Olfaction, vision, and motion detection via the lateral line system help zebrafish perceive their local environment and evade potential predators. Movement in the surrounding water is detected by the lateral line, which can detect small changes in pressure in the immediate environment. Zebrafish respond to a broad range of chemical cues detected by the olfactory bulb. Olfaction is particularly important for reproduction in zebrafish. Female zebrafish must come in contact with male gonadal pheromones in order to ovulate. Meanwhile, male zebrafish must come in contact with female pheromones in order to initiate spawning behavior.
Communication Channels: chemical
Other Communication Modes: pheromones
Perception Channels: visual ; tactile ; acoustic ; chemical
Zebrafish have a broad geographic range and are locally abundant. They breed easily in their native habitat and in 2007, increasing catch rates suggested increasing abundance. Other than potential over exploitation for the aquaria trade, there are no known threats to the long-term persistence of this species. Zebrafish are classified as a species of least concern on the IUCN's Red List of Threatened Species.
US Federal List: no special status
CITES: no special status
State of Michigan List: no special status
IUCN Red List of Threatened Species: least concern
Immediately after hatching, all zebrafish develop into females. Once they become five to seven weeks old, gonadal differentiation begin to occur, Males take approximately 3 months to fully develop their testes. Sex determination is not fully understood; however, evidence suggests that food supply and growth rates play a key role in sex determination as slow-growing individuals become males and fast-growing individuals become females.
There are no known adverse effects of Danio rerio on humans
In 1981, George Streisinger and his colleagues began to use zebrafish as a model organism for research. Since then, they have become a popular model organism for biomedical research. Zebrafish primarily have been used to study vertebrate development, evolution, genetics, and disease. Zebrafish are popular as pets and genetically modified, glow-in-the-dark zebrafish have been developed for the aquaria trade as well.
Zebrafish have many attributes that make it a popular model organism for biomedical research. They are small, have a short generation time, and are easy to raise in captivity. Additionally, in comparison to other vertebrates, zebrafish produce a large number of eggs per mating event. Zebrafish undergo external fertilization which allows all stages of development to be easily observed and manipulated. Zebrafish embryos are transparent, making them particularly useful for developmental and embryological research.
Positive Impacts: pet trade ; research and education
Zebrafish consume a number of insect species, including mosquito larvae. As a result, they likely help control insect pests throughout their geographic range. In addition, zebrafish are prey for a number of different piscivorous fish and bird species. There is no information available regarding parasites of this species.
Zebrafish are omnivores. They get most of their food from the water column, mainly eating zooplankton and aquatic insects. Zebrafish also surface feed, eating terrestrial insects and arachnids. Zebrafish commonly eat mosquito larvae.
Animal Foods: eggs; insects; terrestrial non-insect arthropods; zooplankton
Plant Foods: algae; phytoplankton
Foraging Behavior: filter-feeding
Primary Diet: omnivore ; planktivore
Danio rerio is native to inland streams and rivers of India. Its has a broad geographic range in the Indian subcontinent, ranging from the Ganges and Brahmaputra river basins of Bangladesh, India, and Nepal. A few introduced populations of the species inhabit inland waters in the United States (California, Connecticut, Florida and New Mexico) and Columbia, South America.
Biogeographic Regions: nearctic (Introduced ); palearctic (Native ); oriental (Native ); neotropical (Introduced )
Zebrafish live in freshwater streams and rivers but are more often considered floodplain species. They are most often found in shallow, slow-moving water near the edge of streams or in ditches. Because of monsoon season in their native geographic range, zebrafish have adapted to a broad range of temperatures, from 6 degrees C during winter to 38 degrees C in summer. Rice cultivation by humans has had a significant impact on zebrafish habitat. Rice farming requires damming of waterways and creation of irrigation systems. Since rice farming is common in India, many natural habitats of zebrafish have been dramatically altered by damming and irrigation. Fortunately, zebrafish are relatively tolerant of human disturbance and are able to survive and reproduce well in altered habitats.
Habitat Regions: temperate ; tropical ; freshwater
Aquatic Biomes: rivers and streams
Other Habitat Features: agricultural
In the wild, most zebrafish live to be one year old. In captivity, zebrafish have a mean lifespan of 42 months. The maximum age observed in captivity was 66 months. Captive zebrafish develop spinal curvature after their second year, which is not observed in natural populations.
Range lifespan
Status: captivity: 66 (high) months.
Average lifespan
Status: wild: 1 years.
Average lifespan
Status: captivity: 42 months.
Zebrafish have fusiform, laterally compressed bodies that reach an average length of 25 mm. The largest recorded zebrafish reached 64 mm in captivity. They have centrally located eyes and thin elongate mandibles with a protrusive lower jaw that causes the mouth to point upwards. Like other cyprinids, zebrafish are stomachless and toothless. As a result, they rely on gill rakers to break up food. Additionally, they are obligate suction feeders. Zebrafish have several defining features including an incomplete lateral line, two pairs of barbels, and several (usually 5 to 7) longitudinal stripes along the sides of their body. The degree of sexual dimorphism in zebrafish is minimal, as males tend to have more yellow coloration and tend to have larger anal fins than females.
Range length: 64 (in captivity) (high) mm.
Average length: 25 mm.
Other Physical Features: ectothermic ; heterothermic ; bilateral symmetry
Sexual Dimorphism: male more colorful; sexes shaped differently
The main predators of zebrafish are snakeheads and freshwater garfish. Other predators include catfish, knifefish, spiny eels, Indian pond heron, and common kingfisher. Zebrafish show alarm in response to visual and olfactory predatorial cues. Anti-predator behavior is also triggered by injury pheromones. Alarm behaviors include increased agitation, aggression, and decreased feeding rates. Zebrafish have three pigment cell types that contribute to their stripes. One of the pigment cells, dark blue melanophores, can be altered in response to stimuli. This is believed to help zebrafish evade potential predators.
