Nile region, oases, Mediterranean region, Egyptian desert and Sinai.
Mediterranean region, Sinai, eastwards to Myanmar, introduced elsewhere.
Planted along water-courses, rarely occurring as a native.
Perennial.
The culms have many uses, including light construction, basket making, matting, musical pipes, and ornaments.
Considerable difficulty may be experienced in distinguishing immature plants of Arundo, Neyraudia and Phragmites, and dissecting the spikelets will be of little use. Phragmites can be distinguished by the silky beard at the bases of the lowest panicle branches which is absent from the other two genera. The ligule of Arundo is membranous while that of Phragmites and Neyraudia is a fringe of hairs. The leaves of Arundo are very much broader than in the other genera and are conspicuously cordate or rounded at the base.
The following description of giant reed provides characteristics that may be relevant to fire ecology, and is not meant for identification. Keys for identification are available (e.g., [40,53,56,57,62,63,69,77,103,105,107]). Giant reed and common reed, a native grass distributed across most of the United States, can be difficult to distinguish. Proper identification of giant reed is essential before implementing control measures [24].
Giant reed is a tall, erect, perennial graminoid. It is the largest member of the genus and among the largest of grasses, growing 6 to 30 feet (2-8 m) tall [11,28,74]. The culms reach a diameter of 0.4 to 1.6 inches (1-4 cm) and commonly branch during the second year of growth. Culms are hollow, with walls 2 to 7 mm thick and divided by partitions at the nodes. The nodes vary in length from 5 to 12 inches (12-30 cm). Leaves are conspicuously 2-ranked, 2 to 3.2 inches (5-8 cm) broad at the base and tapering to a fine point. Bases of the leaves are cordate and more-or-less hairy-tufted, persisting long after the blades have fallen [74]. Giant reed has large plume-like panicles. Spikelets are several-flowered with upper florets successively smaller [33].
Giant reed has thick, knotty rhizomes [103] and deeply penetrating roots [74]. Once established, it tends to form large, continuous, clonal root masses, sometimes covering several acres. These root masses can be more than 3 feet (1 m) thick (review by [11]).
Although giant reed has been widely cultivated for centuries, little information on its biology and ecology has been published. As of this writing (2004), more research is needed to understand the biology and ecology of giant reed.
Though accounts in the literature vary, a review by Bell [11] indicates giant reed is thought to be native in eastern Asia, and it has been cultivated throughout Asia, southern Europe, northern Africa and the Middle East for thousands of years. In North America, it was intentionally introduced from the Mediterranean to the Los Angeles area in California in the early 1800s (Robbins and others 1951, as cited in [49])[28], and has been widely planted throughout the warmer states as an ornamental and for erosion control along drainage canals [49,74]. It has escaped cultivation as far north as Virginia and Missouri, and abundant wild populations occur along the Rio Grande River [74] and along ditches, streams, and seeps in arid and cis montane regions of California (Robbins and others 1951, as cited in [49]).
According to Bell [11], giant reed is invasive throughout the warmer coastal freshwaters of the United States from Maryland westward to northern California. Wunderlin [107] recognizes the variety versicolor as occurring in Florida, and Jones and others [53] describe that variety as a cultivar. The literature contains specific references to the occurrence of giant reed in the 4 provinces of Mexico listed below [2,61,82,98]. Giant reed is likely present in other areas of Mexico.
Plants database provides a state distribution map of giant reed in the United States.
The following lists include North American ecosystems, habitat types, and forest and range cover types in which giant reed is known or thought to be invasive, as well as some that may be invaded by giant reed following disturbances in which vegetation is killed and/or removed and/or soil is disturbed (e.g. cultivation, fire, grazing, herbicide application, flooding). Giant reed is a hydrophyte and riparian areas or wetlands within these habitats could be subject to invasion by giant reed even if the habitat itself is not considered a wetland. For example, Nixon and Willett [71] list giant reed as a plant found within the Trinity River Basin in Texas. Habitats within the basin include cross timbers and prairies, blackland prairies, post oak (Quercus stellata) savannah, pineywoods, and Gulf prairies and marshes.
These lists are not necessarily exhaustive. More information is needed regarding incidents and examples of particular ecosystems and plant communities where giant reed is invasive.
Fire adaptations: As of this writing (2004), information on fire adaptations of giant reed are limited to anecdotal accounts and assertions based on known biological attributes. Giant reed's extensive rhizomes are likely to survive and sprout after fire removes top growth. Reviews (e.g., [11,28,95]) provide anecdotal evidence that indicates that sprouts emerge from rhizomes of giant reed soon after fire and grow quickly. Rieger and Kreager [80] observed rapid sprouting and growth of giant reed after removing top-growth by cutting (see Growth).
FIRE REGIMES: With the exception of California, almost no published information is available that describes the types of plant communities in which giant reed is invasive, although giant reed generally occurs in riparian and wetland areas throughout its wide distribution. Characteristics of riparian zones and wetlands vary substantially throughout this range, and FIRE REGIMES are not well described for many of these communities. A review by Dwire and Kauffman [30] discusses how differences in topography, microclimate, geomorphology, and vegetation may lead to differences in fire behavior and fire effects between riparian areas and surrounding uplands. Riparian areas may act as a fire barrier or a fire corridor, depending on topography, weather, and fuel characteristics [30]. Recovery of riparian vegetation depends on fire severity and postfire hydrology [22].
Dwire and Kauffman [30] indicate that riparian microclimates are generally characterized by cooler air temperature, lower daily maximum air temperature, and higher relative humidity than the adjacent uplands, contributing to higher fuel moisture content and presumably lowering the intensity, severity, and frequency of fire in riparian areas compared to adjacent uplands. Similarly, Bell [11] suggests that fire is uncommon in riparian areas in southern California, and that native riparian species are not well adapted to frequent or severe fire. In this area, lightning-ignited wildfires usually occur in late fall, winter, and early spring when riparian vegetation is typically moist and green and would act as a fire break [11]. In southern California, riparian areas invaded by giant reed often occur within grasslands or chaparral shrublands. The limited available research from such ecosystems suggests longer fire return intervals and lower-severity burns in riparian areas relative to adjacent upland vegetation [30]. Human-caused wildfires often occur during the dry months of the year (July through October) in southern California, when drier conditions make riparian vegetation more vulnerable to fire damage [11].
Information regarding the effects of giant reed on fuels and fire regime characteristics in plant communities in which it is invasive in North America is limited to accounts from southern California. Although evidence is entirely anecdotal, several accounts (e.g., [11,20,29,84,95]) describe changes in fuels, fire characteristics, and/or postfire plant community response in southern California riparian areas invaded by giant reed that are suggestive of an invasive grass/fire cycle. Because giant reed grows quickly and produces large amounts of biomass [74] in dense stands described as having "large quantities of dry material" [95], it is conceivable that its invasion introduces novel fuel properties to the invaded ecosystem. It thus has the potential to alter fire behavior and the fire regime (sensu [14,19]). Giant reed is among the most productive of plant communities and can produce over 20 tons of aboveground biomass per hectare under some conditions [74]. Scott [84] observes that in the Santa Ana Basin in southern California, the invasion of giant reed into riparian corridors has doubled and in some areas tripled the amount of fuels available for wildfire.
According to Bell [9,11] giant reed is "extremely flammable" throughout most of the year, and once established increases the probability of wildfire occurrence and the intensity of fires that do occur. This observation is upheld by manager and newspaper accounts of intense wildfires fueled by giant reed in Riverside County (as cited in [95]), the Santa Ana River drainage (J. Wright, personal communication in [87]), and the Russian River further north [29]. For example, a fire in Soledad Canyon in January 1991 was said to have "burned aggressively through the riparian vegetation" due to dry conditions from a prolonged drought coupled with the presence of dried stands of giant reed (Joyce, personal observation cited in [95]). Dudley [29] describes destructive fires fueled by continuous, 15-foot-high colonies of giant reed along the Santa Ana River, noting that "such flammable vegetation is now changing riparian corridors from barriers to the spread of fires into wicks that carry fire up and downstream, into highway bridges or crowns of native, fire-sensitive trees". See Fire hazard potential for more information on this topic.
