Nile Valley North of Nubia (Location: Delta).
Tropical Africa and Madagascar, the northern limit more or less passing through Ethiopia, Sudan and Zaire.
Along water-courses.
Perennial.
Height: 2-8 m.
Common or Ditch Reed is found on limestone slopes in open forest in the mountains, margins of lakes and ponds and in shallow water in the plains.
The non-native Phragmites australis, or common reed, can rapidly form dense stands of stems which crowd out or shade native vegetation in inland and estuary wetland areas. Phragmites turns rich habitats into monocultures devoid of the diversity needed to support a thriving ecosystem. Non-native Phragmites can alter habitats by changing marsh hydrology; decreasing salinity in brackish wetlands; changes local topography; increasing fire potential; and outcompeting plants, both above and below ground. These habitat changes threaten the wildlife that depend on those wetland areas for survival.
History
Common reed, Phragmites australis, is in the Poaceae or grass family. There are at least three lineages, or strains, of common reed in the U.S. At least one is native to the U.S. including the one that was most common in New York, P. australis subsp. americanus. Another common reed strain, P. australis var. berlandieri may or may not be native to the U.S. and is found in California, along the Gulf Coast and the southeast. One strain is non-native, and was accidentally introduced from Europe in the late 18th or early 19th century in ship ballast. This non-native strain is now the most common Phragmites found in New York and the northeast. There is no field evidence that the non-native will hybridize with the native Phragmites at this time. This fact sheet focuses on the non-native Phragmites.
Biology
The non-native Phragmites is a perennial grass that can reach over 15 feet in height. It is often found in dense clonal stands made up of living stems and standing dead stems. Stems of the non-native Phragmites are hollow, usually green with yellow nodes during the growing season, and yellow when dry in the winter. Phragmites leaves are blue-green to yellow-green, up to 20 inches long and 1 to 1.5 inches wide at their widest point. They are arranged all along one side of a stem.
In late July and August, Phragmites is in bloom with purple to gold highly branched panicles of flowers. The seeds are grayish and appear fluffy due to the silky hairs that cover each seed. Spread occurs through, rhizomes, stolons and seeds; stolons can grow up to 43 feet from the parent plant.
Root growth below ground is also profuse. Phragmites forms a ticket of roots and rhizomes that can spread 10 or more feet and several feet deep in one growing season.
Each Phragmites plant produces thousands of seeds each year, but seed viability is low, although viability varies from year to year. New sites are established through seed movement and from rhizome fragments that float down stream or are moved in soil, especially along roadsides.
Large clumps of Phragmites can live for decades, but no part lives for more than 8 years.
There are physiological differences between the native Phragmites and the non-native Phragmites. See the Plant Conservation Alliance Phragmites Fact Sheet comparison table for details. http://www.nps.gov/plants/alien/fact/phau1.htm#table.
Habitat
The non-native Phragmites occurs throughout the eastern half of the U.S. and in Colorado. In New York, Phragmites is ubiquitous, growing in roadside ditches and swales; tidal and non-tidal wetlands; freshwater and brackish marshes; river, lake and pond edges; and disturbed areas. It tolerates fresh and moderately saline water and prefers full sun.
Management
Due to the similarity of non-native Phragmites and native Phragmites, proper identification of the grass is important before taking management action. Due to Phragmites growth in sensitive habitats, be sure to have a restoration plan in place for the area once Phragmites has been eliminated. Phragmites roots hold onto soil, and clonal colonies trap nutrients and organic matter and add to the organic matter in the soil. After Phragmites colonies are removed the soil may be more prone to erosion.
To control Phragmites a number of tactics may be used, but due to the many variables at each site many suggest that Phragmites management should be “site-specific, goal-specific, and value-driven.” Often multiple tactics are needed to ensure success. The best time to manage Phragmites is in midsummer when it’s releasing pollen. Thorough monitoring and follow up management are necessary to control shoots from surviving rhizomes.
PreventionMaintain, or plant, vegetation that competes with Phragmites. Jesuit's bark (Iva frutescens), groundsel-tree (Baccharis halimifolia), black rush (Juncus roemerianus), and saltmeadow cordgrass (Spartina patens) have been shown to limit Phragmites spread. Also, reducing nutrient loads may restrict the spread of Phragmites.
MechanicalRepeated mowing may produce short-term results and repeated stem breakage in high-water years has been shown to kill large portions of Phragmites colonies. Hand pulling is not feasible due to the expansive and tough root and rhizome network. Root removal from the soil is not effective as small or broken portions of rhizomes left in the soil can create new plants.
HydrologicManipulating the water level around Phragmites has been shown to decrease populations in some conditions. Consult the Element Stewardship Abstract for Phragmites australis produced by the Nature Conservancy for more information. http://www.invasive.org/gist/esadocs/documnts/phraaus.pdf
ChemicalThere are herbicides available for Phragmites control. New colonies, with smaller root and rhizome systems, are easier to control with herbicides. Apply after the plant has flowered, in late summer or early fall. Applications can be foliar, cut stump or injected. Multiple years of treatment may be necessary to eliminate any surviving rhizomes. Specific herbicide guidelines can be found at the National Park Service “Plant Invaders of the Mid-Atlantic States” grasses and sedges control options page: http://www.nps.gov/plants/alien/pubs/midatlantic/control-grassesandsedges.htm. Herbicides applied in wetland areas must be applied by a certified pesticide applicator. Contact your local Cornell Cooperative Extension office, http://www.cce.cornell.edu, for herbicide usage assistance. Always apply pesticides according to the label directions; it’s the law.
FirePrescribed burns have been shown effective when conditions are right, and can occur in conjunction with herbicides or water level management. To be successful as a stand-alone tool, burns need to be hot enough to kill rhizomes in the soil. After herbicide treatments, burns can remove standing dead stems to make way for desirable vegetation. Flooding after burns will limit soil air to surviving rhizomes. Burns should be conducted once flowering has occurred. For more information on controlled burns, see the USDA Forest Service Fire Effects Information System “Phragmites australis Fact Sheet,” Fire Effects section at http://www.fs.fed.us/database/feis/plants/graminoid/phraus/all.html#FIRE%20EFFECTS.
This description provides characteristics that may be relevant to fire ecology, and is not meant for identification. Keys for identification are available (e.g., [58,82,87,111,158,190,215]).
Phragmites australis subsp. americanus, P. a. var. berlandieri, and the nonnative common reed haplotype are distinguished morphologically by the Flora of North America [14] and Blossey [26]. As new information is available, discriminating morphological characteristics are updated at www.invasiveplants.net [26].
Aboveground description: Common reed is a robust perennial grass that may reach 20 feet (6 m) tall [84,127,215]. It is the tallest native grass in Nova Scotia [190], Montana [136], and possibly other states or provinces. Maximum height is not typically reached until plants are 5 to 8 years old [52]. Common reed spreads by clonal growth via stolons and rhizomes, and produces dense stands [51,85,111,127]. Clones are long-lived; some report clones may persist for over 1,000 years (Rudescu and others 1965, cited in [100]), but no portion of the clone lives more than 8 years. Rhizomes typically outlive aboveground shoots [102]. Stolons are most typical during times of low water and reach lengths of up to 43 feet (13 m) [142,235].
Common reed produces stout, erect, hollow aerial stems [169,181]. Stems are usually leafy, persistent, and without branches [15,247]. At the base, stem thickness measures 5 to 15 mm [15,142]. Leaves are aligned on one side of the stem, flat at maturity, and measure 4 to 20 inches (10-60 cm) long and 0.4 to 2 inches (1-6 cm) wide [58,87,112,159]. Leaf margins are somewhat rough [85], and leaves are generally deciduous [111]. Common reed flowers occur in a large, feathery, 6- to 20-inch (15-50 cm) long panicle [63,181]. The panicle has many branches and is densely flowered [159]. Panicles are up to 8 inches (20 cm) wide after anthesis [82]. Spikelets contain 1 to 10 florets. Floret size decreases from the base of the panicle upward. Lower florets are staminate or sterile and without awns. Upper florets are pistillate or perfect with awns. Occasionally all spikelets are abortive [46,87,111,142,247]. Sometimes spikelets are reduced to a single glume and floret, causing panicles to lose their feathery appearance [235]. Seeds are small, measuring up to 1.5 mm long [142]. Common reed seeds collected from a salt marsh near the mouth of Delaware Bay had an average air-dry mass of 125.2 µg [251].
Stolons
Rhizomes
Photos ©Gary Fewless
Cofrin Center for Biodiversity
University of Wisconsin-Green Bay
Rhizomes are thick, "deep seated", and scaly [142,159] and can grow to 70 feet (20 m) long [114]. Rhizomes may grow 16 inches (40 cm)/year [54] and live 2 to 3 years [114]. Rhizomes in soil are commonly long, thick, and unbranched. In water, rhizomes are more slender, produce multiple branches, and are often shorter [114]. In the Prairie Provinces, common reed plants growing in wet soil at the water's edge produced thick, soft, spongy rhizomes that branched in several directions and at several levels. There were clusters of roots bearing other hair-like roots at the nodes [107].
Common reed rhizomes can penetrate deeply, but rhizome depth varies with site conditions. On the Atlantic coast of Delaware, researchers described common reed's belowground growth as a thick rhizome mat 4 to 8 inches (10-20 cm) below the surface [80]. In swamps of Cherry County, Nebraska, common reed rhizomes were 30 feet (9 m) deep [225]. An "extraordinarily large number" of rhizomes and roots formed a dense mat from the soil surface to about 8.2 feet (2.5 m) deep in the Skokie Marsh of Illinois [203]. In the Riverbend Marsh area of New Jersey's Hackensack Meadowlands, common reed roots and rhizomes in interior high marshes reached 24 inches (60 cm) deep and in mosquito ditches reached 22 inches (55 cm) deep [19]. Depth of belowground structures averaged 9.8 inches (25 cm) in clay soils and averaged 16 inches (40 cm) in moister soils with lower clay content on the southern coast of New Hampshire [36]. Additional information on rhizome, stolon, and clonal growth is available in Vegetative regeneration.
Common reed is one of the most widely distributed flowering plants [15,114]. It occurs on every continent except Antarctica [190] and is cosmopolitan in temperate zones [136]. Common reed is widely distributed in North America, occurs in all US states except Alaska, and in all Canadian provinces and territories except Nunavut and Yukon [112]. Common reed is native to Puerto Rico and occurs as a nonnative in Hawaii [73,231]. Grass Manual on the Web provides a map of common reed's North American distribution.
Subspecies, variety, and haplotype distributions: Extensive genetics studies on common reed plant material from modern and herbarium samples (dated to the 1850s) collected throughout North America revealed there are 11 native haplotypes and 1 nonnative haplotype [196]. There were significant changes in common reed haplotype frequencies between historic (herbarium samples collected pre-1910) and modern samples (P<0.001). Introduction of the nonnative haplotype probably occurred at 1 or more Atlantic Coast ports early in the 19th century, and because morphological differences between the haplotypes are subtle, the introduction(s) went unnoticed. Range expansion of the nonnative haplotype was likely facilitated by travel way construction during this time period [195]. The nonnative haplotype is dominant along the Atlantic Coast and in the Great Lakes area. In western North America, the nonnative haplotype is becoming common along roadsides and waterways in urban areas, but native types are still common in the Southwest and Pacific Northwest [196].
P. australis subsp. americanus is native to the United States. Its current range extends from the southwestern Northwest Territories south to southern California, east to northern Texas, northern Arkansas, North Carolina, West Virginia, and north to Newfoundland and Quebec [197].
P. australis var. berlandieri may or may not be native to North America, but if introduced was a much earlier introduction than the nonnative haplotype. The current distribution of P. australis var. berlandieri is not different from historic distributions [196]. Phragmites australis var. berlandieri, also known as the Gulf Coast lineage, occurs along the Gulf Coast of Mexico, in South America, and on the Southern Pacific Islands [195]. In the United States, P. australis var. berlandieri occupies southern habitats from California east to Florida [14,197].
The nonnative common reed haplotype is widely distributed in North America. It occurs from British Columbia east to Quebec and south throughout the contiguous United States [14,197].
Since its introduction, the nonnative haplotype has expanded its range throughout North America and most dramatically along the Atlantic Coast and in the Great Lakes area. The nonnative type replaced native types in New England and established in the southeastern United States, where native common reeds did not occur historically. In Connecticut and Massachusetts, 19th century common reed samples were primarily native haplotypes, but by 1940, all samples were nonnative. Local extinctions of native haplotypes are not uncommon [195]. In Falmouth, Massachusetts, researchers located 268 common reed populations; 4 were native [175]. Native and nonnative common reed populations were mapped for all of Rhode Island; native populations were restricted to the eastern side of Block Island, and the largest stand was about 2 acres (1 ha) [137,139]. On Delmarva Peninsula, Maryland, nonnative common reed is most common, but the average size of nonnative populations is often much smaller than that of native populations [161].
In Quebec, the nonnative haplotype was present as early as 1916 but was rare before the 1970s and restricted to shores of the St Lawrence River. In less than 20 years, the nonnative haplotype became dominant; over 95% of colonies sampled were nonnative [146]. In semiurban landscapes of southern Quebec, the nonnative common reed haplotype was most common in linear wetlands, industrial areas, and rights of way. Intrinsic rates of increase (r) in these areas were determined using a nonlinear growth model that compared clone size at time zero to the clone size years after the initial observation. In St-Bruno-de-Montarville, the intrinsic rate of increase ranged from 0.19 to 0.34/year. On the east tip of Laval Island, the intrinsic rate of increase ranged from 0.19 to 0.54/year. Riparian habitats had less common reed than anthropogenic wetlands. The number of colonization events at rights of way was high. For a discussion on the possible role of colonization by seed, see Seed production [154].
Changes in local distributions: General increases in the area occupied by common reed have been reported in many places; however in some cases, nativity of the population is not identified. Establishment and spread patterns may vary with degree of anthropogenic disturbance, haplotype, salinity levels, and stand age. Additional information is available in the sections on Regeneration Processes and Successional Status.
In a review, Chambers and others [43] found that early reports of common reed abundance described it as "occasional," "not common," or "rare". By the late 1990s, common reed was described as a "widespread" "nuisance species". Increases in common reed abundance in these areas generally coincided with increased human manipulation of coastal areas and wetlands [43]. Aerial photos taken from 1955 to 2000 showed that the area dominated by common reed between 1995 and 1999 increased exponentially on Long Point, southwestern Ontario. Of the 31 common reed stands that were sampled in or after 2000, 90% were nonnative. Researchers suggested that establishment and spread of the nonnative type was the primary reason for increased dominance, and suggested that increased temperatures and decreased water levels in the mid- to late 1990s may have favored increased spread [252].
Local increases in common reed are reported from several areas, although nativity of the populations is unknown. On the Tailhandier Flats on Quebec's St Lawrence River, common reed increased the surface area occupied by 18% from 1980 to 2002 based on aerial photos and remote sensing data [117]. In central Washington, aerial photos of the Winchester Wasteway showed that the area occupied by common reed increased 39 acres (15.8 ha) in 3 years [115]. Researchers compared time series maps to track the establishment and spread of common reed populations in mid-Atlantic coastal areas. Spread rate averaged 10 acres (5 ha)/year. Area occupied by common reed increased rapidly up to 20% per year until stands covered 50% to 80% of a given marsh. Patchiness was common soon after establishment but decreased over time. Common reed abundance decreased at only one site, Lang Tract, Delaware, and decreases were temporary. In southwestern Louisiana's Rockefeller Wildlife Refuge, the size and number of common reed clones increased over time after its introduction in 1968. Estimated intrinsic rates of increase of 21 common reed clones ranged from 0.0767 to 0.2312/year. Lag time between establishment and rapid expansion was 10 to 15 years [212].
Fire adaptations: After fire in established common reed stands, new stems normally sprout from surviving rhizomes. Rhizome damage from deep burning may reduce common reed density and/or increase recovery time; however, lethal temperatures penetrating deep into the soil are rare in wet to moist common reed habitats [88,207,208,238]. New establishment on burned sites is possible given a viable seed or rhizome source. For more information on common reed establishment from seeds or rhizomes, see Regeneration Processes. Additional information about common reed's response to fire is available in Fire Effects.
©Gary Fewless
Cofrin Center for Biodiversity
University of Wisconsin-Green Bay
Pre- and early-settlement fires: Several studies report that Native people as well as early trappers and settlers burned wetland vegetation to improve travel, hunting success, and food availability.
California and Mexico: Native tribes of California burned common reed stands [8]. Rural people of Jaumave, Sierra Madre Oriental, Mexico, burned common reed stands to recycle nutrients, activate rhizomes, and reduce insect pests. Common reed sprouts were used as roofing and construction material [7].
Central Canada: In south-central Manitoba, Delta Marshes were intentionally burned by early trappers to improve travel, expose common muskrat lodges and coyote, fox, and American mink dens, and concentrate wildlife into unburned areas. Early settlers often burned Manitoba meadows to improve forage quality. Meadow fires often escaped and burned adjacent marshes. Burning was usually conducted in the first warm days of spring. Spring fires maintained common reed cover since they restricted the growth of encroaching woody vegetation and rarely killed belowground structures. Summer fires created temporary openings in common reed stands when they burned into peat and damaged rhizomes [238].
Southeast: Trappers burned marshes in southeastern Louisiana to improve trap accessibility and encourage growth of preferred common muskrat foods such as common reed. Fires typically burned when soils were wet and caused only minimal damage to marsh vegetation. Fires set after an extended drought, when peat and/or humus layers were dry, burned "furiously" [178]. In the southeastern United States, presettlement fire frequencies in brackish (5,000-30,000 ppm) and oligohaline (300-5,000 ppm) marshes that are typical common reed habitat ranged from 7 to more than 300 years; but fire intervals longer than 100 years were rare, and nearly all wetland sites including some islands had evidence of past fire. Fire frequency was estimated through a synthesis of information on soils, salinity, landscapes, remnant vegetation, historical records, and fire behavior in adjacent upland vegetation. Fires may have originated from burning in upland sites, lightning strikes, ignitions by Native Americans, or spontaneous combustion [76,77].
Spontaneous combustion was reported in marshlands along the shore of Lake Pontchartrain near Mandeville, Louisiana. Witnesses watched a fire "apparently ignited spontaneously" on 4 August 1924 in a time of "unprecedented drought". Water levels were several feet below the soil surface, and temperatures in neighboring towns were 100 to 104 °F (38-40 °C). Additional investigations in the area revealed that at least 100 separate fires were burning along an 18-mile stretch of marsh and pine vegetation. Other possible ignition sources were ruled out due to accessibility and timing constraints. Weather reports indicated that heating and ignition conditions necessary for spontaneous agricultural fires occurred that day near Lake Pontchartrain. Other naturalists in the area suggested that ignition may have come from a creeping ground fire [234].
Northeast: In New England and possibly other areas, proximity to a railroad may have increased fire frequency in common reed stands. Paleoecological studies in the Crystal Fen of north-central Maine showed that fire frequency increased after the construction of a railroad in 1893, then decreased sharply as spark-throwing steam engines were replaced by diesel engines [120]. In Massachusetts, 25% of all forest fires between 1916 and 1920 reportedly resulted from train engine ignitions (Averill and Frost 1933, cited in [120]).
Recent FIRE REGIMES: There is little information on current FIRE REGIMES in common reed habitats. Where common reed has spread into previously unoccupied areas, fuel characteristics may have changed and may contribute to changes in fire regimes. However, as of this writing (2008) these changes were not documented in the literature. On the southwestern portion of Long Island, New York, common reed and northern bayberry dominate Floyd Bennett Field. Portions of the Field burn each year in accidental human-caused fires. Common reed will probably replace northern bayberry, which does not recover as rapidly as common reed after fire [189]. From 1993 to 1998, there were 0 to 6 fires/year in the Rockefeller State Wildlife Refuge on the Gulf Coast Chenier Plain in southwestern Louisiana. Common reed cover is typically less than 10% in this area (Hess unpublished data, cited in [78]).
The following table provides fire regime information that may be relevant to common reed. Communities included in the table are those where common reed has the greatest potential as a persistent species. FIRE REGIMES typical of common reed stands may be closely related to FIRE REGIMES in adjacent upland communities. Find further fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find FIRE REGIMES".
Common reed stands are not usually difficult to burn. Fuel loads are generally high, and only in recently burned sites does fire fail to spread. Additional information on fuel loadings in common reed stands is available in Fuels. Prescribed fires during very dry conditions or in conjunction with other control methods have been used successfully to reduce the size and/or spread of common reed stands. However, adverse impacts on wildlife are possible when burning common reed stands.
Conducting prescribed fire: Several challenges could make prescribed burning in common reed habitats difficult. High-intensity updrafts are possible in wetland habitats, and embers may move long distances [188]. Spot fires are possible 100 feet (30 m) from the burned area [228]. Firelines may need to be wider than those typically constructed in upper Midwest upland habitats. Maneuverability of water tanks can be compromised in wetlands and may increase the number of personnel needed to control fires in common reed habitats [188].
On Cape Hatteras National Seashore, prescribed fires burned in flooded conditions, and "wetline(s)" were constructed simply by trampling neighboring vegetation [31]. Although fires typically carry well in common reed habitats, there may be insufficient litter and dead material to burn in consecutive years. A 2nd winter fire was unsuccessful in the Nebraska Sandhills 1 year after a prescribed fire in common reed marsh due to sparse stems and a lack of accumulated litter. Common reed on the previously burned site "did not appear nearly as combustible as the old growth even when the flame was applied directly" [199].
The only study to report soil temperatures produced by prescribed fires in common reed habitats indicates that heat does not penetrate deeply. In a common reed stand in Utah's Ogden Bay Waterfowl Management Area, an early-September fire produced temperatures of 120 °F (48 °C) at 9.3 inches (23.7 cm) deep, 219 °F (104 °C) at 3 inches (7.7 cm) deep, 306 °F (152 °C) at 1.1 inch (3 cm) deep, and a high temperature of 399 °F (204 °C) penetrated only 0.2 inch (0.5 cm). The fire burned when wind speeds averaged 10.3 miles (16.6 km)/hour, the average dew point was 41 °F (5 °C), and the maximum daytime temperature was 83 °F (28.5 °C). Drawdown began in April on the burned sites, but canal leakage and precipitation were such that water pooled in pits [207].
Fire as a control method: Severe, deep-burning fires may kill common reed [208], and removal of thick common reed litter by fire may allow other species to establish [228]. In Atlantic Coast marshes, "root burns" and "peat fires" can be used to cause common reed rhizome mortality. "Root burns" require a completely dry marsh floor. "Peat fires" require several years of litter accumulation, a "fairly deep" peat layer, and drought conditions to sustain smoldering and deep burning [208].
In the early 1940s, spring and late-summer fires were used in the Delta Marsh to create open water sites, thin dense stands, and increase edge habitats, in order to benefit wildlife. Successful spring fires required a "stiff" wind and 2 to 3 days of warm, sunny weather to dry dead stems [237]. Spring fires during "dull days" often did not carry well and produced patchy burns [238]. With enough wind, fires would burn even when there was snow and/or water at the base of the plants. Spring fires did not usually damage common reed rhizomes and served to increase the proportion of edge habitat. Late-summer fires typically burned deep into the peat layer producing some rhizome mortality and creating open water in common reed stands. Successful summer fires required dry conditions, a dense stand, and sustained smoldering. Summer fires were typically set in late August or early September [237].
Fire in conjunction with other physical, mechanical, or chemical control methods may produce common reed mortality [3,18,31,155,171]. On Cape Hatteras National Seashore, repeated cutting of common reed on burned sites decreased its growth rate but did not cause mortality [31]. In the Stemmers Run Wildlife Management Area in Cecil County, Maryland, common reed abundance was reduced on sites that were burned 4 months after herbicide treatments. In the 4th posttreatment year, there were 275 common reed individuals in the total 58 quadrats (3.16 Ã0.32 m) on treated sites. The number of individuals before treatments was 878 [3]. In oligohaline, wind-tide marshes in southeastern Virginia, common reed density and frequency were significantly reduced when sites were treated with a dormant-season fire between 2 herbicide treatments late in the growing season (P-value not reported). Herbicide treatments alone did not produce significant decreases from pretreatment levels [44].
Flooding burned sites can produce common reed mortality by eliminating oxygen transport from aboveground plant structures to roots and rhizomes [18]. "Snorkels are snipped" when burned sites are flooded (Gallagher, personal communication, cited in [18]). Several studies report this effect, though none provided details about fire or flooding conditions. In sawgrass-common reed vegetation in Louisiana coastal marshes, postfire flooding with saline water can produce mortality and reduce stand density [171]. In Connecticut, late-spring fires followed by saltwater flooding decreased the height and density of common reed stands (Steinki 1992, personal communication, cited in [155]). On the Wertheim National Wildlife Refuge in New York, common reed was eliminated for at least 3 years when portions of a freshwater impoundment were reflooded after winter burning that followed fall draining (Parris 1991, personal communication, cited in [155]).
Wildlife considerations: Fires in common reed marshes can be used to benefit wildlife, but can also negatively impact nesting birds. Prescribed fires should avoid destroying currently used nesting habitat. Studies conducted in the 1960s and 1970s in the Delta Marsh indicated that spring fires before 20 April typically missed the beginning of mallard and northern pintail nesting. Impacts on nesting birds can be minimized if summer fires are ignited after gadwall and blue-winged teal have left their nests [238]. Fall fires can decrease snow retention and affect spring run off levels, which may affect the value of winter and spring wildlife habitats [239].
Throughout its range, common reed is most common on wet, muddy, or flooded areas around ponds, marshes, lakes, springs, irrigation ditches, and other waterways. Common reed tolerates brackish and saline conditions [15,51,63,112,181,190]. In a review, authors report that common reed grows best in areas with slow or stagnant water and silty substrates [114]. However, on the Delmarva Peninsula along the Atlantic Coast, native common reed populations were more common along rivers than in marshes [161].
Established clones typically tolerate harsher conditions than seedlings. A review reported that growth from established clones was much less restricted than that of seedlings or sprouts. Newly established plants were limited to sites with less than 10,000 ppm salinity, sulfide concentrations below 0.1 mM, and a flooding frequency of less than 10%. Established clones grew in salinity up to 45,000 ppm, sulfide concentrations above 1.75 mM, and continuous flooding [42].
Climate: The large range occupied by common reed implies a wide climatic tolerance. In North America, common reed occurs in semiarid to arid desert, subhumid to humid continental, and subtropical climates. References consulted throughout this review showed that climates in common reed habitats varied widely by region. Information on temperature ranges, annual precipitation, growing season length, and possible disturbance weather given in this literature are presented below. Minimum and maximum temperatures and precipitation levels reported are specific to the location identified and based on a finite time period.Northern United States: Common reed habitats in the northern Great Lakes states experience a subhumid, continental climate. Summers are short and warm; winters are long and cold. Annual precipitation averages 20 inches (508 mm) in northwestern Minnesota and 33.9 inches (860 mm) in Michigan's upper peninsula. Most of the precipitation (66%) occurs from April to September [29]. In the Lake Agassiz Peatlands Natural Area of Minnesota, January minimum temperatures average -39 °F (-39 °C), and July maximums average 94 °F (34 °C) (review by [108]).
Great Basin and Mojave deserts: In Utah and Oregon, common reed can occupy habitats in arid and semiarid climates [176,207,248]. At Diamond Pond in Harney County, Oregon, relative humidity is low, evaporation is high, and the growing season is short (80-117 days). Annual rainfall averages 7.9 to 12 inches (200-300 mm). Daily and seasonal temperatures fluctuate widely [248]. In Death Valley, common reed grows, when water is abundant, in locations where July temperatures can reach 110 to 115 °F (43-46 °C) [176].
Southern United States: Common reed habitats in South Carolina experience a subtropical climate with long, hot, humid summers and mild winters. The growing season averages 254 days. Average annual precipitation is 49 inches (1,245 mm), and hurricanes are possible but infrequent [211]. Common reed is typical in coastal prairies along the Gulf Coast in southeastern Texas and Louisiana. The climate is subtropical humid to semiarid in the Gulf Coast. The frost-free period averages 240 days in Louisiana and more than 320 days in lower Texas. Annual precipitation averages 56.6 inches (1,437 mm) at Lake Charles, Louisiana, and 28.8 inches (732 mm) at Corpus Christi, Texas. Ice storms, tropical storms, and hurricanes are possible (review by [205]).