Known Predators:
Anti-predator Adaptations: cryptic
Zebrafish are promiscuous and breed seasonally during monsoon season. Mating behavior is also heavily influenced by photoperiod, as spawning begins immediately at first light during breeding season and continues for about an hour. In order to initiate courtship about 3 to 7 males chase females and try to lead female towards a spawning site by nudging her and/or swimming around her in a tight circle or figure eight. Spawning sites consists of bare substrate that tends to be well vegetated. In captivity, gravel spawning sites are preferred to silt spawning sites. In the wild, zebrafish breed in silt-bottomed habitats. When a breeding pair reaches the spawning site, the male aligns his genital pore with the female's and begins to quiver, which causes the female to release her eggs and the male to release his sperm. The female releases 5 to 20 eggs at a time. This cycle repeats for about an hour. While the presence of female pheromones is required for initiation of courtship behavior in the male, male gonadal pheromones are required by the female for ovulation to occur. There is limited evidence for male-male competition and female mate preference.
Mating System: polygynandrous (promiscuous)
Zebrafish breed seasonally during the monsoons, which occur from April to August. Spawning has also been recorded outside wet season, suggesting that breeding may be seasonal as a result of food availability. They tend to breed in silt-bottomed and well vegetated pools. Zebrafish lay non-adhesive eggs without preparing a nest, and are considered to be group spawners and egg scatterers. Although time to hatching depends on water temperature, most eggs hatch between 48 and 72 hours after fertilization. Chorion thickness and embryo activity also impact incubation time. Zebrafish are approximately 3 mm upon hatching and are immediately independent. They are able to swim, feed, and exhibit active avoidance behaviors within 72 hours of fertilization.
Breeding interval: Zebrafish spawn every 1 to 6 days during spawning season, which occurs once yearly..
Breeding season: Zebrafish spawn during monsoon season, from April to August
Range number of offspring: 1 to 700 .
Average number of offspring: 185.
Range gestation period: 48 to 72 hours.
Average time to independence: 0 minutes.
Key Reproductive Features: iteroparous ; seasonal breeding ; sequential hermaphrodite (Protogynous ); sexual ; induced ovulation ; fertilization (External ); broadcast (group) spawning; oviparous
Adult zebrafish provide no parental care to young. Zebrafish are independent immediately upon hatching.
Parental Investment: no parental involvement
Zebrafish (Danio rerio) are small shoaling cyprinid fish. Although details of the distribution are unclear, D. rerio may be widely distributed in shallow, slow-flowing waters on the Indian subcontinent. They are most commonly encountered in shallow ponds and standing water bodies, often connected to rice cultivation. Where they are found, they tend to be among the most abundant fish species. (Spence et al. 2008 and references therein)
Danio rerio are omnivorous, feeding primarily on zooplankton and insects, although phytoplankton, filamentous algae and vascular plant material, spores and invertebrate eggs, fish scales, arachnids, detritus, sand, and mud have also been reported from gut content analyses (Spence et al. 2008 and references therein).
For many decades, D. rerio has been both a very popular aquarium fish and an important research model in several fields of biology (notably, developmental biology and toxicology). The development of D. rerio as a model organism for modern biological investigation began with the pioneering work of George Streisinger and colleagues at the University of Oregon (Streisinger et al. 1981; Briggs 2002), who recognized many of the virtues of D. rerio for research. Streisinger developed methods to produce homozygous strains by using genetically inactivated sperm, performed the first mutagenesis studies, and established that complementation methods (in which heterozygous mutant fish are paired) could be used to assign mutations to genetic complementation groups. Subsequently, the use and importance of D. rerio in biological research has exploded and diversified to the point that these fish are extremely important vertebrate models in an extraordinary array of research fields (see review by Runkwitz et al. 2011; Vascotto et al. 1997).
A number of features make D. rerio tractable for experimental manipulation. It is a small, robust fish, so large numbers can be kept easily and cheaply in the laboratory, where it breeds all year round. Females can spawn every 2 to 3 days and a single clutch may contain several hundred eggs. Generation time is short (for a vertebrate), typically 3 to 4 months, making it suitable for selection experiments. Danio rerio eggs are large relative to other fish (0.7 mm in diameter at fertilization) and optically transparent, the yolk being sequestered into a separate cell. Furthermore, fertilization is external so live embryos are accessible to manipulation and can be monitored through all developmental stages under a dissecting microscope. Development is rapid, with precursors to all major organs developing within 36 hours, and larvae display food-seeking and active avoidance behaviors within five days after fertilization, i.e., 2 to 3 days after hatching. Mutagenesis screens have now generated many thousands of mutations and have led to the identification of hundreds of genes controlling vertebrate development (Rinkwitz et al. 2011 report that as of their writing there was information on embryonic and larval expression of over 12,000 genes and just under 1000 mutant phenotypes). (Spence et al. 2008 and references therein) The D. rerio genome has now been largely sequenced (see http://www.sanger.ac.uk/Projects/D_rerio/), making it an even more valuable research organism. Although D. rerio is extremely well studied as a lab organism, the ecology and behavior of these fish in the wild has been far less well studied.
Zebrafish (Danio rerio) are small shoaling cyprinid fish native to the flood plains of the Indian subcontinent. The natural range of D. rerio is centered around the Ganges and Brahmaputra river basins in north-eastern India, Bangladesh, and Nepal, although in the past specimens have also been collected in the Indus, Cauvery, Pennar, Godavari, and Mahanadi river basins. There are also reports of occurrences from the Krishna river basin and the states of Rajasthan, Gujarat, and Andra Pradesh (river basins draining into the Arabian Sea) as well as northern Myanmar and Sri Lanka, but locality details are lacking. Although details of the distribution are unclear, D. rerio may be widely distributed in shallow, slow-flowing waters on the Indian subcontinent. Based on results from several studies, D. rerio occur in shallow water bodies with visibility to a depth of approximately 30 cm, frequently in unshaded locations with aquatic vegetation and a silty substratum. They are most commonly encountered in shallow ponds and standing water bodies, often connected to rice cultivation. Where they are found, they tend to be among the most abundant fish species. (Spence et al. 2008 and references therein)
Danio rerio are omnivorous, feeding primarily on zooplankton and insects, although phytoplankton, filamentous algae and vascular plant material, spores and invertebrate eggs, fish scales, arachnids, detritus, sand, and mud have also been reported from gut content analyses (Spence et al. 2008 and references therein).