As of this writing (2004) no research is available on postfire response of giant reed; however, observations indicate that in most circumstances fire cannot kill the underground rhizomes and probably favors giant reed regeneration over native riparian species (e.g., Gaffney and Cushman 1998, cited in [28]). One week after a fire in Soledad Canyon in January 1991, for example, burned giant reed colonies were sprouting from their extensive rhizomes. Many sprouts were over 2 feet (0.6 m) tall within 2 weeks after the fire, even though January is normally the dormant period for giant reed. Most willow, mulefat, and aquatic plants were also burned, and many cottonwoods were scorched. The aquatic plants in the stream were the only plants other than giant reed that were recovering within the first few weeks of burning. In this way, fire gives giant reed an advantage over native riparian plants, and its dominance in the area has increased dramatically (Joyce, personal observation in [95]). In this sense, Bell [11] suggests that riparian communities invaded by giant reed can change from "flood-defined" to "fire-defined" communities, as has occurred on the Santa Ana River. This grass/fire cycle would thus result in river corridors dominated by stands of giant reed with little biological diversity [11].
As mentioned above, there is little research regarding FIRE REGIMES and fire return intervals in riparian areas. However, riparian communities may be influenced by the FIRE REGIMES of adjacent and surrounding plant communities. The following table provides fire return intervals for plant communities and ecosystems where riparian vegetation may include giant reed, though its invasiveness in many of these communities has not yet been demonstrated. Find further fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find FIRE REGIMES".
Although giant reed has a wide distribution in North America, details about site characteristics where it is invasive are limited. Most available information on its biology and ecology in North America comes from reviews and studies in California.
Giant reed is a hydrophyte, and grows best where water tables are near or at the soil surface [79]. Giant reed growth may be retarded by lack of moisture during its first year, but drought causes no serious damage in patches 2 to 3 years old [74]. In California, it typically grows along lakes, streams, drains and other wet sites [11]. It is well adapted for establishment and spread in riparian areas with regular flood cycles (see Asexual regeneration). In California, it is most commonly associated with waterways with altered hydrologic regimes (e.g., dams) and/or disturbed riparian vegetation, but can also establish in the understory of native riparian vegetation [28]. In southern California giant reed reaches peak abundance downstream along major rivers in coastal basins, and has generally not spread up the steep, narrow canyons that characterize lower montane areas [87]. It establishes primarily on streamside microsites, but can spread beyond the zone occupied by native riparian vegetation [24,28,102], and can occur on dry riverbanks far from permanent water [28]. A study along the San Luis Rey River in San Diego County found the highest concentration of giant reed colonies within 24 feet (7.3 m) of the river. The authors suggest frequency and magnitude of river flow contribute to this pattern of distribution [80].
Giant reed tolerates excessive salinity and periods of excessive moisture [74]. In South Carolina, it has invaded abandoned rice fields and grows in brackish water [86]. In a greenhouse experiment designed to test the tolerance of giant reed to salt stress, Peck [73] determined giant reed can grow in saline conditions and may be able to invade and persist in salt marshes.
Reviews (e.g., [24,28,49,74]) report that giant reed grows on a variety of soil types including coarse sands, gravelly soil, heavy clays, and river sediments; however, the sources and context of this information are unclear. Stephenson and Calcarone [87] suggest that it requires "well-developed" soils to become established, while DiTomaso [24] indicates that giant reed is "best developed in poor, sandy soil and in sunny situations," and survives in areas with pH values between 5 and 8.7. Purdue [74] states that its growth is most vigorous in well-drained soils where moisture is abundant.
Giant reed occurs in areas with annual precipitation ranging from 12 to 158 inches (300-4,000 mm) [24]. According to Purdue [74], it is a warm-temperate or subtropical species, and is able to survive very low temperatures when dormant, but is subject to serious damage by frosts that occur after initiation of spring growth.
In California, giant reed is apparently restricted to elevations below 1,640 feet (500 m) [47]. However, Perdue [74] reports it grows at altitudes to 8,000 feet (2,438 m) in the Himalayas.
Elevation ranges reported for giant reed in other areas include:
Nevada: 2,500 to 4,000 feet (760-1,220 m) [56]
New Mexico: 4,000 to 4,500 feet (1,220-1,370 m) [62]
Utah: 2,790 to 4,100 feet (850-1,250 m) [103]
Impacts: Bell [11] considers giant reed to be the greatest threat to southern California's remaining riparian corridors. It is so widespread and problematic in this area that more than 20 public and private organizations came together to form the Santa Ana River Arundo Management Task Force, also known as Team Arundo [54].
Once established, giant reed often forms monocultural stands that physically inhibit growth of other plant species [11,80]. For example, Douthit [26] describes a 1993 preliminary riparian assessment of the Santa Ana River basin where in the Riverside West Quad, 762 acres (308 ha) of 1,116 acres (470 ha) of riparian vegetation are impacted by giant reed. Of the impacted acres, 535 acres (217 ha) are monospecific stands of giant reed.
Although evidence is entirely anecdotal, several accounts (e.g., [11,20,29,84,95]) describe changes in fuels, fire characteristics, and/or postfire plant community response in southern California riparian areas invaded by giant reed that are suggestive of an invasive grass/fire cycle. The result of such cycle is loss of native riparian species, and continued dominance and spread of giant reed. See Fire ecology for more details.
Canopy structure of giant reed colonies differs from that of native vegetation, resulting in changes in water quality and wildlife habitat. The lack of stream-side canopy structure may result in increased pH in the shallower sections of rivers due to high algal photosynthetic activity [9,17]. In turn, high pH facilitates conversion of ammonium (NH4+) to toxic ammonia (NH3), which further degrades water quality for aquatic species and for downstream users [9]. Several species listed as endangered are further threatened by giant reed invasion and control efforts in San Francisquito Canyon including least Bell's vireo, unarmored threespine stickleback, and Nevin's barberry (Mahonia nevinii) [95].
Giant reed is becoming a major biological pollutant of river estuaries and beaches. It is often ripped out of the soft bottoms of rivers during storms and washed downstream into flood control channels [25]. Giant reed growing in flood control channels necessitates constant removal. It can form debris dams against flood control and transportation structures such as bridges and culverts [29,37]. Because the rhizomes of giant reed grow close to the surface, they break off during floods. When the root mass breaks away during these floods the riverbanks are destabilized. Destabilization of riverbanks is the leading cause of flooding in southern California [99].
Iverson [50] provides insight into the economics of giant reed's impact on water use. He estimates giant reed transpires 56,200 acre-feet of water per year on the Santa Ana River, compared to an estimated 18,700 acre-feet that would be consumed by native vegetation - the difference being enough water to serve a population of about 190,000 people. If that amount of untreated water (37,500 acre-feet) was purchased from the Metropolitan Water Association it would cost approximately $12,000,000 in 1993 dollars [50].
Control: A suite of methods is needed to control giant reed depending on presence or absence of native plants, size of the stand, amount of biomass involved, terrain, and season. The key to effective treatment of established giant reed is killing or removing the rhizomes [11].
To be successful, a program to eliminate a riparian invasive plant like giant reed must start at the uppermost reaches of the watershed and work down stream. This means there must be coordination with all of the landowners and land managers, top to bottom, in a watershed. Regulatory agencies must provide technical assistance and required permits, and private landowners must provide work crews access to land [99].
To adequately coordinate removal of giant reed in a watershed, 3 programs need to be operating: 1) create a functional mapped database that contains hydrology, land ownership/use, infestations, project sites, etc.; 2) coordination with regulatory agencies to plan mitigation project sites to fit within other current projects; 3) regular meetings of stakeholders to share information regarding threats from giant reed, control techniques, funding opportunities, and each stakeholder's direct role and responsibility [99].
