The roots and leaves are used for medicinal purposes and a source of dye, and the seed oil is used in industry.
A very polymorphic species and highly variable. Several subspecies and varieties have been recognized under it. Davis (l.c.) recognized 3 subspecies under it for Turkey. Hedge (in Rech. f.,l.c. 84) considered Isatis koelzii Rech.f. as a separate species from Isatis tinctoria, on the basis of short oblong fruits (c. 15 mm long), rounded at both ends. Fruit size is not exclusive for it and the apex is often slightly rounded in Isatis tinctoria; fruit base is always cuneate and tapering, and it is not clear as to what Hedge actually meant by rounded basal end. However, Isatis koelzii with small looking fruits and small size of plants in our area, does not justify more than a subspecific rank under Isatis tinctoria. The type race, i.e. subsp. tinctoria, is primarily an European, N. and N. E. Asian taxon, while our plants and that of Afghanistan fall under subsp. koelzii.
Botanical description: Dyer's woad is typically a biennial [21,27,28,31,32,33,36,40] or a short-lived, usually monocarpic, perennial [21,28,31,32,33,36,40]. A review by Callihan and others [12] and a laboratory study by Asghari [4] suggest that buds on Dyer's woad root crowns sometimes survive after the plant has flowered, allowing the plants to persist and possibly produce additional flower and seed crops (see Vegetative regeneration). Dyer's woad is sometimes described as a winter annual [36,54,69]. A field study on northern Utah rangeland found that most Dyer's woad individuals were biennial or monocarpic perennials, but none displayed winter annual life histories. All Dyer's woad plants that set seed died [20,21]. A second study in the same area found that 1% of Dyer's woad individuals studied flowered during the first growing season [21].
Aboveground description: Dyer's woad begins as a rosette with several long-petioled basal leaves [23,27,31,32,33,40] about 1.6 to 4 inches (4-10 cm) long on average [23,40] but reaching up to 7 inches (18 cm) long [31,32,33,82] and 0.3 to 1.6 inches (0.8-4 cm) wide [82]. Basal leaves are usually covered with simple hairs [31,82]. According to Varga and Evans [80], approximately 20 stalks begin to develop from each rosette, but usually 7 or fewer mature. Other sources indicate that Dyer's woad usually has 1 main stem [27,31,32,33] that is simple below and branched above [31,32,33]. Stems are erect and may range from about 14 inches (35 cm) [82] to 47 inches (120 cm) tall [27,31,32,33], with several authors describing a typical range of 20 to 35 inches (50-90 cm) tall [23,40,74]. Plants are typically glabrous throughout [23,27,33,40,82] or hirsute with long, simple hairs at the base [82]. Stem leaves are narrower than basal leaves, mostly about 1 to 4 inches (2-10 cm) long [27], and are gradually reduced upwards [82].
Dyer's woad flowers are about 6 mm wide [27] with petals about 3.5 mm long [31,32,33]. Flowers are borne in numerous, compound racemes forming a large, terminal panicle [27,31,32,33,36]. Dyer's woad fruits are samaroid, indehiscent silicles ranging from 8 to 18 mm long and 2.5 to 7 mm wide with a single, median seed [27,28,31,32,33,36,40,74]. Silicles have strongly flattened valves [27,28,32,33] and are sometimes described as winged ([28], review by [54]). Fruits are dark to black at maturity [31,36,74] and droop from a short, slender pedicel [27] that is ascending to reflexed [31] or recurved [36]. According to Weber [81], Dyer's woad is the only crucifer that produces hanging, indehiscent fruit resembling samaras of Fraxinus.
A 1983 field survey of Dyer's woad in Idaho revealed some morphological variation: Some Dyer's woad plants in Bear Lake County had very long basal leaves and were more pubescent than others described elsewhere. One specimen of Dyer's woad along North Canyon in Caribou County was almost 5 feet (150 cm) tall. At Border Summit on dry and gravelly soils at 6,300 feet (1,920 m), Dyer's woad was generally shorter (16 to 24 inches (40-60 cm) tall) and denser than those observed in other areas. A rust fungus was observed on some Dyer's woad plants in Caribou and Bear Lake counties: Infected plants appeared severely stunted, though the disease was not of epidemic proportions on these sites [12]. The fungus was later identified as Puccinia thlaspeos, and has been recorded on other weedy members of the Brassicaceae in North America ([12] and references therein). See Biological control for more information on this rust fungus.
Belowground description: The root system of Dyer's woad is dominated by a taproot [20,21] that is variously described as "robust" [28], "thick" [36], "fleshy" [80], or "woody" [12]. Dyer's woad taproots can reach or exceed 5 feet (1.5 m) in depth ([36], review by [80]). Smaller lateral roots are concentrated in the upper 8 to 12 inches (20-30 cm) of the soil profile ([20], review by [37]) and spread laterally about 16 inches (40 cm) [20]. The root system of Dyer's woad in a foothill rangeland pasture in northern Utah that had been continuously grazed by domestic sheep for over a decade had a mean taproot length of about 35 inches (90 cm) for rosettes and about 39 inches (100 cm) for mature plants. Mean total root length was about 85 inches (217 cm) for rosettes and 102 inches (258 cm) for mature plants, although the measurement method used (trench profile method) underestimates total root length because most of the fine roots are lost. Mature Dyer's woad plants had 43% of total mapped root length in the upper 8 inches (20 cm) of the soil profile, while rosettes had 31% of total mapped root length at this depth, suggesting that lateral branching of Dyer's woad roots occurs predominantly in the second year of growth. The authors note that this 2-layered rooting pattern is similar to that of sagebrush (Artemisia spp.), which may confer an advantage in semidesert steppe in the Intermountain West [20,21].
Dyer's woad plants collected from disturbed sites in Utah were nonmycorrhizal; this was expected because members of the Brassicaceae family are predominantly nonmycorrhizal [61].
Dyer's woad is not native to North America but was introduced by some of the first immigrants from Europe to Plymouth Colony in the early 1600s. Despite its early introduction, it is not widely established outside of cultivation in New England (review by [51]). As of this writing (2009), it occurs outside of cultivation throughout much of western North America, from British Columbia south to California and New Mexico (excluding Arizona) and east to Montana, Wyoming, and Colorado. In eastern North America, it occurs in Newfoundland [39], Quebec, Ontario, New York, New Jersey, West Virginia, Virginia, and Illinois [39,78]. Plants Database provides a distribution map of Dyer's woad in the United States and Canada.
Dyer's woad is considered native to southeastern Russia and is thought to have spread throughout the eastern hemisphere in prehistoric times. It has been cultivated as a dye crop and valued as a medicinal herb in Europe since the 13th century (review by [80]). A review by Callihan and others [12] suggests that Dyer's woad was grown for its blue dye in West Virginia and surrounding states, and introductions to western North America occurred as contaminants in alfalfa (Medicago sativa) seed imported to California and Utah in the early 1900s. Dyer's woad was routinely offered for sale in seed trade catalogues in Pennsylvania and several other New England states prior to 1850 [50]. Dyer's woad was still available for sale from plant nurseries in the United States in the 1990s [52].
At the time of this writing (2009), Dyer's woad seems most common on crop- and rangelands in southeastern Idaho, northern and central Utah, and western Wyoming [36], but it also occurs in southeastern Oregon, northwestern California, and Montana and is sporadic across northern Nevada ([36], reviews by [6,19]). In northern Utah, it often invades mountain sides in such numbers that continuous masses of yellow color extend over many acres, and fields appear black in fall as seed pods turn dark [35]. It is less common in eastern North America, where it has rarely escaped from cultivation. It occurs in 2 counties in Illinois [55] and is occasionally found as a weed in the northeastern United States and adjacent Canada [27]. In 1938 it was reportedly very abundant along roadsides and in vacant lots in parts of Virginia, and thought to be "spreading rapidly" [25]; according to Plants Database [78], Dyer's woad occurs primarily in the northern part of the state.
Preventing postfire establishment and spread: Preventing invasive plants such as Dyer's woad from establishing in weed-free burned areas is more effective and less costly than managing established populations. This may be accomplished through early detection and eradication, careful monitoring and followup, and limiting dispersal of invasive plant seed into burned areas. General recommendations include:
For more detailed information on these topics see the following publications: [5,8,29,77].
Use of prescribed fire as a control agent: Fire is not likely to be useful in controlling populations of Dyer's woad because Dyer's woad would likely only be top-killed by fire, and may then sprout and produce seed in the same or following year after fire.
Dyer's woad requires a cold vernalization period to induce flowering. A greenhouse study in Utah found that both 1-year old Dyer's woad plants that had previously flowered (crown rosettes) and 4-month old seedling rosettes required exposure to cold temperatures (39 °F (4 °C) or less) for a minimum of 23 to 47 days to induce flowering [3,4]. The 2 types of rosette responded differently to cold treatments, which ranged from 0 to 93 days at 39 °F (4 °C), suggesting that cold tolerance is dependent not only on length of cold exposure but also on plant age. No seedling rosettes died during any length of cold exposure, while 50% of crown rosettes died after 93 days of cold exposure, and 30% died after 47 days of cold exposure. There was no difference in survival of crown rosettes after 23 days of cold exposure and that of controls [4]. Continual disturbance, such as defoliation, delays flowering of Dyer's woad [20] (see Physical or mechanical control).
Reviews describe "prolific" or "abundant" seed production in Dyer's woad [12,19,54]. A review by McConnell and others [54] suggests that some plants produced more than 10,000 seeds in 1 year, although the source of this information is not given. Dyer's woad plants studied on Utah rangelands produced about 350 to 500 seeds each [20,21].
Seed production may vary among plants established in different seasons and on different microsites. A field study in Utah found that Dyer's woad plants that established in fall had slightly larger rosettes, taller flowering stalks, and produced more fruit (563 fruits/plant) than those that established in spring (345 fruits/plant). Mean fruit production of plants established in spring was similar among plants growing near sagebrush (293 fruits/plant) and those growing in interspace microsites (317 fruits/plant). Fruit weights were similar among all groups (3.9 mg/fruit) [20,21]. In a related study in the same area, average fruit production was 383 fruits/plant [21].
FUELS AND FIRE REGIMES
Fuels: No information is available on this topic.
FIRE REGIMES: As of this writing (2009), no information was available regarding native FIRE REGIMES in which Dyer's woad evolved. Based on information regarding its vegetative regeneration and response to clipping (see Physical or mechanical control), Dyer's woad is likely adapted to survive and persist under a regime of frequent and/or severe fire. It is also likely to persist in the absence of fire or with long fire-free intervals (see Establishment and persistence in late succession). In North America, Dyer's woad most commonly occurs in big sagebrush and mountain grassland communities, where FIRE REGIMES are characterized by mixed-severity or stand-replacement types with varying fire frequencies (reviews by [60,65]).
Presettlement FIRE REGIMES in big sagebrush shrublands are not well understood, and a high degree of variability is assumed among communities with different sagebrush dominants and plant associates. These FIRE REGIMES are typically characterized as mixed-severity or stand-replacement types, with fire-return interval estimates ranging from 10 to 70 years (review by [65]). FIRE REGIMES in many big sagebrush communities have been altered by annual grass invasion, especially cheatgrass, in areas where Dyer's woad is most invasive. See the FEIS review on cheatgrass and the review by Rice and others [65] for more information on fire regime change in Interior West shrublands. It is unlikely that Dyer's woad invasion would further alter FIRE REGIMES unless it reduced cheatgrass dominance. A study from northern California in 1971 [87] suggests that Dyer's woad may replace cheatgrass on some sites (see Establishment in late succession). See FEIS reviews on basin big sagebrush (A. tridentata subsp. tridentata), mountain big sagebrush (A. tridentata subsp. vaseyana), and Wyoming big sagebrush (A. tridentata subsp. wyomingensis) for more information on FIRE REGIMES in communities dominated by these species.
Presettlement FIRE REGIMES in mountain grasslands, where Dyer's woad commonly occurs and may be invasive, are classified as stand-replacement fires at intervals of about 10 to 35 years [60]. Rice and others [65] suggest that nonnative perennial forbs (e.g., spotted knapweed (Centaurea maculosa)) that displace native grasses in mountain grasslands may reduce fire frequency and spread due to their coarser stems and higher moisture content compared to dominant native bunchgrasses. Large infestations of Dyer's woad may have a similar effect, although this was not documented in available literature as of 2009. See FEIS reviews on bluebunch wheatgrass and Idaho fescue (Festuca idahoensis) and the review by Rice and others [65] for more information on FIRE REGIMES in Interior West mountain grassland communities.
See the Fire Regime Table for further information on FIRE REGIMES of vegetation communities in which Dyer's woad may occur. Find further fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find FIRE REGIMES".
Dyer's woad seeds separated from the fruits do not exhibit dormancy and readily germinate under a variety of conditions, though they do not readily germinate when they remain intact within the fruit. Dyer's woad seeds do not usually dehisce from the fruits under field conditions; thus, the intact fruit imposes dormancy [87]. The majority of Dyer's woad seeds collected in August 1969 and separated from the fruits germinated after incubation for 168 hours at temperatures from 37 to 77 °F (3-25 °C). Conversely, when intact fruits were incubated, germination was low and erratic. Seedlings elongated much more slowly from fruits than from seeds [87].
Dyer's woad germination rates and seedling lengths after 168 hours incubation at a range of temperatures [87] TemperatureReduced germination and seedling elongation from intact fruits were likely due to chemistry rather than due to a physical obstruction. In a laboratory study, not only were germination and seedling emergence reduced from intact Dyer's woad fruits, but the presence of intact fruits or fruit leachate also reduced germination and seedling emergence in both threshed Dyer's woad seed and in seeds of several other species (see Successional Status for details). Washing Dyer's woad fruits in tap water for 48 hours increased germination, and washing fruits for 96 hours almost eliminated germination inhibition. In the field, some Dyer's woad seedlings established from fruits that overwintered [87].
Germination inhibitors present in freshly sown seed are likely leached over winter, thereby allowing greater germination of overwintered seeds. In a field study in Utah, germination of Dyer's woad seeds sown in October 1984 was 10 times higher in spring 1985 than fall 1984. The author speculates that seeds that germinated shortly after being sown may have been in damaged fruits [20].
Dyer's woad seed germination is likely inhibited by shade. High percentages (>85%) of Dyer's woad seed germinated under red, yellow, and white light within 4 days. Significantly lower percentages germinated under far red and blue light (15% and 37%, respectively) (P<0.05), and germination time was longer. Far red and blue light simulate light conditions under a dense canopy [75].
In the western United States, Dyer's woad most commonly establishes and persists on rangelands and disturbed sites such as roadsides, rights-of-way, fence rows, uncultivated croplands (e.g., alfalfa and small grain fields, orchards), pastures, old fields, and "waste places" ([17,28,31,32,36,82], reviews by [19,54]). Characteristics of sites supporting Dyer's woad in eastern North America were not described in available literature (2009). A Virginia flora describes Dyer's woad as infrequent and occurring on disturbed sites [85].
Climate: Dyer's woad is native to parts of Russia, where the climate may be similar to that of the Intermountain West (review by [2]). Few studies of Dyer's woad report climate data. On study sites where Dyer's woad occurred on coarse, well-drained soils at 2 foothill locations on the western slope of the Wellsville Mountains in northern Utah, mean annual precipitation is 16 inches (400 mm), and mean annual air temperature is °F (9 °C) [21,84]. A review by Parker [59] suggests that Dyer's woad has a moisture requirement of 14 to 18 inches (356-457 mm) per year. Specimens of Dyer's woad were collected at 40 xeric to mesic sites in Idaho [12].
Elevation: Elevations ranges for Dyer's woad were given for the following areas:
Elevation ranges for Dyer's woad by geographic area Area Elevation range California <3,280 feet (<1,000 m) [31] Idaho 2,950-8,860 feet (899-2,700 m) [12] Nevada 4,500 to 7,000 feet (1,370-2,130 m) [40] Utah 4,000-7,000 feet (1,220-2,130 m) [59,82] Utah (Uinta Basin) from low elevations up to 8,500 feet (2,590 m) [28] Intermountain West 4,430-8,530 feet (1,350-2,600 m) [36]Landforms and soils: Western rangelands invaded by Dyer's woad typically occur on uplands, foothills, hillsides, and mountain valleys (review by [59]). A survey of Dyer's woad in southeastern Idaho found that it occurred primarily on the east side of valleys, extending up canyons, and generally on south-facing, steep to flat slopes in full sun [12]. Infestations are frequently observed on steep hillsides in rugged, inaccessible mountain terrain (review by [19]). Dry foothill sites typically support native bunchgrass, sagebrush, and mountain brush communities [36,45,82] (see Habitat Types and Plant Communities). Dyer's woad is thought to be well suited to the dry, coarse, rocky soils on these sites (reviews by [2,19,59,80]) and is "a weed of dry places" in much of the Pacific Northwest [33]. Dyer's woad occurs on mesic (adequate moisture throughout most of season) and mesic-xeric (abundant moisture early in season, becoming drier later on) valleys in Montana [7,44]. In England, Dyer's woad often occurs in old lime pits and chalk quarries (review by [80]) and is said to prefer alkaline soils on western rangelands (reviews by [59,80]).
Although many sources suggest that Dyer's woad is well suited to coarse, rocky soils with low water-holding capacity (reviews by [2,19,59,80]), Dyer's woad grew larger and had greater nitrate aquisition on a relatively moist site with fine soil textures than on a drier, coarse textured soil in a Utah field study (see table below) [48]. Differences in these variables were not related to proximity, life form, or diversity of neighboring plants (see Successional Status).
Mean values for several response variables in Dyer's woad grown at 2 sites in northern Utah [48] Site Millville Hyde Park Soil description coarse-loamy over sandy or sandy-skeletal, mixed, superactive, mesic Calcic Haploxerolls fine, mixed, active, mesic, Aquic Argixerolls Shoot dry mass (g) 31.24* 84.88 Leaf nitrogen (mg/g) 33.38* 42.63 Leaf carbon:nitrogen ratio 11.50* 8.54 Root diameter (mm) 2.25* 2.93 Root dry mass (g) 1.69 2.52 Root length (m/soil core) 1.37 1.12 Specific root length (m/g) 1.07* 0.77 *Indicates a significant difference (P<0.001) between sites for that variable.Impacts: As of this writing (2009), research regarding impacts of Dyer's woad invasion on native communities was limited. Several reviews suggest that Dyer's woad spreads rapidly and may reduce growth and abundance of desirable plants in both croplands and rangelands, thus imposing an economic impact (e.g., [2,12,54,80]).
Dyer's woad seems to be most invasive in the Intermountain West, where it can spread rapidly and form dense infestations that may reduce forage grass production (review by [12]). Field studies and a review of the literature by Farah [20] suggest that the invasiveness and rapid spread of Dyer's woad in northern Utah may be due to its efficient utilization of environmental resources. Specifically, because Dyer's woad germinates both in the fall and spring, overwinters as a rosette, initiates early spring growth, has deep taproots, and possesses summer dormancy mechanisms, it may escape many restrictions by which growth and spread of associated native species are regulated [20]. Laboratory studies from California that demonstrate an allelopathic potential in Dyer's woad [87] (see Successional Status for details) are cited as evidence that Dyer's woad may chemically inhibit germination and root elongation of some competing species [20].
Several reports indicate that Dyer's woad may spread rapidly once established. A 1985 report estimated an annual spread rate of 14% for Dyer's woad on rangelands in the northwestern United States, reducing grazing capacity by an average of approximately 38% [79]. A review by Dewey and others [14] indicates that the number of hectares occupied by Dyer's woad in the Intermountain West increased more than 35-fold between 1969 and 1985. On the Cache National Forest of northern Utah, a 1988 study of nearly 373,000 acres (150,000 hectares) suggested that there was potential for a 124-fold increase in the number of Dyer's woad populations [14]. One infestation south of Dillon, Montana, reportedly increased from 2 to more than 100 acres (0.8-40 ha) in 2 years [6]. Observations by weed specialists in the Great Basin describe Dyer's woad as increasing from initial infestion sizes of 12,000 to 150,000 acres (4,856-60,704 ha) in 8 years; from 35 to 1,774 acres (14.2-718 ha) in 16 years; and from a "first report" of unknown size to an infestation of 24,000 acres (9,713 ha) over a period of 51 years [71]. Locations of these populations were not given, nor were specific sources for the observations.
As of 2000, Dyer's woad was on 10 noxious weed lists in the continental United States and southern provinces of Canada [70]. Noxious weeds in Colorado are nonnative plants that meet at least one of several criteria regarding negative impacts on agricultural systems, livestock, or native plant communities; and in Utah a noxious weed is any plant determined to be especially injurious to public health, crops, livestock, land or other property (review by [69]). In other areas where Dyer's woad occurs, it does not seem to be particularly invasive, or its invasiveness is unknown. For example, Dyer's woad is a "Class A" invasive species in the Southwest: species with limited distribution within a management unit, or not present in a management unit but in adjacent areas and therefore posing an invasive threat. Preventing new outbreaks and eliminating existing populations is the primary focus of management for Class A species [24]. The California Invasive Plant Council classifies Dyer's woad as a plant for which more information is needed to determine its potential threat to wildlands there [11].
Control: This review of control methods for Dyer's woad is not intended to be either comprehensive or prescriptive in nature, but focused on control studies that may illuminate aspects of Dyer's woad's fire ecology or the potential for its management with prescribed fire. More information on control methods can be found in the literature cited in the following sections and in these reviews: [6,19,37,54]. Control of biotic invasions is most effective when it employs a long-term, ecosystem-wide strategy rather than a tactical approach focused on battling individual invaders [53]. In all cases where invasive species are targeted for control, the potential for other invasive species to fill their void must be considered [9].
As with most invasive plants, early detection and removal of Dyer's woad plants is important for successful control. According to reviews [6,54], surveys for Dyer's woad should be conducted when it is flowering or fruiting: from April or May through July or August in most areas. Its bright yellow flower clusters and dark brown to black seed capsules that hang down like an umbrella make Dyer's woad easy to recognize (reviews by [6,54]).
Dyer's woad populations may be reduced substantially if seed production can be prevented for a few years and soil seed reserves exhausted. It is best to remove Dyer's woad plants as soon as possible after flowering to prevent further seed production, and it is important to remove entire plants because even when plants have been uprooted, Dyer's woad seeds from green fruits may be germinable or may continue to develop and reach maturity if left on site [13]. Flowering of Dyer's woad can be delayed by continual defoliation [84].
For large, known infestations control efforts could also be focused at the young rosette stage in Dyer's woad. This stage is at greatest risk of mortality, probably due to the lack of development of the root system, and may be most susceptible to control efforts [20]. Plants at this stage are unlikely to sprout from buds on the root crown (see Vegetative regeneration). Farah and others [21] suggest that plants at this stage be targeted for biological control.
Control efforts may be best focused on areas with the best potential returns. For example, it is important to remove Dyer's woad from roadsides, railways, and trails because these areas are effective avenues for seed dispersal. Dyer's woad can be controlled more easily in croplands than in rangelands and forests, where control efforts are limited by inaccessible terrain, undesirable impacts of control efforts on native plants, and questionable economic returns (review by [54]). On exceptionally steep hillsides where few other plants are present to reduce or prevent erosion, total elimination of Dyer's woad may be ill-advised (review by [80]).
Prevention: Prevention and early detection are critical in managing Dyer's woad invasions (review by [54]). It is commonly argued that the most cost-efficient and effective method of managing invasive species is to prevent their establishment and spread by maintaining "healthy" natural communities [53,68] and by conducting monitoring several times each year [38]. Managing to maintain the integrity of native plant communities and to mitigate the factors enhancing ecosystem invasibility is likely to be more effective than managing solely to control the invader [34].
Weed prevention and control can be incorporated into many types of management plans, including those for fire management, logging and site preparation, grazing allotments, recreation management, research projects, and road building and maintenance [77]. See the "Guide to noxious weed prevention practices" [77] for specific guidelines in preventing the spread of weed seeds and propagules under different management conditions.
Cultural control: No information is available on this topic.
Physical or mechanical control: A review by McConnell and others [54] suggests that hand-pulling is one of the most important methods of Dyer's woad containment or control. This approach is most convenient and effective when Dyer's woad is in flower, because the distinct yellow flowers and umbrella-shaped stalk make it easy to locate and identify. Volunteer groups and/or seasonal employees can clear large tracts of land in a relatively short time with basic tools (review by [54]). Hand-pulling may be an important part of an integrated management approach for controlling Dyer's woad. Cutting or mowing Dyer's woad does not usually kill it [20,84] but may be useful to prevent or delay flowering.
Physically removing Dyer's woad plants by hand-pulling or digging is probably most effective for small infestations, sensitive areas, and hard-to-reach spots. Fay [22] recommends hand-pulling Dyer's woad when its density is around 1 plant/10,000 feet², or in areas where herbicides are not desired, such as areas frequented by recreationalists (e.g., Mt Sentinel in Missoula, Montana). Hand-pulling Dyer's woad plants from ditch banks, rock piles, fence lines, and ravines may prevent seed dispersal onto adjacent areas (reviews by [19,54]).
Important considerations for physical control of Dyer's woad are preventing seed set or dispersal and removing as much of the root as possible. Dyer's woad seeds mature within 4 to 6 weeks from the time of flowering (see Seasonal Development), so it is essential that the plants be removed as soon as possible after flowering to prevent seed dispersal. Removing rosettes in early spring may prevent seed production; however, Dyer's woad plants may be difficult to locate at this phenological stage. The thick, fleshy taproot of Dyer's woad must be removed well below the root crown to prevent sprouting (see Vegetative regeneration). Plants are easily pulled or dug with a hoe or shovel if the ground is wet (review by [54]).
Dorst and others [18] describe successful control of Dyer's woad on a heavily infested rangeland in northern Utah using hand-pulling, hoeing, or digging flowered plants, rosettes, and seedlings. Mature fruits were stripped into buckets or plastic bags and removed from the site. Infested areas were visited by volunteer work crews, often consisting of troops of 12- and 13-year-old Boy Scouts, an average of twice per season: once in mid- to late May when Dyer's woad plants were approaching full bloom, and again about 3 to 4 weeks later. Once low Dyer's woad densities were achieved, they were maintained by annual monitoring and pulling remaining scattered plants. Eradication was not achieved on any of the land units studied, but control equaled or exceeding 95% on the majority of units retained in the program for 8 or more years [18].
Clipping Dyer's woad plants when they are rapidly growing in spring (see Seasonal Development) can increase mortality and decrease fruit production. Dyer's woad response to clipping was affected more by timing of clipping than by frequency, when effects of clipping on mortality, percent flowering, fruit production, and fruit weights of Dyer's woad were investigated on a Utah rangeland site. Clipping treatments were either low intensity (60% removal of aboveground phytomass) or high intensity (90% removal of aboveground phytomass), and were conducted on one or more of the following dates: 16 April, 7 May, 23 May, and 11 June. Significant mortality and reduction in reproductive performance occurred when at least 60% of the aboveground phytomass was removed on or after 23 May (P<0.05). Clipping once or twice, to remove as much as 90% of aboveground tissue before 23 May, did not significantly affect woad mortality, percent flowering, or fruit production. At least 3 sequential clippings at either 60% intensity or 90% intensity were required to significantly increase mortality rates or reduce flowering over controls. Plants clipped once on 11 June had mortality rates and flowering response similar to plants clipped on 16 April, 7 May, 23 May, and 11 June. Mean fruit production per plant did not differ between the various clipping treatments. Total fruit production as a percent of control production was reduced in plants clipped twice at either intensity, with those clipped at low intensity producing 49% of the control, and those clipped at high intensity producing 38% of the control [84]. Clipping after 7 May delayed flowering 1 year [20].
Similarly, Fuller (1985 as cited by [20]) found that greater mortality and less flowering were attained when clipping occurred on 25 June than on 1 May in 1982. Fuller demonstrated that to substantially reduce flowering capacity and cause adequate mortality before 23 May, Dyer's woad had to be clipped 2 inches (5 cm) below the ground. "This suggests that regeneration of Dyer's woad, following clipping damage, results from activation of (root) crown buds and those located on the roots just beneath ground level" [20].