The ‘‘leopard’’ danio, which displays a spotted color pattern rather than stripes, was originally thought to be a separate species, described as Brachydanio frankei (at one time, small Danio species with short dorsal fins and a reduced lateral line, including the species now known as Danio rerio, were segregated from the larger Danio species and placed in Brachydanio). However, neither molecular nor morphological analyses have differentiated between the two forms and hybrids have been shown to produce fertile progeny. The leopard danio is now known to be a spontaneous mutation of the wild-type D. rerio color pattern, with homozygotes displaying a spotted pattern and heterozygotes having a disrupted stripe pattern. Another aquarium variant is the ‘‘longfin’’ D. rerio, which is a dominant mutation resulting in elongated fins. The commonly used wild-type strain, TL (Tübingen long-fin) displays both the ‘‘leopard’’ and ‘‘longfin’’ mutations. (Spence et al. 2008 and references therein)
For many decades, D. rerio has been both a very popular aquarium fish and an important research model in several fields of biology (notably, toxicology and developmental biology; see, e.g., Creaser 1934). The development of D. rerio as a model organism for modern biological investigation began with the pioneering work of George Streisinger and colleagues at the University of Oregon (Streisinger et al. 1981; Briggs 2002), who recognized many of the virtues of D. rerio for research. Streisinger developed methods to produce homozygous strains by using genetically inactivated sperm, performed the first mutagenesis studies, and established that complementation methods (in which heterozygous mutant fish are paired) could be used to assign mutations to genetic complementation groups. Subsequently, the use and importance of D. rerio in biological research has exploded and diversified to the point that these fish are extremely important vertebrate models in an extraordinary array of research fields (see review by Runkwitz et al. 2011; Vascotto et al. 1997).
A number of features make D. rerio tractable for experimental manipulation. It is a small, robust fish, so large numbers can be kept easily and cheaply in the laboratory, where it breeds all year round. Females can spawn every 2 to 3 days and a single clutch may contain several hundred eggs. Generation time is short (for a vertebrate), typically 3 to 4 months, making it suitable for selection experiments. Danio rerio eggs are large relative to other fish (0.7 mm in diameter at fertilization) and optically transparent, the yolk being sequestered into a separate cell. Furthermore, fertilization is external so live embryos are accessible to manipulation and can be monitored through all developmental stages under a dissecting microscope. Development is rapid, with precursors to all major organs developing within 36 hours, and larvae display food seeking and active avoidance behaviors within five days after fertilization, i.e. 2 to 3 days after hatching. The large-scale random mutagenesis screens of D. rerio were the first to be conducted in a vertebrate. Danio rerio used for mutagenesis and screening are from lines that have been inbred for many generations in order to maintain a stable genetic background. Mutagenesis screens have now generated many thousands of mutations and have led to the identification of hundreds of genes controlling vertebrate development (Rinkwitz et al. 2011 report that as of their writing there was information on embryonic and larval expression of over 12,000 genes and just under 1000 mutant phenotypes). As a vertebrate, D. rerio has special value as a model of human disease and for the screening of therapeutic drugs (Chakraborty et al. 2009) and is often more tractable for genetic and embryological manipulation and cost effective than other vertebrate models such as mice. Hundreds of labs around the world now routinely use D. rerio in both basic and applied research, leading to the creation of a centralized online resource for this research community (http://zfin.org). Some researchers have even used D. rerio to investigate the genetic basis of vertebrate behavior (see, e.g., Miklósi and Andrew 2006; Norton and Bally-Cuif 2010). (Spence et al. 2008 and references therein) The D. rerio genome has now been largely sequenced (see http://www.sanger.ac.uk/Projects/D_rerio/), making it an even more valuable research organism.
Laale (1977) reviewed the D. rerio literature to date, with a focus on physiology. Wixon (2000) provides an overview of the current state of knowledge and resources for the study of D. rerio. Although D. rerio is extremely well studied as a lab organism, the ecology and behavior of these fish in the wild has been far less well studied. Spence et al. (2008) reviewed the ecology and behavior of D. rerio (see also McClure et al. 2006; Spence et al. 2006; Engeszer et al. 2007), as well as its taxonomic history, morphology, and many other aspects of its biology.
The zebrafish (Danio rerio) is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio[2] (and thus often called a "tropical fish" although both tropical and subtropical). It is also found in private ponds.