Prevention: Grading and construction can spread giant reed [80]. Care must therefore be taken in areas where it occurs such that soil disturbance and movement of plant parts is minimized.
Integrated management: A popular approach to treating giant reed has been to cut the stalks and remove the biomass, wait 3 to 6 weeks for the plants to grow about 3.3 feet (1 m) tall, then apply a foliar spray of herbicide solution. The chief advantage to this approach is less herbicide is needed to treat fresh growth compared with tall, established plants, and coverage is often better because of the shorter and uniform-height plants. However, cutting the stems may result in plants returning to growth-phase, drawing nutrients from the root mass. As a result there is less translocation of herbicide to the roots and less root-kill. Additionally, cut-stem treatment requires more time and personnel than foliar spraying and requires careful timing. Cut stems must be treated with concentrated herbicide within 1 to 2 minutes of cutting to ensure tissue uptake. This treatment is most effective after flowering. The advantage of this treatment is that it requires less herbicide and the herbicide can be applied more precisely. It is rarely less expensive than foliar spraying except on very small, isolated patches or individual plants [11].
An investigation to test the effectiveness of glyphosate for control of giant reed was conducted in southern California by Caltrans, the state transportation agency. Results indicate cut-stem treatments, regardless of time of application (May, July, or September), provided 100% control with no resprouting. In contrast, virtually all plants that were left untreated following cutting resprouted vigorously. Foliar treatments produced highly variable results with top die-back varying from 10 to 90% and resprouting ranging from 0 to 100% at various sites. The authors conclude treatment of cut stems appears more effective than foliar spraying in controlling giant reed with glyphosate [34].
In 1995, a full-scale project for control of giant reed was initiated in San Francisquito Canyon in the Angeles National Forest. The standing giant reed was mulched in place, using a hammer flail mower attached to a tractor, and then glyphosate was applied to the resprouts. Initial mulching occurred in October and November, 1995. Resprouts in spring, 1996, were treated with a solution of glyphosate in April, May, July, and August. Resprouts were treated again in June and September, 1997. In 1998, giant reed continued to resprout in the treatment area, but comprised only 1% of vegetative cover, as compared to 30% to 80% prior to treatment [8]. No information is provided about the composition of the plant community posttreatment.
Physical/mechanical: Minor infestations of giant reed can be eradicated by manual methods, especially where sensitive native plants and wildlife might be damaged by other methods. Hand pulling works with new plants less than 6.6 feet (2 m) in height, but care must be taken that all rhizomes are removed [49]. This may be most effective in loose soils and after rains have loosened the substrate. Giant reed can be dug using hand tools and in combination with cutting plants near the base. Stems and roots should be removed and burned on site to prevent rerooting. The fibrous nature of giant reed makes using a chipper difficult (R. Dale personal communication in [28]). For larger infestations on accessible terrain, heavier tools (rotary brush cutter, chainsaw, or tractor-mounted mower) may facilitate biomass removal followed by rhizome removal or chemical treatment. Such methods may be of limited value on complex or sensitive terrain or on slopes over 30%. These methods may also interfere with re-establishment of native plants [49]. Mechanical eradication of giant reed is extremely difficult, even with the use of a backhoe, as rhizomes buried under 3 to 10 feet (1-3 m) of alluvium readily resprout (R. Dale personal communication in [28]).
Cut material is often burned on site, subject to local fire regulations, because of the difficulty and expense involved in collecting and removing or chipping all material. Stems and roots must be removed, chipped, or burned on site to avoid re-rooting (Dale, personal communication in [28]).
Fire: See Fire Management Considerations.
Biological: Tracy and DeLoach [93] provide an exhaustive summary of the search for biological control agents for giant reed in the United States. Areas dominated by giant reed in North America are essentially devoid of wildlife. This means native flora and fauna do not offer any significant control potential [11]. It is uncertain what natural controlling mechanisms for giant reed are in its countries of origin, although corn borers (Eizaguirre and others 1990 in [11]), spider mites [31], and aphids [65] have been reported in the Mediterranean. A sugar cane moth-borer in Barbados is reported to attack giant reed, but it is also a major pest of sugar cane and is already found in the United States in Texas, Louisiana, Mississippi, and Florida [94]. A leafhopper in Pakistan utilizes giant reed as an alternate host but attacks corn and wheat [1].
In the United States a number of diseases have been reported on giant reed, including root rot, lesions, crown rust, and stem speckle, but none seem to have seriously impacted advance of this weed [11].
Giant reed is not very palatable to cattle, but during the drier seasons they will graze the young shoots, followed by the upper parts of the older plants [108]. In many areas of California the use of Angora and Spanish goats is showing promise for controlling giant reed [21].
Chemical: Application of herbicides on giant reed is most effective after flowering and before dormancy. During this period, usually mid-August to early November in southern California, the plants are actively translocating nutrients to the root mass in preparation for winter dormancy. This may result in effective translocation of herbicide to the roots [11]. Comparison trials on the Santa Margarita River in southern California indicate foliar application during the appropriate season results in almost 100% control, compared with only 5 to 50% control using cut-stem treatment. Two to 3 weeks after foliar treatment the leaves and stalks brown and soften creating an additional advantage in dealing with the biomass. Cut green stems might take root if left on damp soil and are very difficult to cut and chip. Treated stems have little or no potential to root and are brittle (Omori 1996 in Bell [11]). Bell [11], Hoshovsky [49], and Jackson [52] provide detailed information on specific herbicides and concentrations used to treat giant reed.
In the proceedings from a workshop on giant reed control published online, Bell [11] asserts pure stands of giant reed (>80% canopy cover) are most efficiently and effectively treated by aerial application of an herbicide concentrate, usually by helicopter. Helicopter application can treat at least 124 acres (50 ha) per day. In areas where helicopter access is impossible and giant reed makes up the understory, where patches are too small to make aerial application financially efficient, or where giant reed is mixed with native plants (<80% canopy coverage), herbicides must be applied by hand.
Cultural: Giant reed appears to be insensitive to flood regime. It survives and spreads through vegetative propagation during long periods without flooding but spreads during flood events as well. Because it does not reproduce sexually, giant reed is not affected by the timing of spring flows, but can establish any time that flood flows carry and deposit stem fragments or rhizomes. It thrives along edges of reservoirs, irrigation canals, and other structures where timing of drawdowns is incompatible with maintenance of native species [97].Conversely, native riparian species and communities depend on natural flood regimes for maintenance and reproduction. If natural flood dynamics are maintained as part of an integrated management approach, native species may have a better chance of competing with giant reed in the long term [11].
Available evidence indicates giant reed provides neither food nor habitat for native species of wildlife [11]. Bell [11] speculates that insects are sparse in sites dominated by giant reed because of abundant chemical defense compounds produced by the plant.
Palatability/nutritional value: Giant reed stems and leaves contain a wide array of chemicals that probably protect it from most native insects and grazers. These chemicals include silica [51,74], triterpines, sterols [18], cardiac glycosides, curare-mimicking indoles [39], hydroxamic acid, and numerous other alkaloids (Bell [11] and references therein).
Giant reed is not very palatable to cattle, but they will eat it during dry seasons [49,108]. Domestic goats will also eat it [21,49].
Giant reed is low in protein but has a comparatively high concentration of phosphorus in the upper portions even when grown on soils with an extremely low concentration of this mineral [74,108].