Response to clipping in spring may be related to available soil moisture. A combination of diminished root-absorbing capacity and insufficient soil water would likely impede Dyer's woad regrowth from basal meristems following clipping. It would also explain the minimal impact of clipping before 23 May and the dramatic effect of a single clipping after this date [20,84].
Fire: See Fire Management Considerations.
Biological control: Biological control of invasive species has a long history, and many factors must be considered before introducing biological controls. Refer to the Weed control methods handbook [76] for background information and important considerations for developing and implementing biological control programs. Two types of biological control for Dyer's woad are discussed in the literature: grazing by domestic sheep and dissemination and enhancement of a naturally occurring rust pathogen, Puccinia thlaspeos. Neither shows much promise for substantial control of Dyer's woad.
Grazing by domestic sheep does not seem a feasible control method for Dyer's woad, because grazing occurs during midspring, a time when little damage is done to the plants. A foothill rangeland pasture on the west slope of the Wellsville Mountains was selected for monitoring the utilization of Dyer's woad by domestic sheep. The site was dominated by big sagebrush, Dyer's woad, cheatgrass, bulbous bluegrass, broom snakeweed, and curlycup gumweed. Soil and site information suggest a potential natural vegetation comprised mostly of bluebunch wheatgrass; therefore, the pasture was considered in poor condition relative to both its ecological and livestock grazing potential. Grazing began on 27 April, and the researchers speculate, based on a change in palatability of Dyer's woad during flowering and increased availability of better forage, that domestic sheep switched to forage other than Dyer's woad by 18 May. During this period, 48 out of 300 marked Dyer's woad plants (16%) had some utilization. Utilization of individual grazed Dyer's woad plants ranged from 18% to 92% with an average of 39% of the aboveground tissue removed. This level of utilization did not have any effect on mortality, percent flowering, mean fruit production, or fruit weight. Basal diameter and rosette diameter were greater on grazed than on ungrazed Dyer's woad plants, suggesting that animals were selecting larger plants, which are also more likely to survive defoliation [84]. Stocking and timing required to impact Dyer's woad would result in range deterioration, as important native species such as bluebunch wheatgrass and arrowleaf balsamroot (Balsamorhiza sagittata) are susceptible to heavy grazing at the same time of year as Dyer's woad ([20] and references therein).
A rust fungus, Puccinia thlaspeos, was discovered on Dyer's woad in an isolated foothill canyon in southern Idaho in 1978. Puccinia thlaspeos is reported to be a "naturally occurring" rust throughout Europe and much of North America [49]. Dyer's woad plants infected with the rust were "stunted, severely malformed, and failed to produce seed". Over a period of 9 years, rust incidence at this site increased from less than 1% of Dyer's woad plants infected in 1978 to an average of 44% of Dyer's woad plants infected in the spring of 1987. Distribution of the rust had also spread throughout an 1,125 square mile area in southeastern Idaho and western Wyoming during that period, and it was purposefully introduced to Dyer's woad plants in a field study at Logan, Utah, in 1987 [49]. It now occurs in most populations of Dyer's woad in northern Utah (review by [42]).
Puccinia thlaspeos causes systemic infection in Dyer's woad. These infections are usually asymptomatic during the first year of Dyer's woad's life cycle, with the fungus overwintering in the tissue of infected plants. Symptoms typically appear during the second season (review by [42]), and Dyer's woad plants infected with the rust typically appear chlorotic in the rosette stage, while bolted plants are covered with rust sori, severely stunted, and often epinastic (curved downward) [49]. Kropp and others [43] provide additional details on how rust infection proceeds over time and on the effects of dew on infection.
Silicle development and/or seed production were initially thought to be prevented on Dyer's woad plants infected with Puccinia thlaspeos [49]; however, later studies found seed production on both symptomatic and asymptomatic branches of diseased plants. No differences in germination were found between seed with rust sori and those lacking sori. Plants grown from infected seed did not show symptoms of infection, suggesting that the rust is not spread via Dyer's woad seed even when sori are present on the seed [42].
Studies have been conducted to help determine methods for using the rust as a biological control agent on Dyer's woad in large populations, whether the level of inoculation obtained in the field is maintained over time, and the dispersal rates and mechanisms of spread subsequent to inoculation [42]. Inoculum can be prepared from dry leaf material collected from infected Dyer's woad plants in the spring. The Dyer's woad rust can be successfully established in populations of Dyer's woad that lack naturally occurring rust using relatively low doses of inoculum applied in the spring. Once established, the rust is able to reproduce and disperse on its own, although dispersal is slow and augmentation may be needed to maintain high rates of disease incidence in Dyer's woad stands. More details on field applications of Puccinia thlaspeos for biological control of Dyer's woad are available from Kropp and others [42].
A substantial amount of additional literature is available that addresses various aspects of the biology of the rust and its use as a biological control agent for Dyer's woad. This literature is not included here, as it is outside the scope of this review.
Chemical control: Herbicides are effective in gaining initial control of a new invasion or a severe infestation, but they are rarely a complete or long-term solution to weed management [10]. See the Weed control methods handbook [76] for considerations on the use of herbicides in wildlands and detailed information on specific chemicals. For information on particular chemicals, rates, timing of applications, techniques, safety, and other considerations, for control of Dyer's woad, see these sources: [22,54,79].
Dyer's woad is most sensitive to herbicides such as 2,4-D, metsulfuron, and chlorsulfuron during the early rosette to early blossom stage [6,19]. Research at Montana State University has shown effective control of Dyer's woad when 2,4-D is applied to rosettes annually in spring for "a number of years". Dyer's woad is relatively tolerant to 2,4-D after it begins to set seed [6], and application at that time is likely to damage nontarget vegetation because many of Dyer's woad's associates are susceptible at that time of year (review by [80]). Research at Utah State University found that chlorsulfuron and metsulfuron prevented seed production in Dyer's woad when applied as late as the flowering and seed-set stages [6]. Extremely low applications of metsulfuron at any phenological stage interfere with normal seed development and inhibit fruit formation and viable seed production. Treating plants in flower inhibits viable seed production by reducing fruit formation, seed development, and germinability [2,4]. Dyer's woad tolerance to metsulfuron increases as flowering stages progress. Preanthesis stages were the most sensitive to metsulfuron application. Dyer's woad plants treated in the midblossom stage with >5g/ha of metsulfuron produced no viable seeds [4].
Integrated management: The Montana Dyer's Woad Cooperative Project was a program that incorporated early detection, treatment, repeated monitoring, and education for control and eradication of Dyer's woad in Montana. Treatments included hand-pulling, digging, and spot-spraying with metsulfuron. Bolting and rosette plants were pulled and left on site, while flowering and fruiting plants were removed from the site in double-lined plastic bags. Cutting and removing the flowering or fruiting stems combined with spot-spraying of the remaining basal leaves was thought to be the most effective treatment because it killed root fragments inadvertently left in the soil. Monitoring data indicate that during the course of the project (20 years), Dyer's woad was eradicated from 9 of 13 Montana counties and that infestation sizes decreased in the remaining infested counties. In some counties, containment, repeated inventories, and treatment applications were needed to prevent spread of Dyer's woad while depleting the seed bank to the point where eradication was possible. See Pokorny and Krueger-Mangold [62] for further details.
Because accessible populations of Dyer's woad are routinely treated with herbicides, Kropp and Darrow [41] suggested that it may be possible to integrate applications of herbicides and inoculum of Puccinia thlaspeos, provided that herbicides have no negative impact on rust viability. Researchers found that neither chlorsulfuron nor metsulfuron-methyl had a significant impact on Puccinia thlaspeos spore germination when used without surfactants, while 2,4-D with an added surfactant significantly decreased spore viability (P=0.05). Whether the decreased viability was due to the 2,4-D or the surfactant is unknown; however, when 3 different surfactants were tested alone or added to chlorsulfuron and metsulfuron-methyl, spore viability was reduced in some combinations. See Kropp and Darrow [41] for details.
Plant community associations of nonnative species are often difficult to describe
accurately because detailed survey information is lacking, there are gaps in
understanding of nonnative species' ecological relationships, and nonnative
species may still be expanding their North American range. Dyer's woad likely
occurs in plant communities other than those discussed here and listed in the Fire Regime Table.
Throughout the Intermountain West, Dyer's woad is locally dense and often
spreads into big sagebrush communities (Artemisia tridentata) in Idaho, Utah,
Montana, Wyoming, California, and Nevada [36,63]. According to a review of
nonnative invasive plants in sagebrush ecosystems [63], Dyer's woad is "highly
invasive and capable of dominating a site" once introduced. Invasive
populations of Dyer's woad are most commonly described in northern Utah and
southern Idaho, where it usually occurs in plant communities dominated by big
sagebrush and/or bluebunch wheatgrass (Pseudoroegneria spicata) [21,82].
On study sites where Dyer's woad occurred at 2 foothill locations on the western
slope of the Wellsville Mountains, Utah, potential natural vegetation
is dominated by big sagebrush and bluebunch wheatgrass, although a long history
of early spring through fall grazing had caused retrogression to early-seral or
"poor" conditions for livestock use; the major plant species there were
big sagebrush, broom snakeweed (Gutierrezia sarothrae), curlycup gumweed
(Grindelia squarrosa), and the nonnatives cheatgrass (Bromus tectorum),
bulbous bluegrass (Poa bulbosa), and Dyer's woad [84]. Associated species
on these sites may also include Sandberg bluegrass (Poa secunda) [59],
and nonnatives such as medusahead (Taeniatherum caput-medusae),
jointed goatgrass (Aegilops cylindrica), Mediterranean sage (Salvia
aethiopis), and several knapweed species (Centaurea spp.) [83].
A study using remote sensing to predict potential distribution of Dyer's woad in
Utah found that it occurred in 55 of the 60 cover types or plant communities identified
by spectral classification and that Dyer's woad infestations were most frequently
associated with 10 of these. Details regarding the plant communities were not given,
but it is suggested that satellite remote sensing methodology may be a useful tool
for estimating potential weed distribution over large, vegetatively diverse land areas [14].
Specimens of Dyer's woad and associated species were collected at 40 xeric to
mesic sites on rangeland, agricultural land (nonirrigated pastures and crops and
irrigated alfalfa fields), and disturbed areas (roadsides, railroad embankments,
gravel pits, and levees) in Idaho [12]. Where Dyer's woad occurred in rangeland
habitats, all communities were dominated by big sagebrush. Other species associated
with Dyer's woad on rangeland sites included Rocky Mountain juniper (Juniperus
scopulorum), bigtooth maple (Acer grandidentatum), quaking aspen
(Populus tremuloides), curlleaf mountain-mahogany (Cercocarpus
ledifolius), antelope bitterbrush (Purshia tridentata), mountain
snowberry (Symphoricarpos oreophilus), threetip sagebrush (Artemisia
tripartita), rubber rabbitbrush (Chrysothamnus nauseosus), several
native forbs, and several native and nonnative grasses including bluebunch wheatgrass
and cheatgrass. Callihan and others [12] provide lists of associated species on
rangeland, agricultural land, and disturbed areas. The latter 2 site types were
occupied mostly by nonnative and/or invasive plants including Dyer's woad.
In 2003, Dyer's woad was reported on 1 site out of 542 surveyed on the Bridger-Teton
National Forest in western Wyoming. The cover type was not given, but associates
included common St Johnswort (Hypericum perforatum) and Scotch cottonthistle
(Onopordum acanthium) [58].
As of 1991, a population of Dyer's woad had persisted for "many years" in
a bluebunch wheatgrass-Idaho fescue (Festuca idahoensis) mountain grassland community
on the lower southwestern slope of Mt Sentinel in west-central Montana [45].
As the common name implies, Dyer's woad was cultivated for textile dye in Europe since ancient times, and ancient Britons and Celts colored their faces and bodies with the blue dye extracted from Dyer's woad in order to frighten their enemies in war. Its importance as a dye crop began to decline when a cheaper blue dye derived from true indigo (Indigofera tinctoria) was imported from the Far East during the 16th century. Dyer's woad's cultivation was practically abandoned in the 19th century, when synthetic dyes were developed (reviews by [26,72]); however, its cultivation as a dye crop is increasing as demand for natural products grows. Dyer's woad is also attractive for this purpose because it grows well under marginal conditions (review by [72]). A search of the scientific literature revealed several studies regarding natural indigo dye production from Dyer's woad. This literature is not included here because it is outside the scope of this review.
A review by Galletti and others [26] indicates that Dyer's woad is a source of indolic compounds that can be degraded into bioactive molecules effective against phytopathogenic fungi, nematodes, weeds, and human tumoral cell lines. Among these compounds, glucobrassicin and its derivatives seem to play an antitumoral role, and research suggests a possible protective effect against human breast cancer associated with the consumption of glucobrassicin-containing vegetables like broccoli and cauliflower. Extraction of glucobrassicin in pure form is complicated because in most vegetable sources it is usually present at low concentrations and always mixed with other compounds ([26] and references therein). Screening among different accessions of Dyer's woad in Italy found a cultivar with relatively abundant leaf content of glucobrassicin and a lack of other indolic compounds, leading researchers to explore methods for increasing glucobrassicin production in this cultivar in order to set up a model of low-cost, large-scale production of this compound. See Galletti and others [26] for details of this study.
A search of the literature revealed several other studies of medicinal properties of Dyer's woad (specifically anti-inflammatory, antiallergic, and anticancer properties), which are not covered in this review.
Dyer's woad is characterized by rapid vegetative growth during spring that typically enables it to produce seed by late spring or early summer on midelevation sites. The period of rapid growth by Dyer's woad may overlap with the period of peak water extraction by bluebunch wheatgrass on some sites in some years, suggesting there may be belowground interference between these co-occurring species [21] (see Successional Status). Dyer's woad plants were studied on northern Utah foothill sites at 4,850 to 5,000 feet (1,480-1,525 m) elevation during 2 studies: one from May 1982 to November 1983, and the other during the 1984 growing season. See Seedling establishment and plant growth for similar information from an experimentally established Dyer's woad population in the same area. Young Dyer's woad plants were marked and phenologically categorized between May 1982 and November 1983. Phenological stages were as follows: dormant, leaf growth, stem growth, floral buds developing, flowering, seed development, seed ripening, seed dissemination, and dead. Leaf growth occurred in both fall and spring, and flowering occurred in late spring. Time between stem growth and seed development was about 8 weeks. Mean stem growth was about 4 inches (10 cm) per week from mid-April until the end of May. Plants were dormant in both summer and winter, corresponding with hot, dry conditions or cold temperatures, respectively. Sixty-five percent of marked plants died and 1% flowered during the 1st growing season. Of the 35% that survived to the 2nd year, about half flowered and produced fruit. All plants that set seeds died; about 12% remained vegetative and may have produced fruit in the 3rd year [21].
Dyer's woad plants observed on Utah foothill sites during the 1984 growing season started vegetative growth by 16 April 1984, less than 1 week after snowmelt. Basal diameter increased between 16 April and 7 May and thereafter remained fairly constant. Likewise, rosette diameter increased during the same period, leveled off by 23 May, and then declined as basal leaves withered and flowering stems developed. Stem growth began during the last week of April, and flowering began the second week of May, reaching its peak about 23 May. Height of flowering stalks increased rapidly between 7 May and 11 June. Seed developed between 9 June and 15 June. By the end of June, most of the seeds had ripened [20].
Root crown buds on Dyer's woad plants that have flowered sometimes survive, allowing plants to persist and flower again. The growth of the flowering shoot reduces carbohydrates stored in the taproot during the previous season (review by [12]).
Typical flowering dates by geographic area are given in the following table:
Dyer's woad flowering dates by geographic area Area Flowering dates California April to June [57] Illinois May to June [55] Nevada April to July [40] Utah midspring [59] Utah (Uinta Basin) May to July [28] Virginia May to June [85] Intermountain West May to June [36] Northeast and adjacent Canada May to July [27] Pacific Northwest April to August [32]Dyer's woad fruits ripen between June and October throughout its range [23]. Dyer's woad seeds become viable relatively early during seed production [36].
A survey in Idaho in 1983 found that timing of flowering and seed dispersal were related to elevation. Flowering and dispersal dates observed in that survey were as follows [12]:
Phenology of Dyer's woad in several counties at different elevations in Idaho [12] County Elevation (m) Phenological stage Dates Northern Bannock 1,829 Rosette and bolting 3 June Northern Bannock up to 1,402 Flowering 23 May Jefferson and Bonneville 1,341-1,463 Flowering 26 May Caribou 2,073 Flowering 23 June Caribou 2,079 Flowering 5 July Caribou 2,316 Flowering 12 July Bear Lake 2,256 Flowering as late as 14 July Caribou below 1,981 Full bloom 17 June Bear Lake 2,256 Full bloom 29 June Central and southern Bannock and Franklin -- Full bloom 7 June Franklin county 1,585 Full to late bloom 10 June Eastern Oneida 1,067 Late bloom to seed set 15 June Clark 1,707-2,012 Late bloom to ripe fruit 22 July Adams 899 Dispersing ripe fruit 26-28 July Blaine 1,295 Dispersing ripe fruit 26-28 July Southwestern Oneida 1,492-1,463 Dispersing ripe fruit 20 July REGENERATION PROCESSES:
Dyer's woad reproduces by seed. It may sprout following damage to aboveground parts, and sometimes after flowering (see Vegetative regeneration); however, persistence and spread of Dyer's woad populations is dependent on viable seed production.
Pollination and breeding system: Results from laboratory studies in Italy showed an outcrossing breeding system in Dyer's woad. The effects of selfing and crossing on seed production, germinability, and progeny growth were assessed. Self-pollinated plants produced fewer siliques (7.1 g/plant) with lower weight (6.0 mg) and lower seed germinability (8.2%) than outcrossed plants (44.1 g, 8.0 mg, and 46% for each character, respectively). Self-pollinated progenies generally showed lower height growth than outcrossed progenies [72].
Flower and seed production: Dyer's woad requires a cold vernalization period to induce flowering. A greenhouse study in Utah found that both 1-year old Dyer's woad plants that had previously flowered (crown rosettes) and 4-month old seedling rosettes required exposure to cold temperatures (39 °F (4 °C) or less) for a minimum of 23 to 47 days to induce flowering [3,4]. The 2 types of rosette responded differently to cold treatments, which ranged from 0 to 93 days at 39 °F (4 °C), suggesting that cold tolerance is dependent not only on length of cold exposure but also on plant age. No seedling rosettes died during any length of cold exposure, while 50% of crown rosettes died after 93 days of cold exposure, and 30% died after 47 days of cold exposure. There was no difference in survival of crown rosettes after 23 days of cold exposure and that of controls [4]. Continual disturbance, such as defoliation, delays flowering of Dyer's woad [20] (see Physical or mechanical control).
Reviews describe "prolific" or "abundant" seed production in Dyer's woad [12,19,54]. A review by McConnell and others [54] suggests that some plants produced more than 10,000 seeds in 1 year, although the source of this information is not given. Dyer's woad plants studied on Utah rangelands produced about 350 to 500 seeds each [20,21].
Seed production may vary among plants established in different seasons and on different microsites. A field study in Utah found that Dyer's woad plants that established in fall had slightly larger rosettes, taller flowering stalks, and produced more fruit (563 fruits/plant) than those that established in spring (345 fruits/plant). Mean fruit production of plants established in spring was similar among plants growing near sagebrush (293 fruits/plant) and those growing in interspace microsites (317 fruits/plant). Fruit weights were similar among all groups (3.9 mg/fruit) [20,21]. In a related study in the same area, average fruit production was 383 fruits/plant [21].
Seed dispersal: Dyer's woad fruits do not release the seed at maturity, but fall to the ground intact [19]. The majority of Dyer's woad fruits disperse within a few meters of parent plants. Long-distance dispersal may occur with the aid of humans, livestock, wildlife, and water [20].
Most Dyer's woad fruits shed soon after reaching maturity, although some remain on the plants until winter. Fruits are firmly attached to plants, and some abrasive force such as wind or rain is needed to detach them. A field study in Utah recorded daily Dyer's woad fruit dispersal from 25 June 1985 until 27 August 1985. Most of the fruits were shed in the first 10 days of the study; thereafter, the dispersal rate declined substantially, leveling off after 4.5 weeks. Ninety-five percent of all trapped fruits fell within 21 inches (54 cm) of parent plants, and mean dispersal distance was positively correlated with the height at which seeds were released (r²=0.85). The greatest distance that fruits traveled via wind was about 8 feet (2.4 m). The relationship between windspeed and number of fruits dispersed was "poor"; however, most fruits scattered in the direction of prevailing winds. Dyer's woad fruits remaining on plants until winter may disperse much greater distances when blown over the surface of crusted snow [20,21]. Fruits may be further transported by ants, as was observed during studies on Utah rangelands [20].
Long-distance spread of Dyer's woad fruits and seeds must be aided by vectors such as humans, livestock, wildlife, and water. Humans may disperse fruits in their clothing, vehicles, tools or machinery [20,21,80]. Roadsides and railways are effective avenues of seed dispersal [19]. Long-distance dispersal is likely when Dyer's woad seed is a contaminant in alfalfa or other crop seed (review by [12]); or when mature, seed-bearing Dyer's woad plants are cut and baled with alfalfa in infested fields, and this baled hay is shipped to where it is used as livestock feed [19,20,21]. Contaminated hay is one of the major causes of Dyer's woad spread [36].
Livestock and wildlife may carry fruits in mud on their hooves or in their fur [36]. The curved pedicel of Dyer's woad fruits may act as a hook to aid in dispersal by animals. Dyer's woad fruits remaining on plants past the first snowfall may be dispersed by herds of deer and elk in the winter months, when herd use of foothill sites is highest [20]. Farah [20] speculates that a high incidence of Dyer's woad infestations on south-facing slopes on Utah rangeland may be related to deer and elk use of these sites in winter. Birds and rodents may also contribute to long-range dispersal of Dyer's woad [20].
Downhill and downstream dispersal of Dyer's woad fruits may be aided by water; flattened wings facilitate this mode of dispersal. Dyer's woad populations along the banks of drainage systems in Utah may have established after this type of dispersal [20,21].
Seed banking: Information on seed banking in Dyer's woad was lacking, and it had not been determined how long seeds are viable in the soil, as of 2009. Anecdotal accounts from Europe suggest that Dyer's woad sometimes appears after grasslands are tilled; authors contend that these are sites of former woad crops where the seeds have remained dormant in the soil, presumably for many years (King 1966 as cited by [87]).
While Dyer's woad seeds may have no dormancy, they are contained in fruits that have water soluble germination inhibitors such that few seeds germinate immediately in the field, presumably until the inhibitors are leached from the fruit [87]. The inhibitors in the fruit may allow Dyer's woad seed to persist in the soil seed bank [19]. Because the inhibitors are removed by leaching, they do not seem likely to contribute to long-term persistence of seed in the soil, because they would be leached by precipitation, allowing germination under favorable conditions [87].
Evidence from field studies indicates that some Dyer's woad seeds remain viable in the soil for at least 10 to 12 months. Dyer's woad fruits (1,200 total) were harvested from a Utah study site on 8 July 1982 and buried under about 0.4 inch (1 cm) of soil. Each month, 120 fruits were removed from the field, and seeds were removed from fruits and tested for germination and viability. Germination tests were conducted at 77 °F (25 °C) with 12 hours each of alternating light and darkness, and germinated and viable seeds were counted after 14 days. Germination rates of Dyer's woad seed stored in the field ranged from 99% in September 1982 (after 1 month of burial) to 44% in May 1983 (after 9 months of burial). Seed viability remained high, fluctuating between 73% and 100%, and did not decrease over time. Whether Dyer's woad seed can germinate after being stored in the soil longer than 10 months is not known. In a related study on the same site, <1% of Dyer's woad seeds from fruits sown in September 1984 germinated in fall of 1985, and none germinated after that time. Based on these observations, the authors suggest that either Dyer's woad has limited seed banking capability, seeds undergo induced dormancy over time, or seeds experience substantial predation or pathogen attack [20,21]. For more details of this study, see Seedling establishment and plant growth.
Germination: Dyer's woad seeds separated from the fruits do not exhibit dormancy and readily germinate under a variety of conditions, though they do not readily germinate when they remain intact within the fruit. Dyer's woad seeds do not usually dehisce from the fruits under field conditions; thus, the intact fruit imposes dormancy [87]. The majority of Dyer's woad seeds collected in August 1969 and separated from the fruits germinated after incubation for 168 hours at temperatures from 37 to 77 °F (3-25 °C). Conversely, when intact fruits were incubated, germination was low and erratic. Seedlings elongated much more slowly from fruits than from seeds [87].
Dyer's woad germination rates and seedling lengths after 168 hours incubation at a range of temperatures [87] TemperatureReduced germination and seedling elongation from intact fruits were likely due to chemistry rather than due to a physical obstruction. In a laboratory study, not only were germination and seedling emergence reduced from intact Dyer's woad fruits, but the presence of intact fruits or fruit leachate also reduced germination and seedling emergence in both threshed Dyer's woad seed and in seeds of several other species (see Successional Status for details). Washing Dyer's woad fruits in tap water for 48 hours increased germination, and washing fruits for 96 hours almost eliminated germination inhibition. In the field, some Dyer's woad seedlings established from fruits that overwintered [87].
Germination inhibitors present in freshly sown seed are likely leached over winter, thereby allowing greater germination of overwintered seeds. In a field study in Utah, germination of Dyer's woad seeds sown in October 1984 was 10 times higher in spring 1985 than fall 1984. The author speculates that seeds that germinated shortly after being sown may have been in damaged fruits [20].
Dyer's woad seed germination is likely inhibited by shade. High percentages (>85%) of Dyer's woad seed germinated under red, yellow, and white light within 4 days. Significantly lower percentages germinated under far red and blue light (15% and 37%, respectively) (P<0.05), and germination time was longer. Far red and blue light simulate light conditions under a dense canopy [75].
Seedling establishment and plant growth: Seedling establishment, survivorship, growth, and eventual reproductive output (see Seed production) may vary among Dyer's woad seedlings established in the fall versus those established in spring, and among microsites. Dyer's woad population demographics were studied over a 2-year period on a Utah rangeland where 100,000 Dyer's woad fruits were collected during the summer of 1984 and sown on 8 September 1984 in a "well-vegetated" area lacking Dyer's woad. During the study period precipitation was 18% above the estimated long-term average, and mean monthly temperatures were slightly below the long-term average [20,21]. The following information comes primarily from this single study and is therefore limited in scope; Dyer's woad may display different population dynamics on other sites. See Seasonal development for more precise phenological information from Dyer's woad populations in the same area.
Seedling establishment: For freshly shed seeds, establishment rates were lower 1 month after sowing in the fall (0.3%) than during the following spring (2.7%) [20,21], which is consistent with findings of Young and Evans [87] that Dyer's woad fruits contain water-soluble germination-inhibiting substances that would have leached over winter. Germination in fall 1985 was twice that in fall 1984; these differences were not associated with differences in either precipitation or mean monthly temperatures. Germination from the original seed input ceased after fall 1985 [20,21] (see Seed banking).
Microsites near sagebrush plants seem to provide a more favorable microenvironment for Dyer's woad seedling establishment than interspace microsites. Seedling densities were 170 and 26 Dyer's woad plants/m² on sagebrush and interspace microsites, respectively [20,21].
Survival: Survivorship patterns were similar in fall- and spring-established Dyer's woad populations, with peak mortality in summer. Cohorts of Dyer's woad that established in October 1984 (n=285) experienced little mortality during the following winter, slight mortality in early spring 1985, and peak mortality during the summer. Thirty-six of these plants survived the summer drought, overwintered again, flowered, and set seed in spring of 1986. None of the Dyer's woad seedlings that established during the spring of 1985 (n=2,664) flowered in the same year. Of the spring-established cohort, 371 individuals survived the summer drought and overwintered. Eighty-seven percent of these plants flowered and produced seeds in spring of 1986, and the other 13% remained vegetative. Peak mortality in both Dyer's woad populations occurred during a period with high temperatures and negligible precipitation, suggesting that the main source of mortality was water stress; there was no evidence of predation or pathogens. The authors note that the developing roots of young rosettes of Dyer's woad are unlikely to access soil moisture from deep soil layers, where moisture occurs during hot and dry conditions above ground; but they caution that a causal relationship between seedling mortality and soil moisture deficit was not established because soil water content was not measured [20,21].