A few studies have focused on the effect of specific weather and climates on common reed survival and growth. Several years of observations and studies in England indicated that spring frosts often increased common reed shoot density, crop biomass, and emergence period but decreased stem height and diameter [101]. Common reed plants taken from a Nebraska Sandhills meadow rolled their leaves when subjected to drought stress. Leaf rolling decreased the leaf area exposed to radiation [96]. Common reed growth and reproduction were greatest during an El Niño year in southern New England. Growth and reproduction were compared for 3 years, beginning 1 year before a high-precipitation El Niño year. Spring and summer were dry in the year before the El Niño. In the El Niño year, winter and spring were among the 10 hottest and wettest in the past 105 years. The following year had the 3rd hottest and 8th driest conditions in a 105-year period. On average, 30% more shoots were produced, shoots were 25% taller, and 10 times as many inflorescences were produced in the El Niño year than in years before or after. Soil salinity was negatively related to precipitation over the 3 years, and decreased salinity through precipitation inputs may have improved common reed growth [164].
Elevation: Common reed occupies sites from sea level to 7,000 feet (2,100 m) throughout North America. Elevation ranges in specific geographical areas are given below.
Elevational range of common reed by state State Elevation (feet) California below 5,200 [59,111,169] Colorado 3,500-6,500 [97] Idaho (eastern) 3,200-5,280 [92] Michigan below 4,900 [235] Montana (central and eastern) 2,100-3,850 [95] Nevada 2,000-6,700 [23,127] New Mexico 3,500-6,000 [158] Utah 2,500-6,500 [247] Utah (Uinta Basin) below 7,000 [84]Soils: Common reed occupies a wide variety of substrates and tolerates a range of nutrients, organic matter, and pH levels. Soils in common reed habitats are described as "tight" clays in north-central Texas [58], rich and moist in West Virginia [215], wet and moderately fertile in the Great Plains [216], peaty in salt marshes along the north Atlantic Coast [63], minerotrophic peats in the northern Great Lakes states [29], and seasonally flooded clay to sandy loams in southern and eastern Idaho and central and eastern Montana [92,94]. In temperate regions, common reed may form a floating mat or island that is not well rooted in the substrate [114,181].
Nutrients/pH: Soils in common reed habitats may be acidic, basic, nutrient rich or nutrient poor, but soil and water conditions tolerated may depend on developmental stage.
Stunted common reed plants grew on acid tailings from an abandoned copper mine in Vermont where the pH was 2.9 (Penko 1993, personal communication, cited in [155]). In Louisiana coastal marshes, common reed occupied sites with pH ranging from 3.7 to 8. Additional information on the soil nutrients in coastal marshes is available from Chabreck [39]. In the Fish Springs National Wildlife Refuge of Utah, common reed communities occurred where pH levels were 8.2 to 9.2 and organic matter was 4% to 4.6% [30]. In the Lake Agassiz Peatlands Natural Area of Minnesota, common reed was indicative of weakly minerotrophic waters with pH of 4.3 to 5.8 and calcium levels of 3 to 10 ppm [108]. In Wisconsin, common reed occurs in emergent aquatic communities in waters with less than 50 ppm and more than 150 ppm calcium carbonate [54]. Cover of common reed was significantly greater in undiked than diked wetlands on Lake Huron and Lake Michigan (P<0.0001). Diked wetlands had more stable water levels than undiked wetlands. Soils in diked wetlands were organic and in undiked wetlands were sandy or silty. Soils in diked areas were significantly more acidic, and had significantly more organic matter, total nitrogen, and available phosphorus than soils in undiked areas (P<0.001) [110].
Water level: Common reed tolerates frequent, prolonged flooding as well as seasonal drying [94,124]. The frequency, level, and duration of flooding tolerated by common reed differs by site. Flooding can also affect salinity levels. In the northeastern United States, common reed survival and growth were best at low salinity [37,109,134] and low flooding conditions. Growth was reduced by flooding at low salinity levels but increased with flooding at high salinity (>18,000 ppm) levels [37,134].
Common reed's tolerance of flooding frequency, level, and duration varies by site. Voss [235] reported that common reed occurred in water up to 6 feet deep in Michigan. Common reed occurred on sites with "frequent and prolonged" flooding in central and eastern Montana [94]. A review reported that common reed can survive flooding levels of 1 foot (0.3 m) or more for at least 8 years [156]. Southern cattail-common reed communities along the Colorado River in the Grand Canyon occur on sites that are inundated an average of 54% of the time [213]. Common reed plants collected from the Gulf of Mexico and grown in the greenhouse had greater average stem height when grown in 8 inches (20 cm) of water than plants kept moist (P<0.05) [116]. However, common reed was often killed when roots were submerged for repeated growing seasons in Manitoba's Delta Marsh [238], where it was most typical of moist sites and avoided areas with more than 1.6 feet (0.5 m) of summer water [150]. A review of prairie marshes of western Canada indicated that common reed did not persist where the water table was deeper than 39 inches (100 cm). Clones did not spread where the water table was more than 20 inches (50 cm) deep, and mortality was likely if plants were flooded for 3 years with more than 3 feet (1 m) of water [202].
Fluctuating water levels are also tolerated by common reed. In southern and eastern Idaho, the common reed habitat type occurs on seasonally flooded sites where water levels range from 20 inches (50 cm) above to 3 feet (1 m) below the soil surface [92]. Water levels in common reed habitats of the Rocky Mountain Region fluctuate from 2 feet (0.6 m) above to 2 feet (0.6 m) below the soil surface [124]. On the Tailhandier Flats on the St Lawrence River of Quebec, common reed persisted in dry (water table >3 feet (1 m) deep) and in flooded (8 inches (20 cm) deep for 90 days) conditions. Area occupied increased when low water levels occurred in the previous year's growing season and decreased when the water table was 4.9 feet (1.5 m) or more deep or when flooded for more than 100 growing-season days [117].
Salinity: While common reed tolerates high salinity levels (up to 45,000 ppm) [42], it typically grows and establishes best in sites with low salinity (0-5,000 ppm). Along Long Island Sound in Connecticut, common reed did not occur on sites with more than 26,000 ppm salinity. Common reed cover, frequency, stem height, and percentage of flowering stems were significantly negatively correlated with salinity (P≤0.003) [241]. In marshes along the Connecticut River, common reed was significantly taller and produced more biomass/ramet in fresh (0-5,000 ppm) than brackish (11,000-17,000 ppm) marshes (P<0.001). Shoots emerged significantly earlier in fresh than brackish marshes, but common reed stem density was significantly greater (P<0.0001) in brackish than freshwater [67]. On the Delmarva Peninsula, native common reed populations were most common in low salinity habitats [161]. In the upper Chesapeake Bay area, common reed colonized freshwater (0-200 ppm) before mesohaline (2,000-10,000 ppm) marshes based on aerial photos taken between 1938 and 1995 [186]. Common reed plants collected from the Gulf of Mexico and grown in the greenhouse in salinity of 4,000 or 10,000 ppm had lower total stem height than those grown without salt (P<0.05) [116].
Nutria, common muskrats, birds, and cattle feed on common reed. Song sparrows (Klockner 1985, personal communication, cited in [155]) and waterfowl eat seeds [133,216]. Black-capped chickadees and other bird species feed on scales (Caetococcus phragmitidis) that commonly occur in common reed leaf sheaths [133]. Nutria and common muskrats consume rhizomes and stems [133,216,254].
Cover value: Common reed provides shade, nesting, and cover habitat for mammals, waterfowl, song birds, and fishes. Native ungulates, waterfowl, other birds, and small mammals utilize common reed stands for cover. Waterfowl, pheasants, and rabbits use cover at the margin of common reed stands throughout its range [156]. In valley habitats of Nevada, common reed is considered "excellent" Gambel's quail cover [89]. In Idaho, common reed stands provide "excellent" big game thermal and hiding cover, and waterfowl utilize stands for nesting and hiding [92]. Common reed provides good feeding and thermal cover for many bird and small mammal species in Montana and is good thermal cover for mule deer and white-tailed deer [95]. In the Delta Marsh, white-tailed deer utilize common reed stands for escape cover [238]. More specific cover information is provided in the following subsections.
Livestock: Some report that common reed has little to no forage value [62,85], but Leithead and others [145] claim common reed is "readily eaten by cattle and horses" in the southern United States. Stubbendieck and others [216] also report that cattle and horses consumed common reed before it matured.
Small mammals: Common reed provides habitat for white-footed mice and habitat and food for nutria and common muskrats. The white-footed mouse, a habitat generalist, often occurs in common reed freshwater tidal marshes along the Hudson River of New York [160]. Common muskrats feed on common reed stems and use stems in nest construction [156]. Common reed may also provide emergency common muskrat cover on Gulf Coast marshes when lower marshes are swept away by storms or when other habitats are overpopulated [152]. Common reed is considered an important nutria food in Louisiana (Harris and Webert 1962, cited in [131]). In marshes of Dorchester County, Maryland, spring and fall nutria diets contained large amounts of common reed. Over a 3-year period, common reed made up 5.9% of nutria's annual diet, but made up 33.2% of May and 19% of October diets [254].
Birds: Common reed provides food as well as nesting, roosting, and hunting habitats to a wide variety of bird species. Some studies, however, indicate that dense, monotypic common reed stands support lower avian diversity than other wetland habitats.
Red-winged and yellow-headed blackbirds frequently use common reed habitats in central and eastern Montana [94]. Along the Colorado River from the Arizona-Nevada to the United States-Mexico borders, common reed stands supported the lowest avian densities and diversities of the marsh types studied. However, common reed marshes were utilized by wading birds in the spring and visiting insectivores throughout the year. In the spring, Yuma clapper rails also used common reed habitats [6].
Common reed is not considered an important food source for ducks, according to studies from Louisiana [41] and Georgia [123], but provides important nesting habitat. Stands with open water are typically preferred to thick dense stands. In the prairie pothole region of the northern United States and southern Canada, semipermanent and permanent marshes with large stands of common reed are important habitats for flightless, molting adult ducks [218,237]. Common reed stands also provided an important barrier for marsh inhabitants by limiting intrusions from grazing animals and humans [237].
Nesting habitat: Throughout its range, common reed is utilized as nesting cover and material. On the Bear River Migratory Bird Refuge on the northeastern edge of Utah's Great Salt Lake, snowy egrets and other herons used broken common reed stems as nest material [253]. In the Great Plains, red-winged blackbirds "preferentially" nested in common reed vegetation [216]. On southwestern Louisiana's Gulf Coast, red-winged blackbirds and boat-tailed grackles frequently nested in cattail and/or common reed stands [78].
On Pea Patch Island in New Castle County, Delaware, 10 wading bird species nested in common reed vegetation during a 7-year study. Snowy egrets, cattle egrets, little blue herons, and black-crowned night-herons as well as small numbers of tricolored herons, yellow-crowned night-herons, and green herons nested in common reed marshes and in upland sites. Cattle egrets produced larger clutches and had greater hatching success in common reed marshes than on upland sites, while the opposite was true for little blue herons. Common reed stands provided important nest material for wading birds and provided a protecting buffer from upland human and pet traffic [174].
On Utah's Bear River Migratory Bird Refuge, 3% of all duck nests (mallards, gadwalls, pintails, redhead, and cinnamon teal) were in common reed stands, although common reed occupied only an estimated 1% of the marsh area. The fate of duck eggs on the refuge is reported for species and vegetation type by Williams and Marshall [253]. Mallards used common reed more in developed than in undeveloped areas of Beach Haven West, New Jersey. Common reed was the primary nesting cover in developed lagoons [70].
Canada geese preferred bulrush, broad-leaved cattail, and common river grass over common reed cover types in Marshy Point, Manitoba, but the common reed cover type was preferred over other grasses and woodlands [48]. Nesting ducks in the Delta Marsh of southern Manitoba "heavily" used the edges of common reed stands. Mallards extensively used edge habitats where common reed met meadow vegetation, and redheads and lesser scaups used edges that met open water. Of 147 land-nesting duck nests, 31% occurred on the edges of common reed stands at the Delta Marsh Duck Station. Canopies created by the previous year's snow-weighted common reed stems and patches of common reed within meadow vegetation were favored nest sites. Flightless ducks often used open water areas within common reed vegetation [237].
Foraging/roosting habitat: Short-eared owls, barn swallows, chimney swifts, and red-tailed hawks utilize common reed habitats for roosting or foraging. On the lower Columbia River in Multnomah County, Oregon, short-eared owls roosted in old fields dominated by common reed and thistles [219]. Barn swallows and chimney swifts used common reed marshes along the Hudson River for perching and foraging [160]. In the Hackensack Meadowlands of New Jersey, short-eared owls used 2- to 3-foot (0.6-0.9 m) tall common reed stands for winter roosting [33], and red-tailed hawks hunted in common reed marshes [34].
Aquatic animals: Reviews report that common reed stands provide important shade, shelter, and food for fishes [114] and that common reed litter provides food for mollusks, other crustaceans, and aquatic insects [133]. There is additional information on the nonnative common reed haplotype and aquatic organisms in Impacts on fish and other aquatic organisms.
Palatability/nutritional value: Common reed is not rated as a high-value or high-palatability livestock or wildlife food unless plants are young. Immature plants are considered palatable in southern and eastern Idaho [92]. In Montana, common reed is considered a fair food source for pronghorn and a poor food source for mule deer, white-tailed deer, and elk. Palatability is rated fair for horses and cattle and poor for domestic sheep [95]. In the southern United States, common reed is described as a "high-quality, warm-season forage," although mature plants are considered tough and unpalatable [145].
Several studies report on the nutrients available in common reed plants. Trends in crude protein, phosphorus, and digestibility levels of common reed in south-central North Dakota from late spring to early summer are available from Kirby and others [132]. Percent ash, carbon, and nitrogen in live and dead aboveground common reed material is reported for plants from Blackbird Creek Marsh in New Castle County, Delaware, by Rowman and Daiber [193]. Levels of nitrogen and carbon in belowground common reed biomass along the Atlantic coast of Delaware are reported by Gallagher and Plumley [80].
Common reed is widespread in both estuarine intertidal and palustrine persistent emergent
wetlands [49]. It often forms monotypic stands [10,94], as other species are excluded by
persistent shading and extensive utilization of space by common reed [100].
Although common reed stands are often monotypic, adjacent wetter and drier sites may be
occupied by more flood-tolerant and less flood-tolerant species, respectively [94].
Dominant vegetation within a wetland or riparian site is often determined by water levels
and flood tolerances, and so it often fluctuates with water table changes [225]. These
zones of vegetation are "extensive and dramatic" in Big Creek Fen of Cherry
County, Nebraska [32], and well-defined in swamps of northwestern Minnesota [66]. In the
Delta Marshes of southern Manitoba, it appears that common reed is the only species for
acres, but a closer look reveals patches of common river grass (Scolochloa festucacea)
within the stands [150]. Disturbances can also affect community composition. In southern
and eastern Idaho and eastern Montana, nonnative Canada thistle (Cirsium arvense)
may establish in highly disturbed common reed stands [92,95].
Common reed is a dominant species in the following vegetation types and
classifications recognized in the United States and Canada. Broad classifications
are presented before state-specific classifications.
Throughout the United States:
Rocky Mountains:
Great Plains:
Canadian Prairie Provinces:
Southern United States:
Arizona:
California:
Colorado:
Idaho:
Louisiana:
Michigan:
Minnesota:
Montana:
Nebraska:
Nevada:
New York:
Oklahoma:
Utah:
Virginia:
Increases in the amount and coverage of nonnative common reed haplotypes since the mid-1900s
have prompted many investigations into its potential allelopathy, method of establishment
and spread, impacts on native plant and animal species, and susceptibility to control.
Allelopathy: The only study to date assessing
allelopathy in common reed suggests its rhizomes do not exude allelopathic chemicals.
Researchers found that germination of saltgrass and saltmarsh bulrush (Schoenoplectus robustus)
was not affected by watering with common reed rhizome leachate [61].
IMPACTS AND CONTROL:
Many studies have quantified and traced the spread of common reed in the Great Lakes
and Atlantic Coast areas where the nonnative common reed haplotype has become dominant.
Establishment, spread, and increased dominance of common reed are often associated with
anthropogenic disturbances, including land development, tidal manipulation, and
waterway construction. For more on the establishment and spread of common reed, see General Distribution and Occurrence and Regeration Processes.
Impacts: Numerous
changes can occur when common reed replaces other vegetation. Common reed has been called an
"ecosystem engineer" [212]. Plant diversity, soil properties,
sedimentation rates, bird and fish habitat use, and food webs may be
altered when marshes are converted to dense, monotypic common reed stands.
Impacts on plant diversity: The growth of large
monotypic common reed stands may be associated with decreased plant diversity. Through
field and greenhouse experiments, researchers concluded that common reed litter was the
most important factor in the exclusion of other brackish tidal marsh species. Seeds of
triangle orache (Atriplex prostrata) and seaside goldenrod (Solidago sempervirens)
established and grew well in soils collected from sites dominated by common reed
or rush (Juncus spp.) in the Adolph Rotundo Wildlife Preserve in Massachusetts.
Total biomass of both species was greatest in common reed soils. In field experiments,
establishment of these forbs decreased significantly (P<0.05) with common reed
litter regardless of the presence of common reed shoots. Forb establishment increased
with the removal of common reed litter and stems [166].
All measures of plant species diversity were lowest in a marsh with the greatest
average standing crop of common reed (1,742 g/m²) in East Harbor State Park, Ohio.
The researcher stressed cause-effect relationship was not established but suggested
that long-term common reed persistence may have reduced seed bank species richness [244].
In the Kampoosa Bog of Stockbridge, Massachusetts, species richness and evenness were
not different between fen plots with or without common reed. However, the cover of
characteristic fen species, water sedge (Carex aquatilis) and sweetgale (Myrica gale),
was significantly lower on plots with common reed (P<0.05) [187].
Impacts on sediment properties: Some studies indicate
that common reed may alter soil properties, salinity levels, and topographic relief when
it replaces previously dominant vegetation. Water salinity, depth to water table, and
topographic relief were significantly lower in stands dominated by common reed than stands
dominated by saltmeadow cordgrass and saltgrass in brackish tidal marshes on Hog Island in
southern New Jersey (P<0.01). All 3 variables were also negatively correlated
with common reed age. Significant differences in soil properties were noticed within 3 years
of common reed establishment [255].
Stanton [212] described common reed as an "ecosystem engineer" after finding
that true elevation, peat accumulation, and organic matter increased while sediment bulk
density decreased with increased common reed dominance in southwestern Louisiana's
Rockefeller Wildlife Refuge. Soils and elevation changes were compared along a gradient
that included marshes dominated by saltmeadow cordgrass, saltgrass, and saltmarsh bulrush,
ecotones between uninvaded marshes and marshes with new common reed establishment, and a
monotypic common reed stand about 40 years old. Rates of elevation increase peaked within
7 years of common reed establishment. Sediment bulk density decreased with increased common
reed age [212].
Common reed's impacts on sediment properties, however, are not consistently demonstrated
over all studies and sites. In Maryland's Prospect Bay, flow regime, sediment transport,
and sediment deposition patterns were not different at the scales measured in common reed
and smooth cordgrass marshes. Researchers suggested that results may be different during
severe storms [147]. In Tivoli North Bay, New York, there were no significant
differences in sediment microbial biomass and activities among narrow-leaved cattail
(Typha angustifolia), purple loosestrife, and common reed marshes. Microbial
processes specific to pollutants were not studied and the study was conducted at the height
of the growing season. Both factors may have affected findings [172].
Impacts on animal habitat: Conversion of wetland
habitats to monotypic common reed stands may or may not affect animal use. Findings often
differed with the species and age of the animal and vegetation being studied. In many
cases, habitat diversity, size, and connectedness may affect wildlife more than plant
species composition.
Birds and small mammals: In 40 salt and brackish marshes
of Connecticut's tidal wetlands, there were significantly fewer state-listed (endangered,
threatened, or special concern) bird species in common reed than in shortgrass vegetation
dominated by saltmeadow rush, saltgrass, and/or cordgrass (P<0.001). The average
number of bird species/plot was also significantly lower in common reed than shortgrass
marshes (P=0.029). Bird communities in common reed vegetation were dominated by
marsh wrens, red-winged blackbirds, swamp sparrows, and tree and barn swallows; wading
birds and sandpipers foraged at the edge of common reed stands [24].
Along the Hudson River of New York, bird and small mammal species richness, species
composition, and abundance were not significantly different between common reed, purple
loosestrife, and cattail freshwater tidal marshes (P<0.05). Average bird
species richness was highest in common reed marshes, although not significantly.
Arthropod availability and nest predator access were also not different by vegetation
type. Bird and arthropod abundance were better predicted by site and landscape
characteristics than vegetation type [160].
Fish and other aquatic organisms:
Habitat use by fish, crustaceans, and other aquatic invertebrates can be affected by vegetation;
however, fish age as well as vegetation type may affect study findings. In a review, authors
report that common reed marshes support a "diverse and abundant benthic biota",
and that many estuarine organisms are not affected by common reed's presence [243].
On the East shore of the Connecticut River on Long Island Sound, common reed vegetation
supported macroinvertebrate densities similar to those of restored meadows and smooth
cordgrass-cattail vegetation [240]. On the Hog Islands of southern New Jersey, overall
small fish (P=0.0001) and crustacean (P=0.002) use were significantly
greater in smooth cordgrass than common reed vegetation [1]. Total fishes caught/trap
was not significantly different between common reed and narrow-leaved cattail marshes
(P<0.05); however, there were species-specific differences between the 2
vegetation types. The number of aquatic invertebrates collected per litter bag was
generally highest in narrow-leaved cattail marshes, but differences between the 2 marsh
types were not significant. Grass shrimp (Palaemonetes pugio) captures/trap were
significantly greater in common reed than narrow-leaved cattail marshes (P=0.002).
Fiddler crabs (Uca minax) were significantly more abundant in narrow-leaved cattail
than common reed marshes (P<0.001) [69].
Several studies report that common reed-dominated marshes provide less
suitable habitat for mummichog (Fundulus heteroclitus and F. luciae)
larval and small juvenile forms [1,183]. Fundulus luciae was captured
exclusively from smooth cordgrass marshes, and the abundance of recently hatched
F. heteroclitus was much lower in common reed than smooth cordgrass [1].
Findings were similar along the Lieutenant River of Connecticut, where significantly
more F. heteroclitus larvae and juveniles were caught from narrow-leaved cattail
than common reed marshes (P<0.001) [69]. Successful pit trap of F.
heteroclitus and F. luciae decreased with increased abundance of common
reed in estuarine habitats in New Jersey, Delaware, and Maryland. Researchers
suggested that increased litter accumulations in common reed marshes created a more
uniform topography, decreased pooling, and may have reduced abundance of refugia from
currents [118]. Along Mill Creek, in New Jersey's Hackensack Meadowlands, large juvenile
and adult F. heteroclitus abundance was similar in common reed and smooth cordgrass
marshes but larvae and small juveniles were significantly more abundant in smooth
cordgrass than common reed (P=0.04 in 1999; P<0.0001 in 2000). Of 1,469
total fish captured, only 29 young of the year were captured from common reed marsh, and
their most likely prey were significantly more abundant in smooth cordgrass than
common reed (P<0.05). Experimentally creating undulations and pools in the
sediment increased larval abundance some, but researchers cautioned that these findings
do not indicate the undulations and pools are the only important larval habitat
features [183].
Impacts on food webs: Arthropod food webs
differed between smooth cordgrass and common reed stands in the Alloway Creek
Watershed of New Jersey's Delaware Bay. In smooth cordgrass stands, the food web
depended on herbivores and smooth cordgrass consumption. In common reed stands,
a detritus-based food web was most common [86].
Control: While several studies report
on the use of chemical, mechanical, and integrated control methods for common reed,
determination of the common reed haplotype and assessment of potentially undesirable
consequences of removal are necessary before control is attempted. In the Great Lakes
area, on the Atlantic Coast, and in other parts of common reed's range, appropriate
management of common reed requires that its native or nonnative status be determined.
In some areas, land managers are attempting to maintain and encourage native common
reed populations while discouraging nonnative populations [175].
Although common reed can be a problem in waterways, producing extensive stands
that restrict water flow, the same aggressive growth characteristics make it an
excellent soil binder that prevents erosion and washouts [114] and may protect
eroding coastlines [191,192]. Therefore the control or removal of common reed may
negatively impact some coastal locations. At eroding island sites on the eastern
shore of Chesapeake Bay, Maryland, more deposition occurred in common reed
than cordgrass stands. Common reed stands trapped minerals and organic sediments at
a rate of 24 g/m²/day. Substrate elevation increased by as much as 3 mm in 6 months
in common reed stands [191]. Additional studies in Chesapeake Bay showed that
accretion rates were higher (0.95 cm/year) and sediment water content lower (about 70%)
in 20-year-old common reed than in cattail, switchgrass, or 5-year-old common reed
stands. High productivity, litter accumulations, and high sediment loadings in common
reed marshes likely contributed to accretion. Researchers indicated that high accretion
in common reed stands may actually benefit coastal areas since sea level rise in Chesapeake
Bay is 2 to 3 times the eustatic rate of 1 to 2 mm/year [192], (sea level data reviewed in [192]).
Best management practices in common reed marshes may not require vegetation type conversions.
In Delaware Bay estuaries and Connecticut River salt marshes, researchers assessed habitat
data from common reed stands with intermittent and continuous herbicide use. Habitat value
was rarely 0% or 100%, regardless of species composition and dominance, and smooth cordgrass
did not colonize sprayed common reed zones as rapidly as cover was lost to herbicide treatment.
Researchers suggested managing for a net gain of suitable habitat instead of a vegetation type
conversion in these marshes [229]. In a review, Ludwig and others [151] suggested that common
reed management should be site-specific, goal-specific, and value-driven. Understanding the
biological, chemical, and physical impacts of common reed at a particular site is important to
the management decision-making process [151].
Numerous studies have assessed control methods for common reed. Information on many
individual and integrated methods is available from the following references: [52,155,227].
Some indicate that control treatments are most effective when plants are releasing pollen,
typically in midsummer [156], and that extensive and persistent rhizomes necessitate follow-up
treatments [57].
Prevention: Maintaining competing vegetation around
existing common reed stands and minimizing nutrient loads may limit common reed spread. In
a coastal brackish marsh along the Barrington River in Seekonk, Rhode Island, cutting neighboring
vegetation and adding nutrients increased common reed (likely the nonnative haplotype) density,
height, and biomass. Common reed spread 3 times farther in high-nutrient vegetation-removal
treatments than in any nutrient treatment with intact neighboring vegetation [165].
Water level manipulation: In some areas of Connecticut,
the reintroduction of tidal flooding through dike breaching has decreased the area
occupied by common reed [241]. However, it is suggested that restoring fluctuating water
levels in Great Lakes wetlands may increase common reed abundance [110].
Along Long Island Sound in Connecticut, breaching dikes that were more than 50 years
old generally decreased the total marsh area covered by common reed. Through tide
restoration, salt marsh vegetation replaced common reed at a rate of 0.5% to 5% per year
and limited common reed to less frequently flooded sites [241].
In the Barn Island tidal marsh complex of Stonington, Connecticut, the reintroduction
of tidal flooding decreased common reed abundance in places. Before dike construction,
stunted smooth cordgrass, saltmeadow cordgrass, and saltgrass dominated. Thirty years
after dike construction, cattail and common reed dominated. Ten years after tidal flooding
was restored, 28% of the study area resembled predike vegetation, and 33% remained
dominated by cattail and common reed [16].
Integrated management: Many studies describe
the effects of multiple control methods on common reed. On Connecticut River's east
shore, mowing and herbicide treatments provided for short-term control [240].
In common reed marshes near Salem, New Jersey, the establishment of Jesuit's bark
(Iva frutescens), groundsel-tree (Baccharis halimifolia), black rush
(Juncus roemerianus), and saltmeadow cordgrass in herbicide-treated areas
appeared to limit the spread of common reed populations [236]. In ponds at Cape Cod
National Seashore, repeated stem breakage in a high-water year produced substantial
common reed mortality. The number of live stems decreased by 58% to 99% in treated ponds
[209].
Several studies report the effects of combining herbicides with fire to reduce
common reed. These studies are discussed in Fire as a control
method.
Fire: See Fire
Management Considerations.
Biological: While there have been no purposeful
introductions of insects that target the nonnative common reed haplotype, many have
been accidentally introduced. Likely they arrived in shipments packed with dried common
reed material. The diversity and abundance of these herbivores is highest near New York
City [25]. There has been some discussion about the introduction and use of a
haplotype-specific biocontrol [27,90]. For more on insects already in the United States
and potential European introductions, see [28].
Native people ate common reed rhizomes and seeds. They also used the plant material to treat stomach, ear, and tooth pains, and to construct pipestems, arrows, mats, nets, and prayer sticks [62,127,128,242].
