Male advertisement calls are a train of pulses. Geographic variation in the advertisement calls of males in Korea reflects geographic barriers and population genetic structure but does not appear to be related to habitat differences or sympatry with a related species (though larger samples are needed). Males from higher altitudes on the southern island of Jejuare larger than those on the mainland and their calls have a lower dominant frequency. (Jang et al. 2011)
Hyla heinzsteinitzi, auch Jerusalem-Laubfrosch genannt, wird nicht als eigene Laubfrosch-Art anerkannt, sondern gehört zur Art Dryophytes japonicus (Japanischer Laubfrosch). Im Jahre 2007 wurde ein Vorkommen aus Israel beschrieben, deren Holotypus-Lokalität eine Zisterne im Gebiet von Jerusalem ist.[1] Die augenscheinlich neue Art wurde nach dem israelischen Zoologen Heinz Steinitz (1909–1971) benannt, der unter anderem die meeresbiologische Station bei Eilat gegründet hat. Später wurde nachgewiesen, dass die Art in Israel eingeführt und freigelassen worden war.
Der "Jerusalem-Laubfrosch" erreicht eine Kopf-Rumpf-Länge von 44 Millimetern und weist einen abgeflachten Kopf auf, der breiter als lang ist. Die Schnauze ist im Seitenprofil mäßig stumpf geformt. Die Nasenlöcher sind vertikal elliptisch ausgerichtet. Die hervorstehenden Augen haben waagerechte Pupillen und sind im Durchmesser größer als das dahinter liegende Trommelfell. Über dem Trommelfell befindet sich eine deutliche Hautfalte, die hinter dem Auge beginnt und bis in die Achselregion reicht. Die Haut ist oberseits glatt, gekörnelt (granuliert) am Bauch und mäßig glatt bis gekörnelt an der Kehle. Schwimmhäute befinden sich nur zwischen dem zweiten und vierten Zeh der Hinterfüße, während alle Finger und Zehen mit laubfroschtypischen Haftscheiben ausgestattet sind.
Die oberseitige Färbung kann im Tagesverlauf zwischen verschiedenen Grün-, Braun- und Grautönen changieren; gelegentlich können dabei auch Flecken erscheinen. Untersuchte Exemplare aus der Mamilla-Zisterne waren türkis gefärbt, wobei das aber auch eine lokale Mutation gewesen sein könnte, da andere Proben nicht diese Tendenz zu Blaufärbungen zeigten. Tagsüber ist ein dunkler Flankenstreifen erkennbar, der sich typischerweise in unregelmäßige Punkte auflöst und dem die für Hyla arborea charakteristische Hüftschlinge fehlt. Das gelegentliche Auftreten von grünen Flecken auf rost- oder goldbraunem Untergrund ist ausschließlich bei Hyla heinzsteinitzi festzustellen. Am seitlichen oberen Rand des Maules ("Oberlippe") ist ein manchmal undeutlicher und unterbrochener weißer Streifen zu finden. Die Innenseiten der Oberschenkel sind orange gefärbt.
In der Nacht besteht je nach Umgebungstemperaturen eine Tendenz zu grünen (kühler) oder braunen (wärmer) Farbtönen. Der dunkle Seitenstreifen verblasst in dieser Phase und verschwimmt manchmal sogar völlig.