The zebrafish is an important and widely used vertebrate model organism in scientific research, for example in drug development, in particular pre-clinical development.[3] It is also notable for its regenerative abilities,[4] and has been modified by researchers to produce many transgenic strains.[5][6][7]
The zebrafish is a derived member of the genus Brachydanio, of the family Cyprinidae. It has a sister-group relationship with Danio aesculapii.[8] Zebrafish are also closely related to the genus Devario, as demonstrated by a phylogenetic tree of close species.[9]
The zebrafish is native to fresh water habitats in South Asia where it is found in India, Pakistan, Bangladesh, Nepal and Bhutan.[1][10][11][12] The northern limit is in the South Himalayas, ranging from the Sutlej river basin in the Bangladesh–India border region to the state of Arunachal Pradesh in northeast Indian.[1][11] Its range is concentrated in the Ganges and Brahmaputra River basins, and the species was first described from Kosi River (lower Ganges basin) of India. Its range further south is more local, with scattered records from the Western and Eastern Ghats regions.[12][13][14] It has frequently been said to occur in Myanmar (Burma), but this is entirely based on pre-1930 records and likely refers to close relatives only described later, notably Danio kyathit.[12][15][16][17] Likewise, old records from Sri Lanka are highly questionable and remain unconfirmed.[15]
Zebrafish have been introduced to California, Connecticut, Florida and New Mexico in the United States, presumably by deliberate release by aquarists or by escape from fish farms. The New Mexico population had been extirpated by 2003 and it is unclear if the others survive, as the last published records were decades ago.[18] Elsewhere the species has been introduced to Colombia and Malaysia.[11][19]
Zebrafish typically inhabit moderately flowing to stagnant clear water of quite shallow depth in streams, canals, ditches, oxbow lakes, ponds and rice paddies.[12][13][19][20] There is usually some vegetation, either submerged or overhanging from the banks, and the bottom is sandy, muddy or silty, often mixed with pebbles or gravel. In surveys of zebrafish locations throughout much of its Bangladeshi and Indian distribution, the water had a near-neutral to somewhat basic pH and mostly ranged from 16.5 to 34 °C (61.7–93.2 °F) in temperature.[12][13][21] One unusually cold site was only 12.3 °C (54.1 °F) and another unusually warm site was 38.6 °C (101.5 °F), but the zebrafish still appeared healthy. The unusually cold temperature was at one of the highest known zebrafish locations at 1,576 m (5,171 ft) above sea level, although the species has been recorded to 1,795 m (5,889 ft).[12][13]
The zebrafish is named for the five uniform, pigmented, horizontal, blue stripes on the side of the body, which are reminiscent of a zebra's stripes, and which extend to the end of the caudal fin. Its shape is fusiform and laterally compressed, with its mouth directed upwards. The male is torpedo-shaped, with gold stripes between the blue stripes; the female has a larger, whitish belly and silver stripes instead of gold. Adult females exhibit a small genital papilla in front of the anal fin origin. The zebrafish can reach up to 4–5 cm (1.6–2.0 in) in length,[16] although they typically are 1.8–3.7 cm (0.7–1.5 in) in the wild with some variations depending on location.[13] Its lifespan in captivity is around two to three years, although in ideal conditions, this may be extended to over five years.[20][22] In the wild it is typically an annual species.[1]
In 2015, a study was published about zebrafishes' capacity for episodic memory. The individuals showed a capacity to remember context with respect to objects, locations and occasions (what, when, where). Episodic memory is a capacity of explicit memory systems, typically associated with conscious experience.[23]
The Mauthner cells integrate a wide array of sensory stimuli to produce the escape reflex. Those stimuli are found to include the lateral line signals by McHenry et al. 2009 and visual signals consistent with looming objects by Temizer et al. 2015, Dunn et al. 2016, and Yao et al. 2016.[24]
The approximate generation time for Danio rerio is three months. A male must be present for ovulation and spawning to occur. Zebrafish are asynchronous spawners[25] and under optimal conditions (such as food availability and favorable water parameters) can spawn successfully frequently, even on a daily basis.[26] Females are able to spawn at intervals of two to three days, laying hundreds of eggs in each clutch. Upon release, embryonic development begins; in absence of sperm, growth stops after the first few cell divisions. Fertilized eggs almost immediately become transparent, a characteristic that makes D. rerio a convenient research model species.[20] Sex determination of common laboratory strains was shown to be a complex genetic trait, rather than to follow a simple ZW or XY system.[27]
The zebrafish embryo develops rapidly, with precursors to all major organs appearing within 36 hours of fertilization. The embryo begins as a yolk with a single enormous cell on top (see image, 0 h panel), which divides into two (0.75 h panel) and continues dividing until there are thousands of small cells (3.25 h panel). The cells then migrate down the sides of the yolk (8 h panel) and begin forming a head and tail (16 h panel). The tail then grows and separates from the body (24 h panel). The yolk shrinks over time because the fish uses it for food as it matures during the first few days (72 h panel). After a few months, the adult fish reaches reproductive maturity (bottom panel).
To encourage the fish to spawn, some researchers use a fish tank with a sliding bottom insert, which reduces the depth of the pool to simulate the shore of a river. Zebrafish spawn best in the morning due to their Circadian rhythms. Researchers have been able to collect 10,000 embryos in 10 minutes using this method.[28] In particular, one pair of adult fish is capable of laying 200–300 eggs in one morning in approximately 5 to 10 at time.[29] Male zebrafish are furthermore known to respond to more pronounced markings on females, i.e., "good stripes", but in a group, males will mate with whichever females they can find. What attracts females is not currently understood. The presence of plants, even plastic plants, also apparently encourages spawning.[28]
Exposure to environmentally relevant concentrations of diisononyl phthalate (DINP), commonly used in a large variety of plastic items, disrupt the endocannabinoid system and thereby affect reproduction in a sex-specific manner.[30]
Zebrafish are omnivorous, primarily eating zooplankton, phytoplankton, insects and insect larvae, although they can eat a variety of other foods, such as worms and small crustaceans, if their preferred food sources are not readily available.[20]
In research, adult zebrafish are often fed with brine shrimp, or paramecia.[31]
Zebrafish are hardy fish and considered good for beginner aquarists. Their enduring popularity can be attributed to their playful disposition,[32] as well as their rapid breeding, aesthetics, cheap price and broad availability. They also do well in schools or shoals of six or more, and interact well with other fish species in the aquarium. However, they are susceptible to Oodinium or velvet disease, microsporidia (Pseudoloma neurophilia), and Mycobacterium species. Given the opportunity, adults eat hatchlings, which may be protected by separating the two groups with a net, breeding box or separate tank. In captivity, zebrafish live approximately forty-two months. Some captive zebrafish can develop a curved spine.[33]
The zebra danio was also used to make genetically modified fish and were the first species to be sold as GloFish (fluorescent colored fish).
In late 2003, transgenic zebrafish that express green, red, and yellow fluorescent proteins became commercially available in the United States. The fluorescent strains are tradenamed GloFish; other cultivated varieties include "golden", "sandy", "longfin" and "leopard".
The leopard danio, previously known as Danio frankei, is a spotted colour morph of the zebrafish which arose due to a pigment mutation.[34] Xanthistic forms of both the zebra and leopard pattern, along with long-finned strains, have been obtained via selective breeding programs for the aquarium trade.[35]
Various transgenic and mutant strains of zebrafish were stored at the China Zebrafish Resource Center (CZRC), a non-profit organization, which was jointly supported by the Ministry of Science and Technology of China and the Chinese Academy of Sciences.
