dcsimg

戀臭假單胞菌 ( Chinês )

fornecido por wikipedia 中文维基百科
二名法 Pseudomonas putida
Trevisan, 1889 模式株 ATCC 12633

CCUG 12690
CFBP 2066
DSM 291
HAMBI 7
JCM 13063 and 20120
LMG 2257
NBRC 14164
NCAIM B.01634
NCCB 72006 and 68020
NCTC 10936

戀臭假單孢菌Pseudomonas putida)是一種腐生营养土壤桿菌,屬於格蘭氏陰性菌。基于16S rRNA基因分析,恋臭假单孢菌被分类学上证实为假单胞菌属(狭义),并连同其他几个品种放置在恋臭假单孢菌群中,向其中借其名称。[1]

他是世界上第一個被賦予專利的生物體。這個賦予活體專利的行為造成了爭議,後來美國聯邦最高法院判決發明者Ananda Mohan Chakrabarty英语Ananda Mohan Chakrabarty勝訴,這個史無前例的判決也成了美國的判例(《Diamond v. Chakrabarty英语Diamond v. Chakrabarty》)

戀臭假單孢菌有許多代謝途徑,可以分解許多有機分子,包括降解甲苯等有機分子[2]。牠被廣泛應用於生物修復技術英语bioremediation,或是用於微生物分解漏油等等。除了因為它強大的生物分解能力之外,比起其他假單孢菌屬英语Pseudomonas的種類它更安全無害,而不像綠膿桿菌P. aeruginosa)那樣是一個具有機會性的人類病原體。


應用

生物修復

戀臭假單孢菌多條代謝途徑的特性,讓它成為開發生物修復技術的寵兒;舉例來說,在被污染的土地上,戀臭假單孢菌可被用作土壤接種物英语bioremediation來療癒土地[3]

戀臭假單孢菌還可以將苯乙烯轉化成生物可分解塑膠PHA[4][5]。這被認為是回收保麗龍(發泡聚苯乙烯)的有效方法,因為保麗龍幾乎完全無法被生物分解。

生物防治

P. putida具有生物防治的潛力,可以防治腐黴英语Pythium[6]鐮刀菌英语Fusarium等等[7],避免植物的死亡

Oligonucleotide Usage Signatures of the Pseudomonas putida KT2440 Genome

Di- to pentanucleotide usage and the list of the most abundant octa- to tetradecanucleotides are useful measures of the bacterial genomic signature. The Pseudomonas putida KT2440 chromosome is characterized by strand symmetry and intra-strand parity of complementary oligonucleotides. Each tetranucleotide occurs with similar frequency on the two strands. Tetranucleotide usage is biased by G+C content and physicochemical constraints such as base stacking energy, dinucleotide propeller twist angle or trinucleotide bendability. The 105 regions with atypical oligonucleotide composition can be differentiated by their patterns of oligonucleotide usage into categories of horizontally acquired gene islands, multidomain genes or ancient regions such as genes for ribosomal proteins and RNAs. A species-specific extragenic palindromic sequence is the most common repeat in the genome that can be exploited for the typing of P. putida strains. In the coding sequence of P. putida LLL is the most abundant tripeptide.[8]

有機合成

CBB5和分解咖啡因

Pseudomonas putida CBB5」這個品系可以在純咖啡因中存活,並可將咖啡因降解為二氧化碳[9][10]

參考文獻

  1. ^ Anzai; Kim, H; Park, JY; Wakabayashi, H; Oyaizu, H; 等. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol. Jul 2000, 50 (4): 1563–89. PMID 10939664. doi:10.1099/00207713-50-4-1563. 引文格式1维护:显式使用等标签 (link)
  2. ^ Marqués, Silvia; Ramos, Juan L. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Molecular Microbiology. 1993, 9 (5): 923–9. PMID 7934920. doi:10.1111/j.1365-2958.1993.tb01222.x.
  3. ^ Gomes, NC; Kosheleva, IA; Abraham, WR; Smalla, K. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS microbiology ecology. 2005, 54 (1): 21–33. PMID 16329969. doi:10.1016/j.femsec.2005.02.005.
  4. ^ Immortal Polystyrene Foam Meets its Enemy | LiveScience
  5. ^ Ward, PG; Goff, M; Donner, M; Kaminsky, W; O'Connor, KE. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environmental science & technology. 2006, 40 (7): 2433–7. PMID 16649270. doi:10.1021/es0517668.
  6. ^ Amer, GA; Utkhede, RS. Development of formulations of biological agents for management of root rot of lettuce and cucumber. Canadian journal of microbiology. 2000, 46 (9): 809–16. PMID 11006841. doi:10.1139/w00-063.
  7. ^ Validov, S; Kamilova, F; Qi, S; Stephan, D; Wang, JJ; Makarova, N; Lugtenberg, B. Selection of bacteria able to control Fusarium oxysporum f. Sp. Radicis-lycopersici in stonewool substrate. Journal of applied microbiology. 2007, 102 (2): 461–71. PMID 17241352. doi:10.1111/j.1365-2672.2006.03083.x.
  8. ^ Cornelis P (editor). Pseudomonas: Genomics and Molecular Biology 1st. Caister Academic Press. 2008. ISBN 1-904455-19-0.
  9. ^ http://blogs.scientificamerican.com/observations/2011/05/24/newly-discovered-bacteria-lives-on-caffeine
  10. ^ Summers, RM; Louie, TM; Yu, CL; Subramanian, M. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology (Reading, England). 2011, 157 (Pt 2): 583–92. PMID 20966097. doi:10.1099/mic.0.043612-0.
licença
cc-by-sa-3.0
direitos autorais
维基百科作者和编辑
original
visite a fonte
site do parceiro
wikipedia 中文维基百科

戀臭假單胞菌: Brief Summary ( Chinês )

fornecido por wikipedia 中文维基百科

戀臭假單孢菌(Pseudomonas putida)是一種腐生营养土壤桿菌,屬於格蘭氏陰性菌。基于16S rRNA基因分析,恋臭假单孢菌被分类学上证实为假单胞菌属(狭义),并连同其他几个品种放置在恋臭假单孢菌群中,向其中借其名称。

他是世界上第一個被賦予專利的生物體。這個賦予活體專利的行為造成了爭議,後來美國聯邦最高法院判決發明者Ananda Mohan Chakrabarty(英语:Ananda Mohan Chakrabarty)勝訴,這個史無前例的判決也成了美國的判例(《Diamond v. Chakrabarty(英语:Diamond v. Chakrabarty)》)

戀臭假單孢菌有許多代謝途徑,可以分解許多有機分子,包括降解甲苯等有機分子。牠被廣泛應用於生物修復技術(英语:bioremediation),或是用於微生物分解漏油等等。除了因為它強大的生物分解能力之外,比起其他假單孢菌屬(英语:Pseudomonas)的種類它更安全無害,而不像綠膿桿菌(P. aeruginosa)那樣是一個具有機會性的人類病原體。


licença
cc-by-sa-3.0
direitos autorais
维基百科作者和编辑
original
visite a fonte
site do parceiro
wikipedia 中文维基百科