируется в свет без испускания тепла.
Все жуки содержат один и тот же люциферин. Люциферазы, напротив, у разных видов различны. Отсюда следует, что изменение окраски свечения зависит от строения фермента. Как показали исследования, температура и pH среды оказывают существенное влияние на окраску свечения. На микроскопическом уровне свечение свойственно только цитоплазме клеток, ядро при этом остается тёмным. Свечение испускается находящимися в цитоплазме фотогенными гранулами. При исследовании в ультрафиолетовых лучах свежих срезов фотогенных клеток эти гранулы можно обнаружить по их другому свойству — флуоресценции,— зависящему от наличия люциферина.
Квантовый выход реакции по сравнению с классическими примерами люминесценции необычайно высок, приближается к единице. Иными словами, на каждую молекулу люциферина, участвующую в реакции, испускается один квант света.
Физические характеристики испускаемого жуками света тщательно изучены у очень многих видов. Это всегда монохроматическое, неполяризованное излучение. Оно не сопровождается повышением температуры. Обычно каждый вид излучает свечение одного, строго определённого цвета, но известны жуки, у которых свечение самцов и самок имеет разную окраску.
Принято выделять четыре основных типа световых сигналов, которые характерны для различных представителей семейства светляков[13]:
Многие виды светляков столь хорошо регулируют процессы свечения, что способны уменьшать и увеличивать силу света или испускать прерывистый свет. Некоторые тропические светляки замечательны тем, что все их особи, слетевшиеся вместе, вспыхивают и гаснут одновременно.
Коэффициент полезного действия фонариков светлячков необыкновенно высок. Если в лампе накаливания в видимый свет превращается лишь 5 % энергии (остальная рассеивается в виде тепла), то у светлячков в световые лучи переходит от 87 до 98 % энергии.
После спаривания самка откладывает яйца, из которых выходят активно питающиеся личинки. Выросшая личинка окукливается под камнями или под корой деревьев. Куколка зимует, а весной из неё выходит жук.
Incertae Sedis («таксон неопределенного положения»):
Свечение у светляков служит для коммуникации между особями. У представителей данного семейства выделяют практически все сигналы, которые так или иначе связаны с половым поведением, защитные и территориальные сигналы: будь то призывные и поисковые сигналы самцов, сигналы «согласия», «отказа» и «посткопулятивные» сигналы самок, а также сигналы агрессии и даже световую мимикрию. Однако, не каждый вид имеет весь спектр вышеперечисленных сигналов. Некоторые виды, например, Lampyris noctiluca, способны испускать только призывные сигналы, а у большинства представителей родов Photinus и Photuris различия между призывными и поисковыми сигналами у самцов отсутствуют. При этом, только у самок рода Photuris наблюдается явление световой мимикрии, при которой самки испускают сигналы характерные для видов рода Photinus. Самцы Photinus, привлечённые подобными сигналами, являются пищей для хищных самок рода Photuris.
В световой коммуникации светляков выделяют две базовые коммуникативные системы. При первом типе системы особи одного пола (преимущественно это нелетающие самки) производят видоспецифичные коммуникативные сигналы, привлекающие особей противоположного пола, и выполняющие тем самым функцию «маяка». Такой тип системы характерен для светляков родов Lampyris, Phengodes, Diplocadon, Dioptoma, Pyrophorus и многих других. При этом наличие собственных световых сигналов у летающих особей противоположного пола является необязательным.
При системе второго типа летающие особи одного пола (преимущественно это самцы) производят видоспецифичные световые сигналы, в ответ на которые особи другого пола производят видоспецифичные или полоспецифичные ответы. Подобный тип коммуникативной системы встречается у многих видов светляков, в основном у подсемейств Lampyrinae и Photurinae, обитающих на территории Северной и Южной Америки.
Существуют также виды с промежуточными формами коммуникативных систем. У светляка Phausis reticulata и самцы, и самки испускают долговременное свечение, а в случае опасности самки способны прекращать свечение. У вида Dioptoma adamsi нелетающие самки привлекают неиспускающих световые сигналы самцов длительным свечением. Однако самцы этого вида при сексуальном возбуждении испускают вспышки зелёного света. У некоторых синхронизирующихся видов из рода Pteroptix присутствуют обе коммуникативные системы, которые используются жуками при различных условиях. Синхронные вспышки больших количеств особей для сбора их в стаи, внутри которых используется обмен коммуникативными сигналами между самцами и самками. Сходное поведение отмечается также у видов Luciola discicollis и Luciola obsolenta.