Gegenüber dem ähnlichen und lange Zeit nicht unterschiedenen Kleinasiatischen Laubfrosch (Hyla savignyi) werden folgende Abweichungsmerkmale hervorgehoben: Hyla heinzsteinitzi (H.h.) hat eine stumpflich abgeschrägte Schnauze, Hyla savignyi (H.s.) ein gerundetes Schnauzenprofil. Bei H.h. sind eine unterbrochene Flankenlinie (H.s.: durchgängig), eine nur undeutliche weiße Oberlippenlinie (H.s.: deutlicher) und orange Oberschenkelinnenseiten (H.s.: braun) typisch. In der Tagesphase mit fleckiger Rückenfärbung sind nur bei H.h. diese Flecken grün auf einem braunen Untergrund. Auch die zumindest lokal beobachtete Türkisfärbung kommt bei Hyla savignyi nicht vor. Schließlich unterscheiden sich die Paarungsrufe signifikant. Die Männchen des "Jerusalem-Laubfrosches" erzeugen mit ihrer Kehl-Schallblase einen Ruf, dessen Lautfolge von einem kurzen Anstieg und einem folgenden langen Absinken des Tons bestimmt ist, während die Rufe des Kleinasiatischen Laubfrosches aus gleichmäßig an- und absteigenden Tonkurven bestehen.[2]
Die Entdeckungsgeschichte der Art ist ungewöhnlich. 1996 erfuhr Constantin Grach, dass an einer großen, offenen, durch Winterregen gefüllten und im Sommer trockenen Zisterne unweit der Altstadt (Mamilla reservoir o. pool 31° 46′ 40,7″ N, 35° 13′ 14,3″ O31.7779735.220644Koordinaten: 31° 46′ 40,7″ N, 35° 13′ 14,3″ O, Existenz ab 614 n. Chr. belegt) ein bläulicher Laubfrosch beobachtet worden war. Er sammelte Kaulquappen und zog sie auf. Die adulten Tiere zeigten tagsüber eine türkise Körperfärbung. Auch die Kopfform war abweichend und das dunkle Lateralband im Unterschied zu H. savignyi unterbrochen.[1][3]
Recherchen ergaben, dass E. Shy bereits in den Jahren 1976 und 1977 an zwei anderen Orten die Balzrufe von Laubfröschen aufgenommen hatte, die er für ungewöhnliche Kleinasiatische Laubfrösche hielt. Außerdem hatte er Belegexemplare gesammelt. Beim Vergleich mit dem neuen Fund und mit neuen Tonbandaufnahmen sowie mit Material von Kleinasiatischem und Europäischem Laubfrosch (H. arborea) ergab sich, dass Shys Funde mit der neuen Form identisch sind, und diese eine bisher unbekannte Art darstellt.[1]
Bis heute ist Hyla heinzsteinitzi lediglich von diesen drei Lokalitäten im Judäischen Bergland bekannt, die in Ost-West-Richtung nur 13 Kilometer voneinander entfernt sind und sich in Höhen zwischen 730 und 895 Metern befinden.[2] Die beiden westlichen Fundorte liegen in der Stadt bzw. an ihrem Nordwestrand und damit in der mediterranen Region (Jahresdurchschnittstemperatur 17–19 °C, mittlerer Jahresniederschlag 500–700 mm). Das nordöstlichste Vorkommen befindet sich bereits in einem wärmeren und niederschlagsärmeren Gebiet am Rande der Judäischen Wüste (Jahresdurchschnittstemperatur 19–21 °C, mittlerer Jahresniederschlag etwa 300 mm).[1]
Die Art lebt nicht nur im Verbreitungsgebiet von Hyla savignyi, sondern die beiden Arten können offenbar auch syntop im selben Habitat vorkommen.[1]
Die im Labor nachgezüchtete Population von H. heinzsteinitzi ist anscheinend von der israelischen Naturschutzbehörde vernichtet worden,[4] und über die aktuelle Bestandssituation in der Natur ist nichts bekannt.[5] Es darf jedoch angenommen werden, dass die Art aufgrund ihres – soweit bisher bekannt – extrem kleinen Verbreitungsgebietes inmitten einer Großstadt (bzw. in deren unmittelbarer Umgebung) und aufgrund ihrer vermutlich winzigen Population hochgradig gefährdet oder bereits ausgestorben ist, zumal Schädlingsbekämpfungsmaßnahmen und Vegetationsveränderungen die Zisterne und ihre Umgebung beeinträchtigt haben.[4] Seitens der IUCN liegt nun seit 2008 eine Gefährdungsbewertung vor; danach wird die Art als "critically endangered" (vom Aussterben bedroht) eingestuft.[6]
Hyla heinzsteinitzi, auch Jerusalem-Laubfrosch genannt, wird nicht als eigene Laubfrosch-Art anerkannt, sondern gehört zur Art Dryophytes japonicus (Japanischer Laubfrosch). Im Jahre 2007 wurde ein Vorkommen aus Israel beschrieben, deren Holotypus-Lokalität eine Zisterne im Gebiet von Jerusalem ist. Die augenscheinlich neue Art wurde nach dem israelischen Zoologen Heinz Steinitz (1909–1971) benannt, der unter anderem die meeresbiologische Station bei Eilat gegründet hat. Später wurde nachgewiesen, dass die Art in Israel eingeführt und freigelassen worden war.