Common reed was utilized as a food source and as a medicine by Native Americans. Shoots were eaten raw or cooked. Flour was made from dried shoots and rhizomes [62,64]. Common reed rhizomes provided a year-round food source. Seeds were harvested and ground into a high fiber meal [62]. In southern California, the Kawaiisu harvested and utilized sugar crystals that collected on common reed stems [257]. Paiute people used common reed's sugary sap to treat lung ailments, and the Apache used common reed rhizomes to treat diarrhea, stomach troubles, earaches, and toothaches [62].
Common reed plant material was used to construct various items that made food gathering, warfare, travel, and relaxation easier or more comfortable. Native people used common reed in fences, roofs, and baskets [62]. Common reed was also used as insulation, fuel, fertilizer, and mulch. Six hundred-year-old cigarettes found in Red Bow Cliff Dwellings, Arizona, were constructed of common reed stems [181]. The Kawaiisu of southern California used common reed stems to make arrows, fire drills, and pipes [257]. The Cahuilla, also of southern California, used common reed stems to make flutes, splints, and arrow shafts. Common reed was also used as a thatch in house construction. The soft, silky fibers, which remained after stems were soaked and the outer tissue layer was removed, were twisted into a strong cordage used to make carrying nets and hammocks [22]. The Navajo used common reed to make bird snares and arrows [65]. The Seri of the southwestern United States bundled common reed stems to make "seagoing reed boats". Boys used mesquite (Prosopis spp.) spines attached to common reed stems to catch small fish and crabs [68]. The Navajo used common reed to make prayer sticks that they used during the Mountain Chant Ceremony [65].
Common reed sprouts rapidly from surviving rhizomes after fire. Sprouts may appear as soon as 5 days after fire [238]. Rarely is common reed abundance decreased by fire, and postfire recovery is typically rapid. At the end of the first season after fall and spring fires in the Delta Marsh of Manitoba, common reed shoots showed evidence of some scorching but survived to maturity. Fire-caused apical bud mortality was minimal [88]. If rhizomes are damaged or killed, common reed abundance may be reduced temporarily and/or recovery may be delayed [135], (review by [228]). Literature from northern mixed-grass prairies suggests summer fires (June-August) on dry substrates when plant nutrient reserves are low may burn into the organic soil and reduce common reed density through rhizome death or damage [135].
New common reed establishment on burned sites is possible if a viable seed or rhizome source exists. Seedling establishment is possible from on-site seed sources, but information on common reed seed banking is sparse. Establishment from rhizome fragments may be more successful than establishment from seed. Common reed plants established from rhizome pieces but not from seeds on burned soil in greenhouse and field studies conducted in Stemmers Run Wildlife Management Area, Maryland. Buried rhizomes had 100% survival in burned soils in the greenhouse. In the field, survival of sprouts from rhizomes on burned sites was 10%. Although no seedlings established on burned soils, 0.7% of seedlings established on bare mineral soil in the field [3]. For more information on common reed establishment from seeds or rhizomes, see Regeneration Processes.
Common reed reproduces sexually from seed and vegetatively from stolons and rhizomes.
Local spread of common reed is predominantly through vegetative growth and regeneration, while establishment of new populations occurs through dispersal of seeds, rhizomes, and sod fragments. For example, on the Tailhandier Flats on Quebec's St Lawrence River, common reed increased its surface area occupied by 18% from 1980 to 2002. Researchers attributed an average of 88% of the spread to vegetative growth but suggested that new colonies were the result of seedling establishment [117]. Near the mouth of Delaware Bay, common reed moved into salt marshes through rhizome and stolon growth from more upland sites. Establishment from seed occurred in sparsely populated or bare patches within the marsh. Some bare site colonization may occur through vegetative growth, but vegetative colonization likely decreases as distance from an established population increases [251].
Reproductive mode affects the genetic makeup of common reed populations. In the Charles River Watershed of Massachusetts, the genetic makeup of clones that made up stands and stands that made up populations were evaluated. Stands were mosaics of different clones. Populations were closely related, but plants within populations were more closely related than plants from different populations. The researcher concluded that colonization was likely vegetative, and populations increased over a short time period [129].
Breeding system: Common reed produces male, female, and perfect flowers. Lower florets are staminate or sterile, and upper florets are pistillate or perfect [87,247].
Pollination: Cross pollination of common reed flowers is probably most common, but self pollination or agamospermy (seed production without fertilization) are also possible. In the laboratory, 5 of 16 native inflorescences and 2 of 4 nonnative inflorescences from populations in Rhode Island produced viable seed through either self pollination or agamospermy [138]. Some self pollination also occurred in common reed populations in Japan, although seed set was much lower for self-pollinated than cross-pollinated flowers [119].
Seed production: Many researchers indicate that common reed rarely produces viable seed [82,97,235], while others indicate that viable seed is produced at least sometimes in some locations. Voss [235] reported that "fertile seed is often not developed, (and common reed) customarily reproduces vegetatively". In Colorado, some common reed populations produced empty spikelets and were likely limited to vegetative regeneration [242]. Some researchers indicated that early frosts in the Delta Marsh of south-central Manitoba prevent successful seed production [150]; however, Shay and Shay [202] reported viable seed production in the Delta Marsh and observed seedlings on drying shorelines in the area. Ailstock (unpublished data, cited in [3]) reported that overwintering common reed inflorescences produced abundant viable seed. Common reed plants growing near the mouth of Delaware Bay produced 500 to 2,000 seeds/shoot [251]. Seed set averaged 9.7% and ranged from 0.1% to 59.6% for 12 common reed populations in southwestern Japan. Flowers from 2 cross-pollinated populations set 52.4% and 64.4% of seed. Self-pollinated flowers produced 2.8% and 8.9% of seed [119]. From common reed populations in St-Bruno-de-Montarville, Quebec, an average of 6.6% and a maximum of 27.1% of seeds were viable. From populations on the east tip of Laval Island, Quebec, an average of 2.7% and a maximum of 11.3% of seeds were viable. Based on the abundance of flowers produced/inflorescence, researchers estimated 350 to 800 viable seeds could be produced/inflorescence [154].
Viable seed production may be affected by site factors, but there is little information on the conditions necessary for successful common reed seed development. According to Cross and Fleming [52], common reed may need to reach 3 or 4 years old before producing viable seed. In Utah's Fish Spring National Wildlife Refuge, there are 2 distinct common reed communities. A dwarf community with limited rhizome growth occurring between greasewood (Sarcobatus vermiculatus) and saltgrass vegetation may have established from seed. Within the marsh, common reed has substantial vegetative growth [30].
Seed dispersal: Common reed seeds are dispersed by wind [251] and water. Buoyancy of seeds from Germany and the Netherlands may be slightly less in stagnant than moving water. Ninety percent of seeds were still floating after 10 days in stagnant water and after 23 days in moving water. Half of seeds were floating after 32 days in stagnant and after 69 days in moving water, and 10% of seeds were still floating after 121 days in stagnant water and 124 days in moving water [232].
On salt hay (saltmeadow cordgrass (Spartina patens), saltgrass (Distichlis spicata), and/or saltmeadow rush (Juncus gerardii)) farms in Commercial Township, New Jersey, common reed established only after Hurricane Hazel in 1954. It is likely that establishment occurred by seed brought by storm tides from Delaware. However, vegetative propagules may have also been carried in the storm [18]. Dispersal of vegetative propagules is common in some situations. For more information, see Vegetative dispersal.
Seed banking: Information on common reed seed banking is sparse; however, several studies report some common reed seedling emergence from soil seed banks. Although submersion often reduces emergence, it does not necessarily cause an immediate loss of viability [47,206].
Some studies and researchers indicate that common reed seed banks are small and/or short-lived [59,110]. A review by DiTomaso and others [59] reports that common reed seeds are short-lived under field conditions and that persistent seed banks are not produced. In wetlands of the Great Lakes area, common reed was present in the aboveground vegetation of all sites sampled, but no seedlings emerged from collected soils [110]. No common reed seedlings emerged from soil samples collected from back dunes of the Cape Cod National Seashore in Massachusetts, but common reed was rare in the study area [13]. Common reed did not emerge from soils collected in July from marshes on Wisconsin's Green Bay where its relative abundance was up to 4.1%. Soil samples were collected before seed set in the current year in order to characterize the persistent seed bank [74].
Several studies report common reed emergence from soils collected in various communities, and emergence was usually greatest from unflooded soils collected in common reed vegetation. Twenty-five soil samples were collected in early April from 6 vegetation types in Utah's Ogden Bay Waterfowl Management Area. Sixty-four common reed seedlings/m² emerged from soil collected in common reed stands. From soil collected in hardstem bulrush (Scirpus acutus) and cattail (Typha spp.) stands, 2 and 4 common reed seedlings/m² emerged, respectively. There was no common reed emergence from soil collected in the other 3 vegetation types. When soil samples were submerged, no common reed seedlings emerged. Researchers noted that common reed emergence was low compared to other emergent vegetation, and there were no common reed seedlings on an unvegetated, recently drained mudflat in the study area [206]. Common reed seedlings emerged from soils collected in June from 8 cover types in the Delta Marsh. Seedling density was lowest (5 seedlings/m²) in soils collected from large bays and greatest (90 seedlings/m²) in soils from common reed-dominated vegetation. Large bays often had less than 3 feet (1 m) of standing water. Submergence of soils in the greenhouse also affected emergence; 398 common reed seedlings emerged in drawdown and 4 emerged in submerged (0.8-1.2 inches (2-3 cm)) conditions [177].
Common reed seeds can survive submergence. Emergence generally decreases in flooded conditions, but a short period of submersion may increase germination success. Of common reed seeds submerged in 12 inches (30 cm) of water in a canal in Prosser, Washington, 16%, 51%, and 54% germinated after 3, 6, and 9 months of submergence, respectively. Germination decreased to 5% and 1% germinated after 36 and 60 months of submergence, respectively. Mature seeds were collected in the field and stored for 1 year at room temperature before submergence treatments. After 60 months of dry storage and no submergence, 16% of common reed seed germinated [47]. Common reed seedlings established on a mudflat on northwestern Minnesota's Mud Lake National Wildlife Refuge, but seeds collected nearby did not germinate after wet, outdoor storage treatments. After 7 months of dry storage at room temperature, about half of the common reed seeds germinated. Germination decreased to about 30% after 8 months of dry, room temperature storage [98].
Germination: Warm temperatures, high light conditions, and low to moderate salinity levels on moist but not flooded sites are most conducive to successful common reed seed germination.
Stratification for 6 months at 39 °F (4 °C) was required for germination of common reed seed collected from the Delta Marsh. Under full light, all seeds germinated at alternating temperatures of 68 °F (20 °C) and 86 °F (30 °C) and 97% germinated at alternating temperatures of 59 °F (15 °C) and 77 °F (25 °C) [79].
Germination of common reed seed collected from the Delta Marsh was best on the soil surface in full light. The maximum germination rate was 52% in dark conditions. In full light, germination rates were 70% on the soil surface, 30% at 0.4 inch (1 cm) deep, and 12% at 1.6 inches (4 cm) deep. No common reed seedlings emerged when seeds were buried 2 inches (5 cm) deep. Optimal germination temperatures were maintained during burial experiments [79].
Common reed germination may be decreased at salinity levels greater than 5,000 ppm [36]. Seed from Meadow Pond and Little River Salt Marsh on the southern New Hampshire coast germinated at 35.5% in fresh water, 36.5% at 5,000 ppm salinity, and 11% at 20,000 ppm salinity. A single seed germinated at 30,000 ppm salinity, and no seed germinated at 35,000 ppm salinity [36]. Another study showed similar results, with 4% of seeds germinating in a salt-free environment, 36% at 2,000 ppm salinity, and 32% at 5,000 ppm salinity [79].
Oxygen is required for common reed germination; however, exposure to anoxic and high-salt conditions may increase germination once seeds are returned to salt-free environments and atmospheric oxygen levels. Without oxygen, common reed seeds collected near the mouth of Delaware Bay in November did not germinate in any salinity level from 0 to 40,000 ppm. At atmospheric oxygen levels, germination of common reed was reduced and inhibited at 25,000 and 40,000 ppm salinity, respectively. Germination increased with salinity levels of 5,000 and 10,000 ppm when oxygen levels were reduced to 5% and 10%. Seeds treated to high salinity levels and anoxic conditions had 60% germination (maximum for the study) when returned to atmospheric oxygen levels and fresh water [250,251].
Seedling establishment/growth: Common reed establishment from seed occurs on some sites [98,245], but mortality rates are high when seedlings are exposed to flooding, drought, salt, and freezing [52,102], (Hurlimann 1951, cited in [101]). Seedling sensitivities may limit establishment from seed to ideal site and weather conditions.
Common reed seedling survival is often low. In Stemmers Run Wildlife Management Area in Maryland, common reed established from seed on bare high marsh soils, but after 12 weeks survival was just 0.7%. Survival of seeds collected and grown in a greenhouse was 27% [3]. Research by Haslam [104] indicates that winter mortality is high for young common reed plants with only 1 to 3 shoots and no rhizome development and is low for plants with 10 to 12 shoots. Common reed seedlings growing for 2 to 4 seasons can have just 3 shoots and no horizontal rhizome growth or may have over 200 shoots, be up to 4.3 feet (1.3 m) tall, and occupy an area over 22 ft² (2 m²) [104].
Common reed seedling establishment is typically restricted to muddy sites with "just enough water". High water levels can drown or wash away seedlings, and too little moisture leads to desiccation. Once seedlings reach 5 to 6 inches (13-15 cm) tall they can typically survive flooding depths of 3 to 4 inches (8-10 cm) [210].
Warm temperatures, high light levels, and high phosphate levels can provide for "good" seedling growth. Based on research conducted in England, Haslam [104] reports that seedlings grow faster at 77 °F (25 °C) than at 59 °F (15 °C). In low light, seedlings appear small and weak. When phosphate levels are low, seedling growth is stunted [104].
Field sites suitable for seedling emergence are typically unflooded and unshaded. Common reed seedlings emerged in the Delta Marsh after flooded sites were drawn down to 12 inches (30 cm) below normal. Seedling recruitment in the field was compared to emergence from soil samples. The maximum seedling density was 25 seedlings/m² from soil samples and 20 seedlings/m² in the field. In the field, the largest number of common reed seedlings occurred in the draw down area with low common reed density. Seedling recruitment was lacking in dense common reed stands, and recruitment was low on sites with 500% to 600% moisture [245]. On salt hay farms in New Jersey, common reed established after Hurricane Hazel on bare areas that were inundated the longest and on newly constructed dikes and berms. However, whether or not this was establishment from seed or vegetative propagules is unknown [18].
Native and nonnative seedling growth: Common reed seedling establishment, growth, and mortality can vary among haplotypes. Native common reed seedlings suffered higher mortality, produced less below- and aboveground biomass, and were shorter than nonnative seedlings under low- and high-nutrient treatments. Researchers compared native and nonnative growth in an outdoor experiment with seeds collected from Ontario, Rhode Island, Maryland, and Delaware. After 1 month, 23% of native and 15% of nonnative seedlings died. All native seedlings from seed collected in Rhode Island died within 2 weeks. At the end of the experiment (about 9 months), 38% of native and 23% of nonnative seedlings were dead. In the high-nutrient treatment, nonnative seedlings produced significantly more rhizome biomass (x=113.8 g) than native seedlings (x=44.3 g) (P<0.0001). Native seedling stems were clustered around where the seed was planted, but nonnative stems were spread throughout. No native seedlings flowered, but 3 nonnative seedlings did. Above- and belowground biomass and number of shoots produced by nonnative seedlings were 2 to 4 times those of native seedlings in low- and high-nutrient treatments [198].
Average above- and belowground biomass, number of shoots, and shoot height of native and nonnative common reed seedlings [198] Low nutrients High nutrients Native Nonnative Native Nonnative Aboveground biomass (g) 14.3 51.7 84.3 183.5 Belowground biomass (g) 13.3 54.9 79 155.8 Number of shoots 12.2 27 44.3 86.5 Shoot height (cm) 67.1 99.9 99.2 115.4Vegetative regeneration: Once established, common reed regeneration and spread are primarily through rhizome and sometimes stolon growth. A substantial amount of common reed establishment also occurs vegetatively through colony breakage and dispersal of rhizome fragments [3,210]. Vegetative growth allows common reed to spread into sites unsuitable for establishment from seeds. Common reed rhizome production and vegetative spread can be extensive. For additional information on the morphology, spatial distribution, and structure of common reed rhizomes and stolons, see General Botanical Characteristics.
Vegetative dispersal: Vegetative rhizome and stolon growth is the predominant method of common reed spread following establishment [235,242], but rhizome and sod fragments also provide for successful establishment. Rhizome fragments often establish and survive better than seeds [3], and young plants produced from rhizomes are generally less sensitive than seedlings. For more on the establishment of common reed from seeds, see Seedling establishment/growth.
Common reed is often dispersed through the transport of rhizome fragments and the movement of sod. Mechanical equipment operating in a common reed-dominated community had 69 rhizome buds in its tracks (Ailstock, personal observation, cited in [3]). Rhizome fragments with 2 to 3 nodes are often viable [52]. Small portions of common reed stands can be torn from river banks, float downstream, and reestablish. In Leech Lake, northern Minnesota, an entire common reed stand was dislodged by a storm. The stand moved and reestablished about 1 mile (1.6 km) from its original location [210].
Field and greenhouse studies suggest that the survival of common reed shoots produced by rhizome fragments is better than that from seeds. Buried rhizomes survived better than seeds when both were collected from Stemmers Run Wildlife Management Area, Maryland, and grown in the greenhouse and the field. Seedling survival in the greenhouse was 27% on bare soil. Rhizomes left on the soil surface did not establish in the field. All buried rhizomes survived in vegetated, burned, and bare soils in the greenhouse. In the field, buried rhizome survival was 10%, 30%, and 20% in burned, vegetated, and bare high-marsh soils, respectively. In the field, establishment from seed occurred in areas of exposed mineral soil in the high marsh dominated by switchgrass (Panicum virgatum) and common rosemallow (Hibiscus moscheutos subsp. moscheutos). Seedling survival was low; after 12 weeks, just 0.7% of seedlings were alive [3].
Vegetative establishment: High levels of salinity (≥18,000 ppm), anoxic conditions, exposure, and small rhizome size can reduce the chances of successful establishment from common reed rhizome fragments [20]. Portions of common reed stands or sod may survive drought and saline conditions better than rhizome fragments [212]. Young plants established through vegetative means can be much hardier than seedlings [210].
Emergence from unburied, flooded rhizomes failed when salinity levels were high (≥18,000 ppm) in greenhouse and field studies in Riverbend Marsh, New Jersey. Rhizomes on the surface desiccated or washed away. No emergence occurred in poorly drained conditions, although mature common reed occupied poorly drained sites in the field [20].
Survival and shoot height were greater in fresh than saline water, and exposure to fresh water before saline water increased shoot survival and height in a greenhouse study using rhizomes and water from Riverbend Marsh. Larger rhizomes (2-node section weighing 4 g) established in saline water (9,000-21,000 ppm), but small rhizomes (2-node section < 2 g) did not. No shoots emerged from rhizomes in poorly drained or flooded treatments. A freshwater treatment before exposure to the salty Riverbend Marsh water increased shoot survival and height over all saltwater treatments. Field observations indicated that common reed established near mosquito ditches, creek banks, landfills, and railroad beds and spread vegetatively into the interior high marsh [21].
Average survival and shoot height from common reed rhizome fragments [21] Treatment Proportion surviving to end of growing season Shoot height (cm) Freshwater 0.80a 63.58a Freshwater for 2 weeks, then Riverbend water (salinity 9,000-21,000 ppm) 0.67ab 45.35ab Riverbend water 0.49b 36.39b Values within a column followed by different letters are significantly different (P<0.05).In areas of southwestern Louisiana's Rockefeller Wildlife Refuge, where vegetation was clipped or killed by herbicide, common reed sod established but seedlings did not. Common reed cover was greatest when sod was planted in clipped sites. Five of 10 sods survived in clipped areas, 4 of 10 survived in undisturbed areas dominated by saltgrass and saltmeadow cordgrass, and 1 of 10 survived in herbicide-killed areas. After the 2-year study period, 30% of sod pieces survived, although water tables were low and pore water salinity was 20,000 to 38,000 ppm. During the study, there were record-setting growing-season droughts. Fertilization did not affect common reed cover [212].
Nonnative common reed sprouts survived and grew better in fresh and saline environments than did native sprouts. Rhizomes were collected in Delaware and Maryland from nonnative and native haplotypes. Nonnative rhizomes produced numerous shoots. Shoots produced by native rhizomes were fewer but thicker and taller than nonnative shoots. Shoot differences persisted and were used to distinguish haplotypes 1 year later. Nonnative shoot survival was higher than native shoot survival over the salinity range tested (0-23,400 ppm, P=0.02). Native haplotypes did not grow over 2 inches (5 cm) at salinity levels above 12,870 ppm. The nonnative haplotype grew to 8 inches (20 cm) and was producing new shoots at 23,400 ppm salinity. No new native shoots were produced at salinity levels above 12,870 ppm. In freshwater, nonnative common reed produced 1.63 shoots/g dry mass of rhizome tissue, and native haplotypes produced 0.52 to 0.92 shoots/g dry rhizome tissue [233].
Survival of nonnative and native common reed haplotypes with increasing salinity [233] Salinity (ppm) Survival (%) Nonnative haplotype (M) Native haplotype (F) Native haplotype (AC) 1,176 80 80 80 7,605 100 20 40 12,870 100 0 20 18,720 100 0 40 23,400 100 0 0Vegetative spread: Rhizomatous growth allows common reed to spread quickly [15] and to occupy sites unsuitable for establishment by seed or rhizome fragments [5,19]. In England's Breckland fens, common reed rhizomes grew 20 to 80 inches (50-200 cm) annually, while stolons grew to over 40 inches (100 cm) long [101]. After studying Wisconsin wetland vegetation, Curtis [54] reported that common reed rhizomes can grow 16 inches (40 cm)/year. At Horn Point marsh in the upper Chesapeake Bay area, aerial photos showed that common reed spread over 33 feet (10 m) in a single season on a bare sandy dredge [186]. Common reed clones on the Connecticut River's east shore from Long Island Sound to Lord's Cove spread from 33 m² to 1,630 m²/year [240]. Rates of common reed spatial expansion were 0.07 to 1.3 feet (0.02-0.4 m)/year and perimeter expansion rates were 1.6 to 6.6 feet (0.5-2 m)/year in New Jersey and Delaware photos taken from 1954 to 2000 [180].
Vegetative spread allowed common reed to occupy harsh sites with salinity of 20,000 to 30,000 ppm and daily flooding. Researchers conducted transplant and rhizome severing studies in low (daily tide flooding) and high marshes (no daily flooding) in the brackish (<15,000 ppm) Adolf Rotundo Wildlife Sanctuary of Massachusetts and in the saltier (20,000-30,000 ppm) Rhode Island's Rumstick Cove. The density of transplant shoots in high marshes was 2 to 5 times that in low marshes with highly anoxic soils. At Rumstick Cove, severing common reed rhizomes decreased the survival (<45%) of ramets growing into the low marsh. In the Adolf Rotundo Sanctuary, rhizome severing did not affect survival. Higher salinity at Rumstick Cove likely made the connection to the parent plant more important for survival [5].
In the Riverbend Marsh of New Jersey's Hackensack Meadowlands, common reed's spread from mosquito ditches into high marshes was facilitated through its alteration of the site. Severing rhizomes and clipping dead culms led to increased sulfide concentrations in dense common reed stands. Researchers suggested that common reed plants lowered sulfide concentrations in the upper marsh surface through oxygenation and perhaps pressurized ventilation of the rhizosphere. Decreased sulfide levels were associated with increased common reed growth. Establishment occurred in well-drained mosquito ditches low in free sulfides, and established plants provided a source of essential nutrients to the advancing plants through their rhizome connection [19].
Growth: Common reed is capable of rapid above- and belowground growth, with growth rates of up to 1.6 inches (4 cm)/day reported [202]. Rapid common reed growth may affect nutrient availability. In the Tivoli Bays of the Hudson River National Estuarine Research Reserve in New York, common reed produced nearly twice the aboveground biomass of narrow-leaved cattail and purple loosestrife (Lythrum salicaria) and sequestered a significantly greater amount of nitrogen and phosphorus in aboveground tissue (P=0.0001) [220].
Native and nonnative plant growth: The nonnative common reed haplotype emerges earlier, produces greater biomass, and activates dormant rhizome buds more rapidly than native common reed haplotypes. Native haplotypes may also be more susceptible to aphid herbivory than the nonnative type.
Field and greenhouse studies of native and nonnative common reed populations growing together in the Appoquinimick River watershed near Odessa, Delaware, showed that nonnative plants emerged earlier, accumulated more biomass, grew taller, and activated dormant rhizome buds more rapidly than native plants. In March, nonnative stands averaged 97.5 aerial shoots/m² whereas native stands averaged 7.5 shoots/m². Nonnative plants emerged earlier and flowered later than native plants. Differences in stand densities were not detected at the end of the growing season, but in August, height, fresh biomass, leaf biomass, and stem biomass were significantly greater in nonnative than native stands (P<0.0001). After 70 days in a greenhouse, rhizomes collected from the nonnative stands had produced significantly more shoots/biomass of rhizome planted than rhizomes collected from native stands (P=0.024). Researchers concluded that nonnative plants activated dormant rhizome buds more rapidly than native plants [144].
Greenhouse and field studies revealed that aphids (Hyalopterus pruni) preferred to feed on and had greater densities in native than nonnative common reed stands in Rhode Island. In the greenhouse, there were significantly more aphids/gram of dry weight on native than nonnative plants (P=0.037). Aphid feeding led to chlorosis and sometimes death of native plants, while nonnative plants were "relatively undamaged". In the field, nonnative stands supported a significantly lower density of aphids than did native stands (P<0.001). The only plants without aphids were nonnative [139].
Common reed is considered both a pioneer and a climax species. It regenerates and establishes well on disturbed sites and is often considered a weedy or nuisance species. Generally, common reed is shade intolerant, appears early in primary open water succession, and sprouts rapidly after top-killing disturbances.
General descriptions: In marsh successions, common reed may be present in any seral stage from pioneer to climax. In the Fish Springs National Wildlife Refuge of Juab County, Utah, common reed's presence could result from an invasion into any seral stage of marsh/meadow community development or could represent any seral stage in regular succession from pioneer to climax [30,53]. In south-central Manitoba's Delta Marshes, common reed regenerates rapidly after disturbances and is considered a climax species [238,239].
Several researchers and systematists have described common reed as "weedy" and "invasive" [111,184,230]. Common reed is often described as characteristic of disturbed sites [63,216,256]. These descriptions have been applied to both the native and nonnative common reed haplotypes. For a discussion on where the nonnative haplotype is most common, see Subspecies, variety, and haplotype distributions, and for differences between native and nonnative haplotype growth, see Native and nonnative seedling growth and Native and nonnative plant growth.
Shade tolerance: Common reed is most common in full sun or nearly full sun conditions [111]. A review reports that common reed height and density are lower in partial shade [133]. In the Crystal Fen of north-central Maine, common reed occurred in open and recently forested but not in long forested portions of the fen [120]. In England, common reed occurred in closed-canopy woodlands, but plants were "spare, short, and flaccid" [102].
Primary succession: Common reed is often present early in freshwater swamp succession in the Great Lakes area but may appear a bit later in salt marsh succession along the Atlantic and Gulf coasts.
Vegetation development on open water in deep swamps, lakes, ponds, swales, and marshes is typically initiated with the establishment of submerged leaf species such as watermilfoil and/or bladderwort (Myriophyllum and Utricularia spp.) and closely followed by the establishment of floating leaf species including waterlily, buttercup, and/or pondweed (Nymphaea, Ranunculus, and Potamogeton spp.). Common reed typically establishes after the floating leaf stage. Eventually swamps may succeed to meadows or deciduous forest. This type of hydrosere succession is common in the Great Lakes area [66,75].
Four successional stages are recognized in salt marsh succession along the Atlantic and Gulf coasts, and common reed occurs in later stages that dominate as salinity and flooding decrease. The earliest successional stage is dominated by smooth cordgrass (Spartina alterniflora) and experiences saltwater inundation for 20 hours/day. The 2nd stage is dominated by saltgrass where salinity ranges from 30,000 to 46,000 ppm, and the water table fluctuates 2 inches (5 cm) above or below the soil surface. Saltmeadow cordgrass dominates the 3rd stage, when salinities are 7,500 to 35,000 ppm, and water levels are 4 inches (10 cm) above or below the soil surface. Common reed is not typically present until the final stage of succession, when salinity levels drop to less than 21,000 ppm, and water levels are between 4 to 8 inches (10-20 cm) below and 2 to 3 inches (5-8 cm) above the soil surface. The 3rd and 4th stages of salt marsh succession are considered edaphic climaxes. Sites may succeed to shrubs and eventually to deciduous forest on the Atlantic Coast, but on the Gulf Coast, true prairie is the theoretical climax [4].
