dcsimg
Life » » Fungi » Mucoromycota » » Glomeraceae »

Rhizophagus intraradices (N. C. Schenck & G. S. Sm.) C. Walker & A. Schüßler 2010

Glomus intraradices ( Inglês )

fornecido por wikipedia EN

Rhizophagus irregularis (previously known as Glomus intraradices[3][4]) is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. Rhizophagus irregularis is also commonly used in scientific studies of the effects of arbuscular mycorrhizal fungi on plant and soil improvement. Until 2001, the species was known and widely marketed as Glomus intraradices, but molecular analysis of ribosomal DNA led to the reclassification of all arbuscular fungi from Zygomycota phylum to the Glomeromycota phylum.[5]

Description

Spores

  • Color - white, cream, yellow-brown [6]
  • Shape - elliptical with irregularities [6]
  • Size - generally between 40 - 140 μm [6]

Hyphae

  • Shape - Cylindrical or slightly flared [6]
  • Size - Width: 11 - 18 μm [6]

Identification

Rhizophagus irregularis colonization peaks earlier than many of the other fungi in Rhizophagus. There tends to be extensive hyphal networking and intense intraradical spores associated with older roots of host plants.

At times the spores are densely clustered or patchily distributed, depending on the host species. When the spores are heavily clustered, mycorrhizologists and others will tend to mistake G. intraradices for G. fasciculatum.[6]

Reproduction

Rhizophagus irregularis (previously known as Glomus intraradices) has been found to colonise new plants by means of spores, hyphae or fragments of roots colonized by the fungus [7]

Meiosis and recombination

Arbuscular mycorrhiza (AM) fungi were thought to have propagated clonally for over 500 million years because of their lack of visible sexual structures and thus were considered to be an ancient asexual lineage.[8] However, homologs of 51 meiotic genes, including seven genes specific for meiosis were found to be conserved in the genomes of five AM species including Rhizophagus irregularis (referred to by its synonym designation Glomus irregulare).[8] This observation suggests that the supposedly ancient asexual AM fungi are likely capable of undergoing a conventional meiosis.[8] R. irregularis dikaryons also appear to be capable of genetic recombination.[9]

Ecology and distribution

Distribution

Rhizophagus irregularis can be found in almost all soils, especially those populated with common host plants and in forests and grasslands.

This is a brief list of some common host plants. Most agricultural crops will benefit from Rhizophagus irregularis inoculation. Generally host plants must be vascular plants, but not always.[10]

  • Onion - Allium cepa L.[11]
  • Soapbush Wattle - Acacia holosericea[12]
  • Flax - Linum usitatissimum L.[13]
  • Cowpea - Vigna unguiculata [14]
  • Tomato Plant - Lycopersicon esculentum [15]
  • Albaida - Anthyllis cytisoides [16]

Conservation and status

Rhizophagus irregularis is not of conservation concern; however, individual populations could be harmed by agricultural chemicals and tillage.

Relevance

In numerous scientific studies R. irregularis has been shown to increase phosphorus uptake in multiple plants as well as improve soil aggregation due to hyphae.[17]

Because of these qualities, R. irregularis is commonly found in mycorrhizal based fertilizers.

In a 2005 study, R. irregularis was found to be the only arbuscular mycorrhizal fungi that was able to control nutrient uptake amounts by individual hyphae depending on differing phosphorus levels in the surrounding soil.[13]