Hyla japonica, commonly known as the Japanese tree frog, is a species of anuran native to Japan, China, and Korea. H. japonica is unique in its ability to withstand extreme cold, with some individuals showing cold resistance at temperatures as low as -30 °C for up to 120 days.[2] H. japonica are not currently facing any notable risk of extinction and are classified by the IUCN as a species of "least concern".[3] Notably, H. japonica have been sent to space in a study that explored the effect of microgravity on H. japonica.[4] Hyla japonica is synonymous with Dryophytes japonicus.[5]
The Japanese tree frog lives in a variety of habitats such as wetlands, forests, rivers, and mountains. They are generally located near vegetation near water sources and forests. They are carnivores that prey on insects and spiders.Their average litter size is around 340-1500 eggs, and their lifespan is usually around six years. There is an estimated 100 million of these frogs in Japan, but the accuracy is limited due to difficulty in counting.
Some authorities use the scientific name, Hyla japonica, in reference to the Japanese tree frog.[6] The binomial name, Dryophytes japonicus, is also sometimes used.[6] Studies have characterized the relationship between H. suweonensis and H. japonica.[7] H. suweonensis is a closely related species to H. japonica.[7] In general, H. suweonensis is smaller and more slender than H. japonica.[7] The distance between nostril and upper lip (NL), distance between posterior corners of eyes (EPD), distance between semi-minor axis of the upper eye (LILe), angle between the two lines that connect the posterior corner of the eyes and ipsilateral nostrils (αEPD-N), and the angle between the two lines that connect the anterior corner of the eyes and the ipsilateral nostrils (αEAD-N) can all be used to differentiate between H. suweonensis and H. japonica.[7]
H. japonica are on average 32.81±0.96 mm in length.[8] They have an average skull width of 12.02±0.36 mm and an average skull length of 9.38±0.14 mm.[8] The dorsal body of H. japonica is green/brown and the ventral body is white.[5] H. japonica is also characterized by a dark spot on the upper lip below the eye.[5] Female H. japonica, on average, are larger in size compared to male H. japonica.[9] H. japonica has a dark vocal sac.[10]
Some H. japonica are abnormally colored.[11] Frogs observed in South Korea were found to be entirely blue, while others yellow, with green dorsal patterns.[11] Another frog found in Russia was observed to be fully blue, and was captured for observation, where it ultimately returned to a green/brown color.[11] Specific reasons behind such observations in color are currently unexplained, but mutations and maladaptations have been put forth by scientists as possible explanations.[11] Further work must be conducted in order to elucidate the mechanisms behind these color changes.[11]
H. japonica are found in many parts of Asia, specifically in Japan, China, Korea, Mongolia, and Russia.[5] H. japonica inhabits forest-like environments, bushlands, meadows, swamps, and river valleys.[5] H. japonica, like most frog species, inhabit locations with both aquatic and terrestrial features.[5] This is due to the necessity of the frog life cycle for both water and land.[5]
Changes in availability of native H. japonica habitats have resulted in rice paddies serving as lodging for H. japonica.[12]H. japonica seems to be able to inhabit these rice paddies successfully and have a demonstrated preference for sites high in vegetation.[12]
The behavior of H. japonica when exposed to microgravity has been experimentally investigated.[13] These frogs, under such microgravity conditions, would bend their neck backwards. These frogs would also walk backwards, an observation consistent with the behavior of sick frogs.[13] The combination of neck backwards movement and backward walking could be indicators of motion sickness in the frogs.[13] H. japonica were shown to adapt to the microgravity and were able to improve their jumping and perching activity over time.[13] H. japonica, under micro-gravitational conditions, were also observed to attempt to eat but were unable to ingest the food.[13] All the frogs that were sent to space were safely recovered and were observed to resume normal function after 2.5 hours back under normal gravity.[13]
Hyla japonica forages in both breeding and non-breeding seasons. H. japonica are known to be opportunistic predators.[9] This feature of H. japonica was discovered through analysis that showed a strong correlation between the relative abundance of organisms in a given environment and the prey composition H. japonica for that environment.[9] A highest percentage of H. japonica’s diet is ants, followed by beetles and caterpillars.[9] There does not appear to be a significant difference in the diet composition between the two sexes of H. japonica.[9] However, during the breeding season, males have a higher chance of having an empty stomach due to the heightened energetic cost imposed by breeding.[9]