Secondary succession: Disturbed sites are often habitat for common reed. If dominant before a top-killing disturbance, common reed rapidly sprouts from surviving underground rhizomes and dominates again. If absent before a disturbance and a propagule source exists, common reed often establishes on disturbed and temporarily bare sites. In the Adolph Rotondo Wildlife Reserve along the Palmer River in Massachusetts, wrack (mats primarily composed of vegetation litter) stranded in marsh turf suppressed common reed growth but once the wrack was removed, bare spots were rapidly colonized by common reed [163].
Natural disturbances: Grazing, fires, storms, and scouring are common disturbances in common reed habitats and often reduce the density and cover of common reed for a short time. Multiple disturbances or long-duration disturbances may produce longer-lived or more substantial decreases in common reed density and/or cover.
In Montana and Idaho, young common reed stems are palatable to both livestock and wildlife, and heavy grazing may decrease the size and extent of stands [92,94]. In the southern United States, grazing deferments of 60 to 90 days every 2 to 3 years are recommended if managing to keep common reed stands [145]. In the Ottawa National Wildlife Refuge east of Toledo, Ohio, common reed cover was reduced by grazing and sediment disturbances. Grazing and soil disturbances were evaluated through the use of exclosures on the mudflat study site that eliminated goose and white-tailed deer grazing and by turning over the top 6 inches (15 cm) of soil to mimic the effects of a storm or floating ice sheet. Common reed cover was 0.2% in disturbed and grazed plots, 0.2% in disturbed and ungrazed plots, 0.8% in undisturbed, grazed plots, and 10% in undisturbed, ungrazed plots. Researchers indicated that grazing and sediment disturbances produced additive effects and significantly decreased common reed cover (P<0.001) [17]. In the Sandhills of Nebraska, common reed was important in only the least disturbed "relatively high quality" fen. Common reed did not occur in fens that had large areas mowed, hayed, and/or grazed or in a heavily cattle grazed fen that had been planted with nonnative species [32].
Fire is typically only a top-killing disturbance in common reed stands. New sprouts may appear in as few as 5 days after fire [238]. From studies and observations in England, Haslam [103] found that burning broke rhizome bud dormancy but that cutting had "little effect" on the internal dormancy of rhizomes. In bog forest succession in northern Minnesota, narrow-leaved cattail-common reed communities may replace forest vegetation when sites are flooded or when fires burn deep into the peat layer and water collects [210]. For a complete summary of common reed's response to fire, see Fire Effects.
Coastal storms often provide opportunities for common reed establishment and/or spread. On Wallops Island, Accomack County, Virginia, common reed rapidly colonized bare areas of sand deposited in a January storm. Common reed produced stolons up to 70 feet (20 m) long, and while some plants appeared "stressed", others had produced small patches of "healthy-looking" stems [2]. On the Virginia Coast Reserve, areas disturbed by thick mats of wrack washed up by storms or high water events are often colonized by common reed. It is possible that common reed rhizome pieces or seeds were present in the wrack (Truitt 1992, personal communication, cited in [155]). Hurricane Camille produced a short-lived decrease in common reed dominance along the Mississippi River Delta. Relative abundance of common reed "declined considerably after the hurricane; however, 1 year following the storm this plant showed practically no change in abundance." Water and soil salinity were higher for a short time after the hurricane [40].
On mid-Atlantic coast sites, new common reed patches were common within 20 feet (5 m) of creeks or drainages. While there was a high concentration of establishment along creek banks, spread was not concentrated along creek edges. Creek edges likely received heavy propagule dispersal pressure, but were not suitable for recruitment [143].
Anthropogenic disturbances: Common reed is often found on sites disturbed by human activities. Common reed was present on 24-year-old peat mine sites but was not present on 1-, 6-, or 10-year-old mine sites in Wainfleet Bog, southern Ontario. Sites had been cleared of all living vegetation, and peat up to 7 feet (2 m) deep was removed. Mined sites were left to regenerate naturally [125]. On Wallops Island, Accomack County, Virginia, Ailes [2] observed a "sharp rise in the extent" of common reed stands on areas bulldozed as a fire break. In wetlands of the Chesapeake Bay subestuaries, common reed abundance was substantially greater in developed areas than undeveloped areas [130].
Increases in the nonnative common reed haplotype have been related to increases in road, waterway, and housing construction. In salt marshes in Narragansett Bay, Rhode Island, there was a significant positive correlation between percentage of marsh perimeter from which woody vegetation had been removed and percentage of border dominated by the nonnative common reed haplotype (R²=0.9173, P<0.01). Removal of woody vegetation and development in the area typically decreased soil salinity and increased available nitrogen [204]. In Quebec, the nonnative common reed haplotype occurred in 1916 but was rare and restricted to shores of the St Lawrence River before the 1970s. Before 1950, 92% of common reed populations sampled were native. In early 2000, more than 95% of colonies sampled were nonnative. The nonnative haplotype was especially common along roads but also occurred in marshes. Researchers suggested that the nonnative increase was facilitated by times of low water in the St Lawrence River and draining, dredging, excavation, and landfill operations associated with agriculture, housing, and road construction [146].
Eleven of 15 constructed tidal wetlands in Virginia's Coastal Plain were colonized by common reed. Dramatic increases in common reed abundance typically did not occur until wetlands reached 6 years old. Wetlands (7-12 years old) with perimeter ditches had significantly less common reed than wetlands without perimeter ditches (P=0.046). Subtidal perimeter ditches may have restricted rhizome establishment and growth into interior wetlands [106]. When these wetlands were 10 to 15 years old, common reed had established or spread into another of the constructed wetlands, but abundance was lower on sites where common reed had been replaced by red maple (Acer rubrum) scrub [105].
The scientific name of common reed is Phragmites australis (Cav.)
Trin. ex Steud. (Poaceae) [14,58,72,111,126]. Common reed belongs
to the Panicoideae subfamily and the Arundineae tribe [58].
Currently a single subspecies and variety are recognized:
Phragmites australis subsp. americanus Saltonstall, PM Peterson
& Soreng [197], native lineage
Phragmites australis var. berlandieri (E Fourn.) CF Reed [197],
Gulf Coast lineage or haplotype
I
Recent and previously uncharacteristic increases in common reed abundance
led to the study of its genetics. Saltonstall [196] determined that 11 native
haplotypes and 1 introduced haplotype occur throughout North America. The
introduced haplotype (M) is of European origin and is referred to as the
"nonnative haplotype" throughout this review.
Ease of establishment, rapid vegetative spread, and high tolerance of disturbance make common reed an understandable choice for rehabilitation. However, these same traits make common reed a nuisance or weedy species in some areas. In natural or wild areas, the use of native common reed haplotypes may be required or preferred. For more information on the potential impacts of the nonnative common reed haplotype, see Impacts.
Common reed seeds, rhizomes, and plants have been used in restoration [113,122,173]. The extensive common reed rhizome network is useful for bank stabilization [92]. In Lake Mead coves, common reed was planted to provide fish cover. Survival ranged from 0% to 56%. Plants did not survive on steep sites with rapidly dropping water levels [50]. Once phosphogypsum and clay slurries were deposited on open pit phosphate mines in Beaufort County, North Carolina, common reed colonized rapidly. However, establishment of nonriverine wet hardwood oaks and shrubs was less successful when common reed was present [9].
El senill (Phragmites australis), també anomenat canyís, és una planta subcosmopolita de la família de les gramínies o poàcies, semblant a la canya però més gràcil. És aquàtica i sovint creix formant grans colònies a les vores d'estanys, de rius i, en general, en terrenys inundats o allà on hi ha una capa freàtica alta.
És una planta perenne robusta, glabrescent, amb llargs rizomes que fa de 2 a 8 m d'alt. Tiges anuals dures, però pràcticament no lignificades, de 0,5 -2 cm de diàmetre. Les seves fulles són relativament grosses de 20-50 x 1-2 cm; la panícula, de 8-40 cm, es desenvolupa a partir de finals d'estiu. Als Països Catalans presenta dues subespècies: australis i chrysanthus (=altissimus); aquesta darrera pot arribar a fer 8 m d'alt i només es troba a la terra baixa.[1]
Amb el canyís tradicionalment se'n feien sostres. És una planta d'ús ornamental però pot passar a ser invasora de difícil erradicació. Les tiges joves i les llavors són comestibles. Les plantes es fan servir per a fitoremediació de les aigües residuals. A l'Iran i altres països propers amb la seva tija se'n fa una mena de flauta anomenada ney.
Arundo altissima Benth. [≡ Phragmites australis subsp. altissimus], Arundo australis Cav. (basiònim), Arundo phragmites L., Arundo vulgaris Lam., Phragmites communis Trin., Phragmites communis var. longivalvis (Steud.) Miq., Phragmites longivalvis Steud., Phragmites vulgaris (Lam.) Crép., Phragmites vulgaris var. longivalvis (Steud.) W. Wight.[2]
El senill (Phragmites australis), també anomenat canyís, és una planta subcosmopolita de la família de les gramínies o poàcies, semblant a la canya però més gràcil. És aquàtica i sovint creix formant grans colònies a les vores d'estanys, de rius i, en general, en terrenys inundats o allà on hi ha una capa freàtica alta.
Planhigyn blodeuol Monocotaidd a math o wair yw Corsen cyrs sy'n enw benywaidd. Mae'n perthyn i'r teulu Poaceae. Yr enw gwyddonol (Lladin) yw Phragmites australis a'r enw Saesneg yw Common reed.[1] Ceir enwau Cymraeg eraill ar y planhigyn hwn gan gynnwys Corsen, Calaf, Cawnen, Corsen Gyffredin, Cecysen, Corsenau, Corswellt Cyffredin, Cyrs.
Gall dyfu bron mewn unrhyw fan gan gynnwys gwlyptiroedd, coedwigoedd a thwndra. Dofwyd ac addaswyd y planhigyn gan ffermwyr dros y milenia; chwiorydd i'r planhigyn hwn yw: india corn, gwenith, barlys, reis ac ŷd.
Planhigyn blodeuol Monocotaidd a math o wair yw Corsen cyrs sy'n enw benywaidd. Mae'n perthyn i'r teulu Poaceae. Yr enw gwyddonol (Lladin) yw Phragmites australis a'r enw Saesneg yw Common reed. Ceir enwau Cymraeg eraill ar y planhigyn hwn gan gynnwys Corsen, Calaf, Cawnen, Corsen Gyffredin, Cecysen, Corsenau, Corswellt Cyffredin, Cyrs.
Gall dyfu bron mewn unrhyw fan gan gynnwys gwlyptiroedd, coedwigoedd a thwndra. Dofwyd ac addaswyd y planhigyn gan ffermwyr dros y milenia; chwiorydd i'r planhigyn hwn yw: india corn, gwenith, barlys, reis ac ŷd.
Rákos obecný (Phragmites australis) je velmi statná vytrvalá tráva dorůstající 1 - 4 m (ale někdy až 6 m).
Rákos má podzemní, větvené až 4 m dlouhé oddenky, které v bahnité půdě vyhánějí až 10 m dlouhé kořenující výhonky. Z nich v uzlinách vyrůstají silná vzpřímená stébla s široce čárkovitými až 0,5 m dlouhými listy.[L 1]
Na vrcholu stonku vyrůstá velká mnohokvětá lata dlouhá až 50 cm. Větve laty jsou chlupaté, klásky kopinaté, tmavohnědé, 3 - 7květé. Dolní květy jsou prašníkové, ostatní oboupohlavné. Květy mají na bázi s dlouhými chloupky, s nimiž jsou spojeny malé ochmýřené obilky, které se mohou dále šířit větrem čí vodou. Kvete od června do září.[L 1] Po dozrání mají poměrně dobrou klíčivost, kterou rychle ztrácejí. Na orné půdě převládá vegetativní způsob rozmnožování.[2]
Rákos je v dnešní době rozšířen po celém světě na březích tekoucích i stojatých vod, v bažinách, vodních příkopech, ale též jako velmi úporný plevel na vlhkých polích od nížin do teplejších podhorských oblastí zapleveluje všechny plodiny. Nebezpečné nejsou na polích obilky, jelikož se na obdělávaných plochách většinou rozšiřuje vegetativně.[L 1]
Svými rychle rostoucími bohatě větvenými oddenky vytváří husté souvislé porosty zvané rákosiny. Rákosiny (lat. Phragmitetum) jsou porosty tvořené buď jen rákosem obecným, nebo spolu s ostřicemi, například s ostřicí štíhlou (Carex gracilis), ostřicí zobánkovou (Carex rostrata) a bezkolenec (Molinia coerulea).[L 1]
Roste převážně na vlhkých eutrofizovaných půdách, tzn. půdách s přebytkem vody a živin.
Rákosiny jsou významnou složkou zazemňovacích pásem stojatých vod, kde se mezi hustou spletí oddenků v mělkých pobřežních vodách ukládá bahnitá půda zaplňující vodní nádrže.
Rákos se pro svou čistící schopnost často využívá v rybnících a zahradních jezírkách.
Rákos obecný vytváří velké množství zelené hmoty, a proto v krajích, kde se vyskytuje ve velkém množství, se kosí na podestýlku, na střešní krytinu, nebo na výrobu celulózy, např. v deltě Dunaje, na jižním Slovensku v okolí Štúrova. Rákosové stébla mají stejně jako bambus mnohostranné technické využití (rohože, podklad pod omítku, aj.). Rákos se kosí na podzim (v říjnu a listopadu). Místy například v severním Německu se vysazuje uměle, a to odřezky kořenů, nebo se vysévají obilky, zralé teprve v zimě (mísí se s jílem a v podobě malých koulí se sází do měkké bahnité půdy). Klíčí během jednoho měsíce.[L 1]
Jako příměs v pícninách zhoršuje jejich kvalitu pro tvrdost listů a stébel, která obsahují mnoho kysličníku křemičitého a brzo dřevnatějí. Na drenážových pozemcích ucpávají trubky, což vede k lokálnímu zamokření.
Oddenek z rákosu je antipyretický, chladivý, krev čistící, protilátka, stimulující sekreci slin. Působí jako antitusikum, diuretikum, hemostatikum, stomachicum. Dokáže léčit artritidu, astmatu, bolesti břicha, nadýmání a syfilis. Lze využít jako sladidlo a barvivo. Obsahuje Asparagin, beta-amyrin, beta-karoten, bílkoviny, fosfor, furfural, kyselina askorbovou, kyselina křemičitou, popel, sacharidy, sacharózu, saponiny, taraxerol, uky, vápník, vláknu, voda a vosk.
Článkovité oddenky jsou uloženy ve značné hloubce až 2 m. Z těchto horizontálních oddenků raší nové výhonky. Vzhledem k hloubce zakořenění nejsou poškozovány orbou. Ani hluboká orba oddenky nezničí díky vysoké regenerační schopnosti. Jedinou možností ochrany je posklizňová aplikace neselektivních přípravků obsahujících glyphosate, např. Touchdown® Quattro nebo Roundup.[3]
Rákos se vyskytuje na všech kontinentech kromě Antarktidy a je proto těžké říci, kde je původní a kam byl zavlečen. Rákos je extrémně invazivní rostlina v mokřadech a podél vodních těles, kde díky podzemním oddenkům (rhizoidům) vytváří husté porosty. Můžeme ho nalézt i v příkopu, ale dokáže také znehodnocovat nejčistší vodní systémy. Rákos také dokáže vypařit více vody než je schopno se nahromadit během dešťů. Tato vysoká spotřeba vody a hustý listový odpad společně znesnadňují klíčení původních druhů pod podrostem rákosu. Husté stonky také brání ptákům v pohybu mezi hnízdy a vodou.[L 2]
Rákos obecný (Phragmites australis) je velmi statná vytrvalá tráva dorůstající 1 - 4 m (ale někdy až 6 m).
Tagrør (Phragmites australis) er et 100-300 centimeter højt græs, der vokser ved lavvandede strandbredder, søer, grøfter og strandenge. De visne strå har især tidligere været anvendt til stråtage. Også benævnt som "siv".
Tagrør er et flerårigt græs med en tæppedannende, men opret vækst. Stænglerne er først blågrønne, men de bliver snart grågrønne. De er opdelt i afsnit med markante led ("knæ"), som hver bærer ét af de spredte blade. Bladene er flade, hårløse og grågrønne med hel (og skarp) rand. Bladskeden er åben og lukker sig ikke omkring stænglen.
Blomstringen sker i august-september, hvor man ser de mange, violette småaks samlet i en endestillet top. De nedre aks er som regel rent hanlige, mens de øverste er tvekønnede. Blomsterne er – som altid hos græsserne – reducerede og uregelmæssige. Frugterne er nødder.
Rodnettet består af de krybende, underjordiske stængler, som bærer de grove trævlerødder. Fra hver knæ på jordstænglerne kan planten danne et nyt overjordisk skud.
Højde x bredde og årlig tilvækst: 2 x 0,25 m (200 x 25 cm/år), heri ikke medregnet de skud, som dannes fra jordstænglerne.
Planten er vildtvoksende på alle kontinenter (undtagen Antarktis). Den findes i rørsumpe på lavt vand, hvor den danner næsten rene bestande, dvs. uden andre plantearter indblandet. På samme måde kan den findes i både fersk- og brakvand overalt i Danmark.
Grunden til tagrør er så god til at danne rene bestande, er fordi den udskiller nogle væksthæmmende stoffer, som sørger for, at der ikke står andre planter omkring den, dette kaldes allelopati.
Tagrør har tidligere været almindeligt brugt som materiale til tagdækning og bruges endnu i dag til især renovering af gamle huse, men også her og der til forskønnelse af nyere boliger.
Tagrør (Phragmites australis) er et 100-300 centimeter højt græs, der vokser ved lavvandede strandbredder, søer, grøfter og strandenge. De visne strå har især tidligere været anvendt til stråtage. Også benævnt som "siv".
Das Schilfrohr (Phragmites australis), auch allgemein als Schilf bezeichnet, ist eine Pflanzenart aus der Gattung Schilfrohre (Phragmites) innerhalb der Familie der Süßgräser (Poaceae). Sie ist weltweit verbreitet und manche Autoren unterscheiden drei Unterarten, die alle auch in Europa vorkommen.[1]
Das Schilfrohr ist ein Rhizom-Geophyt und eine Sumpfpflanze. Die Nominatform, Phragmites australis subsp. australis, erreicht Wuchshöhen von maximal 4 Metern. In der Hauptwachstumsperiode des Schilfrohrs verlängern sich die Rhizome an der Spitze täglich um bis zu 3 Zentimeter. Die ältesten Rhizomteile sterben jeweils ab (Wurzelkriech- und Verlandungspionier).
Die Laubblätter sind in Blattscheide und Blattspreite gegliedert. Statt des Blatthäutchens (Ligula) ist ein Haarkranz vorhanden. Die Abflachung der zunächst wie die Blattscheide röhrigen Blattspreite erfolgt durch ein Gelenk.
Die Blütezeit reicht von Juli bis September. Das Schilfrohr ist ein Rispengras. Der rispige Blütenstand kann bis zu 50 Zentimeter lang werden. Phragmites australis ist windblütig vom „langstaubfädigen Typ“. Die Blütenährchen enthalten am Grunde männliche, darüber zwittrige Blüten.
Die Ährchenachse der Fruchtstände hat lange, abstehende Haare. Die winzigen Fruchtährchen verbreiten sich als Schirmchenflieger. Auch eine Schwimmausbreitung und eine Wasserhaftausbreitung ist möglich. Die Früchte sind frühestens im Dezember reif. Der Fruchtansatz ist von Jahr zu Jahr unterschiedlich; er ist auch vom Standort abhängig. Die Früchte sind Lichtkeimer, die Keimungsrate liegt circa bei 80 Prozent. Die Keimfähigkeit bleibt ein bis vier Jahre erhalten.
Die Benetzbarkeit der Blattoberfläche ist gering. Wasser perlt in Tropfen ab, wie es auch bei Lotosblumen beobachtet werden kann, und nimmt dabei auf der Oberfläche anhaftende Schmutzpartikel mit (Lotuseffekt).[2]
Die Chromosomenzahl beträgt 2n = 48, aber auch 36, 72, 84 oder 96.[3]
Die vegetative Vermehrung erfolgt in starkem Maße durch die bis zu 20 Meter langen Ausläufer sowie durch niederliegende, sich an den Knoten bewurzelnde Halme (Legehalme). Ganze Schilfbestände stellen oft nur eine einzelne Pflanze dar. Im Donaudelta fanden Fachleute Pflanzen, deren Alter auf etwa 8000 Jahre geschätzt wurde. Große Schilfbestände bieten zahlreichen Vögeln Schutz. Bei Nährstoffüberschuss verdrängt das Schilfrohr jedoch die übrige Ufervegetation. Bei allzu starkem Nährstoffeintrag bricht die Population allerdings auch wieder zusammen und wird beispielsweise von Eutrophierungszeigern wie dem Großen Wasserschwaden (Glyceria maxima) ersetzt. Sollen Schilfbestände aktiv vermehrt werden, müssen im Sommer Halmstücke mit ein bis drei Knoten abgeschnitten und in wenige Zentimeter tiefe Rinnen im Uferbereich eingegraben werden. Nach einigen Wochen bewurzeln sich die Stängelknoten, und es bilden sich Tochtersprosse aus.
Schilf bildet an Seen und Gräben natürliche Monokulturbestände. Sind Wasserversorgung und Nährstoffangebot günstig, verdrängt er durch seine Dominanz andere Wildkräuter und Gräser. In den oft riesige Flächen bedeckenden natürlichen Monokulturen des Schilfrohrs regulieren sich tierische Schädlinge selbst: Die Raupen der Schilfeule (Nonagria typhae) klettern fressend in den Internodien nach oben und zerstören dann den Vegetationskegel an der Spitze. Wegen der damit verbundenen Ausdünnung des Bestandes werden in den Folgejahren zahlreiche dünne Halme gebildet, so dass die Schilfeulenpopulation an diesen Stellen zugrunde geht.
Das Schilfrohr spielt bei der Verlandung von Gewässern eine große Rolle. Zwischen den dichten Halmen sammelt sich mit der Zeit viel Schlamm an und führt langsam zur Verlandung.
Die Erstveröffentlichung erfolgte 1799 unter dem Namen (Basionym) Arundo australis durch Antonio José Cavanilles in Ann, Hist. Nat. 1, Seite 100. Die Neukombination zu Phragmites australis (Cav.) Trin. ex Steud. wurde 1840 durch Carl Bernhard von Trinius in Ernst Gottlieb von Steudel: Nomenclator Botanicus. Editio secunda, 1 Seite 143 veröffentlicht. Weitere Synonyme für Phragmites australis (Cav.) Trin. ex Steud. sind: Arundo phragmites L., Cenchrus frutescens L., Phragmites communis Trin.[1]
Manche Autoren unterscheiden folgende Unterarten:
Das Schilfrohr kommt häufig und beständig in der Röhrichtzone stehender und langsam fließender Gewässer bis zu einem Meter Wassertiefe vor, daneben auch in Quellmooren, auf Moorwiesen oder in Erlenbruch- und Weidenauenwäldern. Es liebt nicht zu kalte Schlick- und Schlammböden, die stickstoffhaltig und basenreich sein sollten und verhältnismäßig sauerstoffarm sein können. Reißende Hochwässer erträgt es nicht. Gemäß dem Ökologen Heinz Ellenberg ist die Art ein Wärmezeiger, ein Wechselwasserzeiger und eine Klassencharakterart der Röhrichte und Großseggen-Sümpfe (Phragmitetea australis). Es kommt aber auch in Pflanzengesellschaften der Klasse Scheuchzerio-Caricetea, der Ordnung Molinietalia und des Verbands Alnion vor.[3] Auf nicht überfluteten Standorten zeigt das Schilfrohr bewegtes Grundwasser an. Als Tiefwurzler ist es aus vernässten Äckern schwer zu vertreiben. Jedoch sterben verletzte Schilfrhizome bei langanhaltender Überflutung ab, wenn Wasser in das Durchlüftungsgewebe eindringt. Ähnlich verhindert ein hoch anstehendes Grundwasser ein Tiefenwachstum der Rhizome.
In den Allgäuer Alpen in Bayern steigt Schilfrohr zwischen Rohrmoos und der neuen Piesenalpe bis in Höhenlagen von 1260 Metern auf.[5]
Im Wurzelstock von Phragmites australis konnten die psychoaktiven Entheogene Dimethyltryptamin (DMT)[6] und Bufotenin nachgewiesen werden.
Die jungen Sprossen werden in einigen Gebieten als Gemüse verwendet, wobei der typische Schilfgeschmack dieser Süßgrasart allerdings gewöhnungsbedürftig ist, auch Mehl zum Brotbacken kann man aus den getrockneten Wurzeln herstellen.
In der Antike war das aus einem Schilfstängel geschnittene Schreibrohr jahrhundertelang das wichtigste Schreibgerät. Etwa um das 6. Jh. wurde es in Europa von der Schreibfeder (aus einer Vogelfeder) verdrängt. Im islamischen Kulturkreis ist es bis heute für Kalligrafie in Gebrauch.
Dünne Matten aus Schilfrohr dienen zur Beschattung von Gewächshäusern, dickere als Wärmedämmung oder Windschutz. Die Art wird auch zur dekorativen Gestaltung von Uferpartien als Zierpflanze und zur Landgewinnung (z. B. im IJsselmeer) eingesetzt. Im Burgenland werden zur Herstellung des traditionellen Schilfweins Weintrauben auf Schilfmatten gelagert.
Die Herstellung der Matten erfolgte lange Jahrhunderte durch Weben. Die als Rohrweberei bezeichneten Manufakturen verwendeten ursprünglich das auf zugefrorenen Seen im Winter geschnittene Schilfrohr. Es wurde ein Jahr lang im Freien getrocknet, danach weitere Monate trocken und luftig gelagert und konnte erst danach zu dünnen Matten verwoben, meist von Hand geknotet, werden. Maschinell hergestellte Schilfmatten aus dem Baumarkt haben nur eine geringe Haltbarkeit von rund zwei Jahren, die handgefertigten dagegen halten mehrere Jahre. In der Zwischenzeit wird Miscanthus-Schilfrohr für Matten auf Feuchtflächen angebaut und mit Balkenmähern geerntet. Im Brandenburgischen Pritzerbe gibt es im Jahr 2020 die einzige verbliebene Schilfrohrweberei in Deutschland.[7]
Schilfrohr spielt vor allem eine Rolle als Naturbaustoff. Es dient in Form von Reet als Dachdeckmaterial und in Form von mehrschichtigen Schilfrohrplatten (20 und 50 mm, mit verzinktem Draht gebunden) oder einfachem Schilfrohr als Putzträger (Rabitzgeflecht) als Baumaterial im Lehmbau. Das Schilf nimmt keine Feuchtigkeit auf und verrottet daher nur langsam, es ist stabil und aufgrund seiner griffigen Oberflächenstruktur ein ausgezeichneter Putzgrund. Aufgrund seines Gehalts an Kieselsäure ist Schilf überdies brandhemmend. Weitere Bauelemente sind Dämmstoffe für die Außen- und Innendämmung, Schilfrohrgewebe oder Trennwände für den ökologischen Trockenbau.
Theoretisch ist auch eine energetische Nutzung von Schilfrohr beispielsweise für die Gewinnung von Biogas oder als lignocellulosereicher Rohstoff für die Herstellung von Cellulose-Ethanol möglich. Studien zeigten praktische Ausführung auf.[8][9]
Pflanzenkläranlagen
Schilf ist sehr gut für die Bepflanzung einer Pflanzenkläranlage geeignet. Es wirkt durch die große Blattoberfläche und durch die Sauerstoffabgabe hohler, luftführender Stängelteile (Aerenchyme) unter Wasser gewässerreinigend (Sauerstoffeintrag: 5–12 g Sauerstoff pro m²/Tag). Der Sauerstoffeintrag fördert den mikrobiellen Abbau organischer Substanz durch aerophile Bakterien, die in großer Menge an den Wurzelhaaren des Schilfes siedeln.
Bodenfilter
Auch Retentionsbodenfilter werden häufig mit Schilf bepflanzt, um eine Leistungssteigerung zu erzielen. Der Schilfbewuchs soll durch sein permanentes Rhizomwachstum das Substrat lockern und so das Kolmationsrisiko senken. Eine intensive Durchwurzelung erhöht die Reinigungsleistung des Filters, da Sauerstoffeintrag und Wurzelexsudate eine Stimulation des mikrobiellen Schadstoffabbaus in der Rhizosphäre bewirken, gleichzeitig werden Nähr- (und z. T. Schadstoffe) der Bodenlösung entzogen.