The Zebrafish Information Network (ZFIN) provides up-to-date information about current known wild-type (WT) strains of D. rerio, some of which are listed below.[36]
Hybrids between different Danio species may be fertile: for example, between D. rerio and D. nigrofasciatus.[9]
D. rerio is a common and useful scientific model organism for studies of vertebrate development and gene function. Its use as a laboratory animal was pioneered by the American molecular biologist George Streisinger and his colleagues at the University of Oregon in the 1970s and 1980s; Streisinger's zebrafish clones were among the earliest successful vertebrate clones created.[37] Its importance has been consolidated by successful large-scale forward genetic screens (commonly referred to as the Tübingen/Boston screens). The fish has a dedicated online database of genetic, genomic, and developmental information, the Zebrafish Information Network (ZFIN). The Zebrafish International Resource Center (ZIRC) is a genetic resource repository with 29,250 alleles available for distribution to the research community. D. rerio is also one of the few fish species to have been sent into space.
Research with D. rerio has yielded advances in the fields of developmental biology, oncology,[38] toxicology,[29][39][40] reproductive studies, teratology, genetics, neurobiology, environmental sciences, stem cell research, regenerative medicine,[41][42] muscular dystrophies[43] and evolutionary theory.[9]
As a model biological system, the zebrafish possesses numerous advantages for scientists. Its genome has been fully sequenced, and it has well-understood, easily observable and testable developmental behaviors. Its embryonic development is very rapid, and its embryos are relatively large, robust, and transparent, and able to develop outside their mother.[44] Furthermore, well-characterized mutant strains are readily available.
Other advantages include the species' nearly constant size during early development, which enables simple staining techniques to be used, and the fact that its two-celled embryo can be fused into a single cell to create a homozygous embryo. The zebrafish is also demonstrably similar to mammalian models and humans in toxicity testing, and exhibits a diurnal sleep cycle with similarities to mammalian sleep behavior.[45] However, zebrafish are not a universally ideal research model; there are a number of disadvantages to their scientific use, such as the absence of a standard diet[46] and the presence of small but important differences between zebrafish and mammals in the roles of some genes related to human disorders.[47][48]
Zebrafish have the ability to regenerate their heart and lateral line hair cells during their larval stages.[49][50] The cardiac regenerative process likely involves signaling pathways such as Notch and Wnt; hemodynamic changes in the damaged heart are sensed by ventricular endothelial cells and their associated cardiac cilia by way of the mechanosensitive ion channel TRPV4, subsequently facilitating the Notch signaling pathway via KLF2 and activating various downstream effectors such as BMP-2 and HER2/neu.[51] In 2011, the British Heart Foundation ran an advertising campaign publicising its intention to study the applicability of this ability to humans, stating that it aimed to raise £50 million in research funding.[52][53]
Zebrafish have also been found to regenerate photoreceptor cells and retinal neurons following injury, which has been shown to be mediated by the dedifferentiation and proliferation of Müller glia.[54] Researchers frequently amputate the dorsal and ventral tail fins and analyze their regrowth to test for mutations. It has been found that histone demethylation occurs at the site of the amputation, switching the zebrafish's cells to an "active", regenerative, stem cell-like state.[55][56] In 2012, Australian scientists published a study revealing that zebrafish use a specialised protein, known as fibroblast growth factor, to ensure their spinal cords heal without glial scarring after injury.[4][57] In addition, hair cells of the posterior lateral line have also been found to regenerate following damage or developmental disruption.[50][58] Study of gene expression during regeneration has allowed for the identification of several important signaling pathways involved in the process, such as Wnt signaling and Fibroblast growth factor.[58][59]
In probing disorders of the nervous system, including neurodegenerative diseases, movement disorders, psychiatric disorders and deafness, researchers are using the zebrafish to understand how the genetic defects underlying these conditions cause functional abnormalities in the human brain, spinal cord and sensory organs.[60][61][62][63] Researchers have also studied the zebrafish to gain new insights into the complexities of human musculoskeletal diseases, such as muscular dystrophy.[64] Another focus of zebrafish research is to understand how a gene called Hedgehog, a biological signal that underlies a number of human cancers, controls cell growth.
Inbred strains and traditional outbred stocks have not been developed for laboratory zebrafish, and the genetic variability of wild-type lines among institutions may contribute to the replication crisis in biomedical research.[65] Genetic differences in wild-type lines among populations maintained at different research institutions have been demonstrated using both Single-nucleotide polymorphisms[66] and microsatellite analysis.[67]
Due to their fast and short life cycles and relatively large clutch sizes, D. rerio or zebrafish are a useful model for genetic studies. A common reverse genetics technique is to reduce gene expression or modify splicing using Morpholino antisense technology. Morpholino oligonucleotides (MO) are stable, synthetic macromolecules that contain the same bases as DNA or RNA; by binding to complementary RNA sequences, they can reduce the expression of specific genes or block other processes from occurring on RNA. MO can be injected into one cell of an embryo after the 32-cell stage, reducing gene expression in only cells descended from that cell. However, cells in the early embryo (less than 32 cells) are interpermeable to large molecules,[68][69] allowing diffusion between cells. Guidelines for using Morpholinos in zebrafish describe appropriate control strategies.[70] Morpholinos are commonly microinjected in 500pL directly into 1-2 cell stage zebrafish embryos. The morpholino is able to integrate into most cells of the embryo.[71]
A known problem with gene knockdowns is that, because the genome underwent a duplication after the divergence of ray-finned fishes and lobe-finned fishes, it is not always easy to silence the activity of one of the two gene paralogs reliably due to complementation by the other paralog.[72] Despite the complications of the zebrafish genome, a number of commercially available global platforms exist for analysis of both gene expression by microarrays and promoter regulation using ChIP-on-chip.[73]