Male H. japonica are observed to congregate in leks in an attempt to mate with female H. japonica.[14] A lek is an area where males will congregate in order to perform courtship displays in order to mate with females. Male leks seem to form preferentially at spots with significant water resources.[14] Female distribution appears to be skewed towards male lekking sites.[14] These lekking sites were identified by their extremely high male density.[14] Female distribution does not seem to be explained by other factors like water availability, vegetation, or herbicide levels.[14] The lek model that seems to fit the lekking exhibited by H. japonica is the environmental hotspot model.[14] This is because the sites that had the highest male density were those that had significantly high female encounter rates.[14] Thus, there seems to be some bias of lek location towards areas with high female densities.[14] Females need water for oviposition and the preference of male leks to form near water could be a mediating factor in choosing spots close to females.[14]
Male H. japonica will call to signal their presence to females and to compete with other males.[10] Notes of H. japonica calls are made up of fine pulses, and exist mainly at the frequency of 1.7 kHz.[10] H. japonica was observed to make the majority, if not all, of their calls at night.[10] H. japonica also seemed to call when they were located on the banks of rice paddies.[10] Note length and note interval were observed to decrease in H. japonica males when temperature increased.[10]
H. japonica are observed to prefer more shallow and smaller bodies of water for breeding.[15] H. japonica prefer bodies of water termed oxbow lakes, likely due to their freestanding nature and higher chance of being refilled.[15] Oxbow lakes are likely preferred due to the inability of tadpoles to swim along or against strong currents.[15]
H. japonica is susceptible to infection by Batrachochytrium dendrobatidis.[16] Batrachochytrium dendrobatidis infection causes a disease termed Chytridiomycosis. Chytridiomycosis is an amphibian disease that has devastated many amphibian populations across the world. H. japonica seems to be susceptible to Chytridiomycosis, however the disease does not appear to pose a high burden to this species.[16] In fact, H. japonica has not been observed to suffer from increased morbidity or mortality from Chytridiomycosis[16] H. japonica in Korea seem to have Batrachochytrium dendrobatidis infection rates ranging from 10.6 to16.2%.[17]
Chytridiomycosis has been observed to affect the calling of H. japonica in a multitude of different ways. Number of pulses per note and note duration were both observed to be significantly higher in infected H. japonica compared to uninfected H. japonica.[16]
The increased effort devoted to reproductive efforts by infected H. japonica is an interesting result that warrants further research. Two hypotheses have been proposed to explain the observed behavior. First, this increased investment towards reproduction might be a result of Batrachochytrium dendrobatidis driving increased reproduction in order to increase spread of infection.[16] Another hypothesis is that H. japonica increases its reproductive effort in the event that they die earlier due to Chytridiomycosis.[16] This behavior would increase the chance of reproductive success by propagating their genes before they die.[16]
H. japonica have been observed with Pelophylax chosenicus in amplexus.[18] Both species inhabit rice paddies and this shared habitat is a possible explanation for the observed interspecies copulation.[18] Mating between different, but closely related species can sometimes result in hybridization.[18] Further work is required to uncover the extent of heterospecific amplexus between H. japonica and Pelophylax chosenicus.[18]
Lithobates catesbeianus, colloquially known as the American bullfrog, is an exotic predator of H. japonica.[19] Predation by L. catesbeianus has been shown to significantly decrease the bone mineral density of H. japonica.[19] Because bone mineral density can be used as a proxy for food intake, the conclusion that L. catesbeianus predation of H. japonica exerted a predation pressure that reduced food intake of H. japonica can be drawn.[19] Predation by L. catesbeianus was not observed to induce any morphological changes in H. japonica.[19]
H. japonica have evolved against predation in arboreal environments by producing special Anntoxin-like neurotoxins from their skin.[20] Anntoxin is a 60-residue toxic peptide that inhibits ion channels such as tetrodotoxin-sensitive voltage-gated sodium channels.[21] While these peptides display analgesic properties after binding onto ion channels, they can harm and kill predators after frog skin consumption. Such a mechanism deters predators from further frog hunting.[20]
H. japonica demonstrates the remarkable ability to withstand extremely cold temperatures.[2] H. japonica is able to survive temperatures as low as -35 °C.[2] The majority of H. japonica individuals in a population from the Amur River were shown to withstand multiple rounds of exposure to -30 °C.[2] These H. japonica were shown to survive at -30 °C for up to 120 days.[2] Other frog species, at such temperatures, will accumulate ice, a phenomenon that proves lethal.[2] This accumulation of ice was not observed in H. japonica.[2]
During the exposure to cold, H. japonica seems to produce glycerol.[2] This production of glycerol increases as temperature decreases.[2] It is thought that this glycerol production plays a role in the cold-resistance of H. japonica.[2] However, other frog species have similar glycerol production, but do not have cold resistance to the extent of H. japonica.[2] Thus, the biochemical mechanism for the cold resistance of H. japonica is yet to be fully determined.[2]