Eine etablierte Schilffläche transpiriert 800–1000 l Wasser pro m² und Vegetationsperiode, wodurch sich die Sickerwasserbildung im Bodenfilter entsprechend reduziert. Dies begünstigt die Sorption und – durch die längere Kontaktzeit – auch Wurzelaufnahme und biologischen Abbau.
Die geschlossene Vegetationsdecke verbessert durch Beschattung und Isolation das bodennahe Mikroklima. Unter abgestorbenem Schilf finden Bakterien auch im Winter noch Temperaturen um +5 °C vor.
Schilfhalme wie auch kontinuierliche Streuzufuhr weitmaschiger Vegetationsreste bilden auf Bodenfiltern einen oberirdischen Raumfilter. Seine Sedimentationsoberflächen ergänzen die eigentliche Substratfiltration und schützen den Filter zusätzlich vor äußerer Kolmation.
Ein wesentlicher Nachteil des Einsatzes von Schilf in Bodenfiltern ist, dass Bodenfilter aufgrund der periodischen Zufuhr und kurzen Verweilzeiten des Wassers nicht zu den idealen Besiedlungsräumen des Schilfgrases gehören. Hohe Ausfälle beim Bewuchs auf den zeitweise trockenen Bodenfiltern sind die Folge. Dadurch ist eine optimale Reinigungs- und Filterwirkung in Bezug auf das zugeführte Abwasser durch die geschwächte Schilfvegetation nicht gewährleistet. Daneben ist Schilf empfindlich gegen mechanische Belastung, insbesondere gegen Knickbeanspruchung (Niederlegen des Bestands im Hauptströmungsbereich).
Schilf wird bei der Eingriffs-Kompensation nach § 8a Bundesnaturschutzgesetz von Naturschutzstellen positiv beurteilt. Im Gegensatz zu konventionellen Lösungen wurden schilfbepflanzte Filter selbst in Natur- und Landschaftsschutzgebieten zugelassen. Daneben können schilfbepflanzte Bodenfilter in Kombination mit Grünflächen und Grünpflastern zusätzliche Ausgleichsmaßnahmen für Neubaugebiete vermeiden helfen, was bei Wirtschaftlichkeitsbetrachtungen zunehmend Bedeutung erlangt.
Klärschlammvererdung
Schilf wird in Kläranlagen zur Nachbehandlung des Klärschlamms eingesetzt. Klärschlamm fällt in Kläranlagen als Abfallprodukt des Reinigungsprozesses an und muss entsorgt werden. Da er ganz überwiegend aus Wasser besteht (bis zu 98 Prozent), wird Klärschlamm entwässert, um die zu entsorgende Menge zu reduzieren. Neben mechanischen Verfahren hat sich dafür die Klärschlammvererdung mittels Schilfbeeten etabliert.
Dazu wird der Klärschlamm in großflächige Schilfbeete geleitet. Über die große Blattoberfläche verdunstet das Wasser und der Schlamm wird entwässert. Gleichzeitig bauen im Wurzelraum des Schilfs lebende Mikroorganismen den Schlamm biologisch um und es entsteht humushaltige Klärschlammerde. Der Entwässerungs- und Vererdungsprozess läuft kontinuierlich über 6 bis 12 Jahre, in denen sich das Vererdungsbeet nach und nach füllt. Danach wird die Klärschlammerde ausgebaggert und kann entweder thermisch entsorgt oder als Dünger in der Landwirtschaft verwertet werden.[10]
Das Schilfrohr (Phragmites australis), auch allgemein als Schilf bezeichnet, ist eine Pflanzenart aus der Gattung Schilfrohre (Phragmites) innerhalb der Familie der Süßgräser (Poaceae). Sie ist weltweit verbreitet und manche Autoren unterscheiden drei Unterarten, die alle auch in Europa vorkommen.
Ācatl (Phragmites communis), quihtōznequi ic caxtillāntlahtōlli carrizo nō caña.
Nōīhuān cē tōnalli īpan Tōnalpōhualli.
D'Lëschen och Lëtschen oder Riet (Phragmites australis) si Séissgrieser déi op der ganzer Welt a suppege Géigenden an op flaachen Uwännere vu Weieren a Séien ze fanne sinn.
Et gëtt dräi Ënneraarten déi och all an Europa ze fanne sinn:
D'Lëschen och Lëtschen oder Riet (Phragmites australis) si Séissgrieser déi op der ganzer Welt a suppege Géigenden an op flaachen Uwännere vu Weieren a Séien ze fanne sinn.
Et gëtt dräi Ënneraarten déi och all an Europa ze fanne sinn:
Phragmites australis ssp. australis (bis véier Meter héich) Phragmites australis ssp. altissimus (bis 10 Meter héich) Phragmites australis ssp. humilis (bis 1,2 Meter héich)Lėndrė (luotīnėškā: Phragmites australis) īr varpėniu šėimuos žuolėnis augals. Aug ežerū, tvankiniū, pelkiu, mariu pakronties, sodara vėšlius sāžalīnus (lėndrīnus).
Augals būn 100–400 cm aukštoma. Žīd nug lėipas lėgė siejės. Jaunas lėndrės tink jiestė gīvoliams. Noganītė, nošėinauti lėndrīnā doud gera atuola. Kuotā tink stuogams dėrbtė, pīnėmou, lėndriu šaknis sotvirtėn dirva.
Mtete au gugumua (Phragmites australis) ni aina ya nyasi refu linalomea katika maji kame. Jina hili hutumika pia kwa manyasi marefu yoyote ya maji. Aina za mimea ya maji zinazofanana na mtete huitwa mifunjo (familia Cyperaceae). Jenasi Phragmites inafikiriwa na bingwa wengi ya kuwa na spishi moja tu, lakini spishi nyingi zimefafanuliwa. Spishi moja, P. karka, husadikiwa sana.
Jina matete hutumika pia kwa manyasi haya, lakini inapendelewa kutumia jina hili kwa mazao yao. Matete hutumika duniani kote kwa kuvimba mapaa.
Mtete au gugumua (Phragmites australis) ni aina ya nyasi refu linalomea katika maji kame. Jina hili hutumika pia kwa manyasi marefu yoyote ya maji. Aina za mimea ya maji zinazofanana na mtete huitwa mifunjo (familia Cyperaceae). Jenasi Phragmites inafikiriwa na bingwa wengi ya kuwa na spishi moja tu, lakini spishi nyingi zimefafanuliwa. Spishi moja, P. karka, husadikiwa sana.
Jina matete hutumika pia kwa manyasi haya, lakini inapendelewa kutumia jina hili kwa mazao yao. Matete hutumika duniani kote kwa kuvimba mapaa.
Qamish — boshoqdoshlarga mansub koʻp yillik ildizpoyali oʻsimlik turkumi. Oʻzbekistonda oddiy Q. (Phragmites communis Trin.) turi tarqalgan. Poyasi tik oʻsadi, boʻyi 3–5 m gacha yetadi, silliq, shoxlamaydi. Barglari navbatmanavbat joylashgan, uzun nashtarsimon, chetlari oʻtkir gʻadirbudir. Gullari qoʻngʻirbinafsha, chochoq roʻvaksimon toʻpgulga yigʻilgan. Mevasi kulrang doncha. Iyul—oktabrda gullab, mevalaydi. Bir toʻpguli roʻvaqda 50—100 mingta don (meva) tugadi, urugʻi shamol va suv orqali tarqaladi. Urugʻi 1415° haroratda sernam joyda unib chiqadi. Asosan, ildizpoyalaridan, baʼzan urugʻidan koʻpayadi. Sizot suvlar sathi yaqin (2–3 m gacha) tuproqlarda, don, sholi, gʻoʻza, beda va boshqalar orasida uchraydi. Shuningdek, botqoqlashgan zax joylarda, hovuz, toʻqaylar, koʻl, sugʻorish shoxobchalarida oʻsadi.
Kurash choralari: yer chuqur (30 sm gacha) haydaladi, yer betiga chiqqan ildizpoyalar yigʻishtirib olinadi, quritiladi; yerga dalapon (10–15 kg/ga) sepiladi; sugʻorish va drenajni tartibga solish bilan sizot suvlar sathi pasaytiriladi, chopiqtalab ekinlar chuqur kultivatsiya qilinadi.
Raid (Phragmites australis) as en swetgäärs an hiart tu a bloosenplaanten.
Raid (Phragmites australis) as en swetgäärs an hiart tu a bloosenplaanten.
Reet of ech reet (Phragmites australis of Phragmites communis) is 'n plantj die toete graasfemielie (Poaceae) behuuertj. De plantj is prominent aanwaezig aan waterkenj. Reetgraas (Phalaris arundinacea) liek in 't vegatief stadium väöl op reet, mer haet e vlezig tungske inplaats häörkes. Reet brèdj zich op drie menere oet: door zaod, door rootstekker en door oetluipers, det wil zègke horizontaal stengele wobie oppe knuup 'n nuuj plantj óntsteitj. De plantj kump ouch es exoot in Naord-Amerika veur. Dao wuuerdj ze es invasief saort of ónkroed gezeen.
Reet kan 1 toet 3 maeter hoeag waere. De stengel steitj stief rechop en 't 1 toet 3 centimaeter breid blaad mit spits toeloupendjen toep is griesgruuen. Oppe grens vanne blaadsjei enne blaadsjief zitj e tungske (ligula) in 'n krans van häörkes.
De plantj bleutj van juli toet oktoeaber mit 'n 15 toet 40 centimaeter lang, stark vertakdje, puperkluuerige of broenechtige pluum, die rechop steitj of later anen toep kan gaon euverhange. De äörkes zeen toet 1,5 centimaeter lank, bevatte twieë toet zes bleumkes en zeen zieër häörig. De vröch is 'n kaorevröch.
De plantj greutj in 't water of ane waterkantj op nate, zeute gróndj of nate brakgróndj, meh kump ouch veur langs spaorwaeg en in akkerrenj of es te bestrieje ónkroed op boewlandj. Nao de druueglègking vanne IJsselmeerpolders woort ieës reet ingezejdj det nao e paar jaor de gróndj gesjik haet gemaak veure landjboew.
Doead reet kan zich ophuipen en later toet reetveen waere. Dit mechanisme wuuerdj in kleimoerasse taengegegange wen de moor druueg vèltj. 't Organisch matterjaal brèk dan hieël snel aaf.
Wen raat jaorliks gemejdj wuuerdj kan e deil nao sortering es daakbedèkking of veur 't make van reetmatten en reetsjerme gebroek waere. Euverjäörig reet is hie minder gesjik veur. Kalenberger reet wuuerdj ónger angere gebroek es bedèkking oppe kap en houteren achkantj van meules. 't Is dón reet mit 'ne spitsen toep en daodoor hieël gesjik veur steil vlakke.
Reet wuuerdj gebroek bie bepaoldje meziekinstrumenter, wie de hobo, klarinet, fagot en saxofoon (de reetblaozers). Door euver e klei stökske reet te blaoze zörg me d'rveur det 't reet geitj trille, wodoor geluid óntsteitj. De plantj wovan 't reet gesneje wuuerdj is echter 't bamboe-echtig Spaans reet Arundo donax (pielreet).
Wen veróntreinig water door e reetlandj geleidj wuuerdj den wuuerdj 't gezuverdj. Dit neump me 'ne helofytefilter. 't Guuef zwumbajer die inplaats versjillige mechanische en chemische middele water zuveren in e reetveldj. Ouch kan me bie verkieërspleine dökker zeen det 't e reetveldj guuef. 't Gemejdje reet is waal veróntreinig, mer 't water is meistes dusdanig gezuverdj det 't op 't oppervlakdjewater geloos kan waere.
Reet of ech reet (Phragmites australis of Phragmites communis) is 'n plantj die toete graasfemielie (Poaceae) behuuertj. De plantj is prominent aanwaezig aan waterkenj. Reetgraas (Phalaris arundinacea) liek in 't vegatief stadium väöl op reet, mer haet e vlezig tungske inplaats häörkes. Reet brèdj zich op drie menere oet: door zaod, door rootstekker en door oetluipers, det wil zègke horizontaal stengele wobie oppe knuup 'n nuuj plantj óntsteitj. De plantj kump ouch es exoot in Naord-Amerika veur. Dao wuuerdj ze es invasief saort of ónkroed gezeen.
Reet kan 1 toet 3 maeter hoeag waere. De stengel steitj stief rechop en 't 1 toet 3 centimaeter breid blaad mit spits toeloupendjen toep is griesgruuen. Oppe grens vanne blaadsjei enne blaadsjief zitj e tungske (ligula) in 'n krans van häörkes.
De plantj bleutj van juli toet oktoeaber mit 'n 15 toet 40 centimaeter lang, stark vertakdje, puperkluuerige of broenechtige pluum, die rechop steitj of later anen toep kan gaon euverhange. De äörkes zeen toet 1,5 centimaeter lank, bevatte twieë toet zes bleumkes en zeen zieër häörig. De vröch is 'n kaorevröch.
De plantj greutj in 't water of ane waterkantj op nate, zeute gróndj of nate brakgróndj, meh kump ouch veur langs spaorwaeg en in akkerrenj of es te bestrieje ónkroed op boewlandj. Nao de druueglègking vanne IJsselmeerpolders woort ieës reet ingezejdj det nao e paar jaor de gróndj gesjik haet gemaak veure landjboew.
Doead reet kan zich ophuipen en later toet reetveen waere. Dit mechanisme wuuerdj in kleimoerasse taengegegange wen de moor druueg vèltj. 't Organisch matterjaal brèk dan hieël snel aaf.
Reid (Phragmites australis of Phragmites communis) is in plant dy't ta de gerzen (Poaceae) rekkene wurdt.
De plant is bot oanwêzich oan de wetterkanten. Reidgers (Phalaris arundinacea) liket yn it fegative stadium in protte op reid, mar hat in fluezich tonkje ynsteed fan hierkes. Reid wreidet har op trije wizen út: troch sied, troch woarteltûkken en troch útrinners, dat wol sizze horizontale stâlen wêr't op de knopen in nije plant by ûntstiet. De plant komt ek as eksoat foar yn Noard-Amearika. Dêr wurdt de plant sjoen as in net lânseigen soart en as túch beskôge. Reid kin 1-3 m heech wurde. De stâle stiet stiif rjochtop en it 1-3 sm brede blêd mei spits tarinnende top is griisgrien. Op de grins fan de skie fan it blêd sit in tonkje (ligula) yn in krânske fan hierkes.
Suqus icha Sukcha (Phragmites australis syn. Phragmites communis) nisqaqa uqu puystukunapi, mayup, quchap patanpi wiñaq qachu yuram, tukuy Tiksimuyuntinpi.
Huk yachaqkunaqa ninku, suqus (Phragmites) rikch'anapi hukllam rich'aq, hukkunataq tawantinmi rikch'aqman rakinku.
Suqus icha Sukcha (Phragmites australis syn. Phragmites communis) nisqaqa uqu puystukunapi, mayup, quchap patanpi wiñaq qachu yuram, tukuy Tiksimuyuntinpi.
Huk yachaqkunaqa ninku, suqus (Phragmites) rikch'anapi hukllam rich'aq, hukkunataq tawantinmi rikch'aqman rakinku.
Ang tambo (Ingles: reed) ay isang uri ng talahib o mataas na damo na may butas na katawan na namumuhay sa mga basang lugar o tabing-ilog. Nagagamit sa paggawa ng mga walis (walis-tambo) ang mga ito.[1]
Ang lathalaing ito ay isang usbong. Makatutulong ka sa Wikipedia sa nito.
Ang tambo (Ingles: reed) ay isang uri ng talahib o mataas na damo na may butas na katawan na namumuhay sa mga basang lugar o tabing-ilog. Nagagamit sa paggawa ng mga walis (walis-tambo) ang mga ito.
Ing timbu metung yang maragul a pilmihan (perennial) a dikut a mayayakit kareng mabasang labwad (wetlands) kareng anggang lugal a kasantingan pali (temperate) ampong maliangan (malisangan) king mabilug a yatu. Neng kayi, tuturing deng magdili-diling species ning genus ing Phragmites australis, dapot deng aliwang botanist pipitnan de ing Phragmites australis kareng atlu o apat a species. Partikular, ing South Asian Khagra Reed – Phragmites karka – tuturing deng aliwang species.[2]
Ing timbu metung yang maragul a pilmihan (perennial) a dikut a mayayakit kareng mabasang labwad (wetlands) kareng anggang lugal a kasantingan pali (temperate) ampong maliangan (malisangan) king mabilug a yatu. Neng kayi, tuturing deng magdili-diling species ning genus ing Phragmites australis, dapot deng aliwang botanist pipitnan de ing Phragmites australis kareng atlu o apat a species. Partikular, ing South Asian Khagra Reed – Phragmites karka – tuturing deng aliwang species.
Το καλάμι ή καλαμιά είναι κοινή ονομασία πολλών μονοκότυλων πολυετών συνήθως φυτών. Τα καλάμια βρίσκονται σε τέλματα, έλη σε όχθες λιμνών, ποταμών, ρυακιών, χειμάρρων και σε ήρεμα νερά. Ο όρος καλαμιά μπορεί επίσης να σημαίνει την καλάμη του στάχυος ή ακόμα τη συστάδα καλάμων. Όλα γενικά τα φυτά που χαρακτηρίζονται ως καλάμια έχουν ριζώματα ή παραφυάδες, τα φύλλα τους είναι μακριά ταινιοειδή και στο πάνω μέρος τους έχουν μία μακριά ταξιανθία.
Ο βλαστός είναι συμπαγής ή κοίλος, ξυλώδης, λυγίζει από τον αέρα και αυτό βοηθάει στη διασπορά των διαφόρων σπόρων του.
Υπάρχουν πολλά είδη καλαμιών. Στην Ελλάδα βρίσκουμε τα εξής :
Στην Κύπρο συναντάμε συχνά το είδος Arundo donax (ιδανικο για κατασκευη πνευστων) τοσο σε παράκτιες αλλα και ορεινές περιοχές. Οι καλαμιές και τα καλάμια χρησιμοποιήθηκαν για πλέξιμο καλαθιών ή κοφινιών που είναι μεγάλα καλάθια. Τέτοιες κατασκευές μπορούν να χρησιμοποιουθούν μεταξύ άλλων για την αποθήκευση της παραγωγής του σιταριού.
Το καννίν είναι μικρό κομμάτι καλαμιού. Στο παρελθόν μικρά κομμάτια καλαμιών ήταν χρήσιμα στους ηλεκτρολόγους που ασχολούνταν με τις επισκευές και περιελίξεις ηλεκτρικών μοτέρ.
Λέμε ότι κάποιος "έχει καβαλήσει το καλάμι" όταν πιστεύει για τον εαυτό του ότι είναι πολύ σπουδαίος.
"Απόμεινε σαν την καλαμιά στον κάμπο", σημαίνει έρημος και απροστάτευτος (σελίδα 185-ΗΛΙΟΣ)
Το καλάμι ή καλαμιά είναι κοινή ονομασία πολλών μονοκότυλων πολυετών συνήθως φυτών. Τα καλάμια βρίσκονται σε τέλματα, έλη σε όχθες λιμνών, ποταμών, ρυακιών, χειμάρρων και σε ήρεμα νερά. Ο όρος καλαμιά μπορεί επίσης να σημαίνει την καλάμη του στάχυος ή ακόμα τη συστάδα καλάμων. Όλα γενικά τα φυτά που χαρακτηρίζονται ως καλάμια έχουν ριζώματα ή παραφυάδες, τα φύλλα τους είναι μακριά ταινιοειδή και στο πάνω μέρος τους έχουν μία μακριά ταξιανθία.
Ο βλαστός είναι συμπαγής ή κοίλος, ξυλώδης, λυγίζει από τον αέρα και αυτό βοηθάει στη διασπορά των διαφόρων σπόρων του.
Трска (лат. Phragmites australis) е вид на повеќегодишни тревни растенија од семејството треви. Расте во бројни бусени (трсје, шамак) во влажни и водни живеалишта на умерени и тропски климатски региони. Растат долж бреговите на водните пространства како езера, бари и вирови на блата и мочуришта и вливови и устија на реки, создавајќи густа тревна површина и соодветни услови за гнездење за различни видови птици. Претставниците на родот се - убители на влага. Тие растат до длабочина до половина метар главно во резервоари со застоени води, мочуришта, речни делта, извори на отпад и индустриски води.
Стеблата на трската се високи 2-3 метри, со лисја долги 20–50 см и широчина 2-3 см. На врвот на дрвото се наоѓаат рогози или метлики (inflorescences) - дебели метли со темно виолетова боја, со должина до 50 см. Бусените трска можат да се шират на места колку што е еден до еден квадратен километар. Во поволни услови на животната средина, трската може да се проширува и протега до 5 m годишно.
Трска (лат. Phragmites australis) е вид на повеќегодишни тревни растенија од семејството треви. Расте во бројни бусени (трсје, шамак) во влажни и водни живеалишта на умерени и тропски климатски региони. Растат долж бреговите на водните пространства како езера, бари и вирови на блата и мочуришта и вливови и устија на реки, создавајќи густа тревна површина и соодветни услови за гнездење за различни видови птици. Претставниците на родот се - убители на влага. Тие растат до длабочина до половина метар главно во резервоари со застоени води, мочуришта, речни делта, извори на отпад и индустриски води.
Эгэл нишингэ - (англ. Phragmites communis), (орос. Тростник обыкновенный)
Хүчирхэг хөгжсөн үндэслэг иш бүхий 2-3 метр өндөр ургадаг олон наст үет ургамал. Зарим үед үндэслэг иш хөрснөөс ил дээгүүр мөлхөж ургасан байх бөгөөд тэр нь цагаан цайвар өнгөтэй, зарим хэсгээр бүрэн бор бөгж нахиануудтай. Шугаман зэв хэлбэрийн өргөн, цэгээн ногоон навчнуудтай. Навчны илтэс харьцангуй богино байна. Том, өтгөн залаа баг цэцэгтэй, тэр нь эхлээд гарч байхдаа гялалзсан хүрэн улаан, сүүлдээ мөнгөлөг саарал өнгөтэй болон хувирна.[1]
Эгэл нишингэ - (англ. Phragmites communis), (орос. Тростник обыкновенный)
Хүчирхэг хөгжсөн үндэслэг иш бүхий 2-3 метр өндөр ургадаг олон наст үет ургамал. Зарим үед үндэслэг иш хөрснөөс ил дээгүүр мөлхөж ургасан байх бөгөөд тэр нь цагаан цайвар өнгөтэй, зарим хэсгээр бүрэн бор бөгж нахиануудтай. Шугаман зэв хэлбэрийн өргөн, цэгээн ногоон навчнуудтай. Навчны илтэс харьцангуй богино байна. Том, өтгөн залаа баг цэцэгтэй, тэр нь эхлээд гарч байхдаа гялалзсан хүрэн улаан, сүүлдээ мөнгөлөг саарал өнгөтэй болон хувирна.
Ҡамыш ябай, тростник (Phragmites) — ҡыяҡлылар ғаиләһенә ҡараған үҫемлек заты.
5 төрө билдәле, Арктика һәм Антарктиканан башҡа бөтә ер шарында таралған. Башҡортостанда ябай йәки көньяҡ ҡамышы үҫә. Йылға һәм күлдәрҙең яр буйҙарында, һаҙлыҡтарҙа, һаҙлыҡлы болондарҙа, ҡайһы берҙә һуғарылыусы баҫыуҙарҙа үҫә, республиканың бөтә биләмәһендә лә таралған.
Оҙон үрмәле тамырһабаҡлы күп йыллыҡ эре үлән[1]. Һабағы төҙ, япраҡлы, бейеклеге 0,5—4 м.[2] Япраҡтары ҡыяҡ‑ланцет, ҡаты, ситтәре осло‑ҡытыршы. Башаҡтары 3—7 сәскәле, төклө ҡылсыҡтар менән. Сәскәлеге — миләүшә йәки көмөш‑көрән төҫтәге ҡуйы йөнтәҫ һепертке. Июнь—авг. сәскә ата. Емеше — бөртөксә, июль—сентябрҙә өлгөрә.
Ҡамыш торф һәм ҡамышлы уйһыу ярҙар барлыҡҡа килеүенә, һаҙ тупраҡтарының кибеүенә, ҡомлоҡтарҙың нығыныуына булышлыҡ итә. Кәрзиндәр, септәләр үреү, ҡағыҙ, муз. инструменттар эшләү өсөн ҡулланыла. Составында витаминдар, углеводтар, флавоноидтар һ.б. бар, халыҡ медицинаһында файҙаланыла. Декоратив, мал аҙығы, ашарға яраҡлы, техник үҫемлек.[2].
Ҡамыш (тростник) // Башҡорт энциклопедияһы — Өфө: «Башҡорт энциклопедияһы» ғилми-нәшриәт комплексы, 2015—2020. — ISBN 978-5-88185-143-9.
Ҡамыш ябай, тростник (Phragmites) — ҡыяҡлылар ғаиләһенә ҡараған үҫемлек заты.
Phragmites australis, known as the common reed, is a species of flowering plant in the grass family Poaceae. It is a wetland grass that can grow up to 20 feet (6 metres) tall and has a cosmopolitan distribution worldwide.
Phragmites australis commonly forms extensive stands (known as reed beds), which may be as much as 1 square kilometre (0.39 square miles) or more in extent. Where conditions are suitable it can also spread at 5 metres (16 feet) or more per year by horizontal runners, which put down roots at regular intervals. It can grow in damp ground, in standing water up to 1 m (3 ft 3 in) or so deep, or even as a floating mat. The erect stems grow to 2–4 m (6+1⁄2–13 ft) tall,[1] with the tallest plants growing in areas with hot summers and fertile growing conditions.
The leaves are 18–60 centimetres (7–23+1⁄2 in) long and 1–6 cm (1⁄2–2+1⁄4 in) broad.[1] The flowers are produced in late summer in a dense, dark purple panicle, about 15–40 cm (6–15+1⁄2 in) long.[1] Later the numerous long, narrow, sharp pointed spikelets appear greyer due to the growth of long, silky hairs. These eventually help disperse the minute seeds.
Recent studies have characterized morphological distinctions between the introduced and native stands of Phragmites australis in North America. The Eurasian phenotype can be distinguished from the North American phenotype by its shorter ligules of up to 0.9 millimetres (1⁄32 in) as opposed to over 1 mm, shorter glumes of under 3.2 mm (1⁄8 in) against over 3.2 mm (although there is some overlap in this character), and in culm characteristics.[2]
It is a helophyte (aquatic plant), especially common in alkaline habitats, and it also tolerates brackish water,[4] and so is often found at the upper edges of estuaries and on other wetlands (such as grazing marsh) which are occasionally inundated by the sea. A study demonstrated that P. australis has similar greenhouse gas emissions to native Spartina alterniflora.[5] However, other studies have demonstrated that it is associated with larger methane emissions and greater carbon dioxide uptake than native New England salt marsh vegetation that occurs at higher marsh elevations.[6]
Common reed is suppressed where it is grazed regularly by livestock. Under these conditions it either grows as small shoots within the grassland sward, or it disappears altogether. In Europe, common reed is rarely invasive, except in damp grasslands where traditional grazing has been abandoned.
In North America, the status of Phragmites australis is a source of confusion and debate. It is commonly considered a non-native and often invasive species, introduced from Europe in the 1800s.[7] However, there is evidence of the existence of Phragmites as a native plant in North America long before European colonization of the continent.[8] The North American native subspecies, P. a. subsp. americanus (sometimes considered a separate species, P. americanus), is markedly less vigorous than European forms. The expansion of Phragmites in North America is due to the more vigorous, but similar-looking European subsp. australis.[9][7]
Phragmites australis subsp. australis outcompetes native vegetation and lowers the local plant biodiversity. It forms dense thickets of vegetation that are unsuitable habitat for native fauna. It displaces native plants species such as wild rice, cattails, and native orchids.[10] Phragmites has a high above ground biomass that blocks light to other plants allowing areas to turn into Phragmites monoculture very quickly. Decomposing Phragmites increases the rate of marsh accretion more rapidly than would occur with native marsh vegetation.[11]
Phragmites australis subsp. australis is causing serious problems for many other North American hydrophyte wetland plants, including the native P. australis subsp. americanus. Gallic acid released by phragmites is degraded by ultraviolet light to produce mesoxalic acid, effectively hitting susceptible plants and seedlings with two harmful toxins.[4][12] Phragmites is so difficult to control that one of the most effective methods of eradicating the plant is to burn it over 2–3 seasons. The roots grow so deep and strong that one burn is not enough.[13] Ongoing research suggests that goats could be effectively used to control the species.[14]
Since 2017, over 80% of the beds of Phragmites in the Pass a Loutre Wildlife Management Area have been damaged by the invasive roseau cane scale (Nipponaclerda biwakoensis), threatening wildlife habitat throughout the affected regions of the area.[15] While typically considered a noxious weed, in Louisiana the reed beds are considered critical to the stability of the shorelines of wetland areas and waterways of the Mississippi Delta, and the die-off of reed beds is believed to accelerate coastal erosion.[15]
The entire plant is edible raw or cooked. The young stems can be boiled, or later on be used to make flour. The underground stems can be used but are tough, as can the seeds but they are hard to find.[16]
Stems can be made into eco-friendly drinking straws. Many parts of the plant can be eaten. The young shoots can be consumed raw or cooked. The hardened sap from damaged stems can be eaten fresh or toasted. The stems can be dried, ground, sifted, hydrated, and toasted like marshmallows. The seeds can be crushed, mixed with berries and water, and cooked to make a gruel. The roots can be prepared similar to those of cattails.[1]
Common reed is the primary source of thatch for traditional thatch housing in Europe and beyond. The plant is extensively used in phytodepuration, or natural water treatment systems, since the root hairs are excellent at filtering out impurities in waste water. It also shows excellent potential as a source of biomass.