The Wellcome Trust Sanger Institute started the zebrafish genome sequencing project in 2001, and the full genome sequence of the Tuebingen reference strain is publicly available at the National Center for Biotechnology Information (NCBI)'s Zebrafish Genome Page. The zebrafish reference genome sequence is annotated as part of the Ensembl project, and is maintained by the Genome Reference Consortium.[74]
In 2009, researchers at the Institute of Genomics and Integrative Biology in Delhi, India, announced the sequencing of the genome of a wild zebrafish strain, containing an estimated 1.7 billion genetic letters.[75][76] The genome of the wild zebrafish was sequenced at 39-fold coverage. Comparative analysis with the zebrafish reference genome revealed over 5 million single nucleotide variations and over 1.6 million insertion deletion variations. The zebrafish reference genome sequence of 1.4GB and over 26,000 protein coding genes was published by Kerstin Howe et al. in 2013.[77]
In October 2001, researchers from the University of Oklahoma published D. rerio's complete mitochondrial DNA sequence.[78] Its length is 16,596 base pairs. This is within 100 base pairs of other related species of fish, and it is notably only 18 pairs longer than the goldfish (Carassius auratus) and 21 longer than the carp (Cyprinus carpio). Its gene order and content are identical to the common vertebrate form of mitochondrial DNA. It contains 13 protein-coding genes and a noncoding control region containing the origin of replication for the heavy strand. In between a grouping of five tRNA genes, a sequence resembling vertebrate origin of light strand replication is found. It is difficult to draw evolutionary conclusions because it is difficult to determine whether base pair changes have adaptive significance via comparisons with other vertebrates' nucleotide sequences.[78]
T-boxes and homeoboxes are vital in Danio similarly to other vertebrates.[79][80] The Bruce et al. team are known for this area, and in Bruce et al. 2003 & Bruce et al. 2005 uncover the role of two of these elements in oocytes of this species.[79][80] By interfering via a dominant nonfunctional allele and a morpholino they find the T-box transcription activator Eomesodermin and its target mtx2 – a transcription factor – are vital to epiboly.[79][80] (In Bruce et al. 2003 they failed to support the possibility that Eomesodermin behaves like Vegt.[79] Neither they nor anyone else has been able to locate any mutation which – in the mother – will prevent initiation of the mesoderm or endoderm development processes in this species.)[79]
In 1999, the nacre mutation was identified in the zebrafish ortholog of the mammalian MITF transcription factor.[81] Mutations in human MITF result in eye defects and loss of pigment, a type of Waardenburg Syndrome. In December 2005, a study of the golden strain identified the gene responsible for its unusual pigmentation as SLC24A5, a solute carrier that appeared to be required for melanin production, and confirmed its function with a Morpholino knockdown. The orthologous gene was then characterized in humans and a one base pair difference was found to strongly segregate fair-skinned Europeans and dark-skinned Africans.[82] Zebrafish with the nacre mutation have since been bred with fish with a roy orbison (roy) mutation to make Casper strain fish that have no melanophores or iridophores, and are transparent into adulthood. These fish are characterized by uniformly pigmented eyes and translucent skin.[6][83]
Transgenesis is a popular approach to study the function of genes in zebrafish. Construction of transgenic zebrafish is rather easy by a method using the Tol2 transposon system. Tol2 element which encodes a gene for a fully functional transposase capable of catalyzing transposition in the zebrafish germ lineage. Tol2 is the only natural DNA transposable element in vertebrates from which an autonomous member has been identified.[84][85] Examples include the artificial interaction produced between LEF1 and Catenin beta-1/β-catenin/CTNNB1. Dorsky et al. 2002 investigated the developmental role of Wnt by transgenically expressing a Lef1/β-catenin reporter.[86]
There are well-established protocols for editing zebrafish genes using CRISPR-Cas9[87] and this tool has been used to generate genetically modified models.
In 2008, researchers at Boston Children's Hospital developed a new strain of zebrafish, named Casper, whose adult bodies had transparent skin.[6] This allows for detailed visualization of cellular activity, circulation, metastasis and many other phenomena.[6] In 2019 researchers published a crossing of a prkdc-/- and a IL2rga-/- strain that produced transparent, immunodeficient offspring, lacking natural killer cells as well as B- and T-cells. This strain can be adapted to 37 °C (99 °F) warm water and the absence of an immune system makes the use of patient derived xenografts possible.[88] In January 2013, Japanese scientists genetically modified a transparent zebrafish specimen to produce a visible glow during periods of intense brain activity.[7]
In January 2007, Chinese researchers at Fudan University genetically modified zebrafish to detect oestrogen pollution in lakes and rivers, which is linked to male infertility. The researchers cloned oestrogen-sensitive genes and injected them into the fertile eggs of zebrafish. The modified fish turned green if placed into water that was polluted by oestrogen.[5]
In 2015, researchers at Brown University discovered that 10% of zebrafish genes do not need to rely on the U2AF2 protein to initiate RNA splicing. These genes have the DNA base pairs AC and TG as repeated sequences at the ends of each intron. On the 3'ss (3' splicing site), the base pairs adenine and cytosine alternate and repeat, and on the 5'ss (5' splicing site), their complements thymine and guanine alternate and repeat as well. They found that there was less reliance on U2AF2 protein than in humans, in which the protein is required for the splicing process to occur. The pattern of repeating base pairs around introns that alters RNA secondary structure was found in other teleosts, but not in tetrapods. This indicates that an evolutionary change in tetrapods may have led to humans relying on the U2AF2 protein for RNA splicing while these genes in zebrafish undergo splicing regardless of the presence of the protein.[89]
D. rerio has three transferrins, all of which cluster closely with other vertebrates.[90]
When close relatives mate, progeny may exhibit the detrimental effects of inbreeding depression. Inbreeding depression is predominantly caused by the homozygous expression of recessive deleterious alleles.[91] For zebrafish, inbreeding depression might be expected to be more severe in stressful environments, including those caused by anthropogenic pollution. Exposure of zebrafish to environmental stress induced by the chemical clotrimazole, an imidazole fungicide used in agriculture and in veterinary and human medicine, amplified the effects of inbreeding on key reproductive traits.[92] Embryo viability was significantly reduced in inbred exposed fish and there was a tendency for inbred males to sire fewer offspring.
Zebrafish are common models for research into fish farming, including pathogens[93][94][95] and parasites[93][95] causing yield loss and/or spread to adjacent wild populations.