Органы свечения Свечение светляка из рода LampyrisОрганы свечения светляков (лантерны) представлены одним крупным световым органом на последних абдоминальных стернитах, либо множеством мелких световых органов, которые расположены более-менее равномерно по всему телу. Форма, расположение и количество световых органов у различных видов светляков сильно варьирует. Например, у представителей рода Phengodes, Diplocladon, Harmatelia и ряда других тропических видов мелкие световые органы находятся на дорсальной стороне каждого из абдоминальных стернитов. У европейских, африканских, американских, азиатских и дальневосточных видов светляков обычно имеется один крупный орган свечения, расположенный на вентральной стороне двух последних абдоминальных стернитов.
Личинки преобладающего большинства видов также имеют на своём теле парные или множественные мелкие органы свечения.
Морфологическое и гистологическое строениеВыделяют шесть типов морфологического строения органов свечения. Первые три типа строения светового органа характеризуются отсутствием между трахеями и фотоцитами т. н. концевых клеток. Они являются специфичными для фотогенной ткани и не встречаются в других органах
Первый тип. К нему относятся органы светляков только из рода Phengodes, свет у которых испускается гигантскими клетками, сходными по своей морфологии с эноцитами жирового тела. Фотогенные клетки при этом не связаны с трахеями. С вентральной стороны лантерн покрыт прозрачной кутикулой, за которой располагаются два — три слоя, образованные фотогенными клетками. Второй тип. Встречается у светляков рода Phrixotrix и самок Lamprohisa splendidula и личинок Phausis delarouseei. Световые органы данного типа являются небольшими, шарообразными и прилегают к прозрачной кутикуле. Компактная масса фотогенной ткани пронизана специфическими трахеолами, которые ветвятся наподобие корневой системы. Третий тип сходен по строению со вторым типом и характеризуется наличием особого слоя колончатых клеток, не способных сами по себе испускать свет, однако в цитоплазме которых содержится большое количество кристаллов мочевины. Они обладают высокой отражающей способностью. Данная ткань называется «рефлекторным слоем». Трахеолы проходят данный слой и ветвятся внутри «фотогенного слоя». Данный тип строения характерен для личинок большинства видов светляков и некоторых имаго. Четвёртый тип характеризуется ветвлением трахей на границе «фотогенного» и «рефлекторного» слоев. Концевые клетки располагаются на конце горизонтальных веточек трахеи, образуя отростки в дорсовентральном направлении. Этот отмечен у некоторых видов Photuris (Photuris pennsylvanica, Photuris jamaisensis). Пятый тип описан у некоторых видов, обитающих в Японии (Luciola parva, Luciola vitticollis), Юго-Восточной Азии (Pyrocoelia rufa, Luciola cruciata) и Африке (Luciola africana). Особенностью строения является наличие ветвления трахеи внутри «фотогенного слоя» и преимущественно горизонтальное расположение отростков концевых клеток. Шестой тип является наиболее широко распространённым и наиболее сложно организованным. Встречается у большинства американских видов родов Photinus и Photuris, Luciola parvula, Luciola lusitanica и многих других видов. Лантерны этого типа характеризуются большими размерами и расположением на вентральной стороне 6-го и 7-го стернитов брюшка у самцов и 6-го стернита у самок. Механизмы, лежащие в основе свечения См. также: Люциферин и Люцифераза Схематическое изображение реакции биолюминесценции у светлячков.В реакции свечения участвуют несколько химических соединений. Одно из них, устойчиво к нагреванию и присутствует в небольшом количестве — люциферин. Другое вещество — фермент люцифераза. Также для реакции свечения необходима ещё и аденозинтрифосфорная кислота (АТФ). Люцифераза представляет собой белок, богатый сульфгидрильными группами.
Свет образуется при окислении люциферина. Без люциферазы скорость реакции между люциферином и кислородом крайне низкая, катализация люциферазой значительно повышает её скорость. В качестве кофактора требуется АТФ.