{{cite book}}
: CS1 maint: others (link) Phragmites australis, known as the common reed, is a species of flowering plant in the grass family Poaceae. It is a wetland grass that can grow up to 20 feet (6 metres) tall and has a cosmopolitan distribution worldwide.
Phragmites australis, esperante aŭstrala fragmito, estas specio de la subfamilio de Arundinoideae.
Ĝi havas 30 cm longan paniklon el spiketoj ĉirkaŭitaj de arĝentece brilaj haroj[1] Ĝia lancetformaj laŭgrade pintiĝantaj folioj mezuras larĝe ĝis 5 cm.
Ĝi estas geofita kun rizomoj. Ĝi ŝatas helofitan medion. Ĝi floras malfrusomere kaj vintre.
Ergotfungo estas parazitoj de aŭstrala fragmito.
Phragmites australis, esperante aŭstrala fragmito, estas specio de la subfamilio de Arundinoideae.
El carrizo (Phragmites australis) es una especie de caña del género Phragmites de la familia Poaceae.
Es una planta perenne, con un rizoma rastrero con capacidad para crecer en la superficie buscando agua. Puede alcanzar los 4 m de altura y 2 cm de diámetro, presentando una gran inflorescencia al final del tallo.
Tiene una distribución cosmopolita y subcosmopolita. Geófito. Suele habitar suelos húmedos y orillas de cursos de agua y lagunas. En ríos se encuentran fundamentalmente en los tramos más bajos, en los que la velocidad del curso de agua les permite enraizar.
Puede soportar bastante bien niveles moderados de salinidad en el agua y en el suelo, necesitando suelos encharcados hasta profundidades de 5 dm, por lo que es posible encontrarlo en las proximidades de marismas y zonas más salobres.
Los carrizales son ocupados por multitud de aves acuáticas, utilizándolos para nidificar. Algunas de ellas reciben incluso el nombre de Carriceros (como los pertenecientes al género Acrocephalus).
Phragmites australis fue descrita primero por Antonio José de Cavanilles como Arundo australis y publicado en Anales de Historia Natural, vol. 1(2), p. 100–101[1], 1799 y posteriormente desplazado al género Phragmites por Carl Bernhard von Trinius y publicado en Ernst Gottlieb von Steudel, Nomenclator Botanicus Editio secunda, vol. 1, p. 143[2], 1840.[2]
Esta caña ha sido utilizada tradicionalmente para techar chozas y preparar cercados en algunos lugares.
El carrizo (Phragmites australis) es una especie de caña del género Phragmites de la familia Poaceae.
Harilik pilliroog (Phragmites australis) on kõrreliste sugukonda pilliroo perekonda kuuluv taim.
Pilliroo sünonüümidena on kasutatud Arundo phragmites L. (basionüüm), Phragmites altissimus, P. berlandieri, P. communis, P. dioicus, P. maximus ja P. vulgaris. Lisaks on pillirool arvukalt rahvapäraseid nimetusi: roog, kõrkmed, merihain, vesiroog, sonn.
Pilliroog on levikult kosmopoliit.
Pilliroog on Eesti suurim kõrreline. Ta paljuneb siin peamiselt vegetatiivselt, moodustades suuri roostikke, mis koosnevad kloonidest. Need võivad olla enam kui ruutkilomeetri suurused. Pilliroo seemned valmivad Eestis harva.
Algselt oli pilliroog mageveetaim, aga ta on halohüüt ehk teisisõnu armastab soolast. Seetõttu talub ta hästi riimvett ja Eestis kasvab ta mererannal sama edukalt kui järvekaldal.
Pilliroog kasvab kuni meetrisügavuses vees, aga on juhtunud, et pilliroog kasvab ujuva matina. Taime vars on 2–6 m pikk. Kõrgemad taimed kasvavad sooja suve ja viljaka pinnasega paigus. Soodsates tingimustes võib ta vegetatiivselt levida kiirusega 5 m aastas.
Pilliroo lehed on 20–50 cm pikad ja 2–3 cm laiad. Õied puhkevad hilissuvel ja moodustavad tiheda tumelilla pöörise, mis on 20–50 cm pikk.
Pilliroog kaob seal, kus pidevalt kariloomi karjatatakse, või kasvatab endale nii lühikesed võrsed kui rohul tavaliselt on.
Pilliroovarsi kasutatakse ehitusmaterjalina, samuti punumistöödeks. Pilliroovarsi lõigatakse talvel ja see on taastuv loodusvara, sest ei kahjusta kuidagi taimekasvu ja juba järgmisel aastal kasvavad samasse uued taimevarred.
Vanakreeka mütoloogias karistas Apollon kuningas Midast sellega, et laskis talle kasvada eesli kõrvad. Midas häbenes seda ja kandis edaspidi peakatet, kuni tema juuksed kasvasid nii pikaks, et neid tuli lõigata. Midas pidi oma kõrvu juuksurile näitama, aga see tõotas surma ähvardusel, et ei räägi kuninga kõrvadest kellelegi. Saladuse hoidmine osutus tema jaoks siiski raskeks. Lõpuks kaevas ta jõe kaldale augu, sosistas sinna sisse: "Kuningas Midasel on eeslikõrvad!" ja ajas augu kinni. Rohkem saladus teda enam ei vaevanud, kuid järgmisel kevadel kasvas augu kohale pilliroog ja kui tuul seda lehvitas, siis kohises pilliroog kuuldavalt: "Kuningas Midasel on eeslikõrvad." Nii sai kogu rahvas asjast teada.
Piiblis mainitakse pilliroogu paarkümmend korda. [1]
Moosese ema pani kolmekuuse Moosese pilliroost tehtud tõrvatud ja vaiguga määritud laekasse ja asetas laeka Niiluse jõe äärde kõrkjaisse, kust vaarao tütar selle leidis, poisile halastas ja ta üles kasvatas (2 Mo. 2:3–6).
Kui Jeesust enne ristilöömist piinati, siis löödi teda pillirooga pähe (Mt 27:29-30, Mk 15:18-19) ja talle anti pilliroo otsa pandud käsnast äädikat juua (Mt 27:48, Mk 15:36).
Noa laev väidetakse olevat tehtud goferipuust ning seest ja väljast tõrvatud (1Mo 6:14). Mis puu on goferipuu, seda pole selgitatud, kuid heebrea keeles nimetatakse sama sõnaga korvi, milles Mooses Niiluse kaldale pandi, nii et seetõttu oli ka Noa laev pilliroost valmistatud. [2]
Harilik pilliroog (Phragmites australis) on kõrreliste sugukonda pilliroo perekonda kuuluv taim.
Pilliroo sünonüümidena on kasutatud Arundo phragmites L. (basionüüm), Phragmites altissimus, P. berlandieri, P. communis, P. dioicus, P. maximus ja P. vulgaris. Lisaks on pillirool arvukalt rahvapäraseid nimetusi: roog, kõrkmed, merihain, vesiroog, sonn.
Pilliroog on levikult kosmopoliit.
Pilliroog on Eesti suurim kõrreline. Ta paljuneb siin peamiselt vegetatiivselt, moodustades suuri roostikke, mis koosnevad kloonidest. Need võivad olla enam kui ruutkilomeetri suurused. Pilliroo seemned valmivad Eestis harva.
Algselt oli pilliroog mageveetaim, aga ta on halohüüt ehk teisisõnu armastab soolast. Seetõttu talub ta hästi riimvett ja Eestis kasvab ta mererannal sama edukalt kui järvekaldal.
Pilliroog kasvab kuni meetrisügavuses vees, aga on juhtunud, et pilliroog kasvab ujuva matina. Taime vars on 2–6 m pikk. Kõrgemad taimed kasvavad sooja suve ja viljaka pinnasega paigus. Soodsates tingimustes võib ta vegetatiivselt levida kiirusega 5 m aastas.
Pilliroo lehed on 20–50 cm pikad ja 2–3 cm laiad. Õied puhkevad hilissuvel ja moodustavad tiheda tumelilla pöörise, mis on 20–50 cm pikk.
Pilliroog kaob seal, kus pidevalt kariloomi karjatatakse, või kasvatab endale nii lühikesed võrsed kui rohul tavaliselt on.
Pilliroovarsi kasutatakse ehitusmaterjalina, samuti punumistöödeks. Pilliroovarsi lõigatakse talvel ja see on taastuv loodusvara, sest ei kahjusta kuidagi taimekasvu ja juba järgmisel aastal kasvavad samasse uued taimevarred.
Lezka arrunta (Phragmites australis) Poaceae familiako landare fanerogamoa da. Askotan, etxolak eta zerrailuak egiteko erabili dute.
Lezka arrunta (Phragmites australis) Poaceae familiako landare fanerogamoa da. Askotan, etxolak eta zerrailuak egiteko erabili dute.
Järviruoko eli ryti (Phragmites australis) on rannoilla kasvava monivuotinen ruohovartinen kasvi, jota voidaan käyttää monella tavoin hyödyksi. Se on ainoa Suomessa kasvava ruokolaji. Järviruo’on varsi on pysty ja tavallisesti 1–3 metriä korkea, hyvin ravinteisissa paikoissa jopa nelimetrinen. Lämpimillä seuduilla se voi kasvaa 7 metriä korkeaksi. Lehdet ovat pitkiä ja 1–2 cm leveitä, vihreitä ja terävälaitaisia. Röyhy on tuuhea, miehen kämmenen kokoinen. Juurakko on haarova ja pitkä. Järviruoko lisääntyy sekä siemenistä että kasvullisesti juurakosta.
Tehokkaan lisääntymistapansa avulla laji on levittäytynyt lähes koko maapallolle.[2] Suomessa sitä esiintyy koko maassa, pohjoisimmassa Lapissa harvakseltaan. Vesistöjen rehevöityminen on parantanut lajin elinmahdollisuuksia, ja se onkin paikoin täysin vallannut meren- ja järvenrannat. Laiduntamisen loppuminen on auttanut leviämistä, sillä karja syö mielellään sen lehtiä ja nuoria, meheviä varsia. Luonnon monimuotoisuuden kannalta järviruo’on hallitseva asema on ongelmallinen.
Ruovikossa elää monipuolinen lintulajisto. Suomessa kaulushaikara, rastas- ja rytikerttunen ja viiksitimali ovat täysin riippuvaisia ruovikoista. Myös muun muassa luhtakana, niittysuohaukka, pajusirkku, ruokokerttunen ja ruskosuohaukka ovat suuresti riippuvaisia ruovikoista. Muuttoaikoina suurin osa selkärangattomia ravinnokseen käyttävistä linnuista ruokailee ruovikoissa, missä hyönteisten määrä on valtava. Muun muassa kirvat muodostavat erittäin suuren energiavaraston lintujen tankatessa syysmuuttoa varten.
Nisäkkäistä hirvi, minkki, piisami ja supikoira viihtyvät ruovikossa.
Järviruokoa väli-isäntänään käyttää ruostesieni hierakanjärviruokoruoste (Puccinia phragmitis).[3]
Järviruokoa kutsutaan usein kaislaksi, mutta järvikaisla (Schoenoplectus lacustris) on aivan eri laji.
Järviruo’on käyttö on ikivanhaa ja hyvin monipuolista. Tärkeimpiä käyttömuotoja ovat olleet:[4]
Järviruoko eli ryti (Phragmites australis) on rannoilla kasvava monivuotinen ruohovartinen kasvi, jota voidaan käyttää monella tavoin hyödyksi. Se on ainoa Suomessa kasvava ruokolaji. Järviruo’on varsi on pysty ja tavallisesti 1–3 metriä korkea, hyvin ravinteisissa paikoissa jopa nelimetrinen. Lämpimillä seuduilla se voi kasvaa 7 metriä korkeaksi. Lehdet ovat pitkiä ja 1–2 cm leveitä, vihreitä ja terävälaitaisia. Röyhy on tuuhea, miehen kämmenen kokoinen. Juurakko on haarova ja pitkä. Järviruoko lisääntyy sekä siemenistä että kasvullisesti juurakosta.
Tehokkaan lisääntymistapansa avulla laji on levittäytynyt lähes koko maapallolle. Suomessa sitä esiintyy koko maassa, pohjoisimmassa Lapissa harvakseltaan. Vesistöjen rehevöityminen on parantanut lajin elinmahdollisuuksia, ja se onkin paikoin täysin vallannut meren- ja järvenrannat. Laiduntamisen loppuminen on auttanut leviämistä, sillä karja syö mielellään sen lehtiä ja nuoria, meheviä varsia. Luonnon monimuotoisuuden kannalta järviruo’on hallitseva asema on ongelmallinen.
Ruovikossa elää monipuolinen lintulajisto. Suomessa kaulushaikara, rastas- ja rytikerttunen ja viiksitimali ovat täysin riippuvaisia ruovikoista. Myös muun muassa luhtakana, niittysuohaukka, pajusirkku, ruokokerttunen ja ruskosuohaukka ovat suuresti riippuvaisia ruovikoista. Muuttoaikoina suurin osa selkärangattomia ravinnokseen käyttävistä linnuista ruokailee ruovikoissa, missä hyönteisten määrä on valtava. Muun muassa kirvat muodostavat erittäin suuren energiavaraston lintujen tankatessa syysmuuttoa varten.
Nisäkkäistä hirvi, minkki, piisami ja supikoira viihtyvät ruovikossa.
Järviruokoa väli-isäntänään käyttää ruostesieni hierakanjärviruokoruoste (Puccinia phragmitis).
Järviruokoa kutsutaan usein kaislaksi, mutta järvikaisla (Schoenoplectus lacustris) on aivan eri laji.
Phragmites australis • Roseau, Roseau à balais
Le Roseau commun, Roseau à balais ou Sagne (Phragmites australis) est une espèce cosmopolite[1] de plantes herbacées vivaces de la famille des Poaceae, sous-famille des Arundinoideae.
Il existe plusieurs lignées de roseau commun, qui ont évolué indépendamment pendant des milliers d'années[2]. Depuis le début du XXe siècle, on assiste en Amérique du Nord à une invasion cryptique par une ou des lignées d'origine eurasienne[2],[3], notamment au niveau des bords de routes[4].
En Amérique du Nord, où la situation du roseau commun est bien documentée, on distingue trois sous-espèces :
Cette poacée (graminée) atteint 3-5 m de hauteur, possède des feuilles faisant 20–50 cm de long par 2-3 cm de large. Ses longues tiges fines ornées d'un plumeau argenté peuvent mesurer jusqu'à 3 m de haut. L'inflorescence, une panicule pourpre de 20 à 50 cm de long, est mature vers la fin de l'été.
Sa numération chromosomique est 2n=36, 48, 54, 96.
Phragmites australis est une espèce cosmopolite, c'est-à-dire qu'on la retrouve dans toutes les régions du monde ou presque. En effet, des colonies sont présentes en Afrique, en Amérique (du Nord, centrale et du Sud), en Asie, en Australie, en Europe, et en Nouvelle-Zélande[2].
Le roseau commun est une plante de milieux humides. Il prospère sur des sols gorgés d'eau et peu oxygénés, comme le long des cours d'eau, dans les marais et dans les fossés bordant les routes. On nomme roselières les colonies de cette espèce.
P. a. subsp. australis, la sous-espèce considérée envahissante, forme rapidement des colonies très denses qui deviennent pratiquement monospécifiques[5]. De plus, sa forte productivité mène à l'accumulation de matière organique au sol et, le cas échéant, à la fermeture de l'eau libre[6].
En Nouvelle-Calédonie, le Code de l'environnement de la Province Sud interdit l’introduction dans la nature de cette espèce ainsi que sa production, son transport, son utilisation, son colportage, sa cession, sa mise en vente, sa vente ou son achat. Il est tout de même possible de demander une dérogation pour l'utiliser de manière contrôlée, en particulier dans les stations d'épuration[7].
Les roseaux étaient et sont toujours utilisés localement, dans la constitution de murs et toitures des maisons (mudhif des Arabes des marais en Mésopotamie), et pour fournir de la litière aux animaux (vache allaitante notamment)[8].
Ils constituent un abri de choix pour des passereaux et pour de petits mammifères. Ils sont aussi largement utilisés dans les stations d'épurations à filtre planté de roseaux (phytoépuration).
Les patronymes Sagne, Sagnes, Sagnier, etc. sont liés aux anciens métiers d'exploitation de ces roseaux. Le toponyme La Seyne-sur-Mer est lié à la présence de roseaux sur le territoire.
En Camargue, le roseau est appelé sagne quand il est assez sec pour être coupé, récolté et devenir matériaux d'isolation et de construction. Il est utilisé dans la construction traditionnelle de la cabane camarguaise dite aussi cabane de gardian[9].
La sous-espèce P. a. subsp. australis sécréterait de l'acide gallique, dégradé en acide mésogallique sous l'effet des ultraviolets naturels (photodécomposition), ce qui constituerait une explication allélopathique à sa tendance envahissante[10]. Toutefois, on a récemment remis en question la sécrétion d'une telle substance par cette sous-espèce[11].
Durant le temps de décomposition des feuilles de P. australis dans l'eau ou sur la vase, on observe que le taux d'éléments traces métalliques et de métaux lourds augmente dans la matière organique en décomposition. Il augmente au même rythme que le taux d'ergostérol, ce qui laisse penser que ce sont les champignons aquatiques qui se nourrissent des feuilles en décomposition qui y fixent des ions métalliques collectés dans l'eau[12]. Les tourbières pourraient ainsi jouer un certain rôle dans la dépollution de l'eau et interférer avec le cycle des polluants métalliques dans les zones humides[13].
Phragmites australis • Roseau, Roseau à balais
Le Roseau commun, Roseau à balais ou Sagne (Phragmites australis) est une espèce cosmopolite de plantes herbacées vivaces de la famille des Poaceae, sous-famille des Arundinoideae.
Il existe plusieurs lignées de roseau commun, qui ont évolué indépendamment pendant des milliers d'années. Depuis le début du XXe siècle, on assiste en Amérique du Nord à une invasion cryptique par une ou des lignées d'origine eurasienne,, notamment au niveau des bords de routes.
A carriza, carrizo ou canaveira[1] é unha fanerógama pertencente á familia das gramíneas ou Poáceas. Esta cana foi utilizada tradicionalmente para fabricar colmados e preparar valados nalgúns lugares.
É unha planta perenne, cun rizoma rastreiro con capacidade para medrar na superficie buscando auga. Pode alcanzar os 4 m de altura e 2 cm de diámetro, presentando unha grande inflorescencia ao final do talo.
Ten unha distribución cosmopolita e subcosmopolita. Xeófito. Adoita medrar en solos húmidos e marxes de cursos de auga e lagoas. En ríos atópase fundamentalmente nos treitos máis baixos, nos que a velocidade do curso de auga lles permite enraizar.
Pode soportar bastante ben nieveis moderados de salinidade na auga e no solo, necesitando solos anegados até profundidades de 5 dm, polo que é posíbel encontralo nas proximidades de marismas e zonas máis salobres.
Os carrizais son ocupados por multitude de aves acuáticas, utilizándoos para nidificar. Algunhas delas reciben incluso o nome de carriceiros (como os pertencentes ao xénero Acrocephalus).
Phragmites australis foi descrita por (Cav.) Trin. ex Steud. e publicado en Nomenclator Botanicus. Editio secunda 1: 143. 1840.[2]
Phragmites: nome cenérico que deriva do grego phragma, en alusión á súa presenza nas zonas achegadas ás vías fluviais.[3]
australis: epíteto latíno que significa "do sur".[4]
A carriza, carrizo ou canaveira é unha fanerógama pertencente á familia das gramíneas ou Poáceas. Esta cana foi utilizada tradicionalmente para fabricar colmados e preparar valados nalgúns lugares.
Wšědna sćina je rostlina ze swójby słódkich trawow (łaćonsce: Phragmites australis, Poaceae).
Wšědna sćina je rostlina ze swójby słódkich trawow (łaćonsce: Phragmites australis, Poaceae).
Þakreyr (Phragmites australis) hávaxin grastegund, sem vex við grunnar strendur, vötn, skurði og strandengi]. Hálmurinn var notaður, sérstaklega fyrr á tímum í þök. Þakreyr getur orðið að 5 metra hár, en á Norðurlöndum þó aðeins 1 til 4 metrar.
Þakreyr (Phragmites australis) hávaxin grastegund, sem vex við grunnar strendur, vötn, skurði og strandengi]. Hálmurinn var notaður, sérstaklega fyrr á tímum í þök. Þakreyr getur orðið að 5 metra hár, en á Norðurlöndum þó aðeins 1 til 4 metrar.
La cannuccia di palude (Phragmites australis) è una pianta erbacea perenne della famiglia delle Poaceae.
Esistono diversi ceppi di cannuccia di palude, che si sono evoluti indipendentemente nel corso di migliaia di anni[1]. Dall'inizio del ventesimo secolo, abbiamo assistito, in Nord America, ad un'invasione criptica da parte di uno o più ceppi di origine eurasiatica[2], in particolare lungo i bordi stradali[3].
Presenta un culmo eretto, di circa 2 m, può raggiungere anche i 4-6 metri di altezza in condizioni di fertilità.
Le foglie, sono ampie e laminari, lunghe da 15 a 60 cm, larghe 1 – 6 cm, glabre, verdi o glauche.
All'apice del fusto è presente una pannocchia di colore bianco o violaceo, lunga fino a 40 centimetri. L'infiorescenza è tipicamente bianco-lanosa.
L'apparato radicale è sommerso, così come gli stoloni, la parte epigea fuoriesce dall'acqua.
Germoglia a marzo e fiorisce a luglio.
CannetoOasi WWF Palude Busatello a Gazzo Veronese
La specie ha una distribuzione subcosmopolita, sembra essere nativa dell'Eurasia ma è diffusa in ogni parte del mondo.
Si sviluppa in densi canneti in prossimità di paludi e aree umide, sulle sponde di laghi, stagni, fossati e in terreni incolti bagnati; tollera un moderato livello di salinità.
In Italia sono presenti due sottospecie:
Phragmites australis subsp. altissimus (Benth.) Clayton
Phragmites australis (Cav.) Trin. ex Steud. subsp. australis
Sono diffuse in tutte le regioni ad esclusione di Friuli, Veneto e Sardegna[4].
I giovani germogli sono commestibili; i fusti e le foglie servono ancor oggi per fare tetti di paglia, stuoie, graticci e cesti.
La cannuccia di palude (Phragmites australis) è una pianta erbacea perenne della famiglia delle Poaceae.
Esistono diversi ceppi di cannuccia di palude, che si sono evoluti indipendentemente nel corso di migliaia di anni. Dall'inizio del ventesimo secolo, abbiamo assistito, in Nord America, ad un'invasione criptica da parte di uno o più ceppi di origine eurasiatica, in particolare lungo i bordi stradali.
Paprastoji nendrė (Phragmites australis) – miglinių (Poaceae) šeimos augalų rūšis. Augalas 100–400 cm aukščio. Auga krantuose, pelkėse, pakelių grioviuose. Ypač vešlūs nendrynai Kuršių marių plovuose. Žydi liepos – rugsėjo mėn.
Visi jauni augalai turi daug baltymų ir cukrinių medžiagų ir mėgstami gyvulių. Tačiau dar prieš plaukėjimą augalo maistingumas smarkiai krinta, jis tampa labai šiurkštus ir gyvulių nemėgstamas. Nuganyti arba nušienauti nendrynai duoda gerą atolą. Stiebai tinka stogams dengti, pynimo darbams. Periodiškai užliejamose vietose sodinama smėliui sutvirtinti.
Parastā niedre (Phragmites australis) ir segsēkļu grupas, graudzāļu dzimtas lakstaugs. Daudzgadīgs, liels augs — sasniedz 120—250 cm, sastopams gandrīz visur pasaulē pie ūdenstilpnēm un mitrās vietās.[1]
Auga saknenis ir ložņājošs, kails, stāvs, stingrs, mazliet spīdīgs, resns stiebrs 0,7—1,2 cm diametrā. Lapas lancetiskas, līdz 5 cm platas, zilganzaļas, gari nosmailotas, apakšpuse matēta, maksts gara. Lapas mēlīte apmatota. Skara 20—40 cm liela, blīva, ar sārti brūnu nokrāsu. Šo nokrāsu piešķir gan plēkšņu krāsa, gan sārti violetās putekšnīcas un brūnsarkanās, plūksnainās drīksnas. Vārpiņā 3—7 ziedi, no tiem apakšējais ir vīrišķais zieds, pārējie - divdzimumu ziedi. Vārpiņas plēksnes īsas, nevienādas, bez šķautnes, ar 3 ārējām vai 2 iekšējām dzīslām. Arī zieda plēksnes nevienādas. Ārējā zieda plēksne manāmi garāka nekā iekšējā, tomēr īsāka nekā vārpiņa. Ārējā zieda plēksne ar garu, sarveidīgu smaili, bet bez akota. Nogatavojoties graudiem, skara kļūst iepelēka. Kalluss ļoti gari apmatots, atskaitot vīrišķo ziedu, kā kalluss biežāk ir kails. Auglis — sīks, 0,1—0,15 cm garš grauds. Zied jūlijā.
Plaši izplatīta kosmopolītiska suga.
Latvijā augs sastopams visā valsts teritorijā, ezeru un upju krastmalās, zemos un pārejas purvos, mitrās pļavās, grāvjos. Aug lielās audzēs. Ar ložņājošajiem sakneņiem (veģetatīvo dzinumu garums sasniedz 10—15 m) spēj strauji ieņemt jaunas platības.
Niedrēm ir liela nozīme ūdens attīrīšanās procesā. Pavasarī, kamēr stiebri mīksti, var izmantot govju un zirgu barībai. Cietus stiebrus lieto jumtu segšanai, lecekšu segām, papīra un celulozes ražošanai.[2] Dažās zemēs niedru stiebrus izmanto, aužot sienas dekorus, paklājus, žalūzijas.
Parastā niedre (Phragmites australis) ir segsēkļu grupas, graudzāļu dzimtas lakstaugs. Daudzgadīgs, liels augs — sasniedz 120—250 cm, sastopams gandrīz visur pasaulē pie ūdenstilpnēm un mitrās vietās.
Riet of echt riet (Phragmites australis, synoniem: Phragmites communis) is een plant die tot de grassenfamilie (Poaceae) behoort. De plant is prominent aan waterkanten aanwezige helofyt. Riet breidt zich op drie manieren uit: door zaad, door wortelstokken en door uitlopers, dat wil zeggen bovengrondse, horizontale stengels waarbij op de knopen een nieuwe plant ontstaat. De plant komt als exoot in Noord-Amerika voor. Daar wordt de plant als invasieve soort of onkruid gezien.
Rietgras (Phalaris arundinacea) lijkt in het vegatieve stadium op riet, maar heeft een vliezig tongetje in plaats van haartjes.
Riet kan 1–3 m hoog worden. De stengel staat stijf rechtop en het 1–3 cm brede blad met spits toelopende top is grijsgroen. Op de grens van de bladschede en de bladschijf zit een tongetje (ligula) dat bestaat uit een krans van haren.
De plant bloeit van juli tot oktober met een 15–40 cm lange, sterk vertakte, purperkleurige of bruinachtige pluim, die rechtop staat of later aan de top kan gaan overhangen. De aartjes zijn tot 1,5 cm lang, bevatten twee tot zes bloempjes en zijn erg harig. De vrucht is een graanvrucht.
De plant groeit in het water of aan de waterkant op natte, zoete tot brakke bodem, maar komt ook voor langs spoorwegen en in akkerranden of onkruid in bouwland. Na de drooglegging van de IJsselmeerpolders werd eerst riet ingezaaid, dat na enkele jaren de grond geschikt maakte voor de landbouw.