References

  1. ^ "Rhizophagus irregularis (Arbuscular mycorrhizal fungus) (Glomus intraradices)". www.uniprot.org.
  2. ^ "Rhizophagus irregularis". MycoBank. Retrieved 30 April 2019.
  3. ^ "Home - Rhizophagus irregularis DAOM 181602 v1.0". genome.jgi.doe.gov.
  4. ^ Stockinger, H.; Walker, C.; Schußler, A. (2009). "'Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices". New Phytol. 183 (4): 1176–87. doi:10.1111/j.1469-8137.2009.02874.x. PMID 19496945.
  5. ^ Krüger, Manuela; Claudia Krüger; Christopher Walker; Herbert Stockinger; Arthur Schüßler (2012). "Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level". New Phytologist. 193 (4): 970–984. doi:10.1111/j.1469-8137.2011.03962.x. PMID 22150759.
  6. ^ a b c d e f Morton, J, & R Amarasinghe. Glomus intraradices.International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi. 2006. West Virginia University. 17 November 2009. http://invam.caf.wvu.edu/index.html.
  7. ^ Klironomos, JN; Hart, MM (Aug 2002). "Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum". Mycorrhiza. 12 (4): 181–4. doi:10.1007/s00572-002-0169-6. PMID 12189472. S2CID 19464409.
  8. ^ a b c Sébastien Halary, Shehre-Banoo Malik, Levannia Lildhar, Claudio H. Slamovits, Mohamed Hijri, Nicolas Corradi, Conserved Meiotic Machinery in Glomus spp., a Putatively Ancient Asexual Fungal Lineage, Genome Biology and Evolution, Volume 3, 2011, Pages 950–958, https://doi.org/10.1093/gbe/evr089
  9. ^ Mateus ID, Auxier B, Ndiaye MMS, Cruz J, Lee SJ, Sanders IR. Reciprocal recombination genomic signatures in the symbiotic arbuscular mycorrhizal fungi Rhizophagus irregularis. PLoS One. 2022 Jul 1;17(7):e0270481. doi: 10.1371/journal.pone.0270481. PMID: 35776745; PMCID: PMC9249182
  10. ^ Peterson, R, H Massicotte, L Melville (2004). Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ottawa: 7-8.
  11. ^ Toro M, Azcon R, Barea J (November 1997). "Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling". Applied and Environmental Microbiology. 63 (11): 4408–12. doi:10.1128/aem.63.11.4408-4412.1997. PMC 1389286. PMID 16535730.
  12. ^ Duponnois, R; Colombet, A; Hien, V; Thioulouse, J (2005). "the mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea". Soil Biology & Biochemistry. 37 (8): 1460–1468. doi:10.1016/j.soilbio.2004.09.016.
  13. ^ a b Cavagnaro, T; Smith, F; Smith, S; Jakobsen, I (2005). "Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species". Plant, Cell and Environment. 28 (5): 642–650. doi:10.1111/j.1365-3040.2005.01310.x.
  14. ^ Augé, R; Stodola, A; Tims, J; Saxton, A (2000). "Moisture retention in a mycorrhizal soil". Plant and Soil. 230: 87–97. doi:10.1023/a:1004891210871. S2CID 6174495.
  15. ^ Cavagnaro, T; Jackson, L; Six, J; Ferris, H; Goyal, S; Asami, D; Scow, K (2005). "Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production". Plant and Soil. 282 (1–2): 209–225. doi:10.1007/s11104-005-5847-7. S2CID 6935846.
  16. ^ Requena, N; Perez-Solis, E; Azcón-Aguilar, C; Jeffries, P; Barea, J (2000). "Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems". Applied and Environmental Microbiology. 67 (2): 495–498. CiteSeerX 10.1.1.334.4707. doi:10.1128/aem.67.2.495-498.2001. PMC 92612. PMID 11157208.
  17. ^ Cardoso, Irene M.; Kuyper, Thomas W. (2006). "Mycorrhizas and tropical soil fertility". Agriculture, Ecosystems & Environment. 116 (1–2): 72–84. doi:10.1016/j.agee.2006.03.011.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia EN

Glomus intraradices: Brief Summary ( Inglês )

fornecido por wikipedia EN

Rhizophagus irregularis (previously known as Glomus intraradices) is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. Rhizophagus irregularis is also commonly used in scientific studies of the effects of arbuscular mycorrhizal fungi on plant and soil improvement. Until 2001, the species was known and widely marketed as Glomus intraradices, but molecular analysis of ribosomal DNA led to the reclassification of all arbuscular fungi from Zygomycota phylum to the Glomeromycota phylum.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia EN

Glomus intraradices ( Português )

fornecido por wikipedia PT

Glomus intraradices é uma espécie de fungo formador de micorrizas arbusculares usado como inoculante do solo em agricultura e horticultura. A espécie é também considerada importante em silvicultura, mas não tem valor comercial no mercado dos cogumelos comestíves e medicinais.[1]

Descrição

Glomus intraradices é um fungo indutor da formação de micorrizas, formando predominantemente micorrizas arbusculares em que o fungo penetranas células da planta hospedeiro (endomicorrizas). As hifas são de secção cilíndrica ou legeiramente oblonga, com 11 a 18 μm de secção máxima.[2]

Os fungos Glomeromycota não produzem estruturas frutificantes a olho nu, como os Basidiomycota ou Ascomycota. Os esporos são irregulares, elípticos, com 40 a 140 μm de diâmetro,[2] com coloração branca, creme ou amarelo-acastanhado[2] Durante a germinação, hifas desenvolvem-se a partir do esporo, alongando-se até atingir uma raiz da planta hospedeiro.