A life table analysis for Dyer's woad showed constriction of population growth at 2 transitions: seed to seedling (establishment) and young rosettes to mature rosettes. The establishment rate was 3%; and only 23% of young rosettes survived to mature rosettes. Once plants became mature rosettes, the probability of surviving to reproduce was 81%. All flowering individuals set seed, with an average fruit production of 496 fruits/plant [20,21].
Neither microsite characteristics nor seedling density appeared to impact mortality rates in Dyer's woad populations. Mortality of Dyer's woad plants growing near sagebrush and those in the interspaces were similar (73% and 74% respectively), despite a 7-fold difference in seedling density [20,21].
Growth and reproductive output: Fall germination of Dyer's woad favors both vegetative growth and reproductive output (see Seed production); however, spring germination was more important than fall germination in terms of overall population growth: Higher germination rates in spring resulted in more individual plants and higher total fruit production from spring-germinated cohorts than fall-germinated cohorts. Fall-germinated individuals had nominally greater rosette sizes than spring-germinated individuals during most of the study period, and differences were most pronounced at the start of the spring 1986 growing season. Stem growth was initiated in both cohorts during the last week of March 1986, and rapid stem growth occurred up to 18 May 1986. By 20 April, the fall cohort was taller. The fall cohort had significantly greater fruit production/plant (P<0.1), but fruit weights were similar and the spring population had more plants [20,21].
Neither microsite characteristics nor plant density in Dyer's woad cohorts appeared to translate into better vegetative and reproductive performance: rosette size, height of flowering stalks, and seed production were similar between these 2 groups [20,21].
Vegetative regeneration: Several sources indicate that Dyer's woad plants may sprout when the top growth is removed at ground level [19,20,21,36,67]. Sprouting seems to originate from buds on Dyer's woad root crowns ([4], review by [12], personal communication [15]). Numerous vague references to vegetative or asexual regeneration in Dyer's woad were found in the literature: "Clonal growth has been observed but is not common" [37]; "Asexual reproduction may occur from this underground root system" [80]; "....the weed can spread from underground portions of the root system...." [6]; "It has a large fleshy taproot from which it may reproduce asexually" [19]; and "Damaged plants often resprout from buds located on the root crown and, less frequently, from the roots" [67]. However, vegetative regeneration in Dyer's woad seems to be restricted to sprouting from the root crown following aboveground damage.
Dyer's woad is likely to survive and sprout following aboveground damage and defoliation [19,20,21,36,67], depending on timing, frequency, and severity of damage. A review by Evans [19] states that while undisturbed Dyer's woad plants typically behave as biennials or winter annuals, perennial behavior can be elicited by mowing, hand-pulling, or breaking the bolting stalk above ground. This is supported by evidence from a field study where plants were clipped at varying intensities, frequencies, and dates: Significant mortality and reduction in reproductive performance occurred when at least 60% of the aboveground phytomass had been removed on or after 23 May (P<0.05) [20] (see Physical or mechanical control for details and methodology). Fuller (1985 as cited by [20]) demonstrated that to substantially reduce flowering capacity and cause adequate mortality before 23 May, Dyer's woad had to be clipped 2 inches (5 cm) below ground. "This suggests that regeneration of Dyer's woad, following clipping damage, results from activation of crown buds and those located on the roots just beneath ground level". Young rosettes are less likely than older plants to survive defoliation due to the lack of development of the root system in young rosettes [20].
A review by Callihan and others [12], a laboratory study by Asghari [4], and observations by Dewey (personal communication [15]) suggest that buds on Dyer's woad root crowns sometimes survive after the plant has flowered, allowing the plants to persist and possibly produce additional seed crops. Callihan and others [12] note, "Frequently, crown buds on plants that have flowered will survive, allowing plants to persist for three or more seasons." Asghari [4] used 1-year-old Dyer's woad rosettes that had previously bolted and flowered in a vernalization study: several of these rosettes bolted and produced seed in the greenhouse. Dewey (personal communication [15]) notes repeated observations of established (flowered) Dyer's woad plants damaged by tillage, mowing, or fire that have re-emerged and flowered again later in the same summer or in the following season. He suggests that this resprouting is from buds atop the plant's main taproot, not from creeping roots or rhizomes: He has never seen 2 Dyer's woad plants connected to each other under ground.
SITE CHARACTERISTICS:
In the western United States, Dyer's woad most commonly establishes and persists on rangelands and disturbed sites such as roadsides, rights-of-way, fence rows, uncultivated croplands (e.g., alfalfa and small grain fields, orchards), pastures, old fields, and "waste places" ([17,28,31,32,36,82], reviews by [19,54]). Characteristics of sites supporting Dyer's woad in eastern North America were not described in available literature (2009). A Virginia flora describes Dyer's woad as infrequent and occurring on disturbed sites [85].
Climate: Dyer's woad is native to parts of Russia, where the climate may be similar to that of the Intermountain West (review by [2]). Few studies of Dyer's woad report climate data. On study sites where Dyer's woad occurred on coarse, well-drained soils at 2 foothill locations on the western slope of the Wellsville Mountains in northern Utah, mean annual precipitation is 16 inches (400 mm), and mean annual air temperature is °F (9 °C) [21,84]. A review by Parker [59] suggests that Dyer's woad has a moisture requirement of 14 to 18 inches (356-457 mm) per year. Specimens of Dyer's woad were collected at 40 xeric to mesic sites in Idaho [12].
Elevation: Elevations ranges for Dyer's woad were given for the following areas:
Elevation ranges for Dyer's woad by geographic area Area Elevation range California <3,280 feet (<1,000 m) [31] Idaho 2,950-8,860 feet (899-2,700 m) [12] Nevada 4,500 to 7,000 feet (1,370-2,130 m) [40] Utah 4,000-7,000 feet (1,220-2,130 m) [59,82] Utah (Uinta Basin) from low elevations up to 8,500 feet (2,590 m) [28] Intermountain West 4,430-8,530 feet (1,350-2,600 m) [36]Landforms and soils: Western rangelands invaded by Dyer's woad typically occur on uplands, foothills, hillsides, and mountain valleys (review by [59]). A survey of Dyer's woad in southeastern Idaho found that it occurred primarily on the east side of valleys, extending up canyons, and generally on south-facing, steep to flat slopes in full sun [12]. Infestations are frequently observed on steep hillsides in rugged, inaccessible mountain terrain (review by [19]). Dry foothill sites typically support native bunchgrass, sagebrush, and mountain brush communities [36,45,82] (see Habitat Types and Plant Communities). Dyer's woad is thought to be well suited to the dry, coarse, rocky soils on these sites (reviews by [2,19,59,80]) and is "a weed of dry places" in much of the Pacific Northwest [33]. Dyer's woad occurs on mesic (adequate moisture throughout most of season) and mesic-xeric (abundant moisture early in season, becoming drier later on) valleys in Montana [7,44]. In England, Dyer's woad often occurs in old lime pits and chalk quarries (review by [80]) and is said to prefer alkaline soils on western rangelands (reviews by [59,80]).
Although many sources suggest that Dyer's woad is well suited to coarse, rocky soils with low water-holding capacity (reviews by [2,19,59,80]), Dyer's woad grew larger and had greater nitrate aquisition on a relatively moist site with fine soil textures than on a drier, coarse textured soil in a Utah field study (see table below) [48]. Differences in these variables were not related to proximity, life form, or diversity of neighboring plants (see Successional Status).
Mean values for several response variables in Dyer's woad grown at 2 sites in northern Utah [48] Site Millville Hyde Park Soil description coarse-loamy over sandy or sandy-skeletal, mixed, superactive, mesic Calcic Haploxerolls fine, mixed, active, mesic, Aquic Argixerolls Shoot dry mass (g) 31.24* 84.88 Leaf nitrogen (mg/g) 33.38* 42.63 Leaf carbon:nitrogen ratio 11.50* 8.54 Root diameter (mm) 2.25* 2.93 Root dry mass (g) 1.69 2.52 Root length (m/soil core) 1.37 1.12 Specific root length (m/g) 1.07* 0.77 *Indicates a significant difference (P<0.001) between sites for that variable.Establishment in early succession: In a small-plot (1.5 × 1.5 m) experiment Dyer's woad seedling establishment was consistently higher in disturbed than undisturbed plots regardless of growth form composition of plots. Plots were composed of 24 plants of either crested wheatgrass (Agropyron cristatum × A. desertorum), western yarrow (Achillea millefolium) or Wyoming big sagebrush (Artemisia tridentata var. wyomingensis), and were either left intact or disturbed by removing 4 plants from the center and lightly scarifying with a rake. Four hundred Dyer's woad seeds were sown in each plot. Dyer's woad seedling density was 52% to 66% higher in disturbed plots than intact plots (P<0.01) [48]. According to Monaco and others [56], the ability of Dyer's woad to establish on disturbed sites in early succession may be determined by its "colonizing ability", not its competitive ability for soil nitrogen (see below).
Persistence: Dyer's woad can establish and persist on many types of anthropogenically disturbed sites (see Site Characteristics), and commonly occurs on semi-arid rangelands with a long history of livestock grazing (e.g., [84]). A review by DiTomaso [16] lists Dyer's woad among nonnative plants that tend to be avoided by livestock, which can favor a rapid shift in dominant species in grazed rangeland plant communities where these unpalatable plants occur. Another review by Parker [59] classified Dyer's woad as an "invader" in terms of its response to grazing. Field studies in northern Utah [20,84] indicate that Dyer's woad is readily grazed by domestic sheep prior to flowering; however, little damage is done to the plants (see Biological control).
Competition experiments on old fields in Utah suggest traits in Dyer's woad that facilitate its persistence in disturbed, semiarid shrub-steppe ecosystems. In a greenhouse experiment, Dyer's woad exhibited low plasticity in response to nitrogen availability, suggesting a low nitrogen requirement, low nitrogen productivity, or both. The authors note that these qualities are associated with the ability of a species to survive and persist under stressed, nutrient-poor conditions [56]. In a similar experiment, nitrate acquisition of Dyer's woad was less than that of crested wheatgrass, greater than that of big sagebrush (P<0.01), and similar to that of western yarrow (P<0.01). Dyer's woad was less competitive for nitrate than cheatgrass, and similar to forage kochia (Kochia prostrata). These results suggest that superior competition for soil nitrogen is not the primary mechanism responsible for the dominance and proliferation of Dyer's woad [48].
Young and Evans [87] suggest that perennial grasses seem to coexist moderately well with Dyer's woad, perhaps due to differences in root systems, although the height, leaf size, and leaf arrangement of Dyer's woad may give it an advantage in shading range grasses. Other researchers note that the periods of rapid growth by Dyer's woad and peak water extraction by bluebunch wheatgrass may overlap on some sites in some years, suggesting there may be belowground interference between these co-occurring species [21].
Establishment and persistence in late succession: Evidence of Dyer's woad's ability to invade established vegetation comes from field studies in Utah [20,21] and California [87]. In a "well-vegetated" area on a Utah rangeland that had not been grazed by livestock for several decades, Dyer's woad established from seed sown by researchers [20,21]. In a study in northern California [87], Dyer's woad established in annual grass communities considered "ecologically closed" [66]. These annual grasslands, dominated by medusahead or cheatgrass, were thought to represent a culmination of plant succession, and invasion and dominance by Dyer's woad prompted an investigation into the mechanism allowing its establishment (see Allelopathy).
Results from small-plot experiments in Utah suggest that sites supporting a diversity of species or life forms may be more resistant to Dyer's woad establishment than those dominated by single species or life form. Species used were a combination of native sagebrush-steppe species and nonnative species widely used for revegetation within sagebrush-steppe communities. Dyer's woad seedling establishment was consistently higher in single-species (western yarrow) forb plots than in 4-species forb plots, mixed life form plots (consisting of grasses, forbs and shrubs), or single-species shrub (Wyoming big sagebrush) plots. Dyer's woad establishment was consistently higher in 4-species shrub plots than 4-species forb plots. Dyer's woad establishment in single-species grass plots (crested wheatgrass) and 4-species grass plots was inconsistent between years [48].
Shade tolerance: While Dyer's woad tends to occur on open, sunny sites (see Habitat Types and Plant Communities and Site Characteristics), it exhibits some degree of shade tolerance. Callihan and others [12] note Dyer's woad occurrence in many types of plant communities in Idaho, including those dominated by trees and large shrubs. In the greenhouse, Dyer's woad responded to increased shade through morphological modifications (increased leaf area, specific leaf area, and shoot:root ratio) to improve its light-harvesting ability. These responses may favor the ability to establish and persist on harsh, nutrient-poor sites as well as shaded, undisturbed sites. Dyer's woad also demonstrated morphological plasticity in response to variable water conditions, especially under shaded conditions. The authors suggest that high plasticity in heterogeneous environments may allow Dyer's woad to establish and spread into new sites without the lag time required for local adaptation [56]. However, germination of Dyer's woad seeds may be inhibited by shade [75].
Allelopathy: Laboratory studies suggest that Dyer's woad fruits probably contain allelopathic substances [87], although the allelopathic chemicals have not been identified. In the laboratory, the presence of Dyer's woad fruits inhibited germination of Dyer's woad, tumble mustard (Sisymbrium altissimum), and alfalfa seeds; reduced root length in seedlings of Dyer's woad, tumble mustard, medusahead, cheatgrass, and alfalfa; and reduced shoot length in seedlings of Dyer's woad and tumble mustard. Germination and root length were also reduced for several species incubated on substrates treated with Dyer's woad fruit leachate, as shown in the table below. Medusahead responded similarly, although data were not provided [87].
Mean percentage germination and root length of species incubated on substrates treated with Dyer's woad woad fruit leachate [87] Species Dilution ratio* GerminationBecause Dyer's woad produces a large number of fruits, and these fruits seem to suppress germination of associated species, successional trajectories may be altered in communities dominated by Dyer's woad, with Dyer's woad maintaining dominance by reducing establishment of other species. As a biennial or short-lived perennial, Dyer's woad does not have to establish seedlings every year to maintain dominance in annual communities. The researchers noted, however, that some annual grasses established in Dyer's woad stands in the field [87].
Information on seed banking in Dyer's woad was lacking, and it had not been determined how long seeds are viable in the soil, as of 2009. Anecdotal accounts from Europe suggest that Dyer's woad sometimes appears after grasslands are tilled; authors contend that these are sites of former woad crops where the seeds have remained dormant in the soil, presumably for many years (King 1966 as cited by [87]).
While Dyer's woad seeds may have no dormancy, they are contained in fruits that have water soluble germination inhibitors such that few seeds germinate immediately in the field, presumably until the inhibitors are leached from the fruit [87]. The inhibitors in the fruit may allow Dyer's woad seed to persist in the soil seed bank [19]. Because the inhibitors are removed by leaching, they do not seem likely to contribute to long-term persistence of seed in the soil, because they would be leached by precipitation, allowing germination under favorable conditions [87].
Evidence from field studies indicates that some Dyer's woad seeds remain viable in the soil for at least 10 to 12 months. Dyer's woad fruits (1,200 total) were harvested from a Utah study site on 8 July 1982 and buried under about 0.4 inch (1 cm) of soil. Each month, 120 fruits were removed from the field, and seeds were removed from fruits and tested for germination and viability. Germination tests were conducted at 77 °F (25 °C) with 12 hours each of alternating light and darkness, and germinated and viable seeds were counted after 14 days. Germination rates of Dyer's woad seed stored in the field ranged from 99% in September 1982 (after 1 month of burial) to 44% in May 1983 (after 9 months of burial). Seed viability remained high, fluctuating between 73% and 100%, and did not decrease over time. Whether Dyer's woad seed can germinate after being stored in the soil longer than 10 months is not known. In a related study on the same site, <1% of Dyer's woad seeds from fruits sown in September 1984 germinated in fall of 1985, and none germinated after that time. Based on these observations, the authors suggest that either Dyer's woad has limited seed banking capability, seeds undergo induced dormancy over time, or seeds experience substantial predation or pathogen attack [20,21]. For more details of this study, see Seedling establishment and plant growth.
Dyer's woad fruits do not release the seed at maturity, but fall to the ground intact [19]. The majority of Dyer's woad fruits disperse within a few meters of parent plants. Long-distance dispersal may occur with the aid of humans, livestock, wildlife, and water [20].
Most Dyer's woad fruits shed soon after reaching maturity, although some remain on the plants until winter. Fruits are firmly attached to plants, and some abrasive force such as wind or rain is needed to detach them. A field study in Utah recorded daily Dyer's woad fruit dispersal from 25 June 1985 until 27 August 1985. Most of the fruits were shed in the first 10 days of the study; thereafter, the dispersal rate declined substantially, leveling off after 4.5 weeks. Ninety-five percent of all trapped fruits fell within 21 inches (54 cm) of parent plants, and mean dispersal distance was positively correlated with the height at which seeds were released (r²=0.85). The greatest distance that fruits traveled via wind was about 8 feet (2.4 m). The relationship between windspeed and number of fruits dispersed was "poor"; however, most fruits scattered in the direction of prevailing winds. Dyer's woad fruits remaining on plants until winter may disperse much greater distances when blown over the surface of crusted snow [20,21]. Fruits may be further transported by ants, as was observed during studies on Utah rangelands [20].
Long-distance spread of Dyer's woad fruits and seeds must be aided by vectors such as humans, livestock, wildlife, and water. Humans may disperse fruits in their clothing, vehicles, tools or machinery [20,21,80]. Roadsides and railways are effective avenues of seed dispersal [19]. Long-distance dispersal is likely when Dyer's woad seed is a contaminant in alfalfa or other crop seed (review by [12]); or when mature, seed-bearing Dyer's woad plants are cut and baled with alfalfa in infested fields, and this baled hay is shipped to where it is used as livestock feed [19,20,21]. Contaminated hay is one of the major causes of Dyer's woad spread [36].
Livestock and wildlife may carry fruits in mud on their hooves or in their fur [36]. The curved pedicel of Dyer's woad fruits may act as a hook to aid in dispersal by animals. Dyer's woad fruits remaining on plants past the first snowfall may be dispersed by herds of deer and elk in the winter months, when herd use of foothill sites is highest [20]. Farah [20] speculates that a high incidence of Dyer's woad infestations on south-facing slopes on Utah rangeland may be related to deer and elk use of these sites in winter. Birds and rodents may also contribute to long-range dispersal of Dyer's woad [20].
Downhill and downstream dispersal of Dyer's woad fruits may be aided by water; flattened wings facilitate this mode of dispersal. Dyer's woad populations along the banks of drainage systems in Utah may have established after this type of dispersal [20,21].
Seedling establishment and plant growth: Seedling establishment, survivorship, growth, and eventual reproductive output (see Seed production) may vary among Dyer's woad seedlings established in the fall versus those established in spring, and among microsites. Dyer's woad population demographics were studied over a 2-year period on a Utah rangeland where 100,000 Dyer's woad fruits were collected during the summer of 1984 and sown on 8 September 1984 in a "well-vegetated" area lacking Dyer's woad. During the study period precipitation was 18% above the estimated long-term average, and mean monthly temperatures were slightly below the long-term average [20,21]. The following information comes primarily from this single study and is therefore limited in scope; Dyer's woad may display different population dynamics on other sites. See Seasonal development for more precise phenological information from Dyer's woad populations in the same area.
Seedling establishment: For freshly shed seeds, establishment rates were lower 1 month after sowing in the fall (0.3%) than during the following spring (2.7%) [20,21], which is consistent with findings of Young and Evans [87] that Dyer's woad fruits contain water-soluble germination-inhibiting substances that would have leached over winter. Germination in fall 1985 was twice that in fall 1984; these differences were not associated with differences in either precipitation or mean monthly temperatures. Germination from the original seed input ceased after fall 1985 [20,21] (see Seed banking).
Microsites near sagebrush plants seem to provide a more favorable microenvironment for Dyer's woad seedling establishment than interspace microsites. Seedling densities were 170 and 26 Dyer's woad plants/m² on sagebrush and interspace microsites, respectively [20,21].
Survival: Survivorship patterns were similar in fall- and spring-established Dyer's woad populations, with peak mortality in summer. Cohorts of Dyer's woad that established in October 1984 (n=285) experienced little mortality during the following winter, slight mortality in early spring 1985, and peak mortality during the summer. Thirty-six of these plants survived the summer drought, overwintered again, flowered, and set seed in spring of 1986. None of the Dyer's woad seedlings that established during the spring of 1985 (n=2,664) flowered in the same year. Of the spring-established cohort, 371 individuals survived the summer drought and overwintered. Eighty-seven percent of these plants flowered and produced seeds in spring of 1986, and the other 13% remained vegetative. Peak mortality in both Dyer's woad populations occurred during a period with high temperatures and negligible precipitation, suggesting that the main source of mortality was water stress; there was no evidence of predation or pathogens. The authors note that the developing roots of young rosettes of Dyer's woad are unlikely to access soil moisture from deep soil layers, where moisture occurs during hot and dry conditions above ground; but they caution that a causal relationship between seedling mortality and soil moisture deficit was not established because soil water content was not measured [20,21].
A life table analysis for Dyer's woad showed constriction of population growth at 2 transitions: seed to seedling (establishment) and young rosettes to mature rosettes. The establishment rate was 3%; and only 23% of young rosettes survived to mature rosettes. Once plants became mature rosettes, the probability of surviving to reproduce was 81%. All flowering individuals set seed, with an average fruit production of 496 fruits/plant [20,21].
Neither microsite characteristics nor seedling density appeared to impact mortality rates in Dyer's woad populations. Mortality of Dyer's woad plants growing near sagebrush and those in the interspaces were similar (73% and 74% respectively), despite a 7-fold difference in seedling density [20,21].
Growth and reproductive output: Fall germination of Dyer's woad favors both vegetative growth and reproductive output (see Seed production); however, spring germination was more important than fall germination in terms of overall population growth: Higher germination rates in spring resulted in more individual plants and higher total fruit production from spring-germinated cohorts than fall-germinated cohorts. Fall-germinated individuals had nominally greater rosette sizes than spring-germinated individuals during most of the study period, and differences were most pronounced at the start of the spring 1986 growing season. Stem growth was initiated in both cohorts during the last week of March 1986, and rapid stem growth occurred up to 18 May 1986. By 20 April, the fall cohort was taller. The fall cohort had significantly greater fruit production/plant (P<0.1), but fruit weights were similar and the spring population had more plants [20,21].
Neither microsite characteristics nor plant density in Dyer's woad cohorts appeared to translate into better vegetative and reproductive performance: rosette size, height of flowering stalks, and seed production were similar between these 2 groups [20,21].
Vegetative regeneration: Several sources indicate that Dyer's woad plants may sprout when the top growth is removed at ground level [19,20,21,36,67]. Sprouting seems to originate from buds on Dyer's woad root crowns ([4], review by [12], personal communication [15]). Numerous vague references to vegetative or asexual regeneration in Dyer's woad were found in the literature: "Clonal growth has been observed but is not common" [37]; "Asexual reproduction may occur from this underground root system" [80]; "....the weed can spread from underground portions of the root system...." [6]; "It has a large fleshy taproot from which it may reproduce asexually" [19]; and "Damaged plants often resprout from buds located on the root crown and, less frequently, from the roots" [67]. However, vegetative regeneration in Dyer's woad seems to be restricted to sprouting from the root crown following aboveground damage.
Dyer's woad is likely to survive and sprout following aboveground damage and defoliation [19,20,21,36,67], depending on timing, frequency, and severity of damage. A review by Evans [19] states that while undisturbed Dyer's woad plants typically behave as biennials or winter annuals, perennial behavior can be elicited by mowing, hand-pulling, or breaking the bolting stalk above ground. This is supported by evidence from a field study where plants were clipped at varying intensities, frequencies, and dates: Significant mortality and reduction in reproductive performance occurred when at least 60% of the aboveground phytomass had been removed on or after 23 May (P<0.05) [20] (see Physical or mechanical control for details and methodology). Fuller (1985 as cited by [20]) demonstrated that to substantially reduce flowering capacity and cause adequate mortality before 23 May, Dyer's woad had to be clipped 2 inches (5 cm) below ground. "This suggests that regeneration of Dyer's woad, following clipping damage, results from activation of crown buds and those located on the roots just beneath ground level". Young rosettes are less likely than older plants to survive defoliation due to the lack of development of the root system in young rosettes [20].
A review by Callihan and others [12], a laboratory study by Asghari [4], and observations by Dewey (personal communication [15]) suggest that buds on Dyer's woad root crowns sometimes survive after the plant has flowered, allowing the plants to persist and possibly produce additional seed crops. Callihan and others [12] note, "Frequently, crown buds on plants that have flowered will survive, allowing plants to persist for three or more seasons." Asghari [4] used 1-year-old Dyer's woad rosettes that had previously bolted and flowered in a vernalization study: several of these rosettes bolted and produced seed in the greenhouse. Dewey (personal communication [15]) notes repeated observations of established (flowered) Dyer's woad plants damaged by tillage, mowing, or fire that have re-emerged and flowered again later in the same summer or in the following season. He suggests that this resprouting is from buds atop the plant's main taproot, not from creeping roots or rhizomes: He has never seen 2 Dyer's woad plants connected to each other under ground.
Yerba pastel, isatide o glasto, son los nomes comunes pa la especie fanerógama Isatis tinctoria de la familia Brassicaceae. Dacuando conocida como «áspide de Xerusalén». Añil, isatide o glastum ye tamién el nome del colorante azul producíu por esta especie. La raigañu de Isatis (chinu: 板藍根; pinyin: bǎn lán gēn; inglés:indigowoad) ye una yerba de la medicina tradicional china que vien de los raigaños d'esta planta.
Ye una planta biañal, raramente perenne, robusta, algama un tamañu de 30-120 cm d'altor, glabra a arispia, subglauca, arguta, con muncha inflorescencies ramificaes enantes. Fueyes basales rosulaes, oblanceolaes, de pecíolu curtiu, de 5-15 cm de llargu, 1.3 cm d'anchu, bien variables en tamañu y con frecuencia enforma mayor nes plantes cultivaes, les fueyes caulinarias de 10-80 mm de llargu, 5-25 mm d'anchu, linear-llanceolaes, auriculaes na base, amplexicaules; les cimeres muncho más pequeñes. Les inflorescencies en recímanos de 30-80-flores, paniculaes, ebracteaes, aumentando hasta 10 (-15) cm na fruta. Flores de 4-5 mm de diámetru, de color mariellu; con pedúnculu de 5-10 mm de llongura na fruta. Sépalos los 2-2.5 mm de llargu, de color verde amarellentáu. Pétalos 3-4.5 mm de llargu, 1.5-2 mm d'anchu. El frutu ye una silicua bien variable en tamañu, dende 10 hasta 20 mm de llargu, 2.5-5 mm d'anchu, oblonga, estrechándose escontra la base, con ápiz truncáu a arrondáu, de cutiu daqué ampliu nel mediu (en lóculo), glabres a puberulentas; grana de 3-4 mm de llargu, 1 mm d'anchu, elipsoide allargáu, de color marrón.[1]
Ye nativa de les estepes y zones desérticas del Cáucasu, centru d'Asia al este de Siberia y oeste d'Asia (Hegi), pero anguaño tópase en delles partes del sudoeste y centru d'Europa. Ye cultivada n'Europa, especialmente nel oeste y el sur del continente dende l'Antigüedá.
La yerba cultivar en delles rexones del norte de China, a saber Hebei, Beixín, Heilongjiang, Henan, Jiangsu, y Gansu. Los raigaños collechar mientres la seronda y ensúguense. El raigañu ensugáu procesar en gránulos, que se peracaben comúnmente eslleíos n'agua caliente o té. El productu ye bien popular en China.
Hasta fines del s. XVI, cuando'l índigo poner nel mercáu pol desenvolvimientu de les rutes del «Alloñáu Oriente», el isatide yera la única fonte de tintura azul n'Europa.
Los primeros afayos arqueolóxicos de granes daten del Neolíticu y atopáronse na cueva francesa d'Audoste, Boques del Ródano. N'asentamientos de la Edá de Fierro en Heuneburg, Alemaña, quedaron impresiones de granes en alfarería. Los enterramientos de Hallstatt, Hochdorf y Hohmichele contienen testiles tiñíos con isatide.