Dood riet kan zich ophopen en later tot rietveen verworden. Dit mechanisme wordt in kleimoerassen tegengegaan wanneer het moeras droog valt. Het organisch materiaal breekt dan zeer snel af.
Wanneer riet jaarlijks gemaaid wordt, kan een deel na sortering als dakbedekking of voor het maken van rietmatten en rietschermen gebruikt worden. Overjarig riet is hiervoor minder geschikt. Kalenberger riet wordt onder meer gebruikt als bedekking op de kap en houten achtkant van molens. Het is dun riet met een spitse top en daardoor zeer geschikt voor steile vlakken.
Een riet wordt gebruikt bij bepaalde muziekinstrumenten, rietblazers zoals de hobo, klarinet, fagot en saxofoon. De plant waarvan het riet gesneden wordt is echter pijlriet (Arundo donax, het bamboeachtige Spaanse riet). Het blazen over (een klein stukje van) het riet zorgt ervoor dat het gaat trillen, waardoor er geluid ontstaat.
Wanneer verontreinigd water door een rietland geleid wordt, dan wordt dit gereinigd. Dit noemt men een helofytenfilter. Er zijn zwembaden die in plaats van allerlei mechanische en chemische middelen water zuiveren in een rietveld. Ook zie je bij verkeerspleinen vaak dat een rietveld aanwezig is. Het gemaaide riet is weliswaar verontreinigd, maar het water is meestal dusdanig gereinigd dat het op het oppervlaktewater geloosd kan worden.
Vincent van Gogh gebruikte voor een aantal van zijn pentekeningen rietstengels, waaraan hij een scherpe punt sneed. Ook maakte hij tekeningen en schilderijen over rietgedekte huizen in Normandië met hun typische bloemenvorsten (uit klei met dakplanten).
Riet of echt riet (Phragmites australis, synoniem: Phragmites communis) is een plant die tot de grassenfamilie (Poaceae) behoort. De plant is prominent aan waterkanten aanwezige helofyt. Riet breidt zich op drie manieren uit: door zaad, door wortelstokken en door uitlopers, dat wil zeggen bovengrondse, horizontale stengels waarbij op de knopen een nieuwe plant ontstaat. De plant komt als exoot in Noord-Amerika voor. Daar wordt de plant als invasieve soort of onkruid gezien.
Rietgras (Phalaris arundinacea) lijkt in het vegatieve stadium op riet, maar heeft een vliezig tongetje in plaats van haartjes.
Riet kan 1–3 m hoog worden. De stengel staat stijf rechtop en het 1–3 cm brede blad met spits toelopende top is grijsgroen. Op de grens van de bladschede en de bladschijf zit een tongetje (ligula) dat bestaat uit een krans van haren.
De plant bloeit van juli tot oktober met een 15–40 cm lange, sterk vertakte, purperkleurige of bruinachtige pluim, die rechtop staat of later aan de top kan gaan overhangen. De aartjes zijn tot 1,5 cm lang, bevatten twee tot zes bloempjes en zijn erg harig. De vrucht is een graanvrucht.
De plant groeit in het water of aan de waterkant op natte, zoete tot brakke bodem, maar komt ook voor langs spoorwegen en in akkerranden of onkruid in bouwland. Na de drooglegging van de IJsselmeerpolders werd eerst riet ingezaaid, dat na enkele jaren de grond geschikt maakte voor de landbouw.
Takrøyr, Phragmites australis, er ein stor, fleirårig grasart som finst i våtmarker gjennom tempererte og tropiske regionar i verda.
Phragmites australis er ofte skildra som den einaste arten i slekta Phragmites, men somme botanikarar deler Phragmites inn i tre eller fire artar. Spesielt blir den sørasiatiske Phragmites karka ofte handsama som ein eigen art.[1]
I Noreg veks takrøyr til fire meter i høgd, og blomane dannar ein stor, lilla blomsterstad i toppen av veksten. Planten er mest vanleg på Austlandet.[2] Bruken av planten har inkludert taktekking, flettverk, mat og godteri, fløyter, pynt, og som plantefarge til farging i farger frå grått til blått og svart, eller gult og grønt.[3]
Takrøyrskog dannar vektige biotop for dyreliv, spesielt i Europa og Asia, der mange fugleartar er sterkt knytt til store habitat av takrøyr. Slike artar er mellom anna skjeggmeis (Panurus biarmicus), røyrsongar (Acrocephalus scirpaceus) og røyrdrum (Botaurus stellaris).
Phragmites australis dannar ofte omfattande samanhengande bestandar, kjent som takrøyrbelte og takrøyrskog, som kan vere så mykje som ein kvadratkilometer eller meir i omfang. Der tilhøva ligg til rette, kan det spreie seg 5 meter eller meir per år av horisontale utløparar, som set ned røter med jamne mellomrom. Han kan vekse i fuktig jord, i stilleståande vatn på 1 meters djupne eller så, eller som ei flytande matte. Dei oppreiste stenglane veks til 2-6 meter i høgd, dei høgste plantene veks i område med varme somrar og fruktbare vekstforhold.
Blada er lange til å vere gras, 20-50 centimeter og 2-3 centimeter breie. Blomane er produsert på seinsommaren i ein tett, mørk lilla stand, ca 20-50 cm lang. Seinare blir dei mange lange, smale, spisse småaksa gråare i farga på grunn av veksten av lange, silkeaktig hår.
Det er ein halofyt, spesielt vanleg i alkaliske habitat, og han òg toler brakkvatn,[4] så han er ofte funnen i dei øvre delane av elvemunningar og på andre våtmarker som er tidvis oversumt av havet.
Husdyr på beite kan legge ned takrøyr. Under slike tilhøve veks dei anten opp som små skot innanfor beiteområdet, eller planten forsvinn heilt.
I Europa er takrøyr sjeldan invasiv - spreier seg lite, unntatt på fuktige grassletter der tradisjonelt beite er avslutta.
Takrøyr, Phragmites australis, er ein stor, fleirårig grasart som finst i våtmarker gjennom tempererte og tropiske regionar i verda.
Phragmites australis er ofte skildra som den einaste arten i slekta Phragmites, men somme botanikarar deler Phragmites inn i tre eller fire artar. Spesielt blir den sørasiatiske Phragmites karka ofte handsama som ein eigen art.
I Noreg veks takrøyr til fire meter i høgd, og blomane dannar ein stor, lilla blomsterstad i toppen av veksten. Planten er mest vanleg på Austlandet. Bruken av planten har inkludert taktekking, flettverk, mat og godteri, fløyter, pynt, og som plantefarge til farging i farger frå grått til blått og svart, eller gult og grønt.
Takrøyrskog dannar vektige biotop for dyreliv, spesielt i Europa og Asia, der mange fugleartar er sterkt knytt til store habitat av takrøyr. Slike artar er mellom anna skjeggmeis (Panurus biarmicus), røyrsongar (Acrocephalus scirpaceus) og røyrdrum (Botaurus stellaris).
Takrør er en planteart i grasfamilien, og eneste art i slekten Phragmites. Dette gresset kan bli opptil tre meter høyt. Bladene er brede, og toppen er stor og svart-fiolett.
Det norske navnet kommer av at planten har vært brukt som materiale til tak. Det har vært brukt som konstruksjonselement i arkitekturen i Sumer siden ca. 3000 f.Kr.
Takrør vokser ved alle slags vann hvor de gjerne danner rørsumper, men de største bestandene finnes nok knyttet til næringsrike forhold. Takrørskogen er viktig for en del fugler, blant annet enkelte sangere, og pungmeis. Svaler som overnattet i takrørskogen kan ha gitt opphav til troen på at svalene overvintret på bunnen av sjøer. Svaler som døde på nattekvist kan ha styrket denne troen, for det lå da svaler i vannet.
Utbredelsen av takrør synes å ha økt i de senere år (etter 1970-tallet?). I Østfold er det store takrørskoger nord for Fredrikstad.
Takrør blir som navnet antyder brukt til taktekking. Slike tak kalles halmtak, selv om de ikke er laget av halm. På grunn av det høye silisiumdioksid-innholdet i stenglene, kan slike tak holde seg i mange år før det må skiftes. I Norge har det ikke vært vanlig med slike tak, men de har vært blant de vanligste takkonstruksjonene på landet i Danmark, Tyskland og England.
Takrør er en planteart i grasfamilien, og eneste art i slekten Phragmites. Dette gresset kan bli opptil tre meter høyt. Bladene er brede, og toppen er stor og svart-fiolett.
Det norske navnet kommer av at planten har vært brukt som materiale til tak. Det har vært brukt som konstruksjonselement i arkitekturen i Sumer siden ca. 3000 f.Kr.
Trzcina pospolita (Phragmites australis (Cav.)Trin. ex Steud) – gatunek rośliny z rodziny wiechlinowatych (Poaceae).
Gatunek kosmopolityczny, szeroko rozpowszechniony na całym świecie. Zasięg naturalny jest trudny do określenia ze względu na rozwleczenie tego gatunku w wielu miejscach na świecie i jego łatwe zadamawianie się. Występuje w całej Europie, w Azji północnej, środkowej południowo-zachodniej (od krajów śródziemnomorskich po Pakistan), w Azji wschodniej, w niemal całej Afryce, na obu kontynentach amerykańskich (także w krajach Ameryki Środkowej), w Australii. Z pewnością jako roślina obca trzcina pospolita podawana jest z Nowej Zelandii i innych wysp Oceanii. Podgatunek typowy zawleczony został także do Ameryki Północnej[2], gdzie np. w basenie Wielkich Jezior uznawany jest obecnie za groźny gatunek inwazyjny. W Polsce występuje pospolicie na całym terytorium, od Bałtyku, aż po niższe partie gór[3].
Bylina. Kwitnie od lipca do września. Kwiaty są wiatropylne. Wysiewa się zwykle zimą i wiatr może nasiona przenosić na duże odległości. Roślina rozmnaża się głównie wegetatywnie, przez rozłogi kłącza oraz ich fragmentację. Najsilniej kłącze rozrasta się na głębokości 0,5 m, jednak potrafi sięgnąć 3 m w głąb ziemi. Trzcina potrafi się także rozmnażać przez fragmentację pędów – pędy bardzo łatwo przyjmują się, wypuszczając korzenie w kolankach. Pojedyncze kłącze żyje do 6 lat i może w tym czasie rozrosnąć się w promieniu kilkudziesięciu metrów. Pyłki trzciny pospolitej mają silne właściwości alergiczne. Liczba chromosomów 2n =48 (72, 84, 96).
Skład chemiczny tkanek trzciny pospolitej jest zmienny. Nieco inny skład mają pędy nadziemne i kłącza. Zaobserwowano również różnice między roślinami z odmiennych siedlisk. W poniższej tabeli uwzględniono dane z kilku badań[4]:
substancja udział procentowy w suchej masie nadziemne pędy wyłącznie liście Substancje mineralne (popiół) 1,8-10 N 0,11-4,4 3,35-5,1 P 0,01-0,79 0,152-0,24 K 0,04-3,9 1,2-2,07 Ca 0,01-0,77 0,245-0,651 Mg 0,02-0,54 0,12-0,209 Na 0,01-0,87 0,035-0,008 Fe 0,008-0,17 Mn 0,005-0,5 Zn 0,0012-0,0065 białka 4,7-13 tłuszcz 3,4 celuloza (błonnik) 34 chlorofil 0,05-0,75 kwas asparaginowy 0,53 kwas glutaminowy 0,47 lizyna 0,27 histydyna 0,1 arginina 0,25 treonina 0,23 seryna 0,24 prolina 0,22 glicyna 0,25 alanina 0,3 walina 0,28 izoleucyna 0,27 leucyna 0,37 cysteina ślady metionina 0,09 tyrozyna 0,16 fenyloalanina 0,25 wartość energetyczna [kJ/g] 17,3Jest typową rośliną bagienną i nadwodną, ale jest gatunkiem o szerokim zakresie tolerancji ekologicznej, potrafi rosnąć także na suchym lądzie. Można ją spotkać nie tylko w zbiornikach wodnych i nad ich brzegami, ale także na torfowiskach, na podmokłych łąkach i w różnego rodzaju zaroślach nadrzecznych. Dobrze znosi falowanie wody i trwałe podtopienie (nawet do 2 m). Może rosnąć nad brzegami zarówno wód stojących, jak i wolno płynących, na różnych typach podłoży. Jest bardzo żywotna i rozrasta się bardzo szybko. Jest tak ekspansywna, że zwykle tworzy jednogatunkowe, rozległe agregacje. Rośnie także w wodach silnie zanieczyszczonych ściekami komunalnymi. Ekspansja trzciny jest dużym problemem, ponieważ gatunek ten zastępuje inne naturalne zbiorowiska roślinne uwolnione od ekstensywnego użytkowania (wypasu, koszenia), tworząc jednorodne płaty na dużych powierzchniach. Pomimo wypierania innych gatunków roślin, trzcina pospolita (tak jak inne rośliny trzcinopodobne) jest bardzo ważna dla ochrony siedlisk szeregu dzikich zwierząt, zwłaszcza w Europie i Azji. Do tych gatunków zalicza się wąsatka (Panurus biarmicus), trzcinniczek zwyczajny (Acrocephalus scirpaceus) oraz bąk zwyczajny (Botaurus stellaris)[5]. Inne zwierzęta takie jak bóbr europejski, mysz polna, rzęsorek rzeczek (Neomys fodiens), czy czapla siwa także chętnie przebywają bądź gniazdują w szuwarach trzcinowych. Ponadto, gdy trzcina rośnie w wodzie, stanowi matecznik dla młodych ryb i wielu gatunków owadów, a żaby chętnie tam przebywają ponieważ wysokie łodygi zapewniają im częściowe schronienie[6].
Trzcina nie toleruje wypasania i koszenia w sierpniu, bowiem uniemożliwia to transport i magazynowanie składników odżywczych z łodygi i liści do kłączy. Szuwar trzcinowy koszony w sezonie wegetacyjnym może mieć roczną produkcję trzykrotnie mniejszą niż szuwar niekoszony, choć szczegóły mogą się różnić w zależności od czasu i częstotliwości wykaszania, w skrajnych przypadkach może dojść do całkowitego zniszczenia płatu. Z kolei zarówno koszenie, jak i pożary suchych ździebeł zimą lub na przedwiośniu przyspieszają wzrost nowych pędów i zwiększają ich zagęszczenie. Wynika to z aktywacji większej liczby pączków na kłączach i eliminacji pasożytów (w tym patogenów) zimujących w suchych pędach[7]. Geofit i hydrofit. W klasyfikacji zbiorowisk roślinnych gatunek charakterystyczny dla Cl. Phragmitetea i Ass. Phragmitetum australis[8].
Na trzcinie pospolitej pasożytuje wiele gatunków grzybów: na pędach nadziemnych buławinka czerwona powodująca chorobę o nazwie sporysz zbóż i traw, rdze Puccinia phragmitis i Puccinia magnusiana, Neoramularia phragmitis, Deightoniella roumeguerei, Deightoniella arundinacea, Scirrhia rimosa, Pseudoseptoria donacis, Ascochyta leptospora, Gibberella zeae, na korzeniach Microdiscula phragmitis. Żerują na niej liczne gatunki owadów[9].
W Polsce występują dwa podgatunki:
Inne podgatunki:
Istnieją również ekotypy bez rangi podgatunku. W Holandii zaobserwowano dwa główne ekotypy (oba o 2n=48): torfowiskowy i rzeczny (oraz formy przejściowe). Pierwszy charakteryzuje się niższymi i gęściej rosnącymi pędami, mniejszą masą pędów nadziemnych, większą tolerancją na wiosenne przymrozki, ale mniejszą na zasolenie i wahania poziomu wody[10]. W byłej Czechosłowacji wyróżniono z kolei trzy ekotypy słodkowodne i jeden słonowodny[11].
W Biblii trzcina wymieniona jest wiele razy. Jest symbolem kruchości i słabości (np. 1 Krl 14,15)[14].
Trzcina pospolita (Phragmites australis (Cav.)Trin. ex Steud) – gatunek rośliny z rodziny wiechlinowatych (Poaceae).
Phragmites australis é uma espécie de planta com flor pertencente à família Poaceae.
A autoridade científica da espécie é (Cav.) Trin ex. Steud., tendo sido publicada em Nomenclator Botanicus. Editio secunda 1: 143. 1840.[1] O seu nome comum é caniço.[2]
Trata-se de uma espécie cosmopolita presente no território português, nomeadamente em Portugal Continental e no Arquipélago da Madeira, sendo nativa dessas regiões.
Não se encontra protegida por legislação portuguesa ou da Comunidade Europeia.
Phragmites australis é uma espécie de planta com flor pertencente à família Poaceae.
A autoridade científica da espécie é (Cav.) Trin ex. Steud., tendo sido publicada em Nomenclator Botanicus. Editio secunda 1: 143. 1840. O seu nome comum é caniço.
Phragmites australis, (stuf, trestie), este o plantă erbacee perenă din familia gramineelor (Poaceae), care are rizom târâtor, tulpină erectă rigidă de 1–4 m, frunze lanceolate verzi-albăstrui și flori dispuse în panicule terminale. Phragmites australis este uneori considerată ca fiind singura specie a genului Phragmites, deși unii botaniști împart Phragmites australis în trei sau patru specii. În special stuful Khagra (Phragmites Karka) din Asia de Sud este adesea tratat ca o specie distinctă[2].
Pe malul râurilor sau lacurilor. Este întâlnită în zonele umede de-a lungul regiunilor temperate și tropicale ale lumii.
Un stufăriș este o zonă unde crește stuf în densitate relativ mare. Stufărișurile sunt situate de obicei la marginea unor bălți sau lacuri, în brațe moarte ale râurilor sau în zonele deltaice.
În perioada regimului Ceaușescu, combinatul de hârtie la Chișcani, în Brăila folosea stuf ca materie primă.
Confecționarea acoperișurilor de stuf este un meșteșug cu tradiție în satul Letea, Tulcea.[3][4]
Phragmites australis, (stuf, trestie), este o plantă erbacee perenă din familia gramineelor (Poaceae), care are rizom târâtor, tulpină erectă rigidă de 1–4 m, frunze lanceolate verzi-albăstrui și flori dispuse în panicule terminale. Phragmites australis este uneori considerată ca fiind singura specie a genului Phragmites, deși unii botaniști împart Phragmites australis în trei sau patru specii. În special stuful Khagra (Phragmites Karka) din Asia de Sud este adesea tratat ca o specie distinctă.
Trsť obyčajná (lat. Phragmites australis) je vysoká trváca tráva z čeľade lipnicovitých. Byle sú dlhé 1 - 4 (6) m, koreňové výhonky až 10m. Kvitne v júli až v septembri.
Osídľuje slnečné, podmáčané a močaristé stanovištia, často brehy stojatých vôd, vodných nádrží, rybníkov a brehov tečúcich vôd, potokov a kanálov. Obľubuje aj podmáčané polia. Kozmopolitný druh. Mimo Antarktídy ju možno nájsť na všetkých kontinentoch. Na Slovensku je bežným druhom.
Tento článok je čiastočný alebo úplný preklad článku Rákos obecný na českej Wikipédii.
Trsť obyčajná (lat. Phragmites australis) je vysoká trváca tráva z čeľade lipnicovitých. Byle sú dlhé 1 - 4 (6) m, koreňové výhonky až 10m. Kvitne v júli až v septembri.
Bladvass, vass eller rörvass (Phragmites australis) är en art i växtfamiljen gräs som först beskrevs av Antonio José Cavanilles, och fick sitt nu gällande namn av Carl Bernhard von Trinius och Ernst Gottlieb von Steudel. Denna art anses ofta vara den enda i vass-släktet (Phragmites).
Äldre svenska namnformer (1800-tal) är kasa, takrör och skärvass[1]
Bladvass kan bli upp till 5 meter hög och ungefär lika lång under mark, i Norden dock bara 1–4 m hög. Jordstammen är krypande och oftast under vatten. Från denna skjuter strån upp. Bladvassens strån är släta, utan hår eller åsar, och har många nod. Bladen är 20–30 mm breda och kan bli en halv meter långa men oftast mindre. Snärpet är omvandlat till hår. Blomställningen är småax i vippa. Småaxen är violetta och smala, med 2–6 blommor och rikligt med ljusa hår. Vippan är yvig, 10–30 cm lång och sitter kvar hela vintern.[2] Bladvass växer i de flesta sorters sjöar och våtmarker, men trivs bäst i näringsrika sjöar.
Ett vasstrå kallas, i synnerhet i litterära sammanhang, för rö, till exempel i uttrycket som ett rö för vinden. Det grekiska ordet phragma betyder "vägg, stängsel". Redan Plinius d.ä. använde Phragmites som namn på bladvassen. Artepitetet australis betyder sydlig, men arten finns över hela världen.[3]
Bladvass har använts som konstruktivt element i arkitekturen i Sumer sedan åtminstone 3000 f.Kr.. Det används blandat med lera till väggar, och buntat till taktäckning.
Bladvassblad har enligt folklore varit det som i Bibelns legend om Jesus-barnet bäddades med i krubban. Till minne av detta har man haft för sed att strö ut vassblad på golvet i stugan under julhelgen.[4] Detta kan jämföras med bruket att istället för vass strö ut hackat enris på golvet.
Vass användes förr i tiden för utfodring av boskap och även som ett effektivt bränsle. Askan kan användas som ett finfördelat gödningsmedel. 2 1/2 kg torkad vass motsvarar 1 liter olja i värmevärde.
Jordstammen innehåller cirka 7 % sockerarter och kan ätas kokt eller rå. Även om den är svårplockad under vinterhalvåret så kan den skördas hela året. Vass betraktas som en av de 14 viktigaste vilda växterna i Sverige i en överlevnadssituation.[6]
Förväxling har skett med den dödligt giftiga roten av sprängört. Tillagning av sprängörtsrot ger ett välsmakande mos som en stund senare ger upphov till epilepsiliknande anfall, som kan leda till döden.
Bladvass, vass eller rörvass (Phragmites australis) är en art i växtfamiljen gräs som först beskrevs av Antonio José Cavanilles, och fick sitt nu gällande namn av Carl Bernhard von Trinius och Ernst Gottlieb von Steudel. Denna art anses ofta vara den enda i vass-släktet (Phragmites).
Äldre svenska namnformer (1800-tal) är kasa, takrör och skärvass
Kamış (Phragmites australis), Arundinoideae alt familyasından sulak yerlerde; göl ya da nehir kenarında yetişen uzunca ve içi boş bitki türüdür.
Balıkçıların olta yapımında kullandığı bu bitki ayrıca hasır yapımında da kullanılır. Budanan ve kurutulan kamışlar bir boya getirilerek hasır kilim, sepet minder ya da süs eşyası haline getirilir.
Kamışın asıl özelliği içi oyulup üzerinde belirli ölçülerle biri arkaya altısı öne olmak üzere yedi delik açılınca 3 oktava kadar ses yelpazesi bulunan ve Türk Sanat Müziği'nin temel sazlarından biri olan ney sazına dönüşmesidir.
Трав'яниста багаторічна блакитнувато-зелена рослина родини злакових (0,8-5 метрів заввишки), з довгим повзучим кореневищем.
Стебло прямостояче, кругле, товсте (до 16 мм), голе, гладеньке.
Листорозміщення чергове, стебло до верхівки покрито листям. Листки лінійно-ланцетні (1-5 см завширшки), плескаті, шорсткі, по краю гостро-шорсткі. В місці переходу листкової пластинки в піхву замість язичка розміщений ряд волосків.
Листя очерету повертається ребром до вітру, а гнучка соломина згинається, але не ламається. На вітрі все листя очерету виявляється на одному боці, майорить, мов прапор, вказуючи напрям вітру, як флюгер[29].
Квітки дрібні, непоказні, зібрані у велике (10-30 см завдовжки) волотисте суцвіття. Волоть густа, пухнаста, під час цвітіння розлога, звичайно з пониклою верхівкою. Гілочки волоті гостро-шорсткі. Колоски (9-12 мм завдовжки) темнувато-буруваті, звичайно з фіолетовим відтінком, рідше жовтуваті. Колоски 37-квіткові, лінійно-ланцетні, стиснуті з боків. Колоскові луски ланцетні, неоднакової довжини, коротші від квіткових. Нижні квітки в суцвітті тичинкові, решта — двостатеві. Квітки мають дві квіткові луски, три тичинки з фіолетовими пиляками і маточку з верхньою зав'яззю та двома коротко-перистими темно-червоними приймочками. Нижня квіткова луска на верхівці витягнута в довге шилоподібне вістря, яке в 2-3 рази довше за луску. Верхня квіткова луска в кілька разів коротша від нижньої, вісь колоска майже по всій довжині вкрита волосками.
Росте у вільшняках, на лісових та низинних болотах, у плавнях. Часто утворює густі зарості. Тіньовитривала рослина. Цвіте в липні — вересні.
Поширений по усій Україні. Заготівля провадиться у районах поширення. Промислова заготівля можлива у дельтах рік Дніпра та Дунаю. Запаси сировини великі.
Рослина, що дає будівельний матеріал, целюлозу; плетивна, кормова, вітамінозна, харчова, лікарська і фітомеліоративна рослина.
Очерет з давніх-давен використовується як будівельний матеріал. Нині з нього виготовляють чію, бердану, гідробердану, твердо-пресовані і волокнисті звуко- та термоізоляційні плити (комишит), дошки для підлоги, личкувальні панелі, диферент, гіпсоволокнисті плити, комишито-бетон, пластики та інші будівельні матеріали. Очеретяні плити й мати широко використовують у цукровій промисловості (річна потреба державного цукротресту становить понад 40 тис. тонн).
Очерет використовують як покрівельний матеріал, а також плетуть з нього стіни і перегородки у невеликих господарських будівлях, тини, плотики для переправи через тихі протоки в дельтах річок і багато інших виробів. З нього виготовляють циновки для вигодовування червів шовкопряду, мати для парників, у степових районах використовують на паливо.
Очерет є цілком задовільною сировиною для виробництва целюлози. Стебло містить 63,3, а листки 24,5% целюлози. Середній вихід небіленої целюлози в лабораторних умовах коливається від 33 до 41%.
Шляхом хімічної та фізико-хімічної переробки з очерету можна одержувати високоякісні сорти паперу, текстильну віскозу, кормові білкові дріжджі, фурфурол, спирт, глюкозу та інші продукти гідролізу.
Очерет — цінна кормова рослина. У молодих рослинах міститься 43% протеїну, 2,5% жиру, 36% клітковини, до 44% безазотистих екстрактивних речовин. Він є добрим кормом, особливо для коней і лошат, старий очерет непридатний на корм худобі, а тільним коровам навіть шкідливий. Сіно, заготовлене до колосіння очерету, має високу поживність; з 1 га за два укоси збирають до 40 тон сухої маси. Чудова рослина для виготовлення силосу.
У листках міститься чимало вітаміну С (300–500 мг%) і цукрів (18%), з них можна виготовляти вітамінний напій та спирт.
Молоді кореневища досягають довжини 2,5 метри. Вони ніжні і солодкі; їх їдять сирими, печеними й вареними. Вживають кореневища і як лікарський, потогінний засіб. У сирих кореневищах очерету 5 відсотків цукру. З кореневищ очерету роблять борошно і каву, так само як з рогозу.[29]
У народній медицині корені очерету використовують як потогінний та сечогінний засіб, а слизові виділення із стебел використовують за укусів комах.
Очерет звичайний добре витримує несприятливий газовий режим з підвищеним вмістом у воді та ґрунті сірководню, вуглекислоти, метану, а також стійкий проти дії таких отруйних для живих організмів хімічних речовин, як фенол, нафтенові кислоти, хлориди, ціаніди, закисні солі заліза та інші. Вважають, що на мілководних ділянках дніпровських водосховищ густі зарості очерету можуть виконувати роль біофільтра, що очищає воду від всілякого забруднення. Очерет придатний для закріплення вологих пісків.
Збирають очерет у повній біологічній стиглості пізно восени і взимку за допомогою спеціальних машин або скошують косами. Щоб не завдавати травм кореневищам і молодим пагонам, під час ручної і особливо механізованої заготівлі сировини з обвалованих територій спускають воду у річки і в такий спосіб просушують ґрунт перед збиранням урожаю. На ділянках, де очерет щороку не викошують, з часом нагромаджується багато відмерлих однорічних пагонів, так звані старники, що заважають розвитку молодих поколінь. Внаслідок цього різко знижується продуктивність очеретяних заростей. Щорічне скошування очерету сприяє підвищенню його врожайності на 10-15%, а випалювання — на 20-60%, разом знищуються шкідники та хвороби.