H. japonica have also been studied in order to determine the predictive ability of bone mineral density on the physiological well-being of frogs. Frogs with observed bone fractures on CT scan did not have significantly different bone mineral densities in comparison to healthy frogs.[19] Thus, these frogs were unlikely to suffer from bone mineral diseases, and their fractures are more likely attributed to trauma-related injury.[19]
Bone mineral density was strongly correlated to snout-vent length in H. japonica.[19] Bone mineral density was not observed to be significantly different between males and females.[19] This lack of difference can be attributed to the similar eating habits of both male and female H. japonica.[19] H. japonica were observed to have fractures distributed similarly in both their forelimbs and hindlimbs.[19]
Bone mineral density was able to effectively evaluate food status and physiological condition in H. japonica.[19] This finding offers a mechanism for determination of food status for anuran populations.[19]
H. japonica has been used to determine the effects of anuran vasotocin (VT) and mesotocin (MT) receptors.[22] VT, coupled to cyclic AMP, has antidiuretic effects in most amphibians. MT, which acts through the inositol/calcium signaling pathway induces diuretic effects in most amphibians.[22] It was discovered that H. japonica contains both VT and MT receptors and that these receptors are differentially expressed in the body of the frog.[22] VT receptors are localized to the pelvic patch of skin, whereas MT receptors are found in the fat body of the frog.[22] Both MT and CT receptors are found in the brain, heart, kidney, and urinary bladder.[22] This differential distribution of MT and VT receptors affects the cutaneous water absorption of H. japonica.[22]
The IUCN determined that the endangerment level of H. japonica is of "Least Concern".[23] The population is listed as stable and non-fragmented.[23] The IUCN lists some potential threats to H. japonica, which are primarily pollution and related to other environmental factors.[23] Specifically, droughts that will occur at a higher frequency due to climate change will negatively affect the habitats of H. japonica as they rely on inland water to survive.[23] In addition, increased agriculture and land for livestock may displace some H. japonica.[23] H. japonica are reported to be able to survive in other habitats, such as rice paddies.[12] Thus, the effects of this shift in potential habitat are unlikely to affect H. japonica due to the ability of H. japonica to survive in habitats ranging from urban to mountainous regions.[9]
Additionally, H. Japonica tadpoles are susceptible to the ranavirus.[24] Ranavirus transmits through animal-animal contact and has symptoms including abdominal edema, skin hemorrhaging, as well as damage to the liver, kidney, and spleen.[24] Climate and habitat change have both contributed to increased virus transmission.[24] Aside from tadpoles, ranavirus infects many amphibians, fish, and other cold-blood species.[25]
H. japonica males will space their calls out such that males will avoid calling at the same time.[26] This spacing out occurs in order to allow females to listen to each of the males’ calls. In situations where multiple H. japonica males call at the same time, the female is unable to determine the location of each male calling. This makes mating difficult because the female has to be able to locate the male in order to mate. H. japonica males are able to desynchronize their calls with relatively little central organization or communication.[26]
Humans have studied this ability of H. japonica males to behave in a coordinated manner despite no central organization or communication. Humans have used H. japonica observations in order to design wireless communication networks in order to improve efficiency in situations where no central communication hub is present.[26] This area of science and development is termed “swarm intelligence” and further research is currently being conducted.[26]
{{cite journal}}
: Cite journal requires |journal=
(help) {{cite journal}}
: Cite journal requires |journal=
(help) Hyla japonica, commonly known as the Japanese tree frog, is a species of anuran native to Japan, China, and Korea. H. japonica is unique in its ability to withstand extreme cold, with some individuals showing cold resistance at temperatures as low as -30 °C for up to 120 days. H. japonica are not currently facing any notable risk of extinction and are classified by the IUCN as a species of "least concern". Notably, H. japonica have been sent to space in a study that explored the effect of microgravity on H. japonica. Hyla japonica is synonymous with Dryophytes japonicus.
The Japanese tree frog lives in a variety of habitats such as wetlands, forests, rivers, and mountains. They are generally located near vegetation near water sources and forests. They are carnivores that prey on insects and spiders.Their average litter size is around 340-1500 eggs, and their lifespan is usually around six years. There is an estimated 100 million of these frogs in Japan, but the accuracy is limited due to difficulty in counting.
Hyla heinzsteinitzi[2][3][4] es una especie de anfibio anuro de la familia Hylidae.