Реакция, катализируемая люциферазой светлячка, проходит в две стадии:
люциферин + АТФ → люцифериладенилат + PPi люцифериладенилат + O2 → оксилюциферин + АМФ + свет.Свет возникает при переходе оксилюциферина из возбуждённого состояния в основное. При этом оксилюциферин связан с молекулой фермента и в зависимости от гидрофобности микроокружения возбуждённого оксилюциферина испускаемый свет варьирует у различных видов светлячков от жёлто-зелёного (при более гидрофобном микроокружении) до красного (при менее гидрофобном). Дело в том, что при более полярном микроокружении часть энергии рассеивается. Люциферазы из различных светляков генерируют биолюминесценцию с максимумами от 548 до 620 нм. В целом энергетическая эффективность реакции очень высокая: практически вся энергия реакции трансформируется в свет без испускания тепла.
Все жуки содержат один и тот же люциферин. Люциферазы, напротив, у разных видов различны. Отсюда следует, что изменение окраски свечения зависит от строения фермента. Как показали исследования, температура и pH среды оказывают существенное влияние на окраску свечения. На микроскопическом уровне свечение свойственно только цитоплазме клеток, ядро при этом остается тёмным. Свечение испускается находящимися в цитоплазме фотогенными гранулами. При исследовании в ультрафиолетовых лучах свежих срезов фотогенных клеток эти гранулы можно обнаружить по их другому свойству — флуоресценции,— зависящему от наличия люциферина.
Квантовый выход реакции по сравнению с классическими примерами люминесценции необычайно высок, приближается к единице. Иными словами, на каждую молекулу люциферина, участвующую в реакции, испускается один квант света.
Параметры испускаемого свечения Luciola lateralis.Физические характеристики испускаемого жуками света тщательно изучены у очень многих видов. Это всегда монохроматическое, неполяризованное излучение. Оно не сопровождается повышением температуры. Обычно каждый вид излучает свечение одного, строго определённого цвета, но известны жуки, у которых свечение самцов и самок имеет разную окраску.
Принято выделять четыре основных типа световых сигналов, которые характерны для различных представителей семейства светляков:
Непрерывное свечение. Неуправляемая биолюминесценция, характерная для яиц практически всех видов светляков. Этот тип световых сигналов также характерен только для имаго жуков рода Phengodes. Для этого типа свечения факторы внешней среды и внутреннего состояния организма не оказывают влияния на яркость свечения. Прерывающееся свечение. При данном типе свечения жуки длительное время испускают свет, яркость которого может изменяться от полного прекращения свечения до максимальной яркости в зависимости от факторов внешней среды, циркадных ритмов, внутреннего состояния насекомого. Данный тип свечения характерен для личинок большинства видов и взрослые особи из родов Phryxotrix, Diplocladon, Lampyris, Lamprohisa, Dioptoma, Phausis и других. Пульсация. Данный тип сигналов представлен короткими вспышками света, которые испускаются светляками с регулярными интервалами. Такой тип сигналов преобладает у синхронизирующихся тропических видов родов Pteroptix и Luciola. Вспышки. Наиболее часто встречающийся вид световых сигналов, наблюдаемый у большинства европейских, американских (Photinus, Photuris), азиатских, африканских светляков — род Luciola, Robopus, Pleotomus и др. В отличие от предыдущего типа, на периодичность межвспышечных интервалов оказывают значительное влияние не только циркадные ритмы, которые «включают» или «выключают» световой сигнал, но также и другие внешние и внутренние факторы, вызывающие модулирование длительности межвспышечного интервала, показатели яркости свечения, величины задержки ответа и прочие параметры светового сигнала.Многие виды светляков столь хорошо регулируют процессы свечения, что способны уменьшать и увеличивать силу света или испускать прерывистый свет. Некоторые тропические светляки замечательны тем, что все их особи, слетевшиеся вместе, вспыхивают и гаснут одновременно.
Коэффициент полезного действия фонариков светлячков необыкновенно высок. Если в лампе накаливания в видимый свет превращается лишь 5 % энергии (остальная рассеивается в виде тепла), то у светлячков в световые лучи переходит от 87 до 98 % энергии.