Some filamentousDesulfobulbaceae function like living electrical wires, transporting electrons over a cm along their bodies.
Researchers believe this enables the bacteria's lifestyle, mostly buried in anoxic sediment and yet breathing oxygen while simultaneously deriving energy from reduced sulfur compounds. Respiration takes place at one end of the body, dining on sulfur at the other.
Die Desulfobulbaceae bilden eine Familie innerhalb der Deltaproteobakterien. Es handelt sich um fakultativ anaerobe, gramnegative Bakterien. Bis auf Desulforhopalus sind alle Vertreter beweglich (motil) und besitzen eine einzige, polare Flagellate.
Die im Namen vorangestellte Silbe Desulfo- steht für den Stoffwechselweg der Desulfurikation, die Reduktion von Sulfat (SO42−) zu Schwefelwasserstoff (H2S). Man spricht auch von der Sulfatatmung oder der dissimilatorischen Sulfatreduktion. Entsprechende Bakterien werden als Desulfurikanten, Sulfatatmer oder Sulfatreduzierer (engl.: sulfate reducing bacteria, SRB; bzw. sulfate reducing prokaryotes, SRP) bezeichnet.
Die dissimilatorische Sulfatreduktion ist ein Kennzeichen für die Ordnung Desulfobacterales, Desulfovibrionales und einigen Arten der Ordnung Syntrophobacterales innerhalb der Deltaproteobacteria. Fast alle Arten der Desulfobulbaceae nutzen die Fermentation als zusätzlichen Stoffwechselweg. Ebenfalls die Reduktion von Nitrat wurde bei einigen Arten nachgewiesen, z. B. bei Desulfobulbus propionicus, Desulforhopalus singaporensis.
Die meist stäbchenförmigen Zellen treten einzeln, in Paaren oder in Ketten auf. Sie bilden keine Sporen. Die Zellen der Gattung Desulforhopalus enthalten Gasvakuolen. Alle Arten kommen im Meerwasser und Brackwasser vor, die Gattungen Desulfobulbus und Desulfocapsa auch im Faulschlamm (Sapropel) von Süßwasser. Desulfobulbus wurde außerdem im Abwasserschlamm, Pansen und tierischen Kot gefunden. Auch psychrophile (kälteliebende) Arten sind vorhanden, so wurde die Gattung Desulfotalea in kalten Meeressedimenten bei Temperaturen um −1 °C an der Küste von Spitzbergen entdeckt und die Arten dementsprechend benannt (D. psychrophila und D. arctica).[1] Eine weitere psychrophile Art ist Desulforhopalus vacuolatus[2].
Durch die Sulfatreduktion entsteht der für Organismen, und auch für die Sulfatreduzierer giftige Schwefelwasserstoff. Allerdings reagiert Schwefelwasserstoff mit Eisen, durch die folgende Ausfällung der entstandenen schwerlöslichen Sulfide (z. B. FeS, Eisen(II)-sulfid) wird die Umgebung entgiftet.
Alle Desulfurikanten spielen im Schwefelkreislauf eine große Rolle. Der größte Teil des in der Natur vorkommenden Schwefelwasserstoff wird durch diese Bakterien erzeugt.
Des Weiteren sind Arten der Desulfobulbaceae fähig, Stickstoff zu fixieren. Man spricht von der Diazotrophie oder allgemein Stickstofffixierung. Hierbei wird der in der Luft, Boden oder freiem Wasser enthaltener molekulare Stickstoff (N2) zu Ammoniak (NH3) reduziert. Hierzu sind höhere Lebewesen nicht in der Lage. Durch das Ammoniak wird hierdurch für den Stoffwechsel von Lebewesen unverzichtbare Stickstoff verfügbar gemacht. Ein Beispiel hierfür sind die Ökosysteme der Seegraswiesen. Hierbei profitieren die dort dominierenden Makroalgen von den im Meeresboden und im Wasser vorkommenden stickstofffixierenden Bakterien. In einer Untersuchung von dem Seegras Halophila im Südchinesischen Meer zählen u. a. Desulfobulbus, Desulfopila und Desulfocapsa als zu den wichtigsten Stickstofffixierer. Sie spielen somit eine wichtige Rolle im Seegras-Ökosystem sowohl bei der Stickstofffixierung als auch bei der Sulfatreduktion.[3]
Die Desulfurikation ist bei den als Sulfatatmer bezeichneten Bakterien dissimilativ. Im Gegensatz zu der assimilativen Sulfatreduktion (Sulfatassimilation) zu der fast alle Bakterien und auch viele Eukaryonten (die meisten Pflanzen und Pilze, Tiere allerdings nicht) fähig sind, wird der durch die Reduktion entstehender Schwefelwasserstoff sofort ausgeschieden und nicht für den Aufbau von Aminosäuren genutzt. Die Reduktion von Schwefelverbindungen dient bei den Desulfurikanten (Sulfatatmern) also ausschließlich der Energiegewinnung.
Bei der Sulfatatmung als Form des Energiestoffwechsels ist nicht Sauerstoff wie bei der aeroben Atmung, sondern Sulfat der Elektronenakzeptor. Einfache organische Verbindungen dienen als Donatoren, sie werden oxidiert. Die entsprechenden Schwefelverbindungen werden hierbei zu Sulfide bzw. Schwefelwasserstoff reduziert. Arten von Desulfobulbaceae nutzen nicht nur Sulfat, sondern auch Sulfit, Thiosulfat und elementaren Schwefel. Der Energiegewinn erfolgt an einer Elektronentransportkette (Atmungskette, oxidative Phosphorylierung), die bei den Desulfobulbaceae u. a. Cytochrome (c und b) als Komponenten enthält.
Typische organische Moleküle, die bei Desulfobulbaceae als Elektronendonatoren und als Kohlenstoffquellen genutzt werden, sind (nicht bei allen Arten) u. a.: Fettsäuren, Malat, primäre Alkohole, Lactat, Acetat, Propionat und Pyruvat. Alle Arten von Desulfobulbus, Desulfotalea, sowie die Art Desulforhopalus vacuolatus und Desulfofustis glycolicus nutzen, allerdings nur in Anwesenheit von Acetat, auch H2 als Elektronendonator bei der Sulfatatmung[4]. Die organischen Moleküle werden meist nicht vollständig oxidiert, oft ist Acetat das Endprodukt. Desulfofustis glycolicus oxidiert Glycolat und Glyoxylat vollständig zu CO2.
Bei für die Sulfatatmung genutzten Enzymen handelt es sich um dissimilatorische Sulfit-Reduktasen (dSiRs). Bei den Desulfobulbaceae wurde nur das Enzym Desulforubidin gefunden. Andere dSirRs sind Desulfoviridin, P582 (z. B. bei Desulfotomaculum nigrificans, ein grampositives Bakterium der Clostridiales) und Desulfofuscidin.
Desulfurizierer erscheinen in vielen, phylogenetisch weit voneinander entfernten Linien der Domäne Bakterien. Dieser Stoffwechselweg hat sich also in der Evolution vermutlich mehrmals unabhängig voneinander entwickelt. Außer bei den Deltaproteobakterien tritt die Sulfatatmung weiterhin in dem Phylum Thermodesulfobacteria und in der Ordnung Clostridiales der Abteilung Firmicutes (Gattung Desulfotomaculum) auf. Auch in der Domäne Archaea sind Desulfurizierer zu finden, z. B. die Gattung Archaeglobus. In den ebenfalls zu der Deltagruppe zählenden Ordnungen Desulfurellaceae und Desulfurellales findet man schwefelreduzierende Arten. Sie können kein Sulfat reduzieren, nur elementarer Schwefel und auch Thiosulfat werden von diesen Arten als Energiequelle eingesetzt. Daher hier die Vorsilbe desulfur, sie bezieht sich auf den elementaren Schwefel (Sulfur). Im englischen spricht man hier von den „Sulfur-Reducing Prokaryotes“.
Wenn nicht ausreichend Schwefelverbindungen (Sulfat, Sulfid, Thiosulfat) vorhanden sind, wechseln viele Desulfurizierer zu dem fermentativen Stoffwechsel (Gärung). Bis auf die chemolithoautotrophe Gattung Desulfocapsa sind alle Vertreter von Desulfobulbaceae zur Fermentation in der Lage. Z. B. können einige Arten von Desulfobulbus in diesem Fall unter Anwesenheit von Lactat oder Pyruvat wachsen und produzieren durch die Fermentation Acetat. Desulfobulbus rhabdoformis wächst durch die Fermentation von Malat und Fumarat.
Ein weiterer Stoffwechselweg zur Energiegewinnung für verschiedene Sulfatatmer ist die Disproportionierung anorganischer Schwefelverbindungen. Hierbei werden Schwefelverbindungen wie Thiosulfat, Sulfit zu Sulfat und Sulfid (Schwefelwasserstoff) umgesetzt. Der dabei entstehende Protonengradient wird zur Produktion von ATP eingesetzt. Unter den Desulfobulbaceae wurde bei Desulfobulbus, Desulforhopalus singaporensis und bei den Arten von Desulfocapsa dieser Stoffwechselweg beobachtet.
Einige Arten, wie Desulfobulbus propionicus und Desulfocapsa nutzten bei der Disproportionierung auch elementaren Schwefel. Desulfobulbus propionicus gehört zu einer der ersten Arten, bei denen in Kultur die Disproportionierung von elementaren Schwefel nachgewiesen werden konnte.
Bis in die 80er Jahre wurden sulfatreduzierenden Bakterien als streng (obligat) anaerob, also nur unter völligen Ausschluss von Sauerstoff lebensfähig, betrachtet. Neuere Forschungsergebnisse haben allerdings gezeigt, dass SRBs Sauerstoff tolerieren und sogar unter Sauerstoffeinfluss Sulfat weiterhin als Energiequelle nutzen.[5]
Unter den Desulfobulbaceae wurde beispielsweise bei Kulturen von Desulfolobus propionicus, und von anderen Sulfatreduzierer (z. B. Desulfovibrio, Desulfobacterium autotrophicum) eine gewisse Toleranz zu Sauerstoff in geringen Konzentrationen (mikroaerob) beobachtet. Weiterhin wurde gezeigt, dass Desulfobulbus und andere Sulfatreduzierer (z. B. Desulfovibrio, Desulfuricans) unter diesen Bedingungen auch Sauerstoff als Elektronenakzeptor nutzen.[6]
Sogar in den oxischen Zonen von Matten der Cyanobakterien, wo zeitweise eine durch die Photosynthese erzeugte hohe Sauerstoffkonzentration herrscht, wurden diese Bakterien entdeckt und eine hohe Sulfatreduktionsrate nachgewiesen[7].
Eine bestimmte Art von Bakterien die zur Familie der Desulfobulbaceae gehört, kann im Bereich des Meeresbodens sogenannte lebende Kabel (Kabelbakterien) bilden, durch die Elektronen fließen. Dabei schließen sich Tausende der Bakterien zu bis zu zwei Zentimeter langen Filamenten zusammen. Sie können dadurch den Sauerstoff nutzen, der nur in der oberen Bodenschicht vorhanden ist und an Nährstoffe gelangen, die sich weiter unten in der Bodenschicht befinden.[8]
Diese Familie besteht aus folgenden Gattungen und Arten (Auswahl): [9]
Die Desulfobulbaceae bilden eine Familie innerhalb der Deltaproteobakterien. Es handelt sich um fakultativ anaerobe, gramnegative Bakterien. Bis auf Desulforhopalus sind alle Vertreter beweglich (motil) und besitzen eine einzige, polare Flagellate.
Die im Namen vorangestellte Silbe Desulfo- steht für den Stoffwechselweg der Desulfurikation, die Reduktion von Sulfat (SO42−) zu Schwefelwasserstoff (H2S). Man spricht auch von der Sulfatatmung oder der dissimilatorischen Sulfatreduktion. Entsprechende Bakterien werden als Desulfurikanten, Sulfatatmer oder Sulfatreduzierer (engl.: sulfate reducing bacteria, SRB; bzw. sulfate reducing prokaryotes, SRP) bezeichnet.
Die dissimilatorische Sulfatreduktion ist ein Kennzeichen für die Ordnung Desulfobacterales, Desulfovibrionales und einigen Arten der Ordnung Syntrophobacterales innerhalb der Deltaproteobacteria. Fast alle Arten der Desulfobulbaceae nutzen die Fermentation als zusätzlichen Stoffwechselweg. Ebenfalls die Reduktion von Nitrat wurde bei einigen Arten nachgewiesen, z. B. bei Desulfobulbus propionicus, Desulforhopalus singaporensis.
The Desulfobulbaceae are a family of Thermodesulfobacteriota. They reduce sulphates to sulphides to obtain energy and are anaerobic.
The discovery of filamentous Desulfobulbaceae in 2012 elucidates the cause of the small electric currents measured in the top layer of marine sediment.[1] The currents were first measured in 2010.[2] These organisms, referred to as "cable bacteria", consist in thousands of cells arranged in filaments up to three centimeters in length. They transport electrons from the sediment that is rich in hydrogen sulfide up to the oxygen-rich sediment that is in contact with the water.[1][3][4][5][6] Later investigations revealed their ability to use nitrate or nitrite as final electron acceptor in absence of oxygen[7][8] Since the discovery, cable bacteria have been reported from a wide variety of sediments worldwide.[9] Based on phylogenetic analysis of 16s rRNA and dsrAB genes it was proposed to allocate cable bacteria within two novel candidate genera i.e. Ca. Electrothrix and Ca. Electronema.[10]
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[11] and National Center for Biotechnology Information (NCBI)[12]
The Desulfobulbaceae are a family of Thermodesulfobacteriota. They reduce sulphates to sulphides to obtain energy and are anaerobic.
The discovery of filamentous Desulfobulbaceae in 2012 elucidates the cause of the small electric currents measured in the top layer of marine sediment. The currents were first measured in 2010. These organisms, referred to as "cable bacteria", consist in thousands of cells arranged in filaments up to three centimeters in length. They transport electrons from the sediment that is rich in hydrogen sulfide up to the oxygen-rich sediment that is in contact with the water. Later investigations revealed their ability to use nitrate or nitrite as final electron acceptor in absence of oxygen Since the discovery, cable bacteria have been reported from a wide variety of sediments worldwide. Based on phylogenetic analysis of 16s rRNA and dsrAB genes it was proposed to allocate cable bacteria within two novel candidate genera i.e. Ca. Electrothrix and Ca. Electronema.
Desulfobulbaceae sunt familia Proteobacteriorum quae sulphates ad sulphida ad energiam obtinendam redigunt, sensuque stricto sunt anaerobica.
Inventio Desulfobulbacearum filamentosoarum anno 2012 causam parvorum fluxuum oneris electrici in summo sedimenti strato super magnas abyssi oceanici regiones explanat. Homines hos fluxus primum anno 2010 mentiti sunt. Milia harum cellularum "desulfobulbaceosarum" (ad tempus sine nomine) in microorganismis fibrosis ad centimetrum longis ordinantur. Quae electrona a sedimentis sulphido hydrogenii abundantibus sursum ad sedimenta oxygenio abundantia aquamque tangentia transportant.[1][2][3]
Desulfobulbaceae sunt familia Proteobacteriorum quae sulphates ad sulphida ad energiam obtinendam redigunt, sensuque stricto sunt anaerobica.
Inventio Desulfobulbacearum filamentosoarum anno 2012 causam parvorum fluxuum oneris electrici in summo sedimenti strato super magnas abyssi oceanici regiones explanat. Homines hos fluxus primum anno 2010 mentiti sunt. Milia harum cellularum "desulfobulbaceosarum" (ad tempus sine nomine) in microorganismis fibrosis ad centimetrum longis ordinantur. Quae electrona a sedimentis sulphido hydrogenii abundantibus sursum ad sedimenta oxygenio abundantia aquamque tangentia transportant.