A populações de Glomus intraradices atingem picos de densidade mais cedo do que a amoria dos outros fungos do género Glomus, tendendo a criar uma extensa rede de hifas e uma intensa formação de esporos intrarradiculares associados às raízes mais velhas das plantas hospedeiro. A densidade de distribuição dos esporos depende da espécie hospedeiro. Quando os esporos estão densamente agrupados, é fácil confundir G. intraradices com G. fasciculatum.[2]

Glomus intraradices pode ser encontrado em quase todos os tipos de solo, estando presente quando existam plantas hospedeiras, entre as quais se incluem a maioria das plantas herbáceas mais comuns e a generalidade das essências florestais. Geralmente o hospedeiro é uma planta vascular, mas existem excepções,[3] nomeadamente entre os pteridófitos.

A maioria da plantas cultivadas beneficiam da presença deste fungo no solo, pelo que a maioria das cultura beneficia da inoculação do solo com G. intraradices. Para as seguintes culturas foram realizados estudos que comprovam esses efeitos:

Diversos estudos demonstraram que a presença de G. intraradices aumenta a absorção de fósforo e diversas plantas e melhora as condições de agregação do solo devido à acção das suas hifas.[10] Essas características fazem deste fungo um constituinte frequentemente usado em fertilizantes baseados na acção das micorrizas.

Um estudo recente demonstrou que Glomus intraradices gera micorrizas arbusculares que são capazes de controlar em separado a absorção de nutrientes de cada hifa em função dos diferentes níveis de fósforo no solo circundante.[6]

Glomus intraradices tem sido usado em estudos que visam determinar os efeitos dos fungos formadores de micorrizas arbusculares nas plantas e no solo.

Apesar dos danos causados pela aplicação de agroquímicos e pela lavra dos solos, as populações de Glomus intraradices permanecem não ameaçadas.

Notas

  1. Stamets, P. (2005). Mycelium Running: How Mushrooms Can Help Save the World
  2. a b c d Morton, J, & R Amarasinghe. Glomus intraradices.International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi. 2006. West Virginia University. 17 November 2009. http://invam.caf.wvu.edu/index.html Arquivado em 5 de janeiro de 2013, no Wayback Machine..
  3. Peterson, R, H Massicotte, L Melville (2004). Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ottawa: 7-8.
  4. Toro, M, R Azcón, J Barea. (1997). Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Applied and Environmental Microbiology. 63: 4408-4412.
  5. Duponnois, R, A Colombet, V Hien, J Thioulouse. (2005). the mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biology & Biochemistry. 37: 1460-1468.
  6. a b Cavagnaro, T, F Smith, S Smith, & I Jakobsen. (2005). Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant, Cell and Environment. 28: 642-650.
  7. Augé, R, A Stodola, J Tims, & A Saxton. (2000). Moisture retention in a mycorrhizal soil. Plant and Soil. 230: 87-97.
  8. Cavagnaro, T, L Jackson, J Six, H Ferris, S Goyal, D Asami, & K Scow. (2005). Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant and Soil. 282: 209-225.
  9. Requena, N, E Perez-Solis, C Azcón-Aguilar, P Jeffries, and J Barea. (2000). Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Applied and Environmental Microbiology. 67: 495-498.
  10. Cardosa, I, and T Kuyper. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment. 116: 72-84.

 title=
licença
cc-by-sa-3.0
direitos autorais
Autores e editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia PT

Glomus intraradices: Brief Summary ( Português )

fornecido por wikipedia PT

Glomus intraradices é uma espécie de fungo formador de micorrizas arbusculares usado como inoculante do solo em agricultura e horticultura. A espécie é também considerada importante em silvicultura, mas não tem valor comercial no mercado dos cogumelos comestíves e medicinais.

licença
cc-by-sa-3.0
direitos autorais
Autores e editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia PT