Кореневища очерету дістають граблями, баграми або «кішками», іноді з глибини 1 метра. Збирати їх слід навесні до цвітіння очерету, на початку літа або пізно восени. Цвіте очерет у червні — липні.[29]
Нині ключем до вирішення проблеми широкого й повного використання запасів очерету, як промислової сировини, є гідротехнічне впорядкування заплав річок, що передбачає обвалування території, штучне затоплення заростей очерету та осушення їх перед збиранням урожаю, а також конструювання високопродуктивних збиральних машин з питомим тиском на ґрунт 20-40 г/см².
Loài sậy thông thường (danh pháp hai phần: Phragmites australis), là một loài cây lớn thuộc họ Hòa thảo (Poaceae) có nguồn gốc ở những vùng đất lầy ở cả khu vực nhiệt đới và ôn đới của thế giới. Nói chung, nó được coi là loài duy nhất trong chi Phragmites, mặc dù một số nhà thực vật học vẫn chia chi này thành 3 hay 4 loài khác nhau.
Nói chung nó hay tạo thành các bãi sậy dày dặc, có thể tới 100 hecta hoặc lớn hơn. Khi các điều kiện sinh trưởng thích hợp, nó có thể tăng chiều cao tới 5 m hoặc hơn trong một năm bằng các thân cây mọc thêm theo chiều đứng, và mọc ra các rễ ở những khoảng đều đặn. Các thân cây mọc đứng cao từ 2–6 m, với các thân cây thường là cao hơn trong các khu vực có mùa hè nóng ẩm và đất màu mỡ. Lá của nó là rộng đối với các loài cỏ, dài từ 20–50 cm và bản rộng 2–3 cm. Hoa có dạng chùy có màu tía sẫm mọc dày dặc, dài 20–50 cm.
Sậy là loài cây quan trọng cho bảo tồn động vật hoang dã, cụ thể là ở châu Âu và châu Á, một số loài chim có sự ràng buộc mạnh với các khu vực có nhiều lau sậy mọc, chẳng hạn sẻ ngô đuôi dài Panurus biarmicus, chim chích Acrocephalus scirpaceus và diệc Botaurus stellaris.
Tại Bắc Mỹ, tình trạng của loài này vẫn chưa được hiểu đúng. Nói chung, nó được coi là loài ngoại lai, được đưa vào từ châu Âu. Tuy nhiên, có các chứng cứ rõ ràng về sự tồn tại của Phragmites có nguồn gốc Bắc Mỹ từ rất lâu trước khi loài người xâm chiếm châu lục này. Hiện nay, người ta đã biết là giống nguồn gốc Bắc Mỹ của Phragmites là cạnh tranh kém hơn một cách đáng kể so với giống đến từ châu Âu, và sự gia tăng đáng chú ý gần đây của sậy tại Bắc Mỹ là do giống cạnh tranh tốt hơn, nhưng gần như không thể phân biệt đến từ châu Âu, chúng chỉ có thể phát hiện được nhờ các phân tích trong di truyền học. Điều này gây ra các vấn đề nghiêm trọng cho nhiều loài thực vật ở các vùng đầm lầy của Bắc Mỹ, bao gồm cả giống bản địa của chính loài này.
Các nghiên cứu gần đây đã chỉ ra các biến thể hình thái đặc trưng giữa các giống bản địa và giống xâm lược của Phragmites tại Bắc Mỹ. Kiểu di truyền của giống Á-Âu có thể phân biệt được với kiểu di truyền của giống Bắc Mỹ nhờ các lưỡi bẹ ngắn hơn của chúng (tới 0,9 mm đối với trên 1,0 mm), các mày cũng ngắn hơn (dưới 3,2 mm đối với trên 3,2 mm, mặc dù ở đây có sự đan xen trong đặc trưng này), và đặc trưng của gióng. Gần đây, một số học giả đã miêu tả giống Bắc Mỹ như là một phân loài khác có danh pháp khoa học Phragmites australis americanus (Saltonstall, Peterson và Soreng); giống Á-Âu được coi là Phragmites australis australis.
Thân rễ của loài này chứa rất nhiều các ankaloit N,N-DMT (Wassel và những người khác 1985).
Câu nói nổi tiếng nhất về cây sậy trong văn chương châu Âu có lẽ là của Blaise Pascal khi ông nói rằng "Người là một 'cây sậy biết suy nghĩ'" (roseau pensant). Trong truyện ngụ ngôn của La Fontaine Le chêne et le roseau, cây sậy nói với cây sồi đầy kiêu hãnh rằng: "Tôi uốn cong, và không gãy" ("Je plie, et ne romps pas"), trước khi cây sồi đổ.
Loài sậy thông thường (danh pháp hai phần: Phragmites australis), là một loài cây lớn thuộc họ Hòa thảo (Poaceae) có nguồn gốc ở những vùng đất lầy ở cả khu vực nhiệt đới và ôn đới của thế giới. Nói chung, nó được coi là loài duy nhất trong chi Phragmites, mặc dù một số nhà thực vật học vẫn chia chi này thành 3 hay 4 loài khác nhau.
Nói chung nó hay tạo thành các bãi sậy dày dặc, có thể tới 100 hecta hoặc lớn hơn. Khi các điều kiện sinh trưởng thích hợp, nó có thể tăng chiều cao tới 5 m hoặc hơn trong một năm bằng các thân cây mọc thêm theo chiều đứng, và mọc ra các rễ ở những khoảng đều đặn. Các thân cây mọc đứng cao từ 2–6 m, với các thân cây thường là cao hơn trong các khu vực có mùa hè nóng ẩm và đất màu mỡ. Lá của nó là rộng đối với các loài cỏ, dài từ 20–50 cm và bản rộng 2–3 cm. Hoa có dạng chùy có màu tía sẫm mọc dày dặc, dài 20–50 cm.
Sậy là loài cây quan trọng cho bảo tồn động vật hoang dã, cụ thể là ở châu Âu và châu Á, một số loài chim có sự ràng buộc mạnh với các khu vực có nhiều lau sậy mọc, chẳng hạn sẻ ngô đuôi dài Panurus biarmicus, chim chích Acrocephalus scirpaceus và diệc Botaurus stellaris.
Tại Bắc Mỹ, tình trạng của loài này vẫn chưa được hiểu đúng. Nói chung, nó được coi là loài ngoại lai, được đưa vào từ châu Âu. Tuy nhiên, có các chứng cứ rõ ràng về sự tồn tại của Phragmites có nguồn gốc Bắc Mỹ từ rất lâu trước khi loài người xâm chiếm châu lục này. Hiện nay, người ta đã biết là giống nguồn gốc Bắc Mỹ của Phragmites là cạnh tranh kém hơn một cách đáng kể so với giống đến từ châu Âu, và sự gia tăng đáng chú ý gần đây của sậy tại Bắc Mỹ là do giống cạnh tranh tốt hơn, nhưng gần như không thể phân biệt đến từ châu Âu, chúng chỉ có thể phát hiện được nhờ các phân tích trong di truyền học. Điều này gây ra các vấn đề nghiêm trọng cho nhiều loài thực vật ở các vùng đầm lầy của Bắc Mỹ, bao gồm cả giống bản địa của chính loài này.
Các nghiên cứu gần đây đã chỉ ra các biến thể hình thái đặc trưng giữa các giống bản địa và giống xâm lược của Phragmites tại Bắc Mỹ. Kiểu di truyền của giống Á-Âu có thể phân biệt được với kiểu di truyền của giống Bắc Mỹ nhờ các lưỡi bẹ ngắn hơn của chúng (tới 0,9 mm đối với trên 1,0 mm), các mày cũng ngắn hơn (dưới 3,2 mm đối với trên 3,2 mm, mặc dù ở đây có sự đan xen trong đặc trưng này), và đặc trưng của gióng. Gần đây, một số học giả đã miêu tả giống Bắc Mỹ như là một phân loài khác có danh pháp khoa học Phragmites australis americanus (Saltonstall, Peterson và Soreng); giống Á-Âu được coi là Phragmites australis australis.
Thân rễ của loài này chứa rất nhiều các ankaloit N,N-DMT (Wassel và những người khác 1985).
В молодом растении (до колошения) содержатся экстрактивные вещества, витамин C, клетчатка, целлюлоза, белок, жир, каротин. Листья содержат витамины, каротин, фитонциды[8].
Молодые, ещё не развернувшиеся побеги тростника содержат много сахаристых и белковых веществ, могут употребляться в пищу в сыром, маринованном и варёном виде, из них готовят супы, винегреты, пюре[8]. Из высушенных и размолотых корневищ можно печь хлеб[3].
В корневищах содержится до 50 % крахмала, 5 % белка, 32 % клетчатки. Иногда их употребляют как заменитель кофе и делают из них муку, однако она вредна из-за большого содержания клетчатки[6].
Побеги используют для выделки бумаги, плетения корзин, щитов, циновок. Из прессованного тростника получают хороший строительный материал — камышит[9].
Из тростника издавна делали музыкальные инструменты — свирели, пищики для флейт и кларнетов[10].
Используется на силос. Урожайность сухой надземной массы очень велика — до 40 т/га[6].
Злостный сегетальный сорняк. Широко распространён на орошаемых землях, где засоряет все сельскохозяйственные культуры, но особенно рис, хлопчатник, люцерну. Небольшие отрезки корневищ легко укореняются, поэтому междурядные обработки способствуют вегетативному размножению тростника южного. Основные меры борьбы: дренаж, иссушение верхних горизонтов почвы при временном прекращении поливов, глубокие и многократные обработки почвы, чередование посева риса с периодически поливаемыми культурами[5].
С лечебной целью в мае — июне заготавливают молодые стебли и листья тростника. Сушат в хорошо проветриваемом помещении, под навесом, на чердаках, раскладывая тонким слоем, периодически переворачивая. Корневища достают со дна водоёма граблями, вилами и т. п., промывают холодной водой, отрезают надземные части и мелкие корешки и провяливают несколько часов на воздухе, затем сушат в сушилках, печах, духовках при температуре 55—60 °С. Хорошо высушенное сырьё разламывается с хрустом, сладковатого вкуса и приятного запаха. Срок хранения корневищ до трёх лет, стеблей и листьев — один год. Препараты тростника обладают жаропонижающим, мочегонным, потогонным, противовоспалительным, витаминным свойствами[8].
По данным The Plant List на 2013 год, в синонимику вида входят[11]:
В молодом растении (до колошения) содержатся экстрактивные вещества, витамин C, клетчатка, целлюлоза, белок, жир, каротин. Листья содержат витамины, каротин, фитонциды.
Молодые, ещё не развернувшиеся побеги тростника содержат много сахаристых и белковых веществ, могут употребляться в пищу в сыром, маринованном и варёном виде, из них готовят супы, винегреты, пюре. Из высушенных и размолотых корневищ можно печь хлеб.
В корневищах содержится до 50 % крахмала, 5 % белка, 32 % клетчатки. Иногда их употребляют как заменитель кофе и делают из них муку, однако она вредна из-за большого содержания клетчатки.
Побеги используют для выделки бумаги, плетения корзин, щитов, циновок. Из прессованного тростника получают хороший строительный материал — камышит.
Из тростника издавна делали музыкальные инструменты — свирели, пищики для флейт и кларнетов.
Используется на силос. Урожайность сухой надземной массы очень велика — до 40 т/га.
Злостный сегетальный сорняк. Широко распространён на орошаемых землях, где засоряет все сельскохозяйственные культуры, но особенно рис, хлопчатник, люцерну. Небольшие отрезки корневищ легко укореняются, поэтому междурядные обработки способствуют вегетативному размножению тростника южного. Основные меры борьбы: дренаж, иссушение верхних горизонтов почвы при временном прекращении поливов, глубокие и многократные обработки почвы, чередование посева риса с периодически поливаемыми культурами.
С лечебной целью в мае — июне заготавливают молодые стебли и листья тростника. Сушат в хорошо проветриваемом помещении, под навесом, на чердаках, раскладывая тонким слоем, периодически переворачивая. Корневища достают со дна водоёма граблями, вилами и т. п., промывают холодной водой, отрезают надземные части и мелкие корешки и провяливают несколько часов на воздухе, затем сушат в сушилках, печах, духовках при температуре 55—60 °С. Хорошо высушенное сырьё разламывается с хрустом, сладковатого вкуса и приятного запаха. Срок хранения корневищ до трёх лет, стеблей и листьев — один год. Препараты тростника обладают жаропонижающим, мочегонным, потогонным, противовоспалительным, витаминным свойствами.
芦苇(学名:Phragmites communis),又稱普通蘆葦(common reed),是生长于沼泽、河沿、海滩等湿地的一种禾本科植物,遍布于全世界温带和热带地区,芦苇属的植物大约有10种,有的分类学家认为芦苇是芦苇属的唯一种类。
多年生草本植物,地下有匍匐的根茎,可以在适合的地区迅速地铺展繁殖,一年可以平铺延伸5米以上,地上茎高达2-6米,丛生,叶长达20-50厘米,排列成两行,圆锥花序,花穗长10-40厘米,每个小穗有4-7朵小花,屬风媒花。美洲亚种植株比较矮小。
蘆葦桿含有纖維素,可以用來造纸和人造纖維。中國從古代就用蘆葦编制“葦席”鋪炕、盖房或搭建臨時建築。古代各國都有用蘆葦的空莖制造的樂器——蘆笛,蘆葦莖内的薄膜做笛子的笛膜使用。蘆葦穗可以作掃帚,花絮可以充填枕頭。蘆葦的根是一種中藥——蘆根,性寒,味甘,功能是清胃火、除肺热,主治熱病烦渴、胃熱嘔吐、肺痛等症。
在臺灣西拉雅族的傳統裡,會把蘆葦葉或檳榔葉放進壺裡祭拜,也就是所謂的祀壺信仰。
中国古代故事《芦花记》讲闵子骞的后母用棉花給自己的孩子做棉襖,虐待子骞,用芦花为他做冬襖,虽厚软但不暖和,闵子骞寒冷無措,父親發現此事,大怒,想要休妻,闵子骞居然還為後母求情。
芦苇(学名:Phragmites communis),又稱普通蘆葦(common reed),是生长于沼泽、河沿、海滩等湿地的一种禾本科植物,遍布于全世界温带和热带地区,芦苇属的植物大约有10种,有的分类学家认为芦苇是芦苇属的唯一种类。
ヨシまたはアシ(葦、芦、蘆、葭、学名: Phragmites australis)は、イネ科ヨシ属の多年草。河川及び湖沼の水際に背の高い群落を形成する。ヨシを3ないし4の種に分ける場合があるが、一般的にはヨシ属に属する唯一の種とみなされている。日本ではセイコノヨシ(P. karka (Retz.) Trin.)およびツルヨシ(P. japonica Steud.)を別種とする扱いが主流である。
英語で一般的に リード(reed) と呼ばれるが、湿地に生える背の高い草の総称もリード (植物)(英語版)(Reed)と呼ばれる。本種のみを示す場合は、common reed と呼ぶ。
もともとの呼び名は「アシ」であり、日本書紀に著れる『豊葦原(とよあしはら)の国』のように、およそ平安時代までは「アシ」と呼ばれていたようである。更級日記においても関東平野の光景を「武蔵野の名花と聞くムラサキも咲いておらず、アシやオギが馬上の人が隠れるほどに生い茂っている」と書かれている。
8世紀、日本で律令制が布かれて全国に及び、人名や土地の名前に縁起のよい漢字2字を用いる好字が一般化した。「アシ」についても「悪し」を想起させ連想させ縁起が悪いとし、「悪し」の反対の意味の「良し」に変え、葦原が吉原になるなどし、「ヨシ」となった。このような経緯のため「アシ」「ヨシ」の呼び方の違いは地域により変わるのではなく、新旧の違いでしか無い。現在も標準和名としては、ヨシが用いられる。これらの名はよく似た姿のイネ科にも流用され、クサヨシ、アイアシなど和名にも使われている。
条件さえよければ、地下茎は一年に約5m伸び、適当な間隔で根を下ろす。
垂直になった茎は2 - 6mの高さになり、暑い夏ほどよく生長する。
葉は茎から直接伸びており、高さ20 - 50cm、幅2 - 3cmで、細長い。
主として河川の下流域から汽水域上部、あるいは干潟の陸側に広大な茂み(ヨシ原)を作り、場合によってはそれは最高100haに及ぶ。根本は水につかるが、水から出ることもあり、特に干潟では干潮時には干上がる。水流の少ないところに育ち、多数の茎が水中に並び立つことから、その根本には泥が溜まりやすい。このように多くの泥が集まり蓄積する区域は、その分解が多く行われる場所でもある。
他方で、その茎は多くの動物の住みかや隠れ場としても利用される。ヨーロッパとアジアでは特に、ヒゲガラ、ヨシキリ、サンカノゴイといった鳥類と関わりが深い。泥の表面には巻き貝やカニなどが多数生息する。アシハラガニはこの環境からその名をもらっている。
このように、多くの分解が行われ、多くの水生動物のよりどころとなる芦原は、自然の浄化作用の上で重要な場所であり、野生動物と環境保護に重要な植物群落であると言える。また、このことから釣りのポイントの一つでもある。
北米では、ヨシはヨーロッパからの帰化種だという俗信が広がっている。しかし、ヨーロッパ人の移民以前に北米大陸にヨシがあったという証拠が存在している。もっとも、遺伝子を見る以外ではほとんど見分けが付かないヨーロッパ型は、北米在来型よりもよく育つため、北米でヨーロッパ型ヨシが増加している[2]。これが固有種を含む他の湿地帯の植物に深刻な問題を引きおこしている。
最近の研究により、移入型と在来型の形態の違いが明らかになった。ユーラシア遺伝子型は北米遺伝子型に較べて短い葉舌(1.0mm未満)、短い穎(約3.2mm以下)を持ち、茎の特徴で区別される。近年、北米型は P. a. subsp. americanus Saltonstall, Peterson, and Soreng という亜種に分類され、ユーラシア型はP. a. subsp. australis と呼ばれている。
学名として Arundo phragmites L.(基礎異名)、Phragmites altissimus、P. berlandieri、P. communis、P. dioicus、P. maximus、P. vulgaris とも呼ばれていた。
まっすぐに伸びる茎は木化し、竹ほどではないにせよ材として活用できる。古くから様々な形で利用され、親しまれた。日本では稲刈りの後に芦刈が行われ、各地の風物詩となっていた。軽くて丈夫な棒としてさまざまに用いられ、特に葦の茎で作ったすだれは葦簀(よしず)と呼ばれる。また、屋根材としても最適で茅葺民家の葺き替えに現在でも使われている。なお、神社の儀式で用いる「たいまつ」は、ヒデ(松の木の芯)とヨシを一緒に束ねたものを使用する場合が一般的である[3]。
日本神話ではヒルコが葦舟で流される。最近では、葦舟の製作も市民活動として行われるようになってきている。ちなみに、南米で葦舟といわれるのは、この葦ではなく、カヤツリグサ科のフトイの仲間で、古代エジプトにおいても同じくカヤツリグサ科のパピルスを使っている。
葦の茎は竹同様に中空なので、笛として加工するにもよく、葦笛というのがある。西洋のパンフルートは、長さの異なる葦笛を並べたものである。ギリシャ神話においては、妖精シュリンクスが牧神パンに追われて葦に身を変えたところ、風を受けて音がなったため牧神パンによって笛に変えられたという逸話から、その名が付けられている。古代中国における楽器、簫(しょう)も同じ系統である。
また、篳篥の「舌」、中東のクラリネットに似たシプシ(英語版)と呼ばれる楽器やズルナ、西洋木管楽器の振動音源部「リード」としても活用される。勘違いされるが、英語で葦を意味するリードには幾つかの種が含まれ、本種も音源のリードに使用されるが、多くの西洋楽器のリードに使われるのはダンチク(ジャイアント リード)という種である。
製紙原料のヨシパルプについては、中国湖南省の洞庭湖周辺や上海市の崇明島などで実用化され、トイレットペーパーや紙コップなどに加工されている他、旧ソ連やルーマニアで製造工場が稼動していたことがあり、日本国内においても、滋賀県の琵琶湖産のものなどが名刺やハガキ用に少量生産されている。
この他にも、肥料、燃料、食料、生薬原料、漁具、葦ペン、ヨシパルプなどの用途があり、現在でも利用されるものや、研究が行われているものもある[4]。
近年ヨシ原は、浅い水辺の埋め立てや河川改修などにより失われることが多くなり、その面積を大きく減らしている。ヨシ原は、自然浄化作用を持ち、多くの生物のよりどころとなっているため、その価値が再評価されてきており、ヨシ原復元の事業が行われている地域もある。
葦に関して最も有名なヨーロッパ文学での言葉はブレーズ・パスカルによる「人間は考える葦(roseau pensant)である」以外にないだろう。ジャン・ド・ラ・フォンテーヌの寓話「オークと葦」(Le chêne et le roseau)では傲慢なオークが倒れてしまったのに対し、倒れないように自ら折れて風雨を凌いだ葦の姿が描かれている。
また、古事記の天地のはじめには最初の二柱の神が生まれる様子を「葦牙のごと萌えあがる物に因りて」と書き表した。葦牙とは、葦の芽のことをいう。その二柱の神がつくった島々は「豊葦原の千秋の長五百秋の水穂の国」といわれた。これにより、日本の古名は豊葦原瑞穂の国という。更級日記では関東平野の光景を「武蔵野の名花と聞くムラサキも咲いておらず、アシやオギが馬上の人が隠れるほどに生い茂っている」と書き残し、江戸幕府の命で遊郭が一か所に集められた場所もアシの茂る湿地だったため葭原(よしはら)と名づけられ、後に縁起を担いで吉原と改められた。
古代エジプトの死者の書に書かれる人が死後に行くことができる楽園アアルは葦が繁る原野である。
万葉集では、蘆、葦、安之、阿之という書き方で50首におよび詠まれている。和歌において様々な異名が用いられるのも特徴で、ハマオギ、ヒムログサ、タマエグサ、ナニワグサといった別名が使われるほか、方言ではスゴロ(青森)、アセ(和歌山)、コキ(鳴海)、トボシ(垂水)、ヒーヒーダケ(串木野)という言葉が一部に未だ残っている。
「難波の葦(アシ)は伊勢の浜荻(ハマオギ)」は、物の名前が地方によって様々に異なることをいう。平安末期の住吉杜歌合において、藤原俊成の言で「難波の方ではあしとだけいい、東(あづま)の方では、よしともいう」とあり、また「伊勢志摩では、はまをぎ(ハマオギ)と名づけられている」と書き残されている。
「葦の髄から天井をのぞく」とは、せまい了見では物事を捕らえることはできないという意味。中国の荘子にある「管を以て天を窺う」という言葉と同じ意味を持つ。
「すべての風になびく葦」とはフランスのことわざで、都合によって節操をかえることを指す。
「折れた葦」「葦によりかかる」の両方ともイギリスのことわざで、「あてにならない」という意である。旧約聖書列王記においてもエジプトを折れかけのアシに例えて、頼ってはならないという同様の意味で使われている。ヨーロッパにおいてアシはその弱さを人間性の一面と見る向きがあるが、一方では「葦が矢となる」ということわざがあり、実際にその茎の特性から矢として使用されたこともある。前述の寓話を元にした「嵐がくればオークは倒れるが、葦は立っている」ということわざもあり、ヨーロッパにおいてアシは弱さと同時に強かな存在とされていた[5]。
葦の花(フランス)
ヨシ属(ヨシぞく、学名: Phragmites)は、イネ科の属の一つ。
ヨシまたはアシ(葦、芦、蘆、葭、学名: Phragmites australis)は、イネ科ヨシ属の多年草。河川及び湖沼の水際に背の高い群落を形成する。ヨシを3ないし4の種に分ける場合があるが、一般的にはヨシ属に属する唯一の種とみなされている。日本ではセイコノヨシ(P. karka (Retz.) Trin.)およびツルヨシ(P. japonica Steud.)を別種とする扱いが主流である。
英語で一般的に リード(reed) と呼ばれるが、湿地に生える背の高い草の総称もリード (植物)(英語版)(Reed)と呼ばれる。本種のみを示す場合は、common reed と呼ぶ。
갈대(reed)는 벼과 갈대속의 다년초로 하천 및 호수, 습지나 갯가의 모래땅에 키가 큰 군락을 형성한다. 세계의 온대와 한대에 걸쳐 널리 분포하는 여러해살이풀이다. 뿌리줄기의 마디에서 많은 황색의 수염뿌리가 난다. 줄기는 마디가 있고 속이 비었으며, 높이는 3m 정도이다. 잎은 긴 피치형이며 끝이 뾰족하다. 잎집은 줄기를 둘러싸고 털이 있다. 꽃은 8-9월에 피고, 수많은 작은꽃이삭이 줄기 끝에 원추꽃차례로 달리며, 처음에는 자주색이다가 담백색으로 변한다. 포영은 호영보다 짧고 3맥이 있으며, 첫째작은꽃은 수꽃이다. 양성소화의 호영은 안쪽으로 말려서 끝이 까락처럼 되고, 수술은 3개이며 꽃밥은 2mm 정도이다. 열매는 영과이고 종자에 관모가 있어 바람에 쉽게 날려 멀리 퍼진다. 번식은 종자와 땅속줄기로 잘 된다.
어린순은 식용하며 이삭은 빗자루를 만들고 이삭의 털은 솜대용으로 사용하였다. 성숙한 줄기는 갈대발·삿자리 등을 엮는데 쓰이고, 또 펄프원료로 이용한다. 한방에서는 봄에서 가을 사이에 채취하여 수염뿌리를 제거하고 햇볕에 말린 것을 약재로 사용하며, 부위에 따라 뿌리줄기를 노근(蘆根), 줄기를 노경(蘆莖), 잎을 노엽, 꽃을 노화라 하여 진토·소염·이뇨·해열·해독에 사용한다.
한국의 고전문학에서는 갈꽃을 한가롭고 평화스런 정경을 읊는 시재(詩材)로 다루었다. 또 《삼국사기》에 봉상왕을 폐위하는 데 뜻을 같이 하는 사람들이 그 표지로 갈대잎을 모자에 꽂았다고 하는 기록이 있다. 일본의 신화에 국토를 풍위원(豊葦原)이라 한 것은 전국에 갈대가 무성하였던 데 연유하였다.
두산백과에 갈대잎의 일화가 보장왕이라고 나오는 경우가 있는데, 이것은 명백한 오류이다. 봉상왕이 맞다.
是時 國相倉助利將廢王 先遣北部祖弗東部蕭友等 物色訪乙弗於山野 至沸流河邊 見一丈夫在舡上 雖形貌憔悴 而動止非常 蕭友等疑是乙弗 就而拜之曰 今國王無道 國相與群臣陰謀 廢之 以王孫操行儉約 仁慈愛人 可以嗣祖業 故遣臣等奉迎 乙弗疑曰 予野人 非王孫也 請更審之 蕭友等曰 今上 失人心久矣 固不足爲國主 故群臣望王孫甚勤 請無疑 遂奉引以歸 助利喜 致於烏陌南家 不令人知 秋九月 王獵於侯山之陰 國相助利從之 謂衆人曰 與我同心者 効我 乃以蘆葉揷冠 衆人皆揷之 助利知衆心皆同 遂共廢王 幽之別室 以兵周衛 遂迎王孫 上璽綬 卽王位
— 삼국사기 제17권 고구려본기 제5 - 미천왕
이 내용은 국상 창조리가 봉상왕을 폐하고 미천왕을 옹립할 때의 이야기이다. 위의 원문 마지막줄에 乃以蘆葉揷冠라는 내용이 바로 모자에 갈대잎을 꽂았다는 내용이다.
거인인 포리페모스는 바다의 신인 갈라티아를 사랑했는데, 어느날 포리페모스는 목동 아키스의 품에 갈라티아가 안겨있는 꿈을 꾸자 질투에 불타 그 날 살해했다. 갈라티아는 아키스의 피를 강물로 바꾸었는데 이때 아키스의 모습이 강물에 비추자, 갈라티아는 만져보려고 손을 뻗는 순간 어깨에서 갈대가 돋았다고 한다.
다른 이야기로는 판이라는 신이 어느 요정을 사랑해서 그 요정을 사랑하려고 쫓아다니자 요정이 물의 신에게 부탁하여 갈대로 모습을 바꾸었고, 판이 그 갈대로 악기를 만들어서 그녀를 그리워했다는 이야기가 있다.
갈대의 꽃말인 '깊은 애정'은 이 설화에서 나왔다고 한다.
2004년 6월 16일에 제주도 남제주군 대정지역에서 신제 3기인 4~10만년 추측되는 갈대화석이 발굴되어 오래된 국내 갈대화석으로 본다.