Xuliu César diz en de Bellu Gallico que los Britanni usen pa marcar los sos cuerpos vitrum, pudiendo significar «tatuaxe con isatide», anque más probablemente faiga referencia a un tipu de vidriu azul verdosu que yera comúm naquellos tiempos.[2] Los pictos tomaríen el so nome del llatín picti, que significa «pintáu popular» o posiblemente «tatuáu popular», pola so práutica de dir a la batalla desnudos colos sos cuerpos pintaos o tatuaos, lo que foi remembráu nel cantar británicu moderna humorística The Woad Ode (La Oda a Isatide). Sicasí, estudios más recién ponen seriamente en dulda la presunción de qu'el isatide fora'l material que los pictos usaron pa decorase'l cuerpu. Los esperimentos contemporaneos con isatide prueben que nun se trabaya bien nin como pintura corporal nin como pigmentu de tatuaxe. Altamente astrinxente, al usase como tatuaxe o puestu en microlaceraciones, produz abondo picor y texíu llaceriáu y, una vegada curáu, non queda azul. L'usu común de cuchu como un ingrediente nel tinte tradicional de isatide facer entá más imposible d'aplicar na piel.[2]
Nel Mediterraneu utilizóse dende bien antiguu la pintura de añil pa pintar los cercos de puertes y ventanes, y de cutiu tamién les jambas, dinteles y hasta los estragales, cuidao que el color azul del añil estorna a los inseutos.
N'escavaciones realizaes en York atopóse un despachu de tinturas con restos de isatide y de plantes del xéneru Rubia datáu nel s. X, yera viquinga. En tiempos medievales, los centros del so cultivu yeren Lincolnshire, Somerset n'Inglaterra, Gascuña, Normandía, Somme, el Languedoc (en gran parte conocíu como País de la Cucaña yá que cocagne yera y ye el nome occitanu, y depués en francés d'esta planta y la so tintura), Bretaña, na actual Francia; Jülich, Erfurt y Turingia n'Alemaña; Piamonte y Toscana n'Italia. Los ciudadanos de los cinco ciudaes del isatide turingias de Erfurt, Gotha, Tennstedt, Arnstadt y Langensalza tuvieron los sos propios fueros. En Erfurt, los mercaderes de isatide tuvieron los fondos pa crear la Universidá de Erfurt. Una industria tradicional entá imprime con pomada en Turingia, Saxonia y Lusacia güei: conocida como Blaudruck (lliteralmente, «impresión n'azul»).
Los usos medievales de la tintura nun se llindaben a testiles. Por casu, el ilustrador de Lindisfarne Gospels usó una pomada sobre la base de pigmentos pal azul.
El pigmentu azul en pomada ye'l mesmu que la tintura índigo, pero menos concentrada. Col descubrimientu européu de les rutes marítimes a la India, grandes cantidaes de índigo impórtense. Tienen De surdir lleis en delles partes d'Europa pa protexer la industria llocal d'esa competencia del mercáu del índigo. "En 1577 el gobiernu alemán oficialmente prohibe l'usu del índigo, denunciándolo como gafíu, mortal y corroyente, la tintura del Diañu."[3] "... enantes del receso de la Dieta en 1577: prohibe usar 'l'apocayá inventáu, mortal, y corroyente tinte llamáu'l tinte del diañu.' Esta prohibición repitir en 1594 y otra vegada en 1603."[4] Col desenvolvimientu de los procesos de síntesis química, sintetízase'l pigmentu, colapsando dambes industries nos primeros años del s. XX. La última collecha comercial asocede en 1932, en Lincolnshire, Bretaña.
N'Alemaña, hai intentos d'usar Isatis pa protexer la llana ensin químicos peligrosos. Tamién la producción crez nel RU para tintes, particularmente n'impresor a esquita, y tintes, porque ye biodegradable y seguro al ambiente, non como munches tintes sintétiques. Isatis tinctoria ye vista como especie invasora en partes d'Estaos Xuníos.
Apocayá, científicos afayaron que puede usase en prevenir dellos cánceres, teniendo más de 20 vegaes la cantidá de glucobrasicina del brócoli.[5] Les fueyes moces cuando se llacerien pueden producir más glucobrasicina, más de 65 vegaes como muncho.[6]
El raigañu de Isatis utilizar pa quitar el "síndrome del calor tóxico" na M. T. china, aselar los dolores de gargüelu y pa tratar gripe, sarampión, paperes, sífilis, o escarlatina. Tamién s'utiliza pa la farinxitis, larinxitis, erisipeles, carbunclu (ántrax), y prevenir la hepatitis A, la meninxitis epidémica, el cáncer y les inflamaciones.
Posibles efeutos secundarios de menor importancia inclúin reacciones alérxiques que causen vértigos, namái les grandes dosificaciones o l'usu enllargáu pueden ser tóxicos a los reñones.[ensin referencies]
En febreru de 2003, na provincia de Guandong en China, un biltu de neumonía atípica (SARS) causó una demanda masiva qu'alzó los precios d'el vinagre, raigañu de Isatis y otres medicines al creer que ye útil na eliminación d'axentes infeiciosos.[ensin referencies]
Isatis tinctoria describióse por Carlos Linneo y espublizóse en Species Plantarum 2: 670. 1753.[1]
Yerba pastel, isatide o glasto, son los nomes comunes pa la especie fanerógama Isatis tinctoria de la familia Brassicaceae. Dacuando conocida como «áspide de Xerusalén». Añil, isatide o glastum ye tamién el nome del colorante azul producíu por esta especie. La raigañu de Isatis (chinu: 板藍根; pinyin: bǎn lán gēn; inglés:indigowoad) ye una yerba de la medicina tradicional china que vien de los raigaños d'esta planta.
Boyaq çüyütotu (lat. Isatis tinctoria)[1] - rəngotu cinsinə aid bitki növü.[2]
El glast, també anomenat pastell o herba del pastell i herba de Sant Felip (Isatis tinctoria) és una espècie de planta que en temps antics era molt conreada com a tintòria principalment a l'oest i sud d'Europa.
És una planta de la família brassicàcia originària d'Àsia central i occidental però estesa per gran part d'Europa des de temps neolítics.
En temps antics era l'única substància que donava el color blau.
L'ús d'altres colorants naturals i artificials va fer que progressivament es deixés de conrear.
El glast, també anomenat pastell o herba del pastell i herba de Sant Felip (Isatis tinctoria) és una espècie de planta que en temps antics era molt conreada com a tintòria principalment a l'oest i sud d'Europa.
És una planta de la família brassicàcia originària d'Àsia central i occidental però estesa per gran part d'Europa des de temps neolítics.
En temps antics era l'única substància que donava el color blau.
L'ús d'altres colorants naturals i artificials va fer que progressivament es deixés de conrear.
Planhigyn blodeuol bychan yw Llysiau lliw sy'n enw lluosog. Mae'n perthyn i'r teulu Brassicaceae. Yr enw gwyddonol (Lladin) yw Isatis tinctoria a'r enw Saesneg yw Woad.[1] Ceir enwau Cymraeg eraill ar y planhigyn hwn gan gynnwys Llysiau'r Lliw, Glas, Glasddu, Glaslys, Gweddlys,Llasarllys, Lliwiog Las, Lliwlys, Llysarllys.
Mae'r dail ar ffurf 'roset' a chaiff y planhigyn ei flodeuo gan wenyn.
Planhigyn blodeuol bychan yw Llysiau lliw sy'n enw lluosog. Mae'n perthyn i'r teulu Brassicaceae. Yr enw gwyddonol (Lladin) yw Isatis tinctoria a'r enw Saesneg yw Woad. Ceir enwau Cymraeg eraill ar y planhigyn hwn gan gynnwys Llysiau'r Lliw, Glas, Glasddu, Glaslys, Gweddlys,Llasarllys, Lliwiog Las, Lliwlys, Llysarllys.
Mae'r dail ar ffurf 'roset' a chaiff y planhigyn ei flodeuo gan wenyn.
Boryt barvířský (Isatis tinctoria) je jediný druh rodu boryt rostoucí v České republice. Je to rostlina, která byla po několik století důležitá pro barvení textilií, ale v současnosti je téměř zapomenutá.
Místa původu se nacházejí v jihovýchodní Evropě a okolo Středozemního moře. Postupně se tato teplomilná rostlina rozšířila do střední i východní Evropy, do Pobaltí i na jih Skandinávie. Dále byla lidmi zavlečena do Makaronézie a do Severní i Jižní Ameriky. Roste nejčastěji na slunných a sušších místech podél cest a železničních tratích, na trávnících s porušeným krytem nebo v opuštěných pískovnách a lomech.[1][2]
Jednoletá až krátce vytrvalá, slabě ojíněná rostlina namodralé barvy s lodyhou která vyrůstá z kůlovitého vícehlavého kořene. Lysá nebo při bázi krátce chlupatá lodyha, dorůstající do výšky 50 až 100 cm, bývá v horní části bohatě větvená. U rostliny se objevují dva druhy listů, spodní v listové růžici mají řapíky a jejich čepele jsou celokrajné, obkopinaté a dosahují délky až 15 cm. Z růžice vyrůstá lodyha a její střední a horní listy s modravým nádechem jsou přisedlé, úzce kopinaté se střelovitým, objímavým spodem tak, že po nich voda dobře stéká k lodyze a po ní ke kořeni. Rozvětvená rostlina je široká až 45 cm.
Pokud semeno vzklíčí z jara, vytvoří se přízemní růžici listů a z ní vyroste ještě tohoto roku lodyha s květy. Když semeno vyklíčí až koncem léta, vyroste téhož roku jen růžice listů, případně i krátká lodyha a teprve druhým rokem z ní vyroste rozvětvená květná lodyha. Druhá varianta přináší vzrůstnější rostliny s více květy a semeny. Je to hemikryptofyt, obnovovací pupen má u povrchu půdy a přes zimu ho kryjí odumřelé listy.
Zářivě žluté, čtyřčetné, drobné květy na krátkých stopkách jsou sestaveny do latovitě větvených hroznů. Kališní lístky jsou podlouhlé, mívají délku okolo 2,5 mm. Korunní lístky jasně žluté barvy jsou delší, až ke 4 mm a jsou rozeklané. V květu je šest tyčinek nestejné délky s nitkami dlouhými do 2,5 mm a prašníky 0,5 až 0,7 mm. Na květním lůžku jsou nektaria lákající opylující hmyz. Kvete v květnu a červnu.
Plody visící na převislých, zesílených stopkách jsou silně zmáčknuté, úzce obvejčité až eliptické, černé nebo hnědé jednopouzdré, nepukavé šešule (někdy nazývané nažky) s jedním, výjimečně dvěma semeny. Průměrně bývají dlouhé okolo 10 mm a jejich šíře bývá jen třetinová. Druh je variabilní co do velikosti a tvaru plodů.[1][2][3]
Boryt barvířský obsahuje v celé rostlině přírodní, ekologicky nezávadné barvivo které se používalo k barvení tkanin, převážně na modro. K barvení se používaly fermentované listy, z kterých se získával pigment indigo. (Při smíchání s kamencem se získá barva růžová). Později se k barvení začalo využívat stálejší barvivo, chemicky téměř identické, získávané z indigovníku pravého. V současnosti je i toto v převážné většině nahrazováno chemicky syntetizovanými pigmenty.[3][4]
V některých státech USA (např. v Arizoně a Montaně) se boryt barvířský rozšířil na velikých plochách a je považován za invazivní plevel, na mnoha místech se přistoupilo k jeho totální likvidaci.[5]
České zdroje [1][6] uvádějí v české floře dva podruhy borytu barvířského:
Zahraniční prameny, např.[7] považují Isatis praecox Kit. ex Tratt. za samostatný druh.
Boryt barvířský (Isatis tinctoria) je jediný druh rodu boryt rostoucí v České republice. Je to rostlina, která byla po několik století důležitá pro barvení textilií, ale v současnosti je téměř zapomenutá.
Farvevajd (Isatis tinctoria) er en toårig plante af korsblomst-familien, som vokser vildt på strandvolde i de sydøstlige egne af Danmark. Den har desuden tidligere været dyrket og er derfra forvildet i naturen.
Farvevajd findes langs Østersøens kyster, i Central- og Østeuropa samt i Centralasien[1]. Den har længe været kendt fra Bornholm[2], men siden 1960 er udbredelsen ekspanderet og omfatter nu også Sjællands østlige kyst og Amagers kyst, med mere spredte forkomster ved Store Bælts-kysten.
Tidligere blev farvevajd brugt til blåfarvning af tekstiler i Norden. I Danmark ophørte dyrkningen af vajd omkring år 1800 som følge af indigoimporten. Vajd indeholder et lys- og farveægte indigolignende farvestof.
Det første år danner vajd en ca. 20 cm høj roset af grønne blade. Hvis man knuser et blad mellem fingrene, bliver de blå. Det er bladene fra det første år der bruges til plantefarvning – farven udvindes ved at man lader bladene gære i urin i ca. 5 dage.
Andet år sætter planten en halvanden meter høj blomsterstand med gule blomster i juni, sætter frø og visner derefter.
I dag er farven fra både vajd og indigo stort set udkonkurreret af anilinfarverne.
Farvevajd (Isatis tinctoria) er en toårig plante af korsblomst-familien, som vokser vildt på strandvolde i de sydøstlige egne af Danmark. Den har desuden tidligere været dyrket og er derfra forvildet i naturen.
Der Färberwaid (Isatis tinctoria), Pastel oder Deutsche Indigo ist eine zweijährige Pflanze aus der Familie der Kreuzblütengewächse (Brassicaceae). Er stammt aus Westasien, wurde aber in Europa seit der Eisenzeit als Färberpflanze kultiviert. Aus dem Färberwaid wurde Indigo (Indigoblau) gewonnen.
Der Färberwaid ist eine mehrjährige oder meist zweijährige Pflanze und bildet im ersten Jahr eine Blattrosette mit 10 bis 20 cm langen verkehrt-eilanzettlichen und ganzrandigen bis leicht feingezähnten oder seitbuchtigen, stumpfen bis spitzen, leicht fein rauhaarigen, bläulich-grünen, „bereiften“ Laubblättern mit keilförmiger, herablaufender Basis. Im zweiten Jahr wachsen bis zu 75 bis 150 cm hohe aufrechte, „bereifte“ Stängel, die oben verzweigt und kahl, unterseits mit einzelnen Haaren besetzt sind. Die untersten Rosettenblätter sterben zur Blütezeit ab. Die oberen, sitzenden und stängelumfassenden, fast kahlen, „bereiften“, eiförmigen bis -lanzettlichen Blätter sind ganzrandig bis fein gezähnt und spitz bis rundspitzig, oberseits pfeilförmig, unterseits geöhrt an der keilförmigen, herablaufenden Basis.
Die endständigen Blütenstände bestehen aus mehreren Trauben mit gelben, rapsähnlichen Blüten, die sich am Stängelende zu einem ausladenden, rispigen Gesamtblütenstand verbinden. Die kleinen, zwittrigen und schlank gestielten Einzelblüten mit doppelter Blütenhülle sind tragblattlos. Die vier gelben und abgerundeten bis gestutzten Blütenblätter haben einen Durchmesser von 3 bis 8 Millimetern, sind spatelig, verkehrt-eiförmig. Es sind zudem vier gelblich-grüne, schmal-eiförmige und bootförmige Kelchblätter vorhanden. Es sind sechs kurze und tetradynamische Staubblätter vorhanden. Der oberständige Fruchtknoten ist schmal-eiförmig bis länglich mit sitzender Narbe. Es sind Nektarien vorhanden.
Die kleine, dunkelbraune bis schwärzliche, hängende und abgeflachte, verkehrt-eiförmige, nicht öffnende, kahl bis leicht behaarte Frucht (Samara), ist ein an der Spitze abgerundetes bis gestutzes oder eingebuchtetes Schötchen mit einer Mittelrippe auf den „Klappen“. Es ist 1 bis 2,5 Zentimeter lang und 3 bis 8 Millimeter breit mit je ein bis zwei ölhaltigen Samen. Die Schötchen bzw. die Samen sind rundum geflügelt. Es hängt an einem 5 bis 8 Millimeter langen Stiel, der sich zum Fruchtansatz hin verdickt. Die hellbraunen Samen sind schmal-eiförmig und bis 3,5 Millimeter lang.
Die Chromosomenzahl beträgt 2n = 28.[1]
Der Färberwaid ist eine zweijährige Halbrosettenpflanze. Vegetative Vermehrung erfolgt durch „Wurzelsprosse“. Sie weist vielfältige Anpassungen an trockene Standorte auf: So sind die Blätter durch einen dünnen Wachsüberzug blau „bereift“. Der Wachsüberzug vermindert die Erwärmung und lässt das Wasser abperlen, was auch Fäulnis verhindert. Außerdem wird durch die zentripetale Wasserleitung ins Zentrum der Rosette das ausgedehnte Wurzelwerk mit Wasser versorgt.
Blütenökologisch handelt es sich um homogame „nektarführende Scheibenblumen“. Die Staubblätter sind weit nach außen gebogen, was deshalb meist eine Fremdbestäubung bewirkt. Am Grunde der Staubblätter befindet sich je ein Nektarium mit starkem Honigduft. Bestäuber sind verschiedene Insekten. Die Blütezeit liegt zwischen Mai und Juli. Die Fruchtreife liegt zwischen Juli und August.
Der Färberwaid kommt ursprünglich in der Türkei, in Algerien und Marokko und vermutlich auch in Europa vor.[2] Er wurde aber bereits in der Eisenzeit in Europa kultiviert und gilt darum als Archäophyt. Der Färberwaid wächst heute hauptsächlich als verwilderte Pflanze in Europa. Er bevorzugt trockene Hänge, Felsen und trockene Ruderalstellen. Gebietsweise ist er eine Charakterart des Echio-Melilotetum aus dem Verband Dauco-Melilotion, doch kommt er in Mitteleuropa auch in Gesellschaften des Verbands Convolvulo-Agropyrion oder der Klassen Festuco-Brometea oder Thlaspietea rotundifolii vor.[1]
Der wissenschaftliche Name Isatis tinctoria wurde 1753 von Carl von Linné in Species Plantarum erstveröffentlicht.[3]
Es werden zwei bis drei Unterarten unterschieden, allerdings ist die Bestimmung unklar.
Die Blätter enthalten das farblose Glykosid Indican, das nach der Ernte enzymatisch in Zucker und Indoxyl gespalten und zum blauen bzw. bläulichen Indigo oxidiert wird (Fermentation). Die vollständige Umwandlung nach einem Färbevorgang nimmt etliche Stunden in Anspruch. Die Behauptung, hiervon leite sich der Ausdruck blaumachen ab, ist nur eine von mehreren ungesicherten Vermutungen (siehe hierzu den Artikel Blauer Montag).
Wegen des Holzschutzeffektes (gehemmtes Pilzwachstum) eignet sich die aus Färberwaid gewonnene blaue Farbe zum Streichen von beispielsweise Türen, Deckenbalken und Kircheninnenräumen.
Aus den Wurzeln der Färberwaidpflanze wird der Waidbitterlikör hergestellt. Außerdem wird die Färberwaidwurzel (Isatidis Radix) als traditionelles chinesisches Heilmittel (chinesische Bezeichnung Banlangen) zur Bekämpfung von Grippeinfektionen (aber auch Masern und Mumps) verwendet. Banlangen war vor allem während der SARS-Epidemie in China sehr gefragt, obwohl eine Wirkung gegen Viren nicht nachgewiesen ist.
Waid hat heutzutage als Ökofarbe wieder eine gewisse Bedeutung. Mancherorts wird Gewebe wieder mit ‚Erfurter Blau‘ gefärbt. Nach dem Mauerfall gab es vor allem in Thüringen eine starke Nachfrage nach der blauen Farbe aus Färberwaid zur originalgetreuen Restaurierung von Kirchen und anderen Gebäuden.
Die Pflanze wird seit der Vorgeschichte als Färberpflanze kultiviert. Blaue Fasern wurden in neolithischen Schichten der Höhle von Adaouste (Bouches-du-Rhône) gefunden, aber nicht chemisch analysiert.[4] Die Britannier rieben sich laut Caesar (De bello Gallico) vor dem Kampf mit Färberwaid (vitrum) ein.[5] „Alle Britannier hingegen färben sich mit Waid blaugrün, wodurch sie in den Schlachten um so furchtbar[er] aussehen; auch tragen sie lange Haare...“[6]. Auch Plinius der Ältere erwähnt diese Sitte (Naturalis historia XXII, 2, 1). Dass es sich bei dem genannten vitrum um Waid handelt, machen Funde von verkohlten Waidsamen aus der späteisenzeitlichen Siedlung Dragonby bei Scunthorpe, Lincolnshire wahrscheinlich. Sie lag auf dem Stammesgebiet der Corieltauvi[7]. Archäologisch wurden Waidsamen auch in der hallstattzeitlichen Siedlung von Hochdorf nachgewiesen, zusammen mit Wau.[8] Textilien in dem nahegelegenen "Fürstengrab" enthielten Indigotin,[9] waren also entweder mit Waid oder Indigo gefärbt. Auch aus dem Salzbergwerk in Hallstatt sind mit Waid gefärbte Textilien belegt,[4] der Gebrauch der Farbe war also nicht auf die Oberschicht beschränkt. In Frankreich wurden unter anderem in der Latènezeitlichen Siedlung bei Roissy-en-France, ZAC de la Demi Lune, Département Val-d’Oise, nördlich von Paris Waidsamen gefunden.[10]
Die dominierende Farbe des Mittelalters war wahrscheinlich die Farbe des Färberwaids: Blauviolett. Färberwaid war bis ins 16. Jahrhundert wichtig für das Färben von Leinen. Samen sind unter anderem aus Goudelancourt belegt.[11] Waid wurde auch in England[12] und Flandern angebaut. Die Spanier führten den Waidanbau auf den Azoren ein.[13]
Waid wurde dann durch den echten Indigo aus dem tropischen Schmetterlingsblütler Indigofera tinctoria, der ursprünglich aus Indien stammte, aber hauptsächlich in den amerikanischen Kolonien, besonders in der Karibik, angebaut wurde, verdrängt. Mit der kommerziellen Herstellung synthetischen Indigos seit 1897 verschwand der natürliche Indigo vom Markt.
In Deutschland wird der Färberwaid seit dem 9. Jahrhundert hauptsächlich in Thüringen angebaut. Die Stadt Erfurt erlangte als Zentrum des Waidhandels Macht und Reichtum, ebenso wie die anderen Waidstädte. Zur Verarbeitung wurden Waidmühlen verwendet. In Thüringen, so auch im Raum Pferdingsleben, wurde Färberwaid auf Flächen von rund 50 Acker (etwa 11,5 ha) in Brachfeldern angebaut. Dadurch wurde die durch Karl den Großen eingeführte Dreifelderwirtschaft durchbrochen.
Die Aussaat erfolgte in der Vor- und Nachweihnachtszeit auf den Schnee in Breitsaat. Mit zunehmender Verbesserung der Pflegebedingungen ging man zur Optimierung des Saatguteinsatzes zur Reihensaat über. Dabei säte man auf einer Fläche von 1 Gothaer Acker (etwa 2270 m²) ½ Erfurter Metze (etwa 14,9 l) Saatgut. Mit dem Sprießen der Pflanzen begann unter Einsatz von vielen Arbeitskräften die mühsame Unkrautbekämpfung. Zur Erntezeit rutschten die Bauern und ihre zahlreichen Hilfskräfte, etwa Wanderarbeiter aus der Lausitz, auf Knien von Pflanze zu Pflanze und stachen mit dem meißelähnlichen Waideisen dicht über der Wurzel die möglichst noch geschlossene Blattrosette ab. Drei bis vier Mal im Jahr wiederholte sich der Vorgang. Dann wurden die Waidblätter gewaschen, angetrocknet und zur Waidmühle gebracht. Dort drehten Zugtiere das senkrecht stehende Mühlrad, oft aus Seeberger Sandstein, im Kreis, das die Pflanzen in der Mühlpfanne zerquetschte. Die breiige Masse wurde auf Haufen fest zusammengeschlagen und in den wettergeschützten Tennen Tage lang liegen gelassen. Dabei begann die Masse zu gären. Frauen und Kinder formten nun aus dem Brei etwa faustgroße Klöße, deren Größe vom jeweilig geltenden Recht abhing. Die Klöße wurden auf Horden getrocknet, die in überdachte Waiddarren geschoben wurden. Nach zwei bis drei sonnigen Trocknungstagen karrte man den Waid zum vorgeschriebenen Markt, anfangs z. B. aus Pferdingsleben nach Gotha, später nach (Bad) Langensalza und Erfurt. Waid durfte in den Dörfern nicht gelagert werden. Die Waidhändler ließen das Halbprodukt weiterverarbeiten, die Ballen wurden auf den Waidböden zerschlagen und mit Wasser und Urin angefeuchtet. Die sodann einsetzenden Gärung spaltete das Indican.[14] Für die im Herstellungsprozess des Farbstoffs benötigte Alkalie „Pottasche“ (im Wesentlichen Kaliumkarbonat)[15] wurde „Waidasche“, meist aus Buchenholz oder anderen Harthölzern[16] verwendet.
Der Anbau und die Verarbeitung des Färberwaids zu Farbstoff waren nicht unproblematisch. Der Waidanbau beanspruchte ausgedehnte landwirtschaftlich nutzbare Flächen. Die Gärungs- und Färbeprozesse verursachten einen bestialischen Gestank und das Wasser wurde stark belastet. Der ästhetische Mehrwert blauer Kleidung wog diese Nachteile aber offensichtlich auf.[17] In der Folge des Dreißigjährigen Krieges und durch die Konkurrenz des billig importierten Indigo verlor der Waidanbau allmählich seine Bedeutung. Anfang des 20. Jahrhunderts stellte die letzte Waidmühle in Pferdingsleben ihre Arbeit ein. Seit 1997 wird in der Umgebung von Erfurt von einer kleinen Manufaktur wieder Färberwaid angebaut und als Erfurter Blau vermarktet.[18]
Die Gegend südöstlich von Toulouse, das Lauragais, war seit dem ausgehenden Mittelalter eines der Hauptanbaugebiete für Färberwaid in Europa. Viele Bauern der Region gaben die normale Landwirtschaft auf und erzielten mit dem Anbau der nichtessbaren Pflanze gute Gewinne, die jedoch infolge des Imports von Indigofarbstoffen aus den überseeischen Kolonien (Louisiana etc.) im 17. und 18. Jahrhundert binnen kurzer Zeit wegbrachen, so dass man sich wieder der traditionellen Feldbewirtschaftung zuwenden musste. Die Gegend des Lauragais trägt seitdem den Beinamen pays de cocagne – zu deutsch etwa Schlaraffenland, wobei cocagne auch den Ballen bezeichnet, zu dem die Blätter des Färberwaids zur Aufbewahrung oder zum Transport zusammengepresst wurden.
Der Färberwaid (Isatis tinctoria), Pastel oder Deutsche Indigo ist eine zweijährige Pflanze aus der Familie der Kreuzblütengewächse (Brassicaceae). Er stammt aus Westasien, wurde aber in Europa seit der Eisenzeit als Färberpflanze kultiviert. Aus dem Färberwaid wurde Indigo (Indigoblau) gewonnen.
Lo pastèl dels tinturièrs (Isatis tinctoria L.) es una planta biennala de la familha de las Brassicaceas. Foguèt autrescòps cultivat dins la region d'Albi, Carcassona e Tolosa per la produccion d'una tintura blava, lo pastèl.
L'espècia es espontanèa en Africa del Nòrd, en Euròpa e en Asia Occidentala, fins al Xinjiang (China).
Isatis tinctoria es considerada coma una planta envasissenta dins una part dels Estats Units.