This usefulness is less than it might be due to Danio's taxonomic distance from the most common aquaculture species.[94] Because the most common are salmonids and cod in the Protacanthopterygii and sea bass, sea bream, tilapia, and flatfish, in the Percomorpha, zebrafish results may not be perfectly applicable.[94] Various other models – Goldfish (Carassius auratus), Medaka (Oryzias latipes), Stickleback (Gasterosteus aculeatus), Roach (Rutilus rutilus), Pufferfish (Takifugu rubripes), Swordtail (Xiphophorus hellerii) – are less used normally but would be closer to particular target species.[95]
The only exception are the Carp (including Grass Carp, Ctenopharyngodon idella)[94] and Milkfish (Chanos chanos)[95] which are quite close, both being in the Cyprinidae. However it should also be noted that Danio consistently proves to be a useful model for mammals in many cases and there is dramatically more genetic distance between them than between Danio and any farmed fish.[94]
In a glucocorticoid receptor-defective mutant with reduced exploratory behavior, fluoxetine rescued the normal exploratory behavior.[96] This demonstrates relationships between glucocorticoids, fluoxetine, and exploration in this fish.[96]
The zebrafish and zebrafish larva is a suitable model organism for drug discovery and development. As a vertebrate with 70% genetic homology with humans,[77] it can be predictive of human health and disease, while its small size and fast development facilitates experiments on a larger and quicker scale than with more traditional in vivo studies, including the development of higher-throughput, automated investigative tools.[97][98] As demonstrated through ongoing research programmes, the zebrafish model enables researchers not only to identify genes that might underlie human disease, but also to develop novel therapeutic agents in drug discovery programmes.[99] Zebrafish embryos have proven to be a rapid, cost-efficient, and reliable teratology assay model.[100]
Drug screens in zebrafish can be used to identify novel classes of compounds with biological effects, or to repurpose existing drugs for novel uses; an example of the latter would be a screen which found that a commonly used statin (rosuvastatin) can suppress the growth of prostate cancer.[101] To date, 65 small-molecule screens have been carried out and at least one has led to clinical trials.[102] Within these screens, many technical challenges remain to be resolved, including differing rates of drug absorption resulting in levels of internal exposure that cannot be extrapolated from the water concentration, and high levels of natural variation between individual animals.[102]
To understand drug effects, the internal drug exposure is essential, as this drives the pharmacological effect. Translating experimental results from zebrafish to higher vertebrates (like humans) requires concentration-effect relationships, which can be derived from pharmacokinetic and pharmacodynamic analysis.[3] Because of its small size, however, it is very challenging to quantify the internal drug exposure. Traditionally multiple blood samples would be drawn to characterize the drug concentration profile over time, but this technique remains to be developed. To date, only a single pharmacokinetic model for paracetamol has been developed in zebrafish larvae.[103]
Using smart data analysis methods, pathophysiological and pharmacological processes can be understood and subsequently translated to higher vertebrates, including humans.[3][104] An example is the use of systems pharmacology, which is the integration of systems biology and pharmacometrics. Systems biology characterizes (part of) an organism by a mathematical description of all relevant processes. These can be for example different signal transduction pathways that upon a specific signal lead to a certain response. By quantifying these processes, their behaviour in healthy and diseased situation can be understood and predicted. Pharmacometrics uses data from preclinical experiments and clinical trials to characterize the pharmacological processes that are underlying the relation between the drug dose and its response or clinical outcome. These can be for example the drug absorption in or clearance from the body, or its interaction with the target to achieve a certain effect. By quantifying these processes, their behaviour after different doses or in different patients can be understood and predicted to new doses or patients. By integrating these two fields, systems pharmacology has the potential to improve the understanding of the interaction of the drug with the biological system by mathematical quantification and subsequent prediction to new situations, like new drugs or new organisms or patients. Using these computational methods, the previously mentioned analysis of paracetamol internal exposure in zebrafish larvae showed reasonable correlation between paracetamol clearance in zebrafish with that of higher vertebrates, including humans.[103]
Zebrafish have been used to make several transgenic models of cancer, including melanoma, leukemia, pancreatic cancer and hepatocellular carcinoma.[105][106] Zebrafish expressing mutated forms of either the BRAF or NRAS oncogenes develop melanoma when placed onto a p53 deficient background. Histologically, these tumors strongly resemble the human disease, are fully transplantable, and exhibit large-scale genomic alterations. The BRAF melanoma model was utilized as a platform for two screens published in March 2011 in the journal Nature. In one study, the model was used as a tool to understand the functional importance of genes known to be amplified and overexpressed in human melanoma.[107] One gene, SETDB1, markedly accelerated tumor formation in the zebrafish system, demonstrating its importance as a new melanoma oncogene. This was particularly significant because SETDB1 is known to be involved in the epigenetic regulation that is increasingly appreciated to be central to tumor cell biology.
In another study, an effort was made to therapeutically target the genetic program present in the tumor's origin neural crest cell using a chemical screening approach.[108] This revealed that an inhibition of the DHODH protein (by a small molecule called leflunomide) prevented development of the neural crest stem cells which ultimately give rise to melanoma via interference with the process of transcriptional elongation. Because this approach would aim to target the "identity" of the melanoma cell rather than a single genetic mutation, leflunomide may have utility in treating human melanoma.[109]
In cardiovascular research, the zebrafish has been used to model human myocardial infarction model. The zebrafish heart completely regenerates after about 2 months of injury without any scar formation.[110] Zebrafish is also used as a model for blood clotting, blood vessel development, and congenital heart and kidney disease.[111]
In programmes of research into acute inflammation, a major underpinning process in many diseases, researchers have established a zebrafish model of inflammation, and its resolution. This approach allows detailed study of the genetic controls of inflammation and the possibility of identifying potential new drugs.[112]
Zebrafish has been extensively used as a model organism to study vertebrate innate immunity. The innate immune system is capable of phagocytic activity by 28 to 30 h postfertilization (hpf)[113] while adaptive immunity is not functionally mature until at least 4 weeks postfertilization.[114]
As the immune system is relatively conserved between zebrafish and humans, many human infectious diseases can be modeled in zebrafish.[115][116][117][118] The transparent early life stages are well suited for in vivo imaging and genetic dissection of host-pathogen interactions.[119][120][121][122] Zebrafish models for a wide range of bacterial, viral and parasitic pathogens have already been established; for example, the zebrafish model for tuberculosis provides fundamental insights into the mechanisms of pathogenesis of mycobacteria.[123][124][125][126] Furthermore, robotic technology has been developed for high-throughput antimicrobial drug screening using zebrafish infection models.[127][128]
Another notable characteristic of the zebrafish is that it possesses four types of cone cell, with ultraviolet-sensitive cells supplementing the red, green and blue cone cell subtypes found in humans. Zebrafish can thus observe a very wide spectrum of colours. The species is also studied to better understand the development of the retina; in particular, how the cone cells of the retina become arranged into the so-called 'cone mosaic'. Zebrafish, in addition to certain other teleost fish, are particularly noted for having extreme precision of cone cell arrangement.[129]
This study of the zebrafish's retinal characteristics has also extrapolated into medical enquiry. In 2007, researchers at University College London grew a type of zebrafish adult stem cell found in the eyes of fish and mammals that develops into neurons in the retina. These could be injected into the eye to treat diseases that damage retinal neurons—nearly every disease of the eye, including macular degeneration, glaucoma, and diabetes-related blindness. The researchers studied Müller glial cells in the eyes of humans aged from 18 months to 91 years, and were able to develop them into all types of retinal neurons. They were also able to grow them easily in the lab. The stem cells successfully migrated into diseased rats' retinas, and took on the characteristics of the surrounding neurons. The team stated that they intended to develop the same approach in humans.[130][131]
Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. Zebrafish is widely used as model organism to study muscular dystrophies.[43] For example, the sapje (sap) mutant is the zebrafish orthologue of human Duchenne muscular dystrophy (DMD).[132] The Machuca-Tzili and co-workers applied zebrafish to determine the role of alternative splicing factor, MBNL, in myotonic dystrophy type 1 (DM1) pathogenesis.[133] More recently, Todd et al. described a new zebrafish model designed to explore the impact of CUG repeat expression during early development in DM1 disease.[134] Zebrafish is also an excellent animal model to study congenital muscular dystrophies including CMD Type 1 A (CMD 1A) caused by mutation in the human laminin α2 (LAMA2) gene.[135] The zebrafish, because of its advantages discussed above, and in particular the ability of zebrafish embryos to absorb chemicals, has become a model of choice in screening and testing new drugs against muscular dystrophies.[136]
Zebrafish have been used as model organisms for bone metabolism, tissue turnover, and resorbing activity. These processes are largely evolutionary conserved. They have been used to study osteogenesis (bone formation), evaluating differentiation, matrix deposition activity, and cross-talk of skeletal cells, to create and isolate mutants modeling human bone diseases, and test new chemical compounds for the ability to revert bone defects.[137][138] The larvae can be used to follow new (de novo) osteoblast formation during bone development. They start mineralising bone elements as early as 4 days post fertilisation. Recently, adult zebrafish are being used to study complex age related bone diseases such as osteoporosis and osteogenesis imperfecta.[139] The (elasmoid) scales of zebrafish function as a protective external layer and are little bony plates made by osteoblasts. These exoskeletal structures are formed by bone matrix depositing osteoblasts and are remodeled by osteoclasts. The scales also act as the main calcium storage of the fish. They can be cultured ex-vivo (kept alive outside of the organism) in a multi-well plate, which allows manipulation with drugs and even screening for new drugs that could change bone metabolism (between osteoblasts and osteoclasts).[139][140][141]
Zebrafish pancreas development is very homologous to mammals, such as mice. The signaling mechanisms and way the pancreas functions are very similar. The pancreas has an endocrine compartment, which contains a variety of cells. Pancreatic PP cells that produce polypeptides, and β-cells that produce insulin are two examples of those such cells. This structure of the pancreas, along with the glucose homeostasis system, are helpful in studying diseases, such as diabetes, that are related to the pancreas. Models for pancreas function, such as fluorescent staining of proteins, are useful in determining the processes of glucose homeostasis and the development of the pancreas. Glucose tolerance tests have been developed using zebrafish, and can now be used to test for glucose intolerance or diabetes in humans. The function of insulin are also being tested in zebrafish, which will further contribute to human medicine. The majority of work done surrounding knowledge on glucose homeostasis has come from work on zebrafish transferred to humans.[142]
Zebrafish have been used as a model system to study obesity, with research into both genetic obesity and over-nutrition induced obesity. Obese zebrafish, similar to obese mammals, show dysregulation of lipid controlling metabolic pathways, which leads to weight gain without normal lipid metabolism.[142] Also like mammals, zebrafish store excess lipids in visceral, intramuscular, and subcutaneous adipose deposits. These reasons and others make zebrafish good models for studying obesity in humans and other species. Genetic obesity is usually studied in transgenic or mutated zebrafish with obesogenic genes. As an example, transgenic zebrafish with overexpressed AgRP, an endogenous melacortin antagonist, showed increased body weight and adipose deposition during growth.[142] Though zebrafish genes may not be the exact same as human genes, these tests could provide important insight into possible genetic causes and treatments for human genetic obesity.[142] Diet-induced obesity zebrafish models are useful, as diet can be modified from a very early age. High fat diets and general overfeeding diets both show rapid increases in adipose deposition, increased BMI, hepatosteatosis, and hypertriglyceridemia.[142] However, the normal fat, overfed specimens are still metabolically healthy, while high-fat diet specimens are not.[142] Understanding differences between types of feeding-induced obesity could prove useful in human treatment of obesity and related health conditions.[142]
Zebrafish have been used as a model system in environmental toxicology studies.[29]
Zebrafish have been used as a model system to study epilepsy. Mammalian seizures can be recapitulated molecularly, behaviorally, and electrophysiologically, using a fraction of the resources required for experiments in mammals.[143]
The zebrafish (Danio rerio) is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (and thus often called a "tropical fish" although both tropical and subtropical). It is also found in private ponds.
The zebrafish is an important and widely used vertebrate model organism in scientific research, for example in drug development, in particular pre-clinical development. It is also notable for its regenerative abilities, and has been modified by researchers to produce many transgenic strains.