Esta especie se encuentra en Israel y Cisjordania: cerca de Jerusalén en solo tres lugares en las colinas de Judea entre los 730 y 895 m sobre el nivel del mar: el embalse de Mamilla, Wadi cerca de Moẕa y Ein Fara (un área de 13 km por 6 km). Sin embargo, los especímenes de Wadi y Ein Fara también podrían provenir del embalse de Mamilla, la especie solo se conocería desde un solo sitio.[5]
Esta especie lleva el nombre en honor a Heinz Steinitz.
Hyla heinzsteinitzi Hyla generoko animalia da. Anfibioen barruko Hylidae familian sailkatuta dago, Anura ordenan.
Hyla japonica Hyla generoko animalia da. Anfibioen barruko Hylidae familian sailkatuta dago, Anura ordenan.
Hyla heinzsteinitzi est une espèce d'amphibiens de la famille des Hylidae[1].
Cette espèce est présente en Israël et en Cisjordanie : près de Jérusalem dans seulement trois localités des Monts de Judée entre 730 et 895 m d'altitude : le réservoir de Mamilla, Wadi près de Moẕa et à Ein Fara (soit une surface de 13 km sur 6 km). Toutefois, les spécimens de Wadi et d'Ein Fara pourraient eux aussi provenir du réservoir de Mamilla, l'espèce ne serait alors connue que d'un site unique[1],[2].
Cette espèce est nommée en l'honneur d'Heinz Steinitz[3].
Hyla heinzsteinitzi est une espèce d'amphibiens de la famille des Hylidae.
Hyla heinzsteinitzi é uma espécie de anfíbio anuros da família Hylidae.[3][4] Está presente em Israel.[4] A UICN classificou-a como em perigo crítico.[1]
Hyla heinzsteinitzi é uma espécie de anfíbio anuros da família Hylidae. Está presente em Israel. A UICN classificou-a como em perigo crítico.
청개구리(Japanese tree frog)는 청개구리과의 개구리이다.
몸길이는 25-40mm 정도이다. 등면은 녹색이나 황록색 바탕에 진한 녹색 또는 흑갈색의 불규칙한 무늬가 있으며, 몸의 빛깔을 쉽게 변화시킬 수 있다. 수컷은 인두 부근에 커다란 울음주머니가 있고 암컷은 없다. 앞다리의 발가락 기부에 흔적적인 물갈퀴가 있고 뒷다리는 길고 물갈퀴가 잘 발달되어 있다. 주로 평지와 저지대에 서식하며, 번식기 이외에는 관목이나 풀잎 위에서 생활한다. 다른 양서류와 달리 앞뒤 발가락에 빨판이 있어 나뭇잎과 미끄러운 표면에 잘 달라붙을 수 있다.
죽은 나무 밑에서 겨울잠을 자고 번식기는 5-6월경인데, 한국에서는 논에 모를 심기 직전에 물 밖으로 나와 있는 흙이나 풀에서 수컷이 울며 암컷을 유인한다. 알은 논이나 못 등 고인 물의 물풀 같은 곳에 붙어 있으며, 알덩어리는 진한 황갈색으로 불규칙한 모양을 하고 1-10개의 알이 한 덩어리를 이룬다. 낮에는 숲 속에서 조용히 있으나, 밤이 되면 논가로 몰려나와 울기 시작하는데, 구애 장소에서 수컷의 경쟁은 다른 개구리와 마찬가지로 치열하다. 먹이는 주로 애벌레, 거미 등 절지동물을 잡아먹는다.
대한민국에 서식하는 청개구리는 청개구리 및 수원청개구리가 있다.
청개구리는 등쪽이 초록색을 띄고 있지만 항상 그런 것은 아니다.환경에 따라 현저하게 색이 변하기도 한다.나무나 풀, 숲에 있을 때는 녹색을 띄지만, 땅에 있을 때면 회갈색으로 변하거나 흑색의 무늬가 나타나기도 하기 때문에 다른 개구리로 잘못 알아보기 쉽다.
청개구리가 큰소리로 짝 찾으면서 천적을 피할 수 있는 비결은 다른 수컷이 울기를 기다리다 울음소리가 들린 직후, 거의 동시에 울어, 먼저 우는 소리에 자기 소리를 숨기는 것이다. 비슷한 소리가 연달아 들리면 뒷소리를 무시하고 앞소리만 듣는 일종의 착각인 ‘선행음 효과’를 이용하는 것이다.[2]