La tintura blava es extracha de las fuèlhas de la planta. Aquelas fuèlhas, alongadas, se destacan facilament per simpla torcedura a lor madurason al solstici d'estiu. Mas la culhida s'escalona de julhet a la mitat de setembre tant que i a de fuèlhas[1]. Puèi son trissadas e mescladas amb d'aiga per n'exprimir una pulpa qu'òm comprimís d'un biais de boletas o Cocanhas de qualques centimètres. Se secan pendent un a dos meses. A la fin d'aquel periòde, las cocanhas son espotidas dins un molin e a la polvera s'apond d'urina per provocar una oxidacion : la pasta aital eissida e secada balha fins finala la polvera tintoriala, contenent d'indi[2]. Es plan segur una tintura, qu'es revelada per oxidacion e es apuèi d'una fòrça granda estabilitat. L'usatge del pastèl coma pigment colorant es un sosproduit de la tintura : se reculhissiá l'escuma a la superfícia dels banhs de tintura, qu'un còp secada balhava la polvera blava utilizada coma pigment de las pinturas.
Uèi, las fuèlhas de pastèl son mescladas amb l'aiga. Aquela estapa de maceracion permet d'extraire l'indoxil que quand es oxidat es l'element quimic donant lo colorat blau. L'indoxil es d'en primièr sens color. Es oxigenat per agitacion per provocar l'oxidacion. Lo liquid passa de la color verda a la color blava intensa. L'oxidacion acabada, lo liquid es al repaus e lo pigment se recupèra al fons de la tina per precipitacion. Puèi es filtrat mai d'un còp per lo rafinar[3]. Cal una tona de fuèlhas de pastèl per produire dos quilogramas de pigments[4].
La cultura del pastèl en Euròpa declinèt amb l'arribada de l'indigòt al sègle XVII. Desapareguèt gaireben totalament a la fin del sègle XIX. Actualament, i a de temptativas de tornar cultivar aquela planta. A Leitora, dins Gers, un quimista bèlga, Henri Lambert, produtz de tinturas e de pigments de pastèl amb de tecnicas novèlas[5].
Planta de 1239 venent de Xaotang ( China ) .
La racina e la fuèlha del pastèl dels tinturièrs Ban Lan Gen e Da Qing Ye s'utilizan en Medecina tradicionala chinesa contra los gautissons, l'epatiti infecciosa, lo mal de garganta, lo mal de tèsta e la fèbre.
I a pauc temps, de scientifics descobriguèron que lo pastèl dels tinturièrs podriá servir per prevenir lo càncer[6].
Lo pastèl foguèt la sola font de tintura blava disponibla en Euròpa fins a la fin del sègle XVI, quand lo desvolopament de las rotas comercialas cap a l'Orient Extrèm permetèt l'arribada de l'indigòt.
Las primièras traças arqueologicas del pastèl remontan au Neolitic e foguèron trobadas dins la balma de l'Audosta dins las Bocas de Ròse en Occitània. Dins un abitat de l'Edat del Fèrre a Heuneburg (Alemanha), se trobèt d'impressions de granas sus de terralhas. Las sepulturas de Hallstatt de Hochdorf e de Hohmichele contenon de teissuts tintats amb pastèl.
Al sègle X a York (Anglatèrra) se trobèt de vestigis d'una botiga de tinturièrs amb rèstas de pastèl e de garança.
A l'Edat Mejana, los centres de cultura del pastèl se situèron
En Occitània, lo triangle comprés entre Tolosa, Albi e Carcassona aguèt una granda benanança mercé al comèrci del pastèl. Los pastelièrs foguèron de las mai grandas fortunas de l'epòca e daissèron fòrça testimònis, coma los grands ostals de familha de Tolosa. Lo comèrci de las cocanhas comencèt dins aquela region nomenada « país de Cocanha ». Entre lo segle XVI e XVII, una borgesiá faguèron fortuna dins lo comerci de la cocanha. Las cocanhas passèron dins los pòrts de Bordèu, Marselha e Baiona. Lo sègle XVI marca l'apogèu de la cultura del pastèl occitan. Lo blau foguèt un produit de luxe[7].
A l'Edat Mejana, l'utilizacion de la tintura del pastèl se limita pas als teissuts mas tanben dins la color blava de las illustracions dels libres per exemple.
Lo pastèl dels tinturièrs (Isatis tinctoria L.) es una planta biennala de la familha de las Brassicaceas. Foguèt autrescòps cultivat dins la region d'Albi, Carcassona e Tolosa per la produccion d'una tintura blava, lo pastèl.
Aspècte generalEl waide (eute écrivure : wède) ch’est unne plante conmunne in Picardie pi in Urope qui servoét eutréfoés à foaire el couleur por ches hardes.
Cheus-lo qui tchultivoétte el waide (por nin estroaire el bleute poude qui servoét à tinde ches toéles) os les lonmoét ches waidiers obin wédiers.
Conme ech bleus ch’est, dins l’simbolike crétienne, el couleur ed ches cius, d’ech « Roéïaume ed ches Cius » dont Jésus-Crisse i parle dins ches Évangiles, ech bleu il o toudis ‘tè unne couleur granmint aperchièe pi dmandèe (èn sroét-‘ch eq por ches églises). Ch’est étou l’couleur qu’os use ech pus souvint por erprésinter l’Vierge Marie.
Conme el waide a permet d’porduire un bieu bleu avuc el poude ed ses rachinnes, ches régions qui porduiztte el waide is vont dvénir riches. Adon, el Picardie a dvient fin vivemint connute por ès waide, seurtout ech tchuin Anmien, pi l’réputacion a croét granmint dins ch’Roéïaume ed Franche au point douqu’os seurlonme el waide l’or bleu d’Amiens (« ech bleu dor d’Anmien »).
In 1260, Sant Louis i déclére qu’ech bleu-waide ch’est l’couleur Sante-Marie pi l’couleur d’ech Roéïaume Franche. Adon, l’utilisacion d’waide al esplose pi Anmien a dvient fin riche. Ch’est grache à ch’conmerche d’el waide qu’el catédrale Anmien al o pu ète construite. Ech Santère pi ch’poaiyis Anmiennoés is dvienntte ches deus régions dousqu’el waide al est l’mius réputèe dins toute l’Urope.
Avuc el Dgère d'Un Chint Ans, ch’conmerche ed waide i vo boaissier, ches Ingloés is étoétte des grands acateus d’waide, el dgère a vo ruinner ch’conmerche. Aprés cho, l’waide Anmien a vo ète réusèe in Franche dusqu’au XVIIe sièke, quant d’eutes plantes is vont rimplacher l’waide por foaire el bleute couleur.
Dins ch’wartier Sant-Leu à Anmien, os put toudis vir ches molins pi ches vius batimints dousqu’os foaisoét ches tindures alors. I resse innui seulemint qu’unne porduiseuse ed waide tradicionnèle, eslon ches anchiennés métodes éritèes d’ches waidiers d’eutréfoés[1].
Samarobriva • Comtes d'Anmien • Comtè Anmiennoés • Dit d'Anmien • Waide • Siège Anmien (1597) • Prunmière Dgère Mondiale (Bataille d'el Sonme • Bataille d'Anmien (1918) • Opéracion Michael)
Monumints istorikesCatédrale Nou-Danme d'Anmien (Labirinte d'el catédrale • Ainge qui brait • Zodiake d'el catédrale) • Béfroé Anmien • Heutel ed ville • Palais d'justice • Heutel Bouctôt Vagniez • Heutel ed préfecture d'el Sonme • Logis d'ech Roé • Moaison d'echl'Atlante • Moaison d'ech Bailliache • Moaison d'ech Sagitoaire • Palais d'echl'évétchè • Tour Perret • Molin Passe-Avant • Molin Passe-Arière • Chitadèle d'Anmien • Église Sant-Leu • Moaison Jules Verne • Musèe d'echl'Heutel Berny • Musèe d'el Picardie • Chirke Jules Verne • Abaïe Sant-Acheul • Abaïe Sant-Jean-d'ches-Prémontrès (cloétre Dewailly) • Église Sant-Dgermain-chl'Écossoés • Église d'ech Sagrè-Tcheur • Église Sant-Honorè • Église Sant-Pière ed Montières • Église Sant-Rémi • Église Sante-Anne • Église Sante-Jeanne-d'Arc • Église Sante-Marie-Madlaingne • Couvint d'ches grisés Ma Seurs • Couvint d'ches Cordéliers • Couvint d'el Visitacion • Catieu Montières • Viule caserne Stengel
Patrimoinne nin-matériel, tradicions & évènmintsWartier Sant-Leu • Waide • Hortillonnaches Anmien • Batieu à cornet • Martchè su ieu • Ches Cabotans • Comédie de Picardie • Fète Sant-Leu • Fète-Diu • Pélrinnache Sant-Jean-Batisse • Fète Sant-Jean • Foére d'el Sant-Jean • Grande rédrie • Rindez-vous d'el bande à dessin Anmien
TchuisinneAndouillète anmiennoése • Beignet d'Anmien • Fichèle picarte • Macaron d'Anmien • Patè d'cannard d'Anmien • Tuile d'Anmien
El waide (eute écrivure : wède) ch’est unne plante conmunne in Picardie pi in Urope qui servoét eutréfoés à foaire el couleur por ches hardes.
Cheus-lo qui tchultivoétte el waide (por nin estroaire el bleute poude qui servoét à tinde ches toéles) os les lonmoét ches waidiers obin wédiers.
Li waisse, c' est ene croejhrecire k' a stî ahiveye e l' Urope do Coûtchant dispu l' tins des Romins disk' å cmince do 17e sieke. So tot ç' trevén la, c' est l' seu sourdant del bleuwe coleur, k' on s' sierveut po tinter les draps et les stofes. Après, ele serè replaeceye pa l' indigo, ene plante di l' Inde.
Li rindaedje so l' anêye fourit di 30 cuvlêyes pa molén e 1289 et di 36 e 1294.
On côp codowes, les foyes di waisse sont cbroyeyes tote vetes å molén. Li molén d' waisse n' est nén d' ene grande sincieusté. Il est metou la k' on plante li dinrêye. C' est ene meule di pire k' est accionêye pa ene rowe a aiwe, ene rowe a vint, u biesmint pa on manedje (deux biesses ki fjhèt tourner on mecanisse). Les cinsîs moennént les foyes di waisse å molén avou des berwetes, pa les pazeas et les pî-sintes. On-z a les pinses ki les moléns d' waisse si plént dismantchî, po s' aler remantchî dilé les tchamps d' culteure, a èn ôte viyaedje, tot åddilong del campagne, ki duréve a pô près 100 djoûs.
Gn a des ovrîs ki fjhèt des torteas avou l' molaedje, k' i rôlèt e rôleas, pu les mete so des clåyes por zels souwer. C' est come ça, e rôleas, k' on l' vindeut padecô. Mins, å pus sovint, li waisse est spotcheye tote fene. Li poure di waisse est frexheye avou d' l' aiwe, et adon, ele tchamosse, tot dnant ene flairante nodeur. Ça baye ene sôre di brunåsse diele k' on rispotche co on côp, pu l' raidjî. Adon, on l' vindeut azès drapîs.
Di 1200 a 1500, li martchî del waisse aléve å pére des pôces, ca c' esteut l' seule bleuwe coleur pol tinteurreye a on moumint ki des veyes come Hu, Nameur, Lidje, et eto Sint-Trond, Tongue, Hasse et Lovén si diswalpèt pår. Mins, li pus grosse pratike des moléns al waisse, i shonne ki ça soeye l' Inglutere.
C' est eviè 1204 k' on trouve les prumîs papîscrîts ki cåzèt del waisse. Dins onk di ces-cial, a Viyé-Sint-Simeyon, e 1252, gn a deus bordjoes, Rawoul et Pire, k' endè semèt catchetmint so des tchamps louwés a l' abeye di Sint Trond, ki c' est da sinne les teres. Mins, on les va racuzer a l' abé, et ci-cial riclame 40 lives di Louwis po les damadjes.
On-z ahivéve eto des waisses sol payis d' Nameur, di Lidje, sol dutcheye di Braibant ey el Conteye di Lô.
On-z a des papîscrîts k' endè djåzèt a Walefe et a Tisse.
Li waisse, c' est ene croejhrecire k' a stî ahiveye e l' Urope do Coûtchant dispu l' tins des Romins disk' å cmince do 17e sieke. So tot ç' trevén la, c' est l' seu sourdant del bleuwe coleur, k' on s' sierveut po tinter les draps et les stofes. Après, ele serè replaeceye pa l' indigo, ene plante di l' Inde.
No e sincieus latén : Isatis tinctoria Etimolodjeye et vîs scrijhas : riloukîz a : waisseLiwles (Isatis tinctoria) yw plans bleujyowadow y'n teylu Brassicaceae. Yth yw ev ynwedh an hanow an liwyans glas askorrys a'n plans. Liwles a dhallathas ow teva yn plenys ha difeythtiryow a'n Kawkasus, Asi Gres ha West, mes y hyllir y gavoes ynwedh yn Europa soth-est ha kres. Hwath pella, yth ammethys liwles rag liwya a-dreus Howlsedhes ha Deghow Europa a-dhia Oes Men. Yn Oes Horn, remenants a liwles re gavas orth Heuneburg, Hochdorf, ha Hohmichele. Herwydh Iulius Caesar, an Vrythonyon geltek a liwya aga horfow a liwles. An Fightyon ynwedh a gavas aga hanow Latin (Picti, po 'an re bayntys') rag an keth acheson.
Devnydh a liwles a besya yn termyn an Ankredoryon Mor (r.e. orth Evrok) hag y'n Oesow Kres yth ammethys ev yn Lincolnshire ha Gwlas an Hav yn Pow Sows; Gaskoyn, Normani, Toulouse, ha Breten Vyghan yn Pow Frynk; Toskani ha Piedmont yn Itali; hag Erfurt ha Thuringi ha tylleryow erell yn Almayn.
Indigo diworth Eynda ha'n Statys Unys a gemmeras le liwles y'n 18ves kansblydhen awos klerra yw y liwyans ages huni liwles. Hag y'n 20ves kansblydhen, liwyans synthesek a gemmeras le an dhew. Mes yma askorr liwles owth ynkressya arta y'n Rywvaneth Unys (rag ynk hegar dhe'n kyrghynnedh) hag yn Almayn (rag gwitha prenn rag podredhes heb kymygow dyantell).
An erthygel ma yw skrifys yn Kernewek Kemmyn.
Isatis tinctoria, also called woad (/ˈwoʊd/), dyer's woad, or glastum, is a flowering plant in the family Brassicaceae (the mustard family) with a documented history of use as a blue dye and medicinal plant. Its genus name, Isatis, derives from the ancient Greek word for the plant, ἰσάτις. It is occasionally known as Asp of Jerusalem. Woad is also the name of a blue dye produced from the leaves[1] of the plant. Woad is native to the steppe and desert zones of the Caucasus, Central Asia to Eastern Siberia and Western Asia[2] but is now also found in South-Eastern and Central Europe and western North America.
Since ancient times, woad was an important source of blue dye and was cultivated throughout Europe, especially in Western and Southern Europe. In medieval times, there were important woad-growing regions in England, Germany and France. Towns such as Toulouse became prosperous from the woad trade. Woad was eventually replaced by the more colourfast Indigofera tinctoria and, in the early 20th century, both woad and Indigofera tinctoria were replaced by synthetic blue dyes. Woad has been used medicinally for centuries. The double use of woad is seen in its name: the term Isatis is linked to its ancient use to treat wounds; the term tinctoria references its use as a dye.[3] There has also been some revival of the use of woad for craft purposes.[4]
The first archaeological finds of woad seeds date to the Neolithic period. The seeds have been found in the cave of l'Audoste, Bouches-du-Rhône, France. Impressions of seeds of Färberwaid (Isatis tinctoria L.) or German indigo, of the plant family Brassicaceae, have been found on pottery in the Iron Age settlement of Heuneburg, Germany. Seed and pod fragments have also been found in an Iron Age pit at Dragonby, North Lincolnshire, United Kingdom.[5] The Hallstatt burials of the Hochdorf Chieftain's Grave and Hohmichele contained textiles dyed with woad.
Melo and Rondão write that woad was known "as far back as the time of the ancient Egyptians, who used it to dye the cloth wrappings applied for the mummies."[6] Skelton states that one of the early dyes discovered by the ancient Egyptians was "blue woad (Isatis tinctoria)."[7] Lucas writes, "What has been assumed to have been Indian Indigo on ancient Egyptian fabrics may have been woad."[8] Hall states that the ancient Egyptians created their blue dye "by using indigotin, otherwise known as woad."[9]
A dye known as סטיס, satis in Aramaic is mentioned in the Babylonian Talmud.[10][11][12][13][14]
Celtic blue is a shade of blue, also known as glas celtig in Welsh, or gorm ceilteach in both the Irish language and in Scottish Gaelic. Julius Caesar reported (in Commentarii de Bello Gallico) that the Britanni used to colour their bodies blue with vitrum, a word that means primarily 'glass', but also the domestic name for the woad (Isatis tinctoria), besides the Gaulish loanword glastum (from Proto-Celtic *glastos 'green'). The connection seems to be that both glass and the woad are "water-like" (Latin: vitrum is from Proto-Indo-European *wed-ro-, 'water-like').[15] In terms of usage, the Latin vitrum is more often used to refer to glass rather than woad.[16] The use of the word for the woad might also be understood as "coloured like glass", applied to the plant and the dye made from it.
Gillian Carr conducted experiments using indigo pigment derived from woad mixed with different binders to make body paint. The resulting paints yielded colours from "grey-blue, through intense midnight blue, to black".[17] People with modern experiences with woad as a tattoo pigment have claimed that it does not work well, and is actually caustic and causes scarring when put into the skin.[18][a]
It has also been claimed that Caesar was referring to some form of copper- or iron-based pigment.[5] Analysis done on the Lindow Man did return evidence of copper. The same study also noted that the earliest definite reference to the woad plant in the British Isles dates to a seed impression on an Anglo-Saxon pot. The authors theorize that vitrum could have actually referred to copper(II) sulfate's naturally occurring variant chalcanthite or to the mineral azurite.[20] A later study concluded the amount was "not of sufficient magnitude to provide convincing evidence that the copper was deliberately applied as paint".[21]
Woad was an important dyeing agent in much of Europe and parts of England during the medieval period. However, dye traders began to import indigo during the sixteenth and seventeenth centuries, which threatened to replace locally grown woad as the primary blue dye.[16] The translation of vitrum as woad may date to this period.[22]
Woad was one of the three staples of the European dyeing industry, along with weld (yellow) and madder (red).[23] Chaucer mentions their use by the dyer ("litestere") in his poem The Former Age:[24]
The three colours can be seen together in tapestries such as The Hunt of the Unicorn (1495–1505), though typically it is the dark blue of the woad that has lasted best. Medieval uses of the dye were not limited to textiles. For example, the illustrator of the Lindisfarne Gospels (c. 720) used a woad-based pigment for blue paint.
In Viking Age levels at archaeological digs at York, a dye shop with remains of both woad and madder have been excavated and dated to the 10th century. In medieval times, centres of woad cultivation lay in Lincolnshire and Somerset in England, Jülich and the Erfurt area in Thuringia in Germany, Piedmont and Tuscany in Italy, and Gascogne, Normandy, the Somme Basin (from Amiens to Saint-Quentin), Brittany and, above all, Languedoc in France. This last region, in the triangle created by Toulouse, Albi and Carcassonne, known as the Lauragais, was for a long time the biggest producer of woad, or pastel, as it was locally known. One writer commented that "woad […] hath made that country the happiest and richest in Europe."[23]
The prosperous woad merchants of Toulouse displayed their affluence in splendid mansions, many of which still stand, as the Hôtel de Bernuy and the Hôtel d'Assézat. One merchant, Jean de Bernuy, a Spanish Jew who had fled the inquisition, was credit-worthy enough to be the main guarantor of the ransomed King Francis I after his capture at the Battle of Pavia by Charles V of Spain.[23] Much of the woad produced here was used for the cloth industry in southern France,[25] but it was also exported via Bayonne, Narbonne and Bordeaux to Flanders, the Low Countries, Italy, and above all Britain and Spain.
After cropping the woad eddish could be let out for grazing sheep.[26] The woad produced in Lincolnshire and Cambridgeshire in the 19th century was shipped out from the Port of Wisbech,[27] Spalding and Boston,[28] both the last to northern mills and the USA. The last portable woad mill was at Parson Drove, Cambridgeshire, Wisbech & Fenland Museum has a woad mill model, photos and other items used in woad production.[29] A major market for woad was at Görlitz in Lausitz.[30] The citizens of the five Thuringian Färberwaid (dye woad) towns of Erfurt, Gotha, Tennstedt, Arnstadt and Langensalza had their own charters. In Erfurt, the woad-traders gave the funds to found the University of Erfurt. Traditional fabric is still printed with woad in Thuringia, Saxony and Lusatia today: it is known as Blaudruck (literally, "blue print(ing)").
The woad plant's roots are used in Traditional Chinese medicine to make a medicine known as banlangen (bǎnlán'gēn 板蓝根) that purports to have antiviral properties.[31] Banlangen is used as an herbal medicinal tea in China for colds and tonsular ailments. Used as a tea, it has a brownish appearance and (unlike most Chinese medicines) is mildly sweet in taste.
The dye chemical extracted from woad is indigo, the same dye extracted from "true indigo", Indigofera tinctoria, but in a lower concentration. Following the Portuguese discovery of the sea route to India by the navigator Vasco da Gama in 1498, great amounts of indigo were imported from Asia. Laws were passed in some parts of Europe to protect the woad industry from the competition of the indigo trade. It was proclaimed that indigo caused yarns to rot: "In 1577 the German government officially prohibited the use of indigo, denouncing it as that pernicious, deceitful and corrosive substance, the Devil's dye."[32] This prohibition was repeated in 1594 and again in 1603.[33] In France, Henry IV, in an edict of 1609, forbade under pain of death the use of "the false and pernicious Indian drug".[34]
With the development of a chemical process to synthesize the pigment, both the woad and natural indigo industries collapsed in the first years of the 20th century. The last commercial harvest of woad until recent times occurred in 1932, in Lincolnshire, Britain. Small amounts of woad are now grown in the UK and France to supply craft dyers.[35] The classic book about woad is The Woad Plant and its Dye by J. B. Hurry, Oxford University Press of 1930, which contains an extensive bibliography.[36]
A method for producing blue dye from woad is described in The History of Woad and the Medieval Woad Vat (1998) ISBN 0-9534133-0-6.[37]
Woad is biodegradable and safe in the environment. In Germany, there have been attempts to use it to protect wood against decay without applying dangerous chemicals.[38] Production of woad is increasing in the UK for use in inks, particularly for inkjet printers, and dyes. The plant can cause problems, however: Isatis tinctoria is classified as an invasive species in parts of the United States.
In certain locations, the plant is classified as a non-native and invasive weed. It is listed as a noxious weed by the agriculture departments of several states in the western United States: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming.[39][40] In Montana, it has been the target of an extensive, and largely successful, eradication attempt.[41]
{{cite web}}
: CS1 maint: unfit URL (link) Isatis tinctoria, also called woad (/ˈwoʊd/), dyer's woad, or glastum, is a flowering plant in the family Brassicaceae (the mustard family) with a documented history of use as a blue dye and medicinal plant. Its genus name, Isatis, derives from the ancient Greek word for the plant, ἰσάτις. It is occasionally known as Asp of Jerusalem. Woad is also the name of a blue dye produced from the leaves of the plant. Woad is native to the steppe and desert zones of the Caucasus, Central Asia to Eastern Siberia and Western Asia but is now also found in South-Eastern and Central Europe and western North America.
Since ancient times, woad was an important source of blue dye and was cultivated throughout Europe, especially in Western and Southern Europe. In medieval times, there were important woad-growing regions in England, Germany and France. Towns such as Toulouse became prosperous from the woad trade. Woad was eventually replaced by the more colourfast Indigofera tinctoria and, in the early 20th century, both woad and Indigofera tinctoria were replaced by synthetic blue dyes. Woad has been used medicinally for centuries. The double use of woad is seen in its name: the term Isatis is linked to its ancient use to treat wounds; the term tinctoria references its use as a dye. There has also been some revival of the use of woad for craft purposes.
Isatis tinctoria (esperante tinktura izatido) estas palearktisa specio de brasikacoj kultivata por fabrikado de blua kolorsubstanco.
Vajdo estas blua koloraĵo, ricevita per fermentigo de la tinktura izatido. Oni ankaŭ nomas vajdon la planton mem (tinktura izatido).
Ĝi estas dujara planto.
La floroj havas kvar etajn flavajn petalojn (3-4 mm), kruce aranĝitaj, kaj ses stamenoj (kvar grandaj, du malgrandaj). La frukto estas silikvo. Silikvoj estas oblongaj plataj unusemaj kaj alaj.
PIV 2005
Isatis tinctoria (esperante tinktura izatido) estas palearktisa specio de brasikacoj kultivata por fabrikado de blua kolorsubstanco.
Vajdo estas blua koloraĵo, ricevita per fermentigo de la tinktura izatido. Oni ankaŭ nomas vajdon la planton mem (tinktura izatido).
Hierba pastel, isatide o glasto, son los nombres comunes para la especie fanerógama Isatis tinctoria de la familia Brassicaceae. Ocasionalmente conocida como «áspide de Jerusalén». Añil, isatide o glastum es también el nombre del colorante azul producido por esta especie. La raíz de Isatis (chino: 板藍根; pinyin: bǎn lán gēn; inglés:indigowoad) es una hierba de la medicina tradicional china que viene de las raíces de esta planta.
Es una planta bienal, raramente perenne, robusta, alcanza un tamaño de 30-120 cm de altura, glabra a hirsuta, subglauca, erguida, con mucha inflorescencias ramificadas anteriormente. Hojas basales rosuladas, oblanceoladas, de pecíolo corto, de 5-15 cm de largo, 1.3 cm de ancho, muy variables en tamaño y con frecuencia mucho mayor en las plantas cultivadas, las hojas caulinarias de 10-80 mm de largo, 5-25 mm de ancho, linear-lanceoladas, auriculadas en la base, amplexicaules; las superiores mucho más pequeñas. Las inflorescencias en racimos de 30-80-flores, paniculadas, ebracteadas, aumentando hasta 10 (-15) cm en la fruta. Flores de 4-5 mm de diámetro, de color amarillo; con pedúnculo de 5-10 mm de largo en la fruta. Sépalos 2-2.5 mm de largo, de color verde amarillento. Pétalos 3-4.5 mm de largo, 1.5-2 mm de ancho. El fruto es una silicua muy variable en tamaño, desde 10 hasta 20 mm de largo, 2.5-5 mm de ancho, oblonga, estrechándose hacia la base, con ápice truncado a redondeado, a menudo algo amplio en el medio (en lóculo), glabras a puberulentas; semilla de 3-4 mm de largo, 1 mm de ancho, elipsoide alargado, de color marrón.[1]
Es nativa de las estepas y zonas desérticas del Cáucaso, centro de Asia al este de Siberia y oeste de Asia (Hegi), pero actualmente se halla en varias partes del sudoeste y centro de Europa. Es cultivada en Europa, especialmente en el oeste y el sur del continente desde la Antigüedad.
La hierba se cultiva en varias regiones del norte de China, a saber Hebei, Pekín, Heilongjiang, Henan, Jiangsu, y Gansu. Las raíces se cosechan durante el otoño y se secan. La raíz secada se procesa en gránulos, que se consumen comúnmente disueltos en agua caliente o té. El producto es muy popular en China.
Hasta fines del s. XVI, cuando el índigo se pone en el mercado por el desarrollo de las rutas del «Lejano Oriente», el isatide era la única fuente de tintura azul en Europa.
Los primeros hallazgos arqueológicos de semillas datan del Neolítico y se encontraron en la cueva francesa de Audoste, Bocas del Ródano. En asentamientos de la Edad de Hierro en Heuneburg, Alemania, han quedado impresiones de semillas en alfarería. Los enterramientos de Hallstatt, Hochdorf y Hohmichele contienen textiles teñidos con isatide.
Julio César dice en de Bello Gallico que los Britanni usan para marcar sus cuerpos vitrum, pudiendo significar «tatuaje con isatide», aunque más probablemente haga referencia a un tipo de vidrio azul verdoso que era comúm en aquellos tiempos.[2] Los pictos habrían tomado su nombre del latín picti, que significa «pintado popular» o posiblemente «tatuado popular», por su práctica de ir a la batalla desnudos con sus cuerpos pintados o tatuados, lo que ha sido rememorado en la canción británica moderna humorística The Woad Ode (La Oda a Isatide). Sin embargo, estudios más recientes ponen seriamente en duda la presunción de que el isatide fuese el material que los pictos usaron para decorarse el cuerpo. Los experimentos contemporáneos con isatide prueban que no se trabaja bien ni como pintura corporal ni como pigmento de tatuaje. Altamente astringente, al usarse como tatuaje o puesto en microlaceraciones, produce bastante picor y tejido lacerado y, una vez curado, no queda azul. El uso común de estiércol como un ingrediente en el tinte tradicional de isatide lo hace aún más imposible de aplicar en la piel.[2]
En el Mediterráneo se ha utilizado desde muy antiguo la pintura de añil para pintar los cercos de puertas y ventanas, y a menudo también las jambas, dinteles y hasta los umbrales, puesto que el color azul del añil ahuyenta a los insectos.
En excavaciones realizadas en York se ha encontrado un despacho de tinturas con restos de isatide y de plantas del género Rubia datado en el s. X, era vikinga. En tiempos medievales, los centros de su cultivo eran Lincolnshire, Somerset en Inglaterra, Gascuña, Normandía, Somme, el Languedoc (en gran parte conocido como País de la Cucaña ya que cocagne era y es el nombre occitano, y luego en francés de esta planta y su tintura), Bretaña, en la actual Francia; Jülich, Erfurt y Turingia en Alemania; Piamonte y Toscana en Italia. Los ciudadanos de las cinco ciudades del isatide turingias de Erfurt, Gotha, Tennstedt, Arnstadt y Langensalza tuvieron sus propios fueros. En Erfurt, los mercaderes de isatide tuvieron los fondos para crear la Universidad de Erfurt. Una industria tradicional aún imprime con pomada en Turingia, Sajonia y Lusacia hoy: conocida como Blaudruck (literalmente, «impresión en azul»).
Los usos medievales de la tintura no se limitaban a textiles. Por ejemplo, el ilustrador de Lindisfarne Gospels usó una pomada sobre la base de pigmentos para el azul.
La posterior exportación de la tintura hacia el Virreinato del Río de la Plata (por lo general, desde Amiens) permitió su uso en 1812 para la confección de la primera bandera argentina.
El pigmento azul en pomada es el mismo que la tintura índigo, pero menos concentrada. Con el descubrimiento europeo de las rutas marítimas a la India, grandes cantidades de índigo se importan. Deben surgir leyes en varias partes de Europa para proteger la industria local de esa competencia del mercado del índigo. "En 1577 el gobierno alemán oficialmente prohíbe el uso del índigo, denunciándolo como pernicioso, mortal y corrosivo, la tintura del Diablo."[3] "... antes del receso de la Dieta en 1577: prohíbe usar 'el recientemente inventado, mortal, y corrosivo tinte llamado el tinte del diablo.' Esta prohibición se reitera en 1594 y otra vez en 1603."[4] Con el desarrollo de los procesos de síntesis química, se sintetiza el pigmento, colapsando ambas industrias en los primeros años del s. XX. La última cosecha comercial ocurre en 1932, en Lincolnshire, Bretaña.
En Alemania, hay intentos de usar Isatis para proteger la lana sin químicos peligrosos. También la producción crece en el RU para tintas, particularmente en impresoras a chorro, y tintes, porque es biodegradable y seguro al ambiente, no como muchas tintas sintéticas. Isatis tinctoria es vista como especie invasora en partes de Estados Unidos.
Recientemente, científicos han descubierto que puede usarse en prevenir algunos cánceres, teniendo más de 20 veces la cantidad de glucobrasicina del brócoli.[5] Las hojas jóvenes cuando se laceran pueden producir más glucobrasicina, más de 65 veces como mucho.[6]
La raíz de isatide se usa en medicina tradicional china para tratar paperas, garganta irritada, hepatitis infecciosa, dolor de cabeza, fiebres.
La raíz de Isatis se utiliza para quitar el "síndrome del calor tóxico" en la M. T. china, calmar los dolores de garganta y para tratar gripe, sarampión, paperas, sífilis, o escarlatina. También se utiliza para la faringitis, laringitis, erisipelas, carbunco (ántrax), y prevenir la hepatitis A, la meningitis epidémica, el cáncer y las inflamaciones.
Posibles efectos secundarios de menor importancia incluyen reacciones alérgicas que causan vértigos, sólo las grandes dosificaciones o el uso prolongado pueden ser tóxicos a los riñones.[cita requerida]
En febrero de 2003, en la provincia de Guandong en China, un brote de neumonía atípica (SARS) causó una demanda masiva que elevó los precios del vinagre, raíz de Isatis y otras medicinas al creer que es útil en la eliminación de agentes infecciosos.[cita requerida]
Isatis tinctoria fue descrita por Carlos Linneo y publicado en Species Plantarum 2: 670. 1753.[1]
Hierba pastel, isatide o glasto, son los nombres comunes para la especie fanerógama Isatis tinctoria de la familia Brassicaceae. Ocasionalmente conocida como «áspide de Jerusalén». Añil, isatide o glastum es también el nombre del colorante azul producido por esta especie. La raíz de Isatis (chino: 板藍根; pinyin: bǎn lán gēn; inglés:indigowoad) es una hierba de la medicina tradicional china que viene de las raíces de esta planta.
Harilik sinerõigas (Isatis tinctoria) on ristõieliste sugukonda kuuluva sinerõika perekonda kuuluv liik.
Harilik sinerõigas on iseloomulik Kaukaasia steppidele ja kõrbealadele. Levib Kesk-Aasiast kuni Siberi idaosani ja Lääne-Aasiani, aga samuti on taimi leitud Kagu- ja Kesk-Euroopast ning Loode-Ameerikast.[1] Eestis kasvab paiguti Lääne-Eesti mererannikul.[2] Kasvukohana eelistab kiviseid, kruusaseid ja liivaseid mererandu.[3]
Teatud riikides peetakse hariliku sinerõigast võõrliigiks või ökosüsteeme kahjustavaks invasiivseks liigiks. Põhja-Ameerika Põllumajandusministeerium on kirjutanud hariliku sinerõika kahjulike umbrohtude nimekirja järgmistes osariikides: Arizona, California, Colorado, Montana, Nevada, New Mexico, Oregon, Utah, Washington ja Wyoming. Montanas on hariliku sinerõika väljatõrjumine olnud väga laiaulatuslik ja edukas.[1]
Harilik sinerõigas kasvab ligikaudu 40–100 cm kõrguseks. Varre ülemine osa on sinakas roheline, ilma karvadeta ja rohkelt hargnenud.[3]
Kollased õied on tihedas poolkerajas õisikus, hiljem õisik haruneb.[2] Õisiku läbimõõt on ligikaudu 0,5 cm. Õiekate koosneb neljast kroonlehest (3–4 mm) ja neljast tupplehest. Õied on kahesugulised ehk hermafrodiitsed. Tolmukaid on kuus, millest neli on pikad ja kaks lühikesed. Emakkond on üheosaline, sest koosneb ühest viljalehest tekkinud emakast. Õitseaeg on juunis ja juulis.[3]
Juurmised lehed on rootsuga, süstjaselliptilised, serval enamasti väikeste hammastega, ilma sinaka kirmeta, mis on õitseajaks kuivanud. Varrelehed on süstjad, noolja alusega vart ümbritsevad ja terve servaga.[2]
Kõdrake (12–18 mm) on avanematu ning lapik[3], laia tiivaga, õlgkollane kuni tumevioletne ning ripub peenikestel raagudel.[2]
Siniseid õisi on paljudel taimedel, on lõnga külge sinist värvi andvaid taimi vähe. Harilik sinerõigas on Eestis (ja ka ülejäänud Euroopas) ainuke looduslikult kasvav taim, millega lõnga igat tooni siniseks saab värvida. Sinist saab vaid esimese aasta lehtedest.[4]
Värvipigment, mida sinerõigas sisaldab, on indigo. Seega kehtivad sinerõikaga värvimisel kõik indigoga värvimise reeglid – see pigment ei lahustu vees, vaid aluselises hapnikuvabas keskkonnas. Pigmenti on taimes üpris vähe, 100 g lõnga värvimiseks peaks võtma vähemalt 1 kg taimi.[4]
Hariliku sinerõika juurt kasutatakse Hiina meditsiinis. Sügisel korjatud juured kuivatatakse, töödeldakse graanuliteks, mis pannakse kuuma vee või tee sisse.[1] See aitab leevendada kurguvalu, jahutada verd ja alandada palaviku.[5] Võimalikeks kõrvalmõjudeks võivad olla allergilised reaktsioonid ja peapööritus. Suurtes kogustes võib olla kahjulik neerudele.[1]
Harilik sinerõigas (Isatis tinctoria) on ristõieliste sugukonda kuuluva sinerõika perekonda kuuluv liik.
Urdinbelarra (Isatis tinctoria) Brassicaceae familiako landarea da. Erdialdeko Asia eta Kaukasiako estepa eta basamortuetan jatorria du eta txinatar medikuntza tradizionalean bere sustraia erabiltzen dute.
Gurutzedunen familiako landare lore-horia, hostoek anilaren antzeko koloregaia ematen dutena.[1]
Urdinbelarra (Isatis tinctoria) Brassicaceae familiako landarea da. Erdialdeko Asia eta Kaukasiako estepa eta basamortuetan jatorria du eta txinatar medikuntza tradizionalean bere sustraia erabiltzen dute.
Gurutzedunen familiako landare lore-horia, hostoek anilaren antzeko koloregaia ematen dutena.
Värimorsinko eli morsinko[2] (Isatis tinctoria) on kaksivuotinen, keltakukkainen ristikukkaiskasvi. Sitä on viljelty värikasvina siitä saatavan sinisen, kasvivärjäyksessä käytettävän väriaineen vuoksi. Lajin latinankielinen nimi tinctoria viittaa värjäyskäyttöön.
Värimorsinko kasvaa villinä Kaukasuksella ja isoissa osissa Aasiaa, mutta viljelyjäänteenä sitä löytyy liki koko Euroopasta. Suomessa kasvi kasvaa luonnonvaraisena Saaristomeren alueella, Pohjanlahden ja Suomenlahden rannikoilla. Se viihtyy kivi-, sora- ja hiekkarannoilla. Suomessa luonnonvarainen värimorsinko on harvinainen.
Eurooppalaiset veivät värimorsingon Pohjois-Amerikkaan 1700-luvulla, ja kasvi on levinnyt siellä rikkaruohoksi asti.[3]
Värimorsingon varsi on jäykkä ja haarainen, kukat keltaisissa kukinnoissa. Se muistuttaa ulkonäöltään rypsiä, mutta tarkkaan katsoen kukkien terälehdet ovat teräväkärkisemmät, ja heteet selvemmin esillä.
Sininen väriaine on kasvikunnassa harvinaista. Värimorsingon siemeniä löytyy jo kivikauden asutuksen jäljiltä.
Sininen väriaine on värimorsingossa värittömän indikaanin muodossa olevaa indigo-väriaineen esiastetta. Aidosta indigokasvista saadaan syvempi sininen kuin värimorsingosta, mutta värimorsingon sininen on kestävämpää. Kun eurooppalaiset löysivät meritien Intiaan, indigon tuonti syrjäytti kotimaisen värimorsingon kysynnän.[4]
Värimorsinko eli morsinko (Isatis tinctoria) on kaksivuotinen, keltakukkainen ristikukkaiskasvi. Sitä on viljelty värikasvina siitä saatavan sinisen, kasvivärjäyksessä käytettävän väriaineen vuoksi. Lajin latinankielinen nimi tinctoria viittaa värjäyskäyttöön.
Isatis tinctoria
Le Pastel des teinturiers ou guède (Isatis tinctoria L.) est une espèce de plantes herbacées bisannuelles, de la famille des Brassicaceae, qui pousse à l'état sauvage en Europe du Sud-Est ainsi qu'en Asie Centrale et en Asie du Sud-Ouest[1]. Nommée waide en Picardie, vouède[2] en Normandie et wedde dans le Nord, elle est connue aussi sous les noms vernaculaires[3] d'Herbe de saint Philippe, Varède, Herbe du Lauragais.
Utilisée comme plante médicinale et tinctoriale par les Grecs et les Romains de l'Antiquité, elle fut largement cultivée au cours du Moyen Âge et de la Renaissance, en Europe, pour la production d'une teinture bleue, extraite des feuilles, avant d'être détrônée par l'indigotier, puis par les colorants de synthèse.
Le nom vulgaire « pastel » vient du latin pasta, « pâte », par l'occitan pastèl, car autrefois les feuilles d'Isatis tinctoria étaient broyées dans les moulins à pastel et formaient une pâte ensuite fermentée et séchée. De la pâte tinctoriale, le terme en est venu à désigner aussi la plante avec laquelle on la fabrique. Le terme de pastel des teinturiers est aussi employé si on désire lever toute ambiguïté avec les valeurs de pastel utilisées en dessin.
Le nom vernaculaire français « guède » désignant la même plante, autrefois « vouède » (picard : waide), dérive d'une racine germanique *waizda- que l’on retrouve dans l'anglais woad et dans l'allemand Waid[4].
En 1753, Linné décrivit la plante sous le nom d'Isatis tinctoria[5]. Le nom de genre Isatis dérive du grec isatis ἴσατις, latin isatis, employé par Pline l'Ancien[6] livre XX, 59, terme dérivé de isazein « aplanir »[3], car selon Dioscoride II, 185[7], la plante ἴσατις αγρια aurait été employée pour cicatriser les plaies.
L'épithète spécifique tinctoria dérive du latin tinctura « teinture » (Pline, 37, 119).
La culture du pastel ou guède s'est développée au Moyen Âge, en Picardie et a fait la fortune de la ville d'Amiens entre le XIIe et le XVe siècle grâce à ses capacités tinctoriales. Avec la Guerre de Cent Ans, la culture recula jusqu'à disparaître en Picardie et se développa dans le Midi toulousain, véritable « Pays de Cocagne ». La culture de la guède se poursuit aujourd'hui dans la région de Toulouse et tente une timide percée, après des siècles de disparition, en Picardie où on l'appelle la « waide ».
Isatis tinctoria est une plante bisannuelle ou pérenne à courte vie, en général monocarpique (elle meurt après avoir produit des graines), hémicryptophyte, à racine pivotante[8], tétraploïde[9] (2n=4x=28).
La première année, la plante forme une rosette de feuilles basales pétiolées. Ses feuilles sont d'un vert un peu glauque, oblongues lancéolées, de 15-20 cm de long, avec un pétiole de 0,5-5,5 cm[10]. Ce sont elles qui sont récoltées pour l'extraction du pigment bleu. La plante ne fleurit pas de toute la saison. Si la seconde année, les conditions environnementales ne sont pas favorables à la formation de graines, elle peut encore rester à l'état de rosette un an de plus.
Généralement la deuxième année, elle émet à partir d'un petit tronc de 4-5 cm au-dessus du sol, de une à cinq tiges dressées, robustes, qui peuvent atteindre 1,50 m de hauteur, sur laquelle s'étagent des feuilles sessiles de plus en plus petites, les inférieures oblancéolées, de 4 × 17 cm, les feuilles supérieures lancéolées, embrassant la tige par de longues oreillettes aiguës. Elles sont d'un vert brillant ou d'un vert bleuâtre (suivant les variétés[11]), avec une nervure centrale blanche, bien marquée, large à la base. La pubescence est variable.
Les fleurs, petites, jaunes, sont groupées en grappes regroupées en panicules corymbiforme dressées[3]. Chaque fleur est relativement petite (3-4 mm) et s'agite perpétuellement à la moindre brise parce qu'elle est portée par un pédicelle très fin. Elle se compose de 4 sépales verts, de 2 mm, de 4 pétales jaunes, en croix, de 3-4 mm de long, alternes avec les sépales, de 4 (+2) étamines (tétradynames), de nectaires annulaires, 2 carpelles ouverts soudés par les bords.
La floraison se fait en avril-juin. C'est une plante mellifère, visitée par les abeilles[12].
Les fruits sont des siliques de petite taille 10-20 mm de long, pendantes, de couleur brun noirâtre, oblongues en coin, atténuée à la base ; les graines sont brunes de 2-3 mm de long, ailées.
Ce sont les feuilles qui sont récoltées pour la production de teinture.
Le centre d'origine d'Isatis tinctoria est en Asie Centrale[1]. La plante est spontanée en Afrique du Nord, en Europe (pourtour méditerranéen principalement) et en Asie occidentale, Russie du Sud-Est, jusqu'au Xinjiang (Chine).
Elle est assez rare, sur une grande partie de la France, mais commune en Corse[3].
Elle a été répandue par la culture dans toute l'Europe, particulièrement en Europe occidentale et méridionale depuis des temps très reculés.
Elle croît sur sols secs à assez secs, dans les friches, les bords de chemins, sur les dalles rocheuses, sur les rochers et les pelouses méditerranéennes. C'est une espèce thermophile.
Isatis tinctoria est considérée comme une plante envahissante dans une partie des États-Unis d’Amérique[13],[12].
D'après Tela-botanica[8], les synonymes sont :
D'après eFloras[14], les synonymes sont :
Isatis tinctoria est très polymorphe en ce qui concerne la forme du fruit, la forme et la taille des oreillettes des feuilles caulinaires et la quantité d’indument.
Selon NCBI (7 juin 2013)[15] :
Selon The Plant List[16], seules trois sous-espèces sont acceptées :
Selon Tropicos (7 juin 2013)[17] :
Sous-espèces :Précisons tout de suite que le terme « pastel » en français comporte trois acceptions : la plante Isatis tinctoria, la matière colorante bleue fournie par cette plante et la nuance de bleu clair fournie par cette teinture[18].
La teinture « bleu pastel » est extraite des feuilles de la plante. En Lauragais, jusqu'au XVIIe siècle, l'ensemble du processus d'extraction du pigment coloré se déroule sur environ deux ans : la première année, les cultivateurs de pastel cultivent, récoltent et produisent des boulettes de pastel déshydratées (ou cocagnes) qu'ils vendent à des collecteurs locaux, intermédiaires entre eux et les puissants marchands de pastel de Toulouse. La seconde année, ces collecteurs et ces marchands de pastel produisent la poudre tinctoriale (ou agranat). Les riches marchands pastelliers de Toulouse étaient aussi propriétaires de fermes et octroyaient des prêts aux petits paysans.
La description détaillée des procédés de fabrication du pastel en Languedoc, donnée par de Lasteyrie[19] en 1811 ou par un historien contemporain Gilles Caster[20] (1964), peut se résumer ainsi :
Les feuilles sont récoltées sur les pieds de quatre mois environ, issus de semis faits en début d'année. Seule une petite parcelle était préservée pour fournir l'année suivante des graines de semence[20].
Lorsqu'elles ont atteint leur maturité, les feuilles de la rosette, assez longues, se détachent facilement par simple torsion ou d'un petit coup de faucille. La récolte se faisait de la mi-juin jusqu'à fin septembre[n 1], en plusieurs prélèvements successifs. À chaque passage, on ne prélevait que les feuilles commençant à jaunir, parvenues à « maturité ». La quatrième ou cinquième coupe est de moindre qualité[19],[21].
Les feuilles récoltées sont en général lavées dans un ruisseau pour les débarrasser de la terre qui peut les souiller. Une fois séchées, elles sont portées au moulin pastellier le plus proche, pour être broyées moyennant une redevance[20]. Là, elles sont écrasées pour en exprimer une pulpe. Un moulin pastellier est fait d'une grosse meule à axe horizontal tournant dans une auge de pierre où sont disposées les feuilles à broyer. La traction animale est préférée.
Après broyage, la pâte de pastel est mise à sécher en tas sous un hangar durant un temps variable suivant le lieu de fabrication. Une fois séché et durci, le pastel est écrasé et mis en boule à la main. Ces boules grosses comme le poing ou un peu plus, sont nommées « coques » ou « cocagnes »[n 2] (ou coquagnes pour Caster[20]) dans le Lauragais. Au fur et à mesure de leur fabrication, les cocagnes sont disposées sur des claies pour qu'elles continuent à sécher pendant un à deux mois. Quand elles sont bien déshydratées, les coques (nommées alors pastel de Cocagne) sont dures et ne risquent plus de se détériorer ; elles peuvent être transportées et être commercialisées pour servir à la préparation de la matière tinctoriale (ou agranat) utilisée dans les cuves de teinturiers[22].
Les marchands de pastels acquièrent les cocagnes bien sèches auprès des cultivateurs et procèdent à une opération nommée agrenage. On retrouve dans les textes toujours les trois mêmes verbes occitan : agranar, banhar, virar, c'est-à-dire moudre, mouiller, remuer, nous dit Caster[20].
En début d'année, les cocagnes sont écrasées avec des maillets et éventuellement réduites en poudre dans un moulin. La substance est ensuite aspergée d'eau de rivière ou d'urine pour provoquer une « fermentation » : le pastel s'échauffe et fume, indique l'Encyclopédie de Diderot et D'Alembert. La pâte est remuée régulièrement à la pelle pour contrôler sa température et faire en sorte que le processus ne s'emballe pas ou ne ralentisse pas trop. La pâte émet des bulles et exhale une odeur ignoble qui oblige à travailler à la campagne, loin de Toulouse. Une fois sèche, la pâte de pastel fournit une poudre tinctoriale de couleur noire, nommée agranat[n 3].
L'agranat est mis en sac ou en baril pour être transporté. Convenablement stocké, il gardait ses propriétés colorantes une dizaine d'années[23].
La compréhension des processus d'extraction chimiques du pigment indigo, réalisés lors du traitement du pastel, ne s'est faite que lentement au cours du XXe siècle (voir la section Composition chimique ci-dessous). La teinture bleu pastel s'obtient par oxydation du jus verdâtre tiré des granulés d'agranat. Il s'agit bien d'une teinture, qui se révèle par oxydation, et qui est ensuite d'une très grande stabilité.
L'usage du pastel comme pigment colorant est un sous-produit de la teinture : on recueillait l'écume à la surface des bains de teinture, et cette fleurée séchée donnait une poudre bleue utilisée comme pigment pour des peintures. C'est ce pigment incorporé à du carbonate de calcium qui permet l'obtention de bâtonnets utilisés pour dessiner, et qui a donné le nom de « pastel » à ces bâtonnets et à la technique artistique qui les utilise[24].
Le pigment colorant indigo (ou indigotine) de l'agranat est insoluble et ne peut être utilisé directement pour teindre en profondeur les fibres de laine ou de coton. Il faut utiliser un procédé dit « de cuve » pour transformer l'indigo en une molécule soluble, par réduction en milieu alcalin (à pH autour de 10). On obtient du leuco-indigo, de couleur jaune verdâtre, qui pourra imprégner les fibres lorsqu'on les plongera dans la teinture. Quand on le retire du bain, le leuco-indigo s'oxyde au contact de l'air et redonne le pigment bleu, insoluble, déposé sur les fibres.
K. Delaunay-Delfs[25] et Marie Marquet[26] proposent plusieurs techniques de cuve, naturelles ou chimiques, pour teindre au pastel, pour le particulier.
La cuve à l'urine fermentée est propice à la teinture de la laine. Pour obtenir un milieu alcalin (à pH ~ 10), on peut actuellement utiliser de l'ammoniaque, ou en obtenir comme les anciens, en laissant de l'urine fermenter pendant 2 à 3 semaines dans un récipient placé au soleil. On prend ensuite un grand récipient, dans lequel on place de l'agranat pilé à l'intérieur d'un sachet en mousseline, et on couvre d'urine fermentée. Il faut ensuite veiller à maintenir le mélange à la température de 30 à 40 °C, en remuant régulièrement le liquide sans l'agiter, jusqu'à ce qu'il devienne verdâtre et se couvre d'une pellicule aux reflets irisés. On trempe alors la laine dans le bain pendant une demi-heure, puis on la sort et la sèche pour bien favoriser l'oxygénation. On répétera plusieurs fois l'opération.
La culture du pastel en Europe a décliné avec l'arrivée de l'indigo des Indes au XVIIe siècle, extrait d'un arbuste nommé Indigofera tinctoria. Elle a disparu presque totalement à la fin du XIXe siècle, à la suite du développement de teintures chimiques bleues. Actuellement, on assiste à des tentatives de remettre à l'honneur cette plante, pour ses vertus particulières. Un agriculteur de la Somme, en France, Jean-François Mortier, essaie de faire revivre cette tradition[27]. À Lectoure, dans le Gers, un architecte décorateur belge, Henri Lambert, produit des teintures et des pigments de pastel avec des techniques nouvelles sans rapport avec la longue fabrication traditionnelle[28].
Plante fourragère, cultivée et destinée à l'alimentation animale. Elle donne un fourrage précoce[3].
Aux XVIIIe siècle, on faisait paître les moutons dans les champs de pastel après la dernière coupe d'automne[19].
Le pastel des teinturiers offre comme plante ornementale, une superbe floraison jaune vif en avril-mai qui reste décorative même après la floraison.
La planter au soleil dans un sol bien drainé. Elle se ressème toute seule mais ne fleurit que la seconde année.
Isatis tinctoria était connue dans l'Antiquité gréco-latine comme plante médicinale et tinctoriale. Le médecin et pharmacologue grec Dioscoride (Ier siècle) indique que les feuilles de ισατις (isatis) - connues des teinturiers - étaient utilisées en cataplasme pour traiter les œdèmes, les tumeurs, les plaies etc. (De materia medica, livre II, 184[7]). Pline l'Ancien note à propos d'« isatis» que « ses feuilles, écrasées avec de la polenta[n 4], sont bonnes pour les blessures » (Histoire Naturelle[6], livre XX, 59, p. 971). Quant à la forme cultivée qui sert à teindre les laines, « elle arrête le sang, guérit les ulcères... ainsi que les enflures avant la suppuration et le feu sacré, par la feuille ou la racine. En boisson, elle est également bonne pour la rate. » (H.N. idem).
Ses indications se retrouvent dans les traités du Moyen Âge et de la Renaissance et même plus tard. Le médecin botaniste Italien Matthiole du XVIe siècle, recommande l'application de ses feuilles sur les blessures pour faciliter leur cicatrisation et guérir les ulcères (commentaires de Dioscoride[29], 1544). Elle fut employée aussi en décoction contre les maladies de la rate[30] (1753) et comme antiscorbutique[3].
En Chine, la plante indigène donnant la teinture bleu indigo est la renouée des teinturiers Polygonum tinctorium. L'indigotier Indigofera tinctoria arriva au VIe siècle et le pastel Isatis tinctoria (appelé 菘蓝 songlan en chinois), arriva seulement à la fin du XVIe siècle, au moment de sa première mention par le naturaliste Li Shizhen[31]. La racine et la feuille sont employées en médecine traditionnelle chinoise. Suivant le traité de pharmacopée chinoise de l'université de Nanjing et Shanghai[32] :
Plus de 80 composés d'Isatis tinctoria ont été isolés[34],[35],[36],[37], dont des glycosides, alcaloïdes, acides organiques, des composés indoliques, du saccharose et divers glucides, des nitriles (2-phenilacetonitrile, octanenitrile...), furanes (2-éthylfuran) et lignanes, acides aminés, terpènes, sesquiterpènes et flavonoïdes[38]. Chen et als[35] répartissent les composés actifs en trois classes : les indole alcaloïdes (indiburine, indigo, indican, glucobrassicine... en tout 46 composés), les phénylpropanoïdes comportant des lignanes (lariciresinol, pinoresinol...8 composés) et des flavonoïdes (vicenine, stellarine...10 composés) et les terpénoïdes (β-sitostérol, γ-sitostérol, daucostérol). Signalons quelques composés intéressants pour leurs propriétés pharmacologiques ou tinctoriales :
La plante est exceptionnellement riche en indole glucosinolates : en glucobrassicine, en néoglucobrassicine, et glucobrassicine-1-sulfonate[39]. Une étude a montré qu'elle pourrait servir à prévenir le cancer[40], car elle a un taux de glucobrassicine vingt fois supérieur à celui du brocoli[41]. La glucobrassicine est un précurseur de isothiocyanates.
Les feuilles de pastel contiennent un alcaloïde, nommé tryptanthrine[42], possédant une forte activité inhibitrice de la cyclo-oxygénase-2 (COX-2) et de la 5-lipoxygénase[43]. Les extraits de feuilles ont montré une activité anti-inflammatoire sur l'œdème de la patte de souris[44] ainsi qu'une inhibition de l'asthme de la souris induit par allergènes[45].
L'huile de graines de pastel contient[46] de l'acide érucique (26,5 %), oléique (14,6 %), linolénique (14,0 %), palmitique (11,2 %) et linoléique (2,7 %).
La plante ne produit pas directement le vibrant pigment bleu-indigo, nommé indigo, mais des précurseurs incolores de ce colorant[11],[47],[48] accumulés dans les vacuoles sous forme de dérivés de l'indoxyle : l'indican (indoxyle β-D glucoside) et les isatan A, B et C (dérivés de l'indoxyle). L'indican se trouve principalement dans la racine. Les précurseurs, extraits de la feuille fraiche, produisent de l'indigo au cours des traitements qui suivent la récolte.
Travail des pastelliers : hydrolyse et oxydation Lors du broyage et des macérations des tissus de la plante, les vacuoles sont brisées et libèrent les indoxyle-glycosides et les isatans A, B et C, qui sont alors exposés à la β-glucosidase, une enzyme hydrolysante logée dans les chloroplastes.La teinture bleue tirée du pastel était très impure et donnait un bleu d'azur tendre, dit bleu de pastel. Par contre, la teinture bleue extraite de l'indigotier (Indigofera tinctoria) donnait des bleus plus profonds, car le pigment colorant y était plus concentré[50]. Le pigment colorant, l'indigo, est le même mais ce sont les « impuretés » associées à des techniques différentes d'extraction sur des plantes tinctoriales différentes qui font la différence de teinte.
La molécule d'indigotine est très proche de celle donnant le rouge de la pourpre et n'en diffère que par l'absence de deux atomes de brome[51].
Le pastel fut la seule source de teinture bleue disponible en Europe jusqu'à la fin du XVIe siècle, avant que le développement des routes commerciales vers l'Extrême-Orient permette l'arrivée de l'indigo extrait de l'indigotier.
Les premières traces archéologiques du pastel remontent au Néolithique[52] et ont été trouvées dans la grotte de l'Audoste dans les Bouches-du-Rhône en France. Dans un habitat de l'Âge du Fer du Heuneburg (Allemagne), on a trouvé des impressions de graines sur des poteries. Les sépultures du Hallstatt de Hochdorf et de Hohmichele contiennent des tissus teints au pastel[53].
Le pastel des teinturiers fut cultivé en Mésopotamie et dans l’Égypte romaine[54] (de -30 à +395) et peut être avant. Le papyrus de Stockholm[55] (un recueil de recettes artisanales du IIIe siècle) décrit la récolte de la plante[n 5], le broyage, séchage (&109), la fabrication de teinture (en utilisant de l’urine &110), la cuisson avec de l’urine et de la saponaire (&111) puis la teinture (&112).
Toujours dans l'Antiquité romaine, mais dans la partie occidentale de l'empire, le pastel fut cultivé au centre et au sud de la péninsule italienne. Pompei fut un centre important de production d'indigo de pastel[56]. Jules César raconte dans ses Commentaires sur la Guerre des Gaules (livre V, 14) que les Brittons se peignaient le corps avec du uitrum avant de livrer bataille. Pour le latiniste de l'EPHE, Jacques André, le uitrum est apparenté aux formes germaniques weit, wād, picard waide, anglais woad, c'est-à-dire guède, pastel[57] (Isatis tinctoria). Les Romains en tiraient un bleu terne pour teindre les vêtements de travail des artisans et des paysans. La preuve archéologique de l'existence du pastel en Angleterre à l'âge de fer a été établie en 1992 par Hall[58],[n 6].
Pline indique dans le livre XXII de son Histoire Naturelle[6] « En Gaule, on appelle glastrum une plante qui ressemble au plantain ; les épouses et les brus des Bretons s'en barbouillent tout le corps et s'avancent nues dans certaines cérémonies sacrées, imitant la couleur des Éthiopiennes ». D'après Stéphane Schmitt, le traducteur de Pline, et le latiniste Jacques André[57], ce glastrum (gaélique glaisin «guède») serait le pastel Isatis tinctoria.
Les Pictes, une tribu d'Écosse, doivent probablement leur nom (du latin Picti, désignant des personnes peintes ou peut-être tatouées) à leur coutume d'aller au combat nus, couverts seulement de peintures de guerre[n 7]. Les représentations de guerriers ou de chasseurs sur les pierres pictes ne révèlent toutefois pas de tatouages évidents et l'origine de la teinture utilisée reste incertaine.
En Europe, les trois couleurs de base des cultures anciennes étaient le rouge, le blanc et le noir. Le bleu était utilisé mais il ne devint une couleur à la mode qu'à partir du XIIe siècle. Dans la peinture européenne, la Vierge Marie qui était presque toujours habillée d'une couleur sombre, commence à être vêtue de bleu[59].
L'extraordinaire développement du culte marial va assurer la promotion de cette couleur et l'étendre au domaine de l'héraldique. Les rois capétiens adoptent un écu d'azur (semé de fleurs de lis d'or) en hommage à la Vierge, protectrice du royaume de France. À la suite de l'adoption du bleu par Philippe-Auguste et Saint-Louis, les seigneurs s'empressent de les imiter. En outre, pour teindre en noir les robes des clercs, les teinturiers utilisaient de la teinture de pastel associée à d'autres teintures.
Au Moyen Âge, l'utilisation de la teinture de pastel ne se limitait pas aux tissus. Ainsi l'illustrateur des Évangiles de Lindisfarne employait un pigment à base de pastel comme couleur bleue.
Comme la seule teinture naturelle bleue était à cette époque obtenue à partir de pastel, on comprend que la vogue du bleu ait stimulé la culture du pastel des teinturiers. Dès 1230, il fait l'objet d'une culture et d'une transformation à grande échelle, pour satisfaire la demande grandissante des drapiers et des teinturiers.
Au XIIIe siècle, les centres de culture du pastel se situent notamment en Angleterre (Lincolnshire et Glastonbury), en France (Normandie, Picardie), en Allemagne (région d'Erfurt en Thuringe) et en Italie (Lombardie).
En France, la Picardie (principalement l'Amiénois et le Santerre) était un espace important de production de guède (ou waide) qui devint le principal support du négoce amiénois au XIIIe siècle. La waide était cultivée dans des parcelles jardinées, sur les sols riches à l'est d'Amiens et dans la vallée de la Somme et de ses affluents (Avre, Noye, Selle, Ancre…). La quasi-totalité de la récolte était dirigée sur Amiens et de là exportée en Flandre ou en Angleterre[60]. Dans cette ville, une statue du mur sud de la nef de la cathédrale représente deux marchands waidiers devant un sac de tourteaux de waide et le soubassement de la façade occidentale est décorée de fleurs de waide stylisées.
Cependant, à partir du XVe siècle, le commerce et la production de waide en Picardie déclina au profit des producteurs concurrents du Languedoc et de la Thuringe. De 1380 à 1429, la ville exportait en moyenne 1 100 tonneaux de guède par an. À partir de 1429, les exportations tombèrent à 200 tonneaux[60].
La culture du pastel fit la fortune de villes comme Toulouse et Erfurt[59]. Le climat du sud avec son long ensoleillement est plus propice à la production des précurseurs d'indigo dans les feuilles.
Le Lauragais, triangle compris entre Toulouse, Albi et Carcassonne, connut une grande prospérité grâce au commerce d'Isatis tinctoria qui ici prit le nom de « pastel ». Les pastelliers figuraient parmi les plus grandes fortunes de l'époque. Les coques transitaient dans les ports français de Bordeaux, Marseille et Bayonne. Le XVIe siècle marque l'apogée de la culture du pastel occitan. Le bleu était devenu un produit de luxe[61].
Vers 1450, Toulouse est une ville pauvre avec de nombreux immeubles à l'abandon et où l'unique pont sur la Garonne est mal entretenu[20]. Au cours du siècle suivant, la ville connaît un essor remarquable en s'ouvrant au commerce international. La Garonne est une voie de transport commode pour les milliers de balles[n 8] d'agranat (représentant des centaines de tonnes) envoyées jusqu'au port de Bordeaux puis de là, exportées jusqu'à Londres, Anvers, Rouen, Bilbao etc.
Le négoce du pastel fit la fortune de quelques négociants qui sont encore connus des Toulousains pour les somptueux hôtels qu'ils ont construits dans cette ville. Le marchand de pastel Jean de Bernuy, d'origine espagnole, achète le pastel (dans les années 1530) principalement dans les environs de Maurens (sud-ouest de Toulouse) et établit un comptoir à Bordeaux. Il vend en Castille, en Angleterre puis s'intéresse au marché méditerranéen. Il possédait un certain nombre de terres et de seigneuries dans le Lauragais où il faisait préparer les coques. Dans Toulouse, il fit édifier la plus haute tour privée de la ville et un somptueux palais : l'hôtel de Bernuy, construit en deux campagnes de 1503 à 1536 autour de deux cours, l'une gothique et l'autre Renaissance[20]. Sa fortune lui permit de se porter caution, en 1525, de l'énorme rançon demandée par Charles Quint pour libérer François Ier fait prisonnier à la bataille de Pavie[62].
Pierre d'Assézat est un autre pastellier toulousain peut être encore plus célèbre que Jean de Bernuy. Il le doit à une puissance commerciale redoutable puisqu'il pouvait expédier en moyenne 12 000 balles chaque année, ce qui ferait en balles flamandes, 1 080 tonnes métriques. L'Espagne était la destination principale de son pastel mais il visait aussi en l'Angleterre, l'Écosse ou Rouen. Son sens des affaires lui permit de construire une demeure princière[20].
L'essor prodigieux de ce pays de cocagne ne dura qu'un temps. En 1560, survient un krach terrible sur la vente des coques. La surproduction, l'apparition de l'indigo (tiré de l'indigotier) et la spéculation firent s'écrouler les prix, entraînant la ruine des collecteurs. Les premiers troubles de la guerre de religion créèrent un climat d'insécurité à Toulouse, peu propice au commerce. À Londres, la « teinture d'Inde » commence à apparaître. La route du Cap fournira régulièrement de l'indigo (de l'indigotier) à partir de 1563. Mais les pastelliers ne pouvaient imaginer que l'indigo détruirait totalement le commerce du pastel qui avait fait la fortune de Toulouse pendant deux générations[20].
En Allemagne, les habitants des cinq villes du pastel de Thuringe, Erfurt, Gotha, Tennstedt, Arnstadt et Bad Langensalza, avaient leurs propres chartes. À Erfurt, les négociants du pastel ont financé la création de l'université. Un tissu traditionnel est encore de nos jours imprimé au pastel en Thuringe, en Saxe et en Lusace : il y est connu sous le nom de Blaudruck (littéralement « impression bleue » — il s'agit de tissus imprimés). Les négociants allemands exportaient leur pastel à Anvers, en Angleterre, Hongrie, Pologne et Italie. Avec l'importation de l'indigo de la Louisiane à partir du dix-huitième siècle les marchés se sont éffondrés.
A Erfurt comme à Cologne existent encore aujourd'hui des places de la vieille ville qui s'appelent Waidmarkt, au centre de l'ancien quartier des teinturiers. A Cologne une des rues proches s'appelle Blaufärberbach (approximativement « ruelle des teinturiers en textiles bleus »).
L'industrie textile italienne très florissante réclamait de grande quantité de pastel, (nommé ici guado), qui était fourni par des importations de France et d'Allemagne et une production locale en Toscane, Lombardie et Piémont[63].
Dans le calendrier républicain, la Guède (un des noms du Pastel des teinturiers) était le nom attribué au 26e jour du mois de pluviôse[64].
Isatis tinctoria
Le Pastel des teinturiers ou guède (Isatis tinctoria L.) est une espèce de plantes herbacées bisannuelles, de la famille des Brassicaceae, qui pousse à l'état sauvage en Europe du Sud-Est ainsi qu'en Asie Centrale et en Asie du Sud-Ouest. Nommée waide en Picardie, vouède en Normandie et wedde dans le Nord, elle est connue aussi sous les noms vernaculaires d'Herbe de saint Philippe, Varède, Herbe du Lauragais.
Utilisée comme plante médicinale et tinctoriale par les Grecs et les Romains de l'Antiquité, elle fut largement cultivée au cours du Moyen Âge et de la Renaissance, en Europe, pour la production d'une teinture bleue, extraite des feuilles, avant d'être détrônée par l'indigotier, puis par les colorants de synthèse.
Ličilarski vrbovnik (bojadisarski vrbovnik, silina, šilina, lat. Isatis tinctoria), korisna dvogodišnja raslinja iz porodice kupusovki, raširena od jugistočne Europe do zapadne Azije, odakle se uvezla po ostatku Europe, velikim dijelovima Azije i Sjevernu i Južnu Ameriku. [1]
Ličilarski vrbovnik (bojadisarski vrbovnik, silina, šilina, lat. Isatis tinctoria), korisna dvogodišnja raslinja iz porodice kupusovki, raširena od jugistočne Europe do zapadne Azije, odakle se uvezla po ostatku Europe, velikim dijelovima Azije i Sjevernu i Južnu Ameriku.
Barbjerska sywina (Isatis tinctoria) je rostlina ze swójby křižnokwětnych rostlinow (Brasicaceae).
Barbjerska sywina (Isatis tinctoria) je rostlina ze swójby křižnokwětnych rostlinow (Brasicaceae).
Isatis tinctoria L. (altrimenti conosciuta con il termine di guado o gualdo[1]) è una pianta biennale della famiglia delle Brassicacee (o cruciferae).[2] Il guado fa parte delle cosiddette "piante da blu", da cui si ricava un colorante di questo colore.
L'infiorescenza è costituita da una ventina di steli di color blu porpora che portano fiori con sepali ellittici e petali gialli, di cui solo alcuni giungono a maturazione. Il diametro del cespo varia da 3,5 cm a 18 cm. Le foglie di forma lanceolata vanno da 1,5 cm a 5,0 cm di lunghezza.
Nel primo anno di vita la pianta rimane in una fase vegetativa nella quale forma una rosetta di foglie; nel secondo anno si ha lo sviluppo dello stelo fiorale che porta alla successiva fruttificazione. L'intera pianta è glauca.
Di origine asiatica, fu quasi certamente introdotta nell'area europea fin dal neolitico[3]. Secondo altre fonti, potrebbe essere stata importata in Italia dai Catari[4] stabilitisi nella zona del Piemonte corrispondente all'attuale città di Chieri[1]. In effetti, proprio nel triangolo tra Tolosa, Albi e Carcassonne nel ducato di Lauraguais si era sviluppata la coltura dell'Isatis tinctoria, da cui si estraeva il "blu pastello", estremamente ricercato nella pittura e nell'industria tessile, tanto da creare una ricchezza inaspettata in quelle zone povere, che da allora sono passate a essere definite il "paese di Cuccagna" (da cocagne, il nome francese del panetto di tintura blu commercializzato)[5].
In Italia è diffusa maggiormente sulle Alpi Occidentali e Alpi Marittime (Valle d'Aosta, Piemonte, dove in lingua piemontese è chiamata guald, e Liguria), in alcune regioni del centro-nord (Toscana, Umbria e Marche) e del centro-sud (Abruzzo e Lazio). È presente anche in Sicilia e Sardegna (in lingua sarda viene chiamata guadu, in particolare la sottospecie canescens) ed è rintracciabile anche in Veneto, sia pure limitatamente alla provincia di Treviso.
Il guado fa parte delle "piante da blu" insieme al guado cinese e alla persicaria dei tintori.
Il colorante si estrae dalle foglie raccolte durante il primo anno di vita. Dopo la macerazione e la fermentazione in acqua si ottiene una soluzione giallo verde che, agitata e ossidata, produce un precipitato (indigotina). Il colorante, molto solido, è utilizzabile nella tintura della lana, seta, cotone, lino e juta, ma anche in cosmetica e per i colori pittorici;[3] il padre di Piero della Francesca, Benedetto de' Franceschi, era un rinomato commerciante di guado dell'alta Valtiberina.[6]
Fu coltivato in Italia soprattutto nei territori del Montefeltro e dell'Appennino umbro-marchigiano, almeno dal XIII secolo fino alla seconda metà del XVIII, quando la concorrenza dell'indaco asiatico e americano ne ridusse drasticamente la produzione[3].
La solidità del colore è provata dagli arazzi medioevali giunti fino a noi: i verdi dell'Arazzo di Bayeux, ottenuti con guado sormontato sul giallo della ginestra minore[3], e i blu dell'Arazzo dell'apocalisse hanno superato i secoli.
Il guado era tra i coloranti indaco utilizzati un tempo per la tintura della tela con cui venivano confezionati i blue jeans.
Con il colorante a base di guado i Britanni si tingevano il volto del caratteristico colore blu/azzurro che rendeva il loro aspetto più terribile in battaglia.[7]
url
(aiuto). Isatis tinctoria L. (altrimenti conosciuta con il termine di guado o gualdo) è una pianta biennale della famiglia delle Brassicacee (o cruciferae). Il guado fa parte delle cosiddette "piante da blu", da cui si ricava un colorante di questo colore.
Īsătis -idis f. (Graece ἴσατις) sive glastum -i n. est herba, qua fit tinctura caerulea, indico, hyacinthoque similis, apud doctos Isatis tinctoria.
Isatis est nomen Graecae originis, glastum Gallicae (lingua Italica Tuscana glasto, glastro; cf. voces Hibernicae glaisin 'glastum' et glass 'caeruleus, viridis'). Alia nomina Latina sunt:
Graeci etiam dixerunt Ἄρειον 'Arēum' et ὑσγίνη 'hysginē', et nomen arcanum "Prophetarum" fuit ἀρούσιον 'arūsium'.[1]
Nomen Syriacum est (ܩܢܥܐ (קנעא qånˁåˀ,[2], quod nomen non in fontibus Iudaicis invenitur, sed nomen Graecum tantum: איסטיס ˀīsåṭīs
Secundum Oribasium, Syn. 2.13, nomen Gothicum fuit wisdele: "Isatis quam Goti "wisdele" vocant, tinctores herba vetru." Hoc creditur esse pro Gothico *𐍅𐌹𐌶𐌳𐌹𐌻𐌰 *wizdila.
Īsătis -idis f. (Graece ἴσατις) sive glastum -i n. est herba, qua fit tinctura caerulea, indico, hyacinthoque similis, apud doctos Isatis tinctoria.
Wede (Isatis tinctoria) is een plant uit de kruisbloemenfamilie (Brassicaceae). De oorspronkelijke groeiplaats zijn de Euraziatische steppes. Uit de plant kan een blauwe kleurstof genaamd pastel (van het Occitaanse woord pastel, pasta) worden gewonnen. Dit wedeblauw werd tot de komst van indigo in de lakenindustrie gebruikt om wol blauw te verven.
De tweejarige plant kan 1 meter hoog worden. De bladeren zijn glad en omvatten de stengel met een pijlvormige voet. De bloemen zijn klein en geel. De bloei is in mei en juni. De zaden zitten in langwerpige hauwtjes, die gaan hangen als ze rijp worden.
Wede is in Nederland zeldzaam, ze groeit vooral langs de oevers van Waal en Rijn. De zaden worden met het rivierwater aangevoerd uit Beieren en Zwitserland.
De plant is vanwege de mogelijkheid er verfstof uit te winnen al in de oudheid naar Europa gebracht. Een ingewikkeld productieproces leverde uiteindelijk bolletjes kleurstof op, de zogenaamde 'kokanjes' (van het Franse 'cocagnes'). Het was tot in de zestiende eeuw de belangrijkste leverancier van blauwe kleurstof in West-Europa. De plant werd in het verleden ook in de Lage Landen verbouwd, maar is er niet blijvend verwilderd. Dat gebeurde wel in bijvoorbeeld Zuid-Duitsland en Frankrijk.
Vanaf 1100 groeide de lakenindustrie enorm. Engeland was de voornaamste leverancier van ruwe wol aan weverijen in Vlaanderen (Gent, Brugge, Ieper), Toscaanse steden zoals Florence en later ook Leiden in Holland. Als de wol blauw moest zijn werd ze geverfd met pastel uit wede. De voornaamste streken voor de verbouw van wede waren Zuid-Frankrijk, de streek rondom Toulouse, het Pays de Cocagne, en Midden-Duitsland, met als centra Erfurt en Naumburg. Later werd het ook in Engeland, vooral in Lincolnshire, gekweekt.
De wedecultuur stortte volledig in toen de Portugezen, en later de Nederlanders en Engelsen, indigo uit India naar Europa brachten. Deze kleurstof was veel dieper blauw en kleurvaster.[bron?]
De wedeplanten werden geoogst vlak voor de bloei, in stukken gesneden en vervolgens aan een rottingsproces onderworpen. Het resultaat was een kleiachtige pasta, de pastel. Van deze massa werden balletjes gedraaid, de kokanjes, die gedroogd werden en verhandeld.
De pastelballetjes werden in een 'wede-kuip' met zemelen en veel water gedaan. Soms werd er nog een andere kleurstof, meekrap, aan toegevoegd. Na een of twee dagen was het resultaat een geel-groene vloeistof. Textiel werd tien seconden in de vloeistof gedoopt. De kleurstof hechtte zich aan het textiel, dat te drogen werd gehangen. Door inwerking van zuurstof uit de lucht veranderde de kleur in pastelblauw dat niet meer uit het textiel gespoeld kon worden. Door dit proces te herhalen kon de kleur donkerder worden gemaakt. Diep donkerblauw is met wede niet te verkrijgen.[bron?]
Vroeger werd het weekproces op zaterdagmiddag ingezet. Men liet het geheel vervolgens tot maandagochtend staan en hing het dan op. Daardoor hadden de wevers 'verplicht' vrij op maandag als de textiel droogde. Dit zou een verklaring kunnen zijn voor het begrip blauwe maandag, maar er zijn ook andere aannemelijke verklaringen.[1]
De wede is waardplant voor onder meer de vlinders oranjetipje en groot koolwitje.
Wede (Isatis tinctoria) is een plant uit de kruisbloemenfamilie (Brassicaceae). De oorspronkelijke groeiplaats zijn de Euraziatische steppes. Uit de plant kan een blauwe kleurstof genaamd pastel (van het Occitaanse woord pastel, pasta) worden gewonnen. Dit wedeblauw werd tot de komst van indigo in de lakenindustrie gebruikt om wol blauw te verven.
Vaid (Isatis tinctoria) er ei inntil 150 cm høg plante i krossblomfamilien med opphav på steppene i Vest-Asia og i Nord-Afrika. Planta har sidan antikken vore nytta til å farge ullgarn og ulltøy blått med. Ho vart difor innførd og dyrka i dei fleste landa i Europa, og har spreidd seg som villplante som fylgje av dette.
Planta er toårig. Fyrste året gror det opp ein rosett av om lag 30 cm lange, pilforma hårete blad. Andre året kjem blomestanden, som kan verte inntil halvannan meter høg. Blomane er gule, og skulpene er avlange og hengjande. På den eine av dei to varietetane som veks i Noreg, vert skulpene svarte, på den andre ljose.
Frø av vaid som vart funne i vikingskipet frå kvinnegrava på Oseberg i Vestfold kan tyde på at planta har vore dyrka og nytta til ullfarging i Noreg i vikingtida. To varietetar av vaid veks no i Noreg her og der, men er sjeldne.
I mellomalderen kunne vaid ha stor økonomisk verde som plantefarge, men vart seinare utkonkurrert av plantefargen indigo frå India, og frå slutten av 1800-talet har kunstige fargeemne overteke.
Dei fyrste arkeologiske spora i Europa etter vaid skriv seg frå yngre steinalder (neolittikum) frå ei grotte (grotte de l'Audoste) i området Bouches-du-Rhône sør i Frankrike. Frå jarnalderen har ein funne avtrykk av vaidfrø i keramikk i restar etter ein busetnad i Heuneburg i Tyskland, og på jarnaldergravplassane Hallstatt og Hohmichele er det funne tøy farga med vaid.
Romaren Julius Cæsar fortel i boka om gallarkrigane at britane farga og tatoverte kroppen ved hjelp av «vitrium», og denne utsegna har vorte tolka slik dei nytta eit blått fargestoff utvunne av vaid. Men då ordet «vitrium» ikkje kan omsetjast med «vaid», er det meir truleg at Cæsar meiner dei tatoverte seg ved hjelp av ein type grønblått glas som har vore vanleg på denne tida.
Vaid (Isatis tinctoria) er ei inntil 150 cm høg plante i krossblomfamilien med opphav på steppene i Vest-Asia og i Nord-Afrika. Planta har sidan antikken vore nytta til å farge ullgarn og ulltøy blått med. Ho vart difor innførd og dyrka i dei fleste landa i Europa, og har spreidd seg som villplante som fylgje av dette.
Botanisk illustrasjon av vaid.Planta er toårig. Fyrste året gror det opp ein rosett av om lag 30 cm lange, pilforma hårete blad. Andre året kjem blomestanden, som kan verte inntil halvannan meter høg. Blomane er gule, og skulpene er avlange og hengjande. På den eine av dei to varietetane som veks i Noreg, vert skulpene svarte, på den andre ljose.
VaidfrøVaid (Isatis tinctoria) er en toårig plante av korsblomstfamilien. Planten blir brukt til å farge ull, lin og silke blått.
Første år dannes en bladrosett med ca. 30 cm lange hårete blad. Andre året kommer blomsterstanden, som kan bli opptil 2 m høg. Blomstene er gule og likner på rapsblomster.
Planta kommer opprinnelig fra Vest-Asia, men finnes i dag i forvillet form over det meste av Europa. Den foretrekker tørre bakker og grunnlendt mark.
Bladene inneholder det fargeløse glykosidet indikan. Dette spaltes ved hjelp av enzymer til sukker og indoksyl, som ved gjæring oksideres til indigo.
Vaid har vært brukt som fargeplante helt siden antikken. Den eldste skriftlige nedtegnelsen om farging ved vaid stammer fra Cæsar. Han beretter om et folkeslag på De britiske øyer som farga huden blå med vaid. Derved fikk de et spesielt vilt og skremmende utseende. Romerne kalte folket for piktere.
Fra middelalderen var Thüringen i Tyskland særlig kjent for farging med vaid. Fram til 1500-tallet var vaiden spesielt viktig for blåfarging av lerret. Da kom «ekte indigo» fra tropene på markedet, framstilt av erteplanten Indigofera tinctoria, og utkonkurrerte den hjemlige produksjonen. Etter at det lyktes å framstille indigo syntetisk i 1880, er så å si all naturlig indigo forsvunnet fra markedet.
Vaid inneholder stoff som hemmer soppvekst, og har derfor vært brukt til impregnering av treverk. Av røttene framstilles i Tyskland en bitterlikør, Waidbitterlikör.
I tradisjonell kinesisk medisin er vaid en viktig legeurt. Av røttene framstilles et middel som brukes både mot influensa, meslinger, kusma og hepatitt. Under de siste SARS-epidemiene i Kina var Banlangen sterkt etterspurt, og ble ganske raskt utsolgt.
I Tyskland er det i seinere år på nytt oppstått etterspørsel etter vaid, både som fargeplante og til antikvarisk restaurering av kirker og andre historiske bygninger.
Vaid (Isatis tinctoria) er en toårig plante av korsblomstfamilien. Planten blir brukt til å farge ull, lin og silke blått.
Urzet barwierski (Isatis tinctoria) – gatunek rośliny należący do rodziny kapustowatych.
Pochodzi z obszarów stepowych południowo-wschodniej części Europy, z Kaukazu, Azji Mniejszej. Obecnie występuje w prawie całej Europie, przeważnie jako zdziczały z upraw[2]. Występuje także w Algierii i Maroku[3]. Status gatunku we florze Polski: kenofit, efemerofit, w stanie dzikim jest w Polsce bardzo rzadki[4].
Roślina dwuletnia, hemikryptofit. Kwitnie od maja do lipca. Siedlisko: przydroża, kamieniołomy, nasypy, winnice, suche murawy, miejsca ruderalne na glebach wapiennych, bogatych w azot.
Urzet barwierski (Isatis tinctoria) – gatunek rośliny należący do rodziny kapustowatych.
Isatis tinctoria L., 1753[2] é uma espécie de plantas com flor da família das Crucíferas, comummente conhecida como pastel-dos-tintureiros[3] ou simplesmente pastel.[4]
É uma planta herbácea bienal, originária do sudoeste e centro da Ásia,[5] que em tempos foi muito cultivada nas regiões temperadas da Eurásia como planta tintureira e medicinal.[6] Utilizada para pinturas corporais e para fins medicinais desde o Neolítico europeu, a planta foi intensamente comerciada na Europa durante a Idade Média e a Renascença para produção de corante azul para tinturaria e pintura. O corante, manufaturado a partir do extrato fermentado das folhas, caiu em desuso com a introdução do anil obtido do índigo tropical e, posteriormente, com a generalização do uso das anilinas e outros corantes de síntese.
O pastel-dos-tinteiros é um hemicriptófito bienal, embora possa raramente ser perene de vida curta, em geral monocárpico (morre após a maturação das sementes), de raiz aprumada,[7] tetraploide[8] (número cromossómico 2n=4x=28), muito semelhante no hábito, ramificação e aspecto das folhas ao nabo silvestre e à couve. Em plena maturação forma uma planta robusta, que alcança 30–150 cm de altura, glabra a hirsuta, sub-glauca, erecta quando em flor, produzindo numerosas inflorescências ramificadas anteriormente.[9]
No primeiro ano após a germinação, a planta forma uma roseta de folhas basais com pecíolo curto (pecíolo com 0,5-5,5 cm de comprimento). As folhas são amargas e fortemente adstringentes, com coloração verde, ligeiramente glaucas na face superior, oblanceoladas, com 5–20 cm de comprimento e 1–3 cm de largura, muito variáveis em tamanho, geralmente muito maiores nas plantas cultivadas.[10] São estas as folhas colhidas para a extracção do pigmento. No primeiro ano a planta não floresce, podendo mesmo permanecer sem florir mais um ano, mantendo as folhas em roseta, se as condições ambientais forem desfavoráveis.
Geralmente no segundo ano após a germinação, e a partir de um pequeno tronco erecto que se prolonga até 4–5 cm acima do solo, a planta emite de um a cinco caules erectos, formando escapos robustos que podem chegar a 1,50 m de altura, nos quais surgem as folhas caulinares, com filotaxia alterna, sésseis, amplexicaules, com longas aurículas agudas na base, com 10–80 mm de comprimento, 5–25 mm de largura, linear-lanceoladas as mais próximas da base, lanceoladas as superiores. O tamanho das folhas, particularmente o seu comprimento, diminui progressivamente ao longo do caule, sendo as folhas superiores muito menores do que as mais próximas da roseta basal.[9] A folhas caulinares apresentam coloração verde brilhante ou verde azulado (consoante as variedades), com uma nervura central esbranquiçada, bem marcada e alargada na base da folha.[11] A pubescência é variável.
A planta produz entre maio e setembro abundantes flores hermafroditas amarelas, agrupadas em inflorescências do tipo racemo, com 30-80 flores em cada, formando panículas corimbiformes, ebracteadas, que se alongam até aos 10(-15) cm na maturação. As flores são pequenas, com 3–5 mm de diâmetro, de coloração amarela, inseridas em finos pedúnculo que atingem 5–10 mm de comprimento na fase de maturação do fruto. Os pedúnculos são tão finos e flexíveis que as flores são facilmente agitadas pela mais ténue brisa. A flor é formada por 4 sépalas, com 2-2,5 mm de comprimento, de coloração verde-amarelado. As 4 pétalas são amarelas, com 3-4,5 mm de comprimento, 1,5–2 mm de largura,[9][12] insertas em posição cruciforme alterna em relação às sépalas. As flores contêm 4 (+2) estames (tetradinâmicos, quatro com filetes compridos e dois curtos), nectários anulares, com 2 carpelos abertos e soldados pelos bordos.
As flores são polinizadas por insectos e as vagens amadurecem cerca de um mês após a polinização. A espécie é considerada uma planta melífera, sendo frequentemente visitada pelas abelhas.[13]
O fruto é uma siliqua pequena, embora muito variável em tamanho, com 10–20 mm de comprimento, 2,5–5 mm de largura, oblonga, pendente, estreitando-se em direcção à base, com ápice truncado a arredondado, geralmente mais largo na zona média (onde está o lóculo), glabras a escassamente pubescentes. Quando madura apresenta coloração castanho-escuro a negra. A semente, alada, tem 2–3 mm de comprimento, 1 mm de largura, com perfil elipsoidal alongado e coloração castanha.[9]
Isatis tinctoria apresenta grande polimorfia no que respeita à forma do fruto, à forma e ao tamanho das aurículas (lobos) da base das folhas caulinares e à quantidade de indumento.
A espécie é nativa das estepes e zonas semi-desérticas do Cáucaso e do oeste e centro da Ásia,[14] mas encontra-se naturalizada em quase todas as regiões temperadas e subtropicais da Eurásia, com maior prevalência no sueste e centro da Europa e no norte da China. O centro de diversidade (ou centro de Vavilov) situa-se na Ásia Central.[14]
A espécie espalhou-se por uma vasta região, tendo sido cultivada desde tempos muito remotos em toda a Europa, particularmente na Europa Ocidental e do Sul. Em consequência, a planta é considerada espontânea no Norte de África, na Europa (especialmente na região mediterrânica, sendo abundante na Córsega), na Ásia ocidental, sueste de Rússia e Ásia Central até à região de Xinjiang, no noroeste da China.[12]
Nalgumas regiões dos Estados Unidos, a espécie Isatis tinctoria é considerada como espécie invasora.[13][15]
A espécie está presente no território português, nomeadamente em Portugal Continental, de onde é autóctone,[16] encontrando-se naturalizada no arquipélago da Madeira[17] e nos Açores.[18]
No que toca à distribuição em Portugal Continental, o pastel-dos-tintureiros marca presença na zona da Terra QuenteTransmontana.[4]
Não se encontrando protegida por legislação portuguesa ou da União Europeia.[19]
Ocorre de preferência em solos secos a muito secos, em terrenos incultos ao longo de estradas, sobre afloramentos rochosas, sobre em rochas e em matagais e pastagens mediterrânicos. É considerada uma espécie termófila.
Pode ser cultivada em qualquer tipo de solo, embora prefira solos ligeiros. Necessita de elevada humidade para germinar e de boa exposição solar para atingir o máximo desenvolvimento, embora tolere algum ensombramento. O seu habitat preferido nas regiões de distribuição natural são as zonas declivosas e abertas com boa exposição solar. Nas regiões onde se naturalizou aparece frequentemente em zonas perturbadas de carácter ruderal e em falésias e outros locais bem drenados.
A espécie Isatis tinctoria foi descrita por Carolus Linnaeus,[20] a autoridade científica da espécie, que publicou a descrição na sua obra Species Plantarum 2: 670. 1753.[9][21][22]
Do que toca ao nome genérico, Isatis, este provém do vocábulo grego clássico ἴσατις, isatis, que ulteriormente derivou no substantivo latino isatis, empregado por Plínio o Velho, no livro XX:59,[23] termo derivado de isazein «sarar»,[12] porque segundo Dioscórides (II, 185),[24] a planta ἴσατις αγρια seria empregada para cicatrizar as feridas.
Quanto ao epíteto específico, tinctoria, este deriva do latim tinctura «tintura».[25]
Relativamente ao nome comum, «pastel», chega ao português por via do termo occitano pastèl,[26] que por seu turno deriva do termo latino pasta, aplicado porque durante o processo de fabrico do corante as folhas de Isatis tinctoria eram esmagadas por moenda em atafonas, conhecidas por engenhos de pastel, até formarem uma pasta que era deixada fermentar e secar.[9] Do nome da pasta tintureira o termo foi generalizado para designar a planta do qual era extraída. O termo também depois se alargou para abarcar o pastel como técnica de pintura com recurso as bastões corantes e para designar a gama de tons de azul suave produzidos pelo pigmento.
A designação «pastel-dos-tintureiros»[3] é frequentemente usada para a planta como forma de reduzir a ambiguidade face aos diversos étimos.
Estão aceites como válidas as seguintes subespécies, variedades e cultivares:[9][27][28]
Subespécies :Em resultado da sua grande polimorfia e do uso como planta cultivada desde tempos imemoriais em vastas regiões da Eurásia, a espécie apresente uma vasta sinonímia taxonómica. Entre os binomes considerados presentemente como sinónimos taxonómicos de Isatis tinctoria contam-se os seguintes:[7][29]
Embora considerado em geral como parte da espécie Isatis tinctoria,[30] a espécie Isatis indigotica Fortune 1846, o «pastel chinês», é por vezes considerado como uma espécie autónoma e diferente de I. tinctoria,[11] largamente distribuída no vale do Yangzi, morfologicamente muito diferenciada por apresentar folhas laucas. A variedade produz mais índigo por hectare (31 kg/ha), mas é mais sensível às doenças e menos bem adaptada ao clima mediterrânico que I. tinctoria.
A espécie é cultivada na Europa, especialmente no oeste e sul do continente, desde a Antiguidade Clássica. Esta espécie foi utilizada para produção de um corante azul que era comercializado sob os nomes de pastel, anil ou glastum. A introdução do anil derivado do índigo tropical, e depois o desenvolvimento das técnicas de síntese química das anilinas e de outros corantes sintéticos levou ao fim quase total da cultura e ao abandono dos «engenhos», um tipo específico de atafona em que era moído (cuja tecnologia serviu de base à estrutura de moenda dos engenhos de produção de farinha de mandioca e aos engenhos de açúcar da América do Sul).
Cultiva-se também desde tempos imemoriais em várias regiões do norte da China, especialmente em Hebei, Beijing, Heilongjiang, Henan, Jiangsu e Gansu, mas essencialmente com fins medicinais. Na China as raízes são colhidas durante o outono e secas para conservação. O material seco é processado para produzir grânulos, sendo uma das «ervas» da medicina tradicional chinesa (designada em chinês tradicional por 板藍根; pinyin: bǎn-lán-gēn; inglês: "indigowoad"). Muito populares na China, os preparados são consumidos em geral dissolvidos em água quente ou chá.
Na medicina tradicional chinesa, a raiz seca de Isatis tinctoria é utilizada para tratar afecções como a papeira, garganta irritada, hepatite infecciosa, dores de cabeça e febres. É considerada como um produto eficaz para combater o «síndrome do calor tóxico», acalmar as dores de garganta e para tratar gripe, sarampo, papeiras, sífilis e escarlatina. Também se utiliza para o tratamento da faringite, laringite, erisipelas, carbúnculo (anthrax) e para prevenir a hepatite A, a meningite epidémica, o cancro e as inflamações diversas. Possíveis efeitos secundários de menor importância incluem reacções alérgicas que causam vertigens, mas apenas as grandes doses e o uso prolongado podem ser tóxicos para os rins.
Para além destes usos para tinturaria e medicina, a planta também tem sido utilizada, embora a título muito secundário, como forragem e para fins ornamentais.
Como planta forrageira, cultivada especificamente para alimentação animal, a espécie produz uma forragem precoce,[12] mas é muito raro o seu uso na actualidade. Contudo, no século XVIII, quando era cultivada para tinturaria, era comum deixar rebanhos de ovelhas pastar nos campos cultivados de pastel após o último corte de outono,[31] aproveitando os restos da cultura e limpando o terreno para a rotação seguinte.
Como planta ornamental o pastel-dos-tintureiros oferece uma soberba floração amarelo-vivo em abril-maio que se mantém decorativa mesmo depois do fim do período de ântese. Pode ser facilmente cultivada em solos bem drenados em locais ensolarados, multiplicando-se facilmente por semente, muitas vezes espontaneamente. Apenas floresce no segundo ano após a germinação.
Na Europa, a utilização actual do pastel está presentemente reduzida à tinturaria artística e à produção de tecidos orgânicos (isto é produzidos sem recurso a produtos sintéticos). Na China a espécie continua a ser extensamente cultivada e utilizada para fins medicinais, mantendo tal procura que em Fevereiro de 2003, na província de Guandong da China, um surto de pneumonia atípica (SARS) causou uma procura massiva que elevou os preços do vinagre, raiz de Isatis e outras produtos medicinais por se acreditar quer eram úteis na eliminação de agentes infecciosos.
Recentemente, estudos científicos permitiram comprovar que os derivados de Isatis tinctoria podem ser utilizados como antioxidantes com eventual interesse na prevenção de alguns tipos de cancro, contendo mais de 20 vezes a concentração de glucobrassicina que os brócolos.[32] As folhas jovens quando trituradas podem produzir mais de 65 vezes a quantidade de glucobrassicina que igual peso de brócolos.[33]
Utilizado como planta medicinal e tintureira pelos gregos, romanos e outros povos Antiguidade Clássica europeia, o pastel foi largamente cultivado na Europa no decurso da Idade Média e da Renascença para a produção de um corante azul extraído das suas folhas. Até finais do século XVI, quando o anil derivado do índigo (Indigofera tinctoria e outras espécies do género Indigofera) apareceu no mercado em resultado do desenvolvimento das rotas marítimas para a Índia e Américas, o pastel era a única fonte de corante azul disponível na Europa para uso tintureiro. Em consequência, em várias línguas europeias o nome da planta confunde-se com o nome da coloração azul que produzia.
Atestando a antiguidade do uso, traços arqueológicos de sementes de pastel datados do Neolítico foram encontrados na gruta francesa de Audoste, Bocas do Ródano. Também em escavações realizadas no povoado da Idade do Ferro da Heuneburg (Alemanha) foram encontradas peças de cerâmica contendo marcas de sementes de pastel. Enterramentos neolíticos encontrados em Hallstatt, Hochdorf e Hohmichele (Alemanha) continham têxteis tingidos com pastel.
Júlio César afirma na sua obra Commentarii de Bello Gallico que os britanni usavam vitrum para pintar os seus corpos, podendo tais pinturas corporais significar o uso de tatuagem feitas com pastel, embora mais provavelmente seja uma referência a um tipo de vidro azul verdoso que era comum naqueles tempos.[34] Os pictos tomaram o seu nome do latim picti, que significa «povo pintado», ou possivelmente «povo tatuado», devido ao seu costume de se apresentarem em batalha nus e com os corpos pintados ou tatuados, o que foi rememorado na moderna canção humorística britânica The Woad Ode (A ode ao pastel), jocosamente considerada o "hino nacional" dos antigos britânicos.[35][36]
Apesar de ter sido encontrado em escavações realizadas em York um vazo de pintura com restos de pastel e de plantas do género Rubia datado do século X, período ali conhecido por era viking, estudos mais recentes colocam em dúvida a presunção de que o pastel fosse o material que os pictos usaram para decorar o corpo. Experiências contemporâneas com pastel provam que não funciona bem como pintura corporal ou como pigmento de tatuagem. Fortemente adstringente, ao ser usado como produto de tatuagem e colocado em microlacerações, produz dor e muito tecido lacerado que, uma vez curado, não retém a coloração azul. O uso comum de dejectos como ingrediente na produção do corante tradicional de pastel torna ainda menos provável a sua aplicação na pele.[34]
Os usos medievais do corante não se limitavam aos têxteis, sendo também utilizada em pintura artística e em trabalhos de gravura e impressão. Por exemplo, o ilustrador da obra conhecida por Lindisfarne Gospels usou uma pasta corante tendo pastel como a base para o azul. Na região do Mediterrâneo foi utilizada desde muito cedo como aditivo corante para a produção de cal corada para pintar as ombreiras de portas e janelas, acreditando-se que a cor azul afugentasse os insectos. A utilização das barras azuis, comuns na arquitectura popular mediterrânica, assentava na utilização de pastel.
No período medieval, os centros europeus de cultivo do pastel eram Lincolnshire e Somerset (na Inglaterra), a Gasconha, Normandia, Somme, Languedoc (conhecido como País da Cocanha, já que cocagne é o nome occitano da planta e do corante dela obtido, adoptado no idioma francês) e Bretanha (na actual França), Jülich, Erfurt e Turíngia (na actual Alemanha), e Piemonte e Toscânia (na actual Itália).
A importância da cultura do pastel era tal que os cidadãos das cinco cidades mais ricas em pastel da Turíngia (Erfurt, Gotha, Tennstedt, Arnstadt e Langensalza) tiveram foros especiais. Em Erfurt, os mercadores de pastel tiveram dinheiro suficiente para criar à sua custa a Universidade de Erfurt. Reflexo da importância que o pastel teve no sueste da Alemanha é a sobrevivência como indústria tradicional na Turíngia, Saxónia e Lusácia da impressão artística com pasta de pastel de tecidos e papel, técnica conhecida como Blaudruck (literalmente, «impressão a azul»).
O pastel, a par da urzela, constituiu um dos principais produtos de exportação dos Açores no seu período inicial de colonização (séculos XV e XVI), originando um activo comércio entre as ilhas e a Flandres. Este comércio, cedo transformado em monopólio da coroa portuguesa, era tão importante que foi criado o cargo de "lealdador" do pastel com o objectivo de garantir a qualidade e o peso das bolas exportadas. Desse tempo ficaram vários traços na toponímia açoriana, sendo comuns as designações de Canada do Engenho e Engenho, referindo os locais onde se situavam as instalações de preparação do pastel. No Faial a memória da cultura do pastel é perpetuada na designação do lugar do Pasteleiro, arredores da cidade da Horta.
O pigmento azul produzido a partir de Isatis tinctoria é o mesmo anil presente no índigo produzido a partir da espécie Indigofera tinctoria, mas menos concentrado. Com o descobrimento das rotas marítimas para a Índia, passaram-se a importar grandes quantidades de índigo (ou anil) produzido no sudoeste da Ásia, pondo em risco a poderosa indústria europeia do pastel.
Em reacção a essa concorrência, vários estados europeus produziram legislação visando proteger a indústria local contra a importação de anil produzido com índigo. Por exemplo, em 1577 a Saxónia proibiu oficialmente o uso do índigo, denunciando aquele corante como «pernicioso, mortal e corrosivo, uma verdadeira tintura do Diabo».[37] Esta proibição foi reiterada pela Dieta reunida em 1594 e novamente em 1603.[38]
Com o desenvolvimento dos processos de síntese química, foi possível generalizar a produção de anilinas corantes azuis, o que fez colapsar a produção remanescente de pastel, e também a de índigo, nos primeiros anos do século XX. A última colheita comercial de pastel para tinturaria que se conhece ocorreu em 1932, no Lincolnshire, Grão-Bretanha.
Contudo, começam a surgir intenções de fazer renascer o uso tintureiro do pastel. Na Alemanha há intenções de usar Isatis para proteger tecidos de lã sem recurso a produtos químicos sintéticos. No Reino Unido a produção tem vindo a crescer visando a produção de tintas de impressão, particularmente para impressoras de jacto, porque é biodegradável e seguro para o ambiente.
As folhas e caules são ricos no glicosídeo designado por indicano que, ao decompor-se por fermentação, produz indigotina, o princípio activo do corante azul índigo (ou anil). O pastel-dos-tintureiros, depois de seco, é uma substância terrosa, sem cheiro ou sabor, de cor azul-escuro, ganhando um brilho violeta acobreado quando esfregado, contendo, além da indigotina, numerosas outras substâncias corantes e impurezas inertes. A indigotina é insolúvel em água, daí o seu interesse em tinturaria, dissolvendo-se apenas em ácidos fortes.
O pastel era cultivado em canteiro e depois replantado em regos, usando a mesma prática cultural comummente usada para as couves. A planta não podia ser cultivada com sucesso no mesmo terreno em anos seguidos, pelo que era cultivada em rotação com trigo, milho ou hortícolas.
As folhas da planta do pastel eram colhidas duas ou três vezes por ano, trituradas num engenho constituído por uma atafona movida por uma vaca ou burro, e transformadas em bolas que eram deixadas fermentar. A fermentação, que produzia um cheiro pútrido intenso, levava ao desdobramento dos pigmentos corantes contidos nas folhas. As bolas fermentadas eram depois deixadas a secar até atingirem um grau reduzido de humidade, sendo depois encaminhadas para as tinturarias.
|coautores=
(ajuda) Isatis tinctoria L., 1753 é uma espécie de plantas com flor da família das Crucíferas, comummente conhecida como pastel-dos-tintureiros ou simplesmente pastel.
É uma planta herbácea bienal, originária do sudoeste e centro da Ásia, que em tempos foi muito cultivada nas regiões temperadas da Eurásia como planta tintureira e medicinal. Utilizada para pinturas corporais e para fins medicinais desde o Neolítico europeu, a planta foi intensamente comerciada na Europa durante a Idade Média e a Renascença para produção de corante azul para tinturaria e pintura. O corante, manufaturado a partir do extrato fermentado das folhas, caiu em desuso com a introdução do anil obtido do índigo tropical e, posteriormente, com a generalização do uso das anilinas e outros corantes de síntese.
För historikern P.G. Vejde, se Pehr Gunnar Vejde
Vejde (Isatis tinctoria) eller vejd är en art inom familjen korsblommiga växter. Den är tvåårig, tämligen högväxt 50–100 cm hög glatt ört med blad och stjälk i en blågrön färg. Den blommar i juni-juli med många små gula blommor i täta klasar och med hängande skidor. Blomkronan är 2–3 centimeter bred.[1] Örten, och då främst bladen, innehåller samma blå färgämne som indigo fast i lägre koncentration och används inom växtfärgning.
Vejde återfinns i Asien och Europa på havsstränder, utefter vägkanter och på ruderatmarker.
Vejde förekommer i Sverige om än sällsynt; utmed Sveriges östersjökust samt på Öland och Gotland.
Vejde har använts till växtfärgning sedan antiken och är den enda inhemska europeiska växten som, efter en komplicerad jäsningsprocess av bladen, ger blå färg. Växten odlades därför i stor skala i Frankrike och Tyskland, särskilt i Thüringen. Redan under 1200-talet odlades vejde allmänt. Vejdeindustrin gick dock under i konkurrens med den importerade indigon. I Sverige var det vejdefärgämnet som först gav den svenska flaggan dess färg och även karolinernas blå uniformer. Det har också använts som pigment - färglack - i måleri.
För historikern P.G. Vejde, se Pehr Gunnar Vejde
Vejde (Isatis tinctoria) eller vejd är en art inom familjen korsblommiga växter. Den är tvåårig, tämligen högväxt 50–100 cm hög glatt ört med blad och stjälk i en blågrön färg. Den blommar i juni-juli med många små gula blommor i täta klasar och med hängande skidor. Blomkronan är 2–3 centimeter bred. Örten, och då främst bladen, innehåller samma blå färgämne som indigo fast i lägre koncentration och används inom växtfärgning.
Çivit otu (Isatis tinctoria), turpgiller (Brassicaceae) familyasından köklerinden "çivit mavisi" olarak adlandırılan boya elde edilen bir bitki türü. Anavatanı Avrasya, Kafkasya civarlarıdır.
İki çenekliler ile ilgili bu madde bir taslaktır. Madde içeriğini geliştirerek Vikipedi'ye katkıda bulunabilirsiniz.Isatis tinctoria là một loài thực vật có hoa trong họ Cải. Loài này được L. mô tả khoa học đầu tiên năm 1753.[1]
Isatis tinctoria là một loài thực vật có hoa trong họ Cải. Loài này được L. mô tả khoa học đầu tiên năm 1753.
Isatis tinctoria L.
СинонимыВа́йда краси́льная (лат. Ísatis tinctória) — растение; вид рода Вайда семейства Капустные, или Крестоцветные.
Растение широко культивировалось в Европе ради получения синей краски.
Вайда красильная культивируется в Китае как лекарственное растение, используемое китайской народной медициной. Лист (лат. Folium Isatidis) и корень (Radix Isatidis) вайды применяются в официальной медицине Китая в виде чаёв и отваров при различных воспалительных и простудных заболеваниях и включены в государственную фармакопею Китая (Pharmacopoeia of the People’s Republic of China (2005), Vol. 1).
Произрастает на Кавказе (Армения), в Западной (Ливан, Турция) и Центральной Азии (Казахстан, Китай — провинция Синьцзян), во многих странах Европы, в Северной Африке (север Алжира, Марокко)[2].
В России растёт на Северном Кавказе, в Дагестане, в Восточной Сибири, в европейской части (Ладожско-Ильменский, Верхне-Волжский, Волжско-Камский, Волжско-Донской районы[3]).
Занесена и широко распространилась по всему миру.[2]
Растёт в степях, на сухих холмах и склонах; иногда сорничает. Изредка заносится в лесную зону. в основном; по железным дорогам[3]. В этих и других вторичных местах обитания растение ведет себя как эфемерофит.[источник не указан 1018 дней]
Двулетнее растение высотой до 1 м.
Стебель прямой.
Прикорневые листья продолговато-ланцетные, волосистые; средние и верхние (стеблевые) — с узкостреловидным основанием.
Цветки жёлтые с четырьмя лепестками. Лепестки 3—4,5 мм длиной. Цветение в мае — июне.
Стручочки клиновидные, длиной 8—15,5 мм и шириной 3—6 мм, одночленные, по краю крылатые с притупленно-округлой или слегка выемчатой верхушкой (гнездо стручочка у́же крыла), голые, продолговато-лопатчатые, при созревании повислые на тонких плодоножках, несколько утолщённых в месте сочленения с плодом. Рамка плода снаружи на боковой стороне с одной выступающей жилкой. Плодоношение в июне — июле[3][4].
Размножается семенами[4].
Издавна листья использовали для окраски шерсти в синий и зелёный цвета. Особенно ценилась вайда красильная в кустарном производстве ковров, когда пользовались только естественными красителями. Ради этого её разводили на полях[4]. В. И. Даль указывал: «Вайда заменяет у нас кубовую краску, индиго»[5].
Из плодов отжимали масло, по свойствам напоминающее льняное[4].
Своеобразная форма листьев и плодов придаёт вайде красильной качества декоративного растения.
Хороший медонос[4]. Пчёлы охотно посещают вайду; гектар посевов вайды может дать свыше 30 кг сахара в нектаре[6].
Толковый словарь В. Даля приводит для вайды красильной ряд русских народных названий: крутик, синячник, синиль, синильник[5], а Макс Фасмер — немецкое индиго[7].
Ва́йда краси́льная (лат. Ísatis tinctória) — растение; вид рода Вайда семейства Капустные, или Крестоцветные.
Растение широко культивировалось в Европе ради получения синей краски.
Вайда красильная культивируется в Китае как лекарственное растение, используемое китайской народной медициной. Лист (лат. Folium Isatidis) и корень (Radix Isatidis) вайды применяются в официальной медицине Китая в виде чаёв и отваров при различных воспалительных и простудных заболеваниях и включены в государственную фармакопею Китая (Pharmacopoeia of the People’s Republic of China (2005), Vol. 1).
菘蓝(学名:Isatis tinctoria),又名欧洲菘蓝、草大青、大蓝、大靛、大青等,属十字花科植物。
一年生或二年生草本;长椭圆状椭圆形基出叶较大,具有柄;长椭圆状披针形茎生叶,基部箭形,半抱茎,全缘或有不明显的细锯齿;夏季开黃色小花,总状花序,在枝端合成圆锥花序;长椭圆形扁平角果,边缘呈翅状,有短尖;有一种子。
莖、葉可以做藍色的染料;根可入药,称为板蓝根。
대청(大靑, 학명: Isatis tinctoria)은 동아시아, 유럽, 아프리카에 걸쳐 널리 분포하는 두해살이풀로서 높이 30-70cm이다. 뿌리에서 난 잎은 크고 잎자루가 있으나 줄기에서 난 잎은 잎자루가 없으며, 긴 타원형의 바소꼴이고 밑부분이 원줄기를 감싼다. 꽃은 노란색으로 5-6월에 피며, 가지나 줄기 끝의 총상꽃차례에 달린다. 주로 바닷가에서 자라며 열매는 각과(角果)로서 검은색으로 익는다.