Nutritional content of giant reed. Results are an average of 2 samples for each category and are presented as percentages of oven-dry weight [108]:
Old plant Young plant Lower half Upper half Lower half Upper half Total nitrogen 0.63 1.10 0.50 1.96 Protein (total N x 6.25) 3.94 6.88 3.13 12.25 Phosphorus 0.082 0.114 0.105 0.152 Calcium 0.52 0.67 0.30 0.43 Magnesium 0.25 0.32 0.12 0.19 Potassium 2.04 2.42 3.09 3.19 Carbohydrate 23.2 21.7 20.0 20.7Cover value: Areas dominated by giant reed are largely depauperate of wildlife [9,11,54]. Additionally, a study by Chadwick and Associates [17] suggests giant reed also lacks the canopy structure to provide shading of bank-edge river habitats, resulting in warmer water than would be found with a native gallery of willows and cottonwoods. In the Santa Ana River system in California, this lack of streambank structure and shading has been implicated in the decline of native stream fishes including the arroyo chub, three-spined stickleback, speckled dace, and the Santa Ana sucker [9,17].
Giant reed has no structural similarity to any dominant riparian plant it replaces and offers little useful cover or nest placement opportunities for birds. Main stems are vertical with no horizontal structure strong enough to support birds [110]. For example, the southwestern willow flycatcher, an endangered species, has not been reported nesting in any vegetation patches dominated by giant reed [97]. Only a few of bird species have been observed using giant reed for nest sites. Dramatic reductions (50% or more) in abundance and diversity of invertebrates were also documented in giant reed thickets in southern California compared with those found in native willow/cottonwood vegetation [29]. Giant reed's most observed use as cover has been by feral pigs [110].
Giant reed has been planted extensively for erosion control along drainage canals [49]. Wynd and others [108] report it can also be used to stabilize sand dunes. It is also used for thatching roofs of sheds, barns and other buildings [49]. Mexican campesinos use new tillers of giant reed for roofing and construction materials. It is the most important construction material in the Juamave region of Mexico [2]. Giant reed makes a good quality paper, and in Italy it is used in the manufacture of rayon [24].
Giant reed is used to make reeds for a variety of musical instruments including bagpipes [11,74]. Reeds for woodwind musical instruments are still made from the culms of giant reed, and no satisfactory substitutes have been developed. The basis for the origin of the most primitive pipe organ, the Pan pipe or syrinx, was made from giant reed [74].
Five thousand years ago Egyptians used giant reed to line underground grain storage bins, and mummies from the 4th century A.D. were wrapped in giant reed leaves. Additional uses include basket-making, fishing rods, arrows, and ornamental plants. Medicinally, giant reed's rhizome has been used as a sudorific, a diuretic, an antilactant, and in the treatment of dropsy [74].
State
Time of flowering California (southern) late summer [11] Carolina, North and South September-October [77] Florida all year [107] New Mexico June to September [62]The reproductive biology of giant reed is not well studied. As of this writing (2004), information on the importance of sexual reproduction, seed viability, dormancy, germination and seedling establishment is not available.
Giant reed reproduces vegetatively by sprouting from rhizomes and stem nodes (reviews by [11,28,49]).
Breeding system: No information is available on this topic.
Pollination: No information is available on this topic.
Seed production: Although giant reed is well adapted in many parts of North America, it rarely, if ever, produces viable seed here (reviews by [11,74])[47].
Seed dispersal: The hairy, light-weight disseminules (individual florets with the enclosed grain) are dispersed by wind [33].
Seed banking: No information is available on this topic.
Germination: No information is available on this topic.
Seedling establishment/growth: Seedlings of giant reed have not been observed in the field [28]. Establishment of giant reed is from fragmented rhizomes or stem nodes that take root (see Asexual regeneration, below).
Giant reed grows very rapidly. In a southern California study, Rieger and Kreager [80] cut an established giant reed community and measured its growth after cutting. Growth rates from established rhizomes averaged 2.5 inches (6.25 cm) per day in the first 40 days and 1 inch (2.67 cm) per day in the first 150 days. Under optimal conditions (i.e., cultivation) giant reed is reported to grow 1.5 to 4 inches (4-10 cm) per day (review by [74]).
Asexual regeneration: Population expansion of giant reed in North America is through vegetative reproduction. This occurs either via underground rhizome extension or from plant fragments carried downstream (review by [28]). Giant reed is well adapted to the high disturbance dynamics of riparian systems, as floods break up clumps of giant reed and spread pieces downstream where they can take root and establish new clones [11,28]. Anecdotal accounts suggest that rhizomes buried under as much as 3 to 10 feet (1-3 m) of alluvium can "readily resprout" (R. Dale, personal communication in [28]).
Much of the cultivation of giant reed throughout the world is initiated by planting rhizomes which root and sprout easily [48,49]. A 1949 joint publication by the U.S. Forest Service and the California Department of Natural Resources, Division of Forestry, describing recommended plants for erosion control [48] states pieces of giant reed rhizomes can be buried to establish the plant. A 1988 paper describes giant reed as a planted rhizome which "performs well" as an understory plant in riparian zones in New Mexico [91]. In a greenhouse experiment, Motamed [68] determined that giant reed stem fragments rooted throughout the growing season.
Giant reed can establish and spread in communities of various successional stages, acting as an early-successional pioneer species, and a late-successional dominant.
According to reviews by Bell [11] and Dudley [28], giant reed is well adapted to the high disturbance dynamics of riparian systems, as floods break up clumps of giant reed and spread pieces downstream where they can take root and establish new clones. In California, it is most common along waterways with altered hydrologic regimes (e.g., dams) and/or disturbed riparian vegetation, but can also establish in the understory of native riparian vegetation [28]. However, establishment of giant reed in dense, mature riparian vegetation may be limited [80].
Once established, giant reed grows quickly [74,80] and spreads vegetatively, often forming monocultural stands that physically inhibit growth of other plant species [11,26,80]. Invaded habitats may thus become pure stands of giant reed [10,80,95].
Although evidence is limited and anecdotal, some authors (e.g., [9,84]) note changes in fuels, fire characteristics, and postfire plant community response that are suggestive of an invasive grass/fire cycle perpetuated by giant reed invasion in southern California riparian areas. Because giant reed produces abundant biomass (i.e., fuel), is "extremely flammable", and responds with rapid growth from sprouting rhizomes after top-kill, it may alter fire regime characteristics and successional processes of invaded riparian ecosystems (see FIRE REGIMES).
The currently accepted scientific name of giant reed is Arundo donax L.
(Poaceae) [13,40,53,56,57,62,63,69,77,103,105,107]. One variety of giant reed
is recognized in the literature:
Arundo donax, la caña común, caña de Castiella o cañabrava ye una especie de planta yerbácea perteneciente a la familia Poaceae.
Ye una planta asemeyada al bambú, del que s'estrema porque de cada nuedu sale una única fueya que envaina el tarmu.
Algama los 3-6 m d'altor,[1] tien tarmu gruesu y buecu. Les fueyes llanceolaes son llargues de 5-7 cm qu'envolubren el tarmu en forma de llámines verdes brillante. Les flores tán nuna gran panícula d'espiguillas violacees o marielles de 3-6 dm de llargor. Cada espiguilla tien una o dos flores. Floriamientu, final del branu y seronda. Ye la mayor de les gramínees de la rexón mediterránea.
Güelgues d'agües permanentes o estacionales. Les cañes estender poles sos rizomas soterraños que crecen formando llargues colonies de dellos kilómetros a lo llargo de los cursos d'agua o onde s'atropa agua freático o mugor.
Paez ser orixinaria d'Asia,[1] y colonizó la área mediterránea y norte d'África dende antiguu a lo llargo de ríos y acequias. Tamién estendida por dambes Américas. Ta incluyida na llista 100 de les especies exótiques invasores más dañibles del mundu[2] de la Unión Internacional pal Caltenimientu de la Naturaleza. El RD. 1628/2011 prohibe la so tenencia, comerciu y espardimientu en Canaries, por ser planta invasora.
Sirve de proteición a la fauna al ser munches vegaes la única vexetación trupa disponible. Munches especies d'aves, añeren o duermen nos cañaverales.
Emplegar pa la producción de llingüetes pa los preseos de vientu madera de llingüeta simple (clarinete y saxofón) y doble (oboe y fagó). Tamién pa fabricar preseos de vientos tal como'l ney d'orixe Mediu Oriente, la zampoña, ente otros preseos Tradicionales.
Utilizóse como diuréticu y pa menguar la producción de lleche (antigalactogogo). Per vía esterna usar pa evitar la cayida del pelo. El so consumu escesivu puede producir hipotensión y depresión respiratoria.
Arundo donax produz más biomasa por hectárea que cualesquier otra planta de biomasa conocida, aparte del bambú. Esta planta dende va tiempu reconozse como importante productora de biomasa industrial que pueden cultivase nuna amplia variedá de tipos de suelos y condiciones climátiques. Algama'l maduror (5 a 8 metros) n'aprosimao un añu, pue ser collecháu, dependiendo del clima, d'una vegada a tres veces al añu.[ensin referencies]
A. donax produz un promediu de 50 tonelaes d'alta calidá de fibra per hectárea dos veces al añu. Bien importante tamién ye la importancia d'un cultivu con de 20 a 25 años ensin ciclu de cultivu añal de replantación, y la capacidá d'escluyir a munchos costosos fertilizantes y yerbicides que son tamién una esmolición ambiental.
A. donax ye un ideal de biocarburantes (18000 kJ/kg), que produz metanol a partir del espardimientu gaseosu como subproductu na fabricación de celulosa. La opción de gasificar esti productu ye la producción de forma independiente d'un pervalible productu enerxéticu. Ye posible utilizar los nuevos sistemes d'alta eficiencia pa sistemes de gasificación y convertir en distintes fontes d'enerxía, como gas de síntesis, la norma de turbina de vapor, la xeneración llétrica, el etanol y el biodiésel.[ensin referencies]
Arundo donax describióse por Carlos Linneo y espublizóse en Species Plantarum 1: 81. 1753.[3]
Arundo: nome xenéricu que provién del llatín antiguu y que significa "caña".
donax: nome llatín y griegu d'una especie de "caña", qu'en principiu s'usó como nome xenéricu, pero que resultó ser sinónimu de Arundo.
Arundo scriptoria L.
Carrizu, bardiza, caña, cañabera, caña común, caña xigante, caña grande de güertes, caña licera, caña machu, cañes, caña montesa, cañavana, cañavera, caña vera, caña vulgar, cañizu, cana, carda, guisopo (inflorescencia), llata, licera.[5]
Arundo donax, la caña común, caña de Castiella o cañabrava ye una especie de planta yerbácea perteneciente a la familia Poaceae.
Vista de la planta Detalle del tarmu Formando maleza Ilustración Nel so hábitat
Cənubi Avropa, cənubi Asiya, Şimali Afrikanın tropik və subtropiklərində geniş yayilmışdir.
Boyu 8 m-ə çatan, gövdəsi dik duran, yarpaqları növbəli düzülüşlü bitkidir.Hündür gövdələri çoxsaylı buğumludur.Yarpaq ayaları xətvarı-lansetvari, eni 2,5-6 sm-dir, enli yarpaqları və gözəl süpürgəvari çiçək qrupu olan dekorativ koldur.Çiçəkləri zoğun ucunda süpürgəvari çiçək qrupunda yerləşir.Süpürgələrinin uzunluğu 20-70 sm, çox sıxdır.Çiçəkləmədən sonra uzun tükləri gümüşü rəngdə olur.Sünbüllərin uzunluğu 0,8-1,2 sm, 3-5 çiçəklidir.Payızda çiçəkləyir.Çoxaldılması kükumsovların bölünməsi ilə və zoğlarla olur.
Küləkdə hamar, cod yarpaqları əyilir.Yumşaq qumlu və ya torflu torpaqda, günəşli yerdə bitir.
Azərbaycanın aran rayonlarında su hövzələrinin kənarında, çay vadilərində yayılmışdır.
Göllərin sahilyanı zonasının bəzədilməsi üçün məsləhət görülür.Xalq arasında dam örtüyü, çəpərçəkmə və s.istifadə edilir.
La canya de sant Joan (Arundo donax) és una espècie de planta de canyes que pertany a la família Poaceae, subfamília de les Arundinoideae, del gènere Arundo, tribu de les Arundineae. És una planta nadiua de l'est i sud d'Àsia, i probablement també de parts d'Àfrica i del sud de la península d'Aràbia.
S'ha plantat i naturalitzat en les regions de clima temperat suau, subtropicals i tropicals dels dos hemisferis (Herrera i Dudley 2003), especialment a la conca del Mediterrani, Califòrnia, l'oest del Pacífic i el Carib.[1] Forma grups densos en zones pertorbades, dunes de sorra, aiguamolls i vegetació de ribera. Als espais naturals de Catalunya i la península Ibèrica, com en altres llocs d'Europa, la canya de sant Joan és considerada com una espècie invasora amb un impacte negatiu sobre la biodiversitat i la qualitat del paisatge.[2] Considerada per la Unió Internacional per a la Conservació de la Natura una de les 100 més perilloses i nocives invasores a escala mundial per la seva capacitat de desplaçar la vegetació nadiua.[3] Per la seva robustesa, diminueix la capacitat de desguàs dels rius i canals.[2]
És una planta hipofita, que viu a prop de l'aigua i mai a dins, i hidròfila, les tiges aèries són llenyoses i s'anomenen canyes, de 2 à 3 cm de diàmetre, molt rústica, pot arribar a més de 10 metres d'alçada, amb fulles afilades, amples de 3 a 5 cm. Floració bianual i estèril, es reprodueix per esqueixos de rizomes. És l'herba més gegant de la Mediterrània. També és la planta amb flor més arcaica al Mediterrani, de l'era terciària. Se la pot considerar un dinosaure vegetal.
Gorg de canya i vímet
La canya de sant Joan (Arundo donax) és una espècie de planta de canyes que pertany a la família Poaceae, subfamília de les Arundinoideae, del gènere Arundo, tribu de les Arundineae. És una planta nadiua de l'est i sud d'Àsia, i probablement també de parts d'Àfrica i del sud de la península d'Aràbia.
S'ha plantat i naturalitzat en les regions de clima temperat suau, subtropicals i tropicals dels dos hemisferis (Herrera i Dudley 2003), especialment a la conca del Mediterrani, Califòrnia, l'oest del Pacífic i el Carib. Forma grups densos en zones pertorbades, dunes de sorra, aiguamolls i vegetació de ribera. Als espais naturals de Catalunya i la península Ibèrica, com en altres llocs d'Europa, la canya de sant Joan és considerada com una espècie invasora amb un impacte negatiu sobre la biodiversitat i la qualitat del paisatge. Considerada per la Unió Internacional per a la Conservació de la Natura una de les 100 més perilloses i nocives invasores a escala mundial per la seva capacitat de desplaçar la vegetació nadiua. Per la seva robustesa, diminueix la capacitat de desguàs dels rius i canals.
Corsen lluosflwydd yw'r Gawrgorsen neu Gorsen fawr (Arundo donax) sy'n frodor o ddwyrain Asia. Cafodd ei gyflwyno i ardal y Canoldir amser maith yn ôl.
Yr enw yn Ffrangeg yw "Canne de Provence" (Corsen Provence). Mae dinas Cannes (yn Ffrainc) wedi cymryd ei henw o'r planhigyn hwn gan oedden nhw'n arfer tyfu o amgylch y porthladd.
Fe fydd y cawrgorsen yn tyfu hyd at uchder o 5 m (16 o droedfeddi).
Trsť rákosovitá nebo tresť rákosovitá[2][3] (Arundo donax ) je vysoká travina rákosovitého vzhledu z čeledě lipnicovitých, kde je tento rod řazen do tribu Arundineae v podčeledi Arundinoideae.
Za místo původu trstě rákosovité je považována oblast od Středozemí po Indii. V současností roste téměř ve všech subtropických a tropických oblastech, kde je dostatek vláhy, množí se semeny a mnohem častěji oddenky. Postupně se zabydluje od pobřežních oblastí podél vodních toků do vnitrozemí, vyhovuje ji vlhká půda bohatá na živiny. Původně byla v mnoha oblastech vysazována jako protierozní ochrana břehů vodních kanálů, v současnosti je trsť rákosovitá počítána mezi 100 nejinvazivnějších rostlin světa. Vytváří husté shluky homogenních porostů a vytlačuje původní druhy rostlin. Ve volné přírodě České republiky neroste.[4][5]
Jsou to vysoké, vytrvalé traviny dosahující běžně výšek 3 až 6 m, vzácně i 10 m, v půdě jsou dobře ukotveny plazivými oddenky. Hustě olistěná stébla rostlin jsou 4 až 6 cm tlustá, na bázi dřevnatí, postupně se rozvětvují okolo dominantních stonků. Listy jsou střídavé, výrazně dvouřadé, modrozelené, podlouhle kopinaté, až 60 cm dlouhé a 8 cm široké, na okrajích drsné. Pochvy listů jsou delší než internodia. Listy bez zřetelné nervatury nemají řapíky, od stébla odstávají. Je to největší evropská tráva.
Na konci sekundárních nebo terciárních odboček stébel jsou hustá, zprvu načervenalá květenství, opeřené laty dlouhé až 70 cm jsou složené s postranně stlačených 2 až 4 květných klásků dlouhých 12 až 18 mm se 2 až 7 květy. V klásku je jen několik fertilních květů. Květy jsou oboupohlavé se 3 tyčinkami, prašníky mají dlouhé 2,5 až 3,5 mm, semeníky jsou lysé. Plevy bez osin jsou delší než podlouhlé, vejčité špičaté pluchy. Kvete od srpna do října. Obilka je 1 až 1,5 mm dlouhá.
Mezi její přirozené nepřátele patří rzi rodů Dasturella i Puccinia a larvy nosatce Sphenophorus piceus.[2][4][6]
Mimo výše zmíněné antierozivní ochrany půd jsou mladé rostliny vhodné ku spásání dobytkem a dospělých rostlin se využívá k pokrývání střech u domorodých staveb.
Ve starověku se stébel používalo pro psaní na papyrus, dále sloužily k výrobě lehkých vycházkových holí, rybářských prutů a píšťal pro různé exotické hudební nástroje jižních krajů (např. panova flétna – syrinx). Nadále se z rostlin tradičních plantáží na Francouzské riviéře vyrábějí rezonanční plátky pro dechové hudební nástroje.
Používá se také v okrasném zahradnictví jako solitéry, jsou vypěstovány rozličné různě vysoké kultivary s panašovanými listy. V zimě v našich klimatických podmínkách může vymrznout, v chladnějších oblastech nekvete.[2][7][8]
Rod trsť (Arundo) je rozdělen do třech druhů:[9]
Trsť rákosovitá nebo tresť rákosovitá (Arundo donax ) je vysoká travina rákosovitého vzhledu z čeledě lipnicovitých, kde je tento rod řazen do tribu Arundineae v podčeledi Arundinoideae.
Kæmperør (latin Arundo donax) eller pælerør, er en op til 10 meter høj (i Danmark dog kun højest 5 meter) flerårig græs, som stammer fra middelhavsområdet. Hvor den vokser ved kanten af fugtige flodbredder og på tør jordbund.
StubDas Pfahlrohr (Arundo donax), auch Riesenschilf oder Spanisches Rohr genannt, ist eine Pflanzenart innerhalb der Familie der Süßgräser (Poaceae). Als Neophyt ist dieses schnellwüchsige Schilfgras in den Tropen und Subtropen nahezu weltweit verbreitet.
Pfahlrohr ist eine ausdauernde krautige Pflanze, die Wuchshöhen bis zu 6 Metern erreicht. Sie bildet verholzte, kriechende, dicke, knotige Rhizome aus. Die Sprossachse ist einfach, aufrecht, mehr oder weniger verholzt und erreicht Durchmesser zwischen 1 und 3,5 Zentimeter. Die Internodien sind verdickt und aus ihnen wachsen ähnlich wie bei vielen Bambusarten Büschel kleiner Zweige aus.
Die deutlich zweizeilig am Halm sitzenden Laubblätter sind lineal-lanzettlich und etwa 30 bis 60 Zentimeter lang sowie 1 bis 8 Zentimeter breit. Sie sind in der Regel länger als die Internodien und bis auf einige Haare an der lang keilförmig zugespitzten Spitze kahl. Die Blatthäutchen sind 0,7 bis 1,5 Millimeter lang.
Der aufsteigend verzweigte, dichte rispige Blütenstand weist eine Länge von 30 bis 90 Zentimetern sowie einen Durchmesser von etwa 5,8 Zentimetern auf. Die 11 bis 14 Millimeter langen Ährchen enthalten zwei bis fünf Blüten. Die schmal lanzettlichen Spelzen sind ungleich und 8 bis 12 Millimeter lang. Die lanzettlichen Deckspelzen sind 8,5 bis 23 Millimeter groß und drei- bis siebennervig. Drei der Nerven bilden eine bis zu 1,5 Millimeter lange Granne. Die zweizähnigen Spitzen der Deckspelzen sind rückseitig mit 5 bis 6 Millimeter langen Haaren besetzt. Die Vorspelze (Palea) macht etwa die Hälfte der Deckspelze aus. Staubbeutel sind etwa 3 Millimeter lang.
Pfahlrohr blüht und fruchtet von Juli bis November.
Die Chromosomenzahl beträgt 2n = 24, 64, 72, oder 100.[1]
Die natürliche Herkunft ist umstritten, diskutiert werden Ostasien, Indien oder der Mittelmeerraum. Nach R. Govaerts sind es Westasien und Zentralasien bis zu den gemäßigten Zonen Ostasiens.[2] Eine genetische Untersuchung kam 2014 zu dem Schluss, dass alle mediterranen Vorkommen und die daraus hervorgegangenen neophytischen Vorkommen, zum Beispiel in Amerika, durch einen einzigen Haplotyp repräsentiert werden. Die Pflanze verbreitet sich hier nicht über Samen, sondern ausschließlich vegetativ. Aufgrund der genetischen Struktur der Populationen konnte eine Ursprungsregion dieser Population im Industal oder in Afghanistan, möglicherweise bis zum südlichen Kaspisee wahrscheinlich gemacht werden. Die Vorkommen im Mittelmeerraum wären demnach archäophytisch.[3] Das Pfahlrohr wurde seit der Antike in Asien bis hin zum Mittelmeerraum kultiviert und ist auf diesem Wege weit verschleppt worden. In der Neuen Welt wurde es erst Anfang des 19. Jahrhunderts in Kalifornien eingeführt, von wo aus es sich rasant verbreitet hat. In den Vereinigten Staaten wird es heute als eine der weltweit schädlichsten invasiven Arten bekämpft, problematisch sind vor allem die Vorkommen in Kalifornien, Texas und Nevada. Es ist sowohl in den Tropen und Subtropen der Alten und Neuen Welt als auch in Ozeanien weit verbreitet.
Pfahlrohr bevorzugt feuchte Standorte an Küsten, Fluss- und Seeufern oder in Sümpfen. Wenn das Pfahlrohr sich einmal festgesetzt hat, wächst es aber auch auf trockenen Böden.
Die Art gilt in Nordamerika, insbesondere in Kalifornien und entlang des Rio Grande in Texas und Nordmexiko, als invasiver Neophyt. Sie wurde hier vom Menschen zur Erosionssicherung und als Grenzmarkierung durch Anpflanzungen etabliert und hat sich von da aus in natürliche Ökosysteme ausgebreitet. Beobachtet wird eine Verdrängung der natürlichen Vegetation, mit nachteiligen Auswirkungen auf die natürliche Biodiversität, unter anderem etwa auch auf die Vogelwelt.[4]
Das Pfahlrohr wird oft als Windschutzhecke angepflanzt.[5] Im Süden wurde das Pfahlrohr gleich lang geschnitten, zusammengebunden häufig als Schattendach über Terrassen verwendet. Eingeschränkt ist die Art als Futtermittel geeignet. Vieh frisst die jungen Blätter, verschmäht aber älteres Blattgut und die Stängel. Die Blätter werden genutzt, um Matten oder Körbe zu flechten. Das Pfahlrohr ist bedingt zur Papiererzeugung geeignet, das Papier ist von geringer Qualität.
Aus den Stängeln des Pfahlrohrs werden die Rohrblätter vieler Einfach- und Doppelrohrblattinstrumente gebaut, beispielsweise für Dudelsack, Oboe, Klarinette,[6] Fagott, Saxophon[7] und Krummhorn, weiterhin auch häufig die Pfeifen der Panflöte. Eines der ältesten Instrumente aus Pfahlrohr, das schon für die Zeit der Pharaonen im ägyptischen Raum nachgewiesen ist, ist die orientalische Flöte Nay, die im gesamten Orient in der traditionellen als auch in der panarabischen modernen Musik populär ist.
Aufgrund seiner Schnellwüchsigkeit und Anspruchslosigkeit wird seine Verwendung als Energiepflanze diskutiert.[8] Eine 2015 erschienene Review-Studie ergab, dass Pfahlrohr zusammen mit Riesen-Chinaschilf (Miscanthus × giganteus) und Napiergras (Pennisetum purpureum) eine der ertragreichsten Energiepflanzen ist. Studien aus Italien legen nahe, dass Pfahlrohr ertragreicher als Riesen-Chinaschilf sein könnte, für die Bestätigung dieser Ergebnisse sind jedoch weitere Forschungen auch in anderen Regionen notwendig.[9]
Die Erstveröffentlichung von Arundo donax erfolgte 1753 durch Carl von Linné. Formen mit panaschierten Blättern in Kultur wurden als Variation versicolor (auch variegata oder picta) bezeichnet.[10] Alle früher unterschiedenen Varietäten, darunter auch die var. coleotricha Hack., wurden mit der typischen Varietät synonymisiert, so dass heute botanisch keine Varietäten mehr unterschieden werden. Weitere Synonyme sind Arundo bifaria Retz und Arundo bengalensis Retz.[11]
Im deutschsprachigen Raum werden oder wurden für diese Pflanzenart, zum Teil nur regional, auch die Trivialnamen Gartenrohr, Zahmes Rohr, Schalmeienrohr, Schreibried (mittelhochdeutsch) und Schreibrohr (mittelhochdeutsch) verwendet.[12]
Die Informationen dieses Artikels entstammen zum größten Teil den unter Literatur angegebenen Quellen, darüber hinaus werden folgende Quellen zitiert:
Das Pfahlrohr (Arundo donax), auch Riesenschilf oder Spanisches Rohr genannt, ist eine Pflanzenart innerhalb der Familie der Süßgräser (Poaceae). Als Neophyt ist dieses schnellwüchsige Schilfgras in den Tropen und Subtropen nahezu weltweit verbreitet.
Arundo donax es una de planta erbacèa de la familha de las Poaceae, sosfamilha de las Arundinoideae, es una canavèra. Son cultivar pigalhat la fa mai atractiva e s'utiliza per ornar pargues e jardins.
Es una graminèa de rizòma caracteristic dels luòcs umids de las regions mediterranèas. A de grandas fuèlhas desfiladas, penjantas, glaucas, e de crestas terminalas d'espiguets de color vers palle a violacèu.
Sembla a una canavèra o un bambó, subretot abans l'aparicion dels espiguets. Sa nautor varia de 1 m a 8 m segon las varietats e las condicions de cultura[1]. L'ivèrn pren un aspècte dessecat.
L'inflorescéncia apareis de setembre a octobre, es una crèsta d’espiguets pollinizats pel vent (anemogamia). Lo fruch es un cariòpse.
Quitament se supòrta plan la secada un còp installada, aquela canavèra se cultiva melhor sus de terrens umids e plan drenats. Pòt venir invasiva se las condicions son adaptadas.
Se multiplica levant de rizòmas a la prima o per brocatge dins l'aiga de tròces dels cluèges de 1 an (1 a 2 cm de diamètre, 3 noses) utilizant la partida ont buta de rams laterals[2]. Tanben se pòt utilizar de cluèges de l'an mas lo brocatge foncionarà mens ben.
Arundo donax es pro rustic un còp installada (fins a -10 °C pels cluèges e -15°C pels rizòmas) e es pauc sensibla als parasits o malautiás.
Coma totas las espècas pigalhada, lo cultivar 'Versicolor' (mai utilizat en ornament) es fòrça mens vigorós que l'espècia tipe (la partida blanca del fulham participa pas a la fotosintèsi).
L'airal de reparticion d'origina d'Arundo donax s'espandís dins las regions temperadas e tropicalas del Mond Vièlh. Pasmens se l'espècia es sovent considerada coma indigèna dins le bacin mediterranèu o d'autras regions mai caudas del Mond Ancian, seriá una introduccion anciana en Euròpa dempuèi l'Asia tropicala. Son airel original seriá donc purament asiatic. Aquela espècia es uèi largament espandida dins totas las regions caudas del mond. Se naturalizèt dins fòrça regions e es a vegadas venguda envasissenta, subretot en Africa australa, dins las regions subtropicalas dels EUA, al Mexic, dins las Antilhas, en America del Sud e dins las illas del Pacific [3].
Arundo donax figura dins la lista de las cent espècias envasissentas d'entre las mai nosiblas del mond[4] de l'UICN. Dins las Illas Canàrias, l'espècia es classificada coma planta envasissenta e alara enebida de detencion, comèrci e propagacion pel decret reial 1628/2011[5].
Sul plan industrial, Arundo donax es una de las culturas mai prometosa per la produccion de bioenergia jos clima mediterranèu ont es ja adaptada al mitan, dona de rendements importants e durables, e resistís a las secadas. D'estudis sul terren mostrèron sos febles besonhs en trabalh de sol, engrais e pesticids. a l'avantatge de far pas concurréncia a las culturas alimentàrias que sos febles besonhs li permeton de butar ont pas cap d'autre cultura alimentària serà pas envisajabla. Mai, Arundo donax dona una proteccion contra l'erosion dels sols, un dels procediments mai importants de degradacion de las tèrra dins lo bacin mediterranèu. A. donax a un potencial impressionant per mai d'un procediment de conversion en matèrias primièras bioenergeticas. Son recòrd istoric de produccion foguèt establit en Itàlia per SNIA Viscosa sus 6 300 ha a Torviscosa, per aténher la produccion annala mejana de 35 t/ha de matèria seca. Uèi, d'estudis per trobar de culturas energeticas foguèron menats per mai d'una universitat als EUA e UE dins l'UE per evaluar e identificar las practicas melhoras de gestion per maximizar los rendements de biomassa e evaluar los impactes environamentals.
Sovent utilizadas en sèga a Occitània, buta plan en situacion abrigada e plan solelhada, amb un sol umid e puslèu sablonós, mas plan drenat l'ivèrn. S'adapta a la salinitat dels sòls.
Tradicionalament, dona lo material de basa per realizar las canissas e de banastariá. Se las tijas son mal servadas se desvolòpan de mosiduras[7].
Se realiza tanben d'enches amb d'Arundo donax, per la clarineta, lo saxofòn, lo clarin, lo basson e autres instruments de vent. Tanben aquelas canavèras son utilizada per realizar de calams, instruments d'escritura e de calligrafia.
titre
» mancant, sur Invasive Species Compendium (ISC). titre
» mancant Arundo donax es una de planta erbacèa de la familha de las Poaceae, sosfamilha de las Arundinoideae, es una canavèra. Son cultivar pigalhat la fa mai atractiva e s'utiliza per ornar pargues e jardins.
Kallmi (krahinore Kallami dhe lat. Arundo donax L. ) është bimë barishtore shumëvjeçare, me kërcell të gjatë të hollë e të fortë, që rritet nëpër moçale dhe përdoret për të bërë tavanet e shtëpive etj.. Po ashtu në disa krahina përdoret edhe fjala Kallami për të njëjtin qëllim.[1]
Kallmi është i njohur edhe si : kallam i madh, kallam i butë, kallam donaks dhe është anëtar i familjes Poaceae.[2]
Kallmi (krahinore Kallami dhe lat. Arundo donax L. ) është bimë barishtore shumëvjeçare, me kërcell të gjatë të hollë e të fortë, që rritet nëpër moçale dhe përdoret për të bërë tavanet e shtëpive etj.. Po ashtu në disa krahina përdoret edhe fjala Kallami për të njëjtin qëllim.
Kallmi është i njohur edhe si : kallam i madh, kallam i butë, kallam donaks dhe është anëtar i familjes Poaceae.
नरकट एक घास है जिसके पौधे का तना खोखला गाँठ वाला होता है। पहले इसकी कलम बनायी जाती थी। इसका उपयोग टाटी, झोपड़ा, छप्पर आदि बनाने के काम आती है। इसे कच्चे बांधों के बगल में लगा देने से इसकी जड़ें मिट्टी को बाँध लेती हैं जिससे मिट्टी का कटांव नहीं हो पाता। इसको ईंधन के रूप में एवं फर्नीचर आदि के लिये भी उपयोग में लाया जाता है।
अरुण्डो डोनेक्स एल. (विशालकाय केन) सी ३ घास प्रजाति की उपप्रजाति अरुण्डिनोइडी के पोएसी परिवार के अंतर्गत आने वाला एक बारहमासी घास है। जो सामान्यतः नम मिटटी तथा कम खारे पानी में उगता है विशालकाय केन दक्षिण पश्चिमी नदी के तट पर पाया जाने वाला एक आक्रमणशील घास है। यह भूमध्य बेसिन तथा मध्य पूर्व एशिया का मूल निवासी है तथा दक्षिणी कैलिफ़ोर्निया में सजावटी पौधे के रूप में आयातित किया गया। दक्षिण पश्चिम क्षेत्र में एरिज़ोना एंड न्यू मैक्सिको आते हैं जिनके अंतर्गत ग्यारह राष्ट्रीय वन आते हैं।
इसके पौधे नौ से तीस फुट तक लम्बे, बांस की तरह खोखले तथा २ से ३ सेंटीमीटर व्यास की दृढ गांठें होती हैं। सामान्य परिस्थितियों में इसकी पत्तियां रूपांतरित, पतली नोकदार, ३० से ६० सेंटीमीटर लम्बी, २ से ६ सेंटीमीटर चौड़ी होती हैं। पत्तियों का रंग सलेटी व हरा तथा पत्तियों के आधार पर रेशों का गुच्छा होता है। कुल मिलकर पौधे बाहर से सामान्य ईख या बांस जैसे दिखाई देते हैं।
अरुण्डो डोनेक्स में अक्सर पछेती गर्मियों में फूल आते हैं जोकि ४९ से ६० सेंटीमीटर लम्बे, सीधे व हलके पंखों से ढके हुए होते हैं। प्राय: इसके फल बीजरहित होते हैं तथा कभी कभी उपजाऊ क्षमता वाले होते हैं। इस प्रजाति में वानस्पतिक प्रजनन भूमिगत प्रकन्दों द्वारा होता है। प्रकंद सख्त, रेशेदार तथा गाँठोयुक्त होते हैं, इसके चटाई जैसे फैले हुए कठोर रेशे होते हैं जो जमीन में एक मीटर तक गहरे चले जाते हैं।
बंध्यह या अनुर्वर बीजों के कारण इस प्रजाति में अलैंगिक प्रजनन होता है। यह प्रजाति न्यूनतम ७ डिग्री सेंटीग्रेट तथा अधिकतम 3० डिग्री सेंटीग्रेट तापमान पर उगाई जा सकती है। बाढ़ जैसी परिस्थितियों में प्रकन्द यदि ५ सेंटीमीटर तक के छोटे छोटे टुकड़ो में विभाजित होने पर भी पुनः अंकुरित होने की क्षमता रखते हैं।
प्रकाश संतृप्ति के अभाव के कारण यह एक उच्च प्रकाश संश्लेषक क्षमता वाली घास है। अन्य सी ३ और सी ४ प्रजातियों की तुलना में कार्बन डाई ऑक्साइड विनिमय की दर अधिक है। अलैंगिक प्रजनन के कारण इसमें अनुवांशिक परिवर्तनशीलता कम होती है। कटान को नियंत्रित करने वाली प्रजाति के अतिरिक्त जल निकासी खाईयों के रूप में भी इसका प्रयोग किया जाता है। प्राकृतिक परिस्थिति में,अधिकतम कार्बन डाई ऑक्साइड 19.8 और 36.7 के बीच विकिरण पत्तियां की आयु के आधार पर , यह पत्ती प्रवाहकत्त्व द्वारा विनियमित है।
ऊतक संवर्धन तकनीक सूक्ष्म प्रजनन तथा जननद्रव्य संरक्षण की उपयोगी विधि है। इस तकनीक द्वारा ए. अरुण्डो के नए पौधे तैयार करने में पारंपरिक विधि से कम समय लगता है। जिससे न केवल बीमारियों रहित स्वस्थ पौध कम समय में तैयार किये जा सकते हैं, बल्कि संवर्धनों को अनुवांशिक रूप से स्थायी भी बनाया जा सकता है। कम मात्रा में उपलब्ध ऊतक से कांच की परखनलियों में कृत्रिम लवण माध्यम के उपयोग से पूरे वर्ष स्वस्थ पौध तैयार की जा सकती है। संवर्धन के लगभग चार से छह सप्ताह पश्चात् प्रत्येक परखनली में नयी स्वस्थ परन्तु छोटी पौध तैयार हो जाती है। इन्हीं पौध को पुनः संवर्धित करके प्रति पादपकों से अन्य पौध तैयार की जा सकती है। इस तकनीक द्वारा एक पौधे से तीन से चार महीने में दो सौ से चार सौ तक पौधे तैयार किये जा सकते हैं।
कृत्रिम परिस्थितियों में संरक्षित कृषि वानिकी फसल ए. अरुण्डो के पौधों को जीवाणुओं के संक्रमण से बचाने हेतु विभिन्न प्रकार के रासायनिक घोल जैसे बाविस्टीन, ट्वीन- 20 अथवा मरकुरिक क्लोराइड की अलग -२ सांद्रता से उपचारित किया जाता है। संवर्धन के लिए मुरासिगे एवं सकूग द्वारा प्रस्तावित पौध पौषक माध्यम जिसमें विभिन्न प्रकार के पौध वर्धक नियंत्रक की आंशिक मात्रा (की अलग -२ सांद्रता), तीन से छः प्रतिशत शर्करा एवं कुछ मात्रा में अर्ध ठोस चिपचिपे घटक का मिश्रण प्रयुक्त किया जाता है। संवर्धित करने से पहले पौध पौषक माध्यम को 121 डिग्री सेंटीग्रेड तापमान पर 15 से 18 मिनट के लिए उपचारित करके जीवाणुनाशक बनाया जाता है। सतह उपचारित छोटे छोटे पादपकों को गुच्छों से विभाजित करके पौध पौषक युक्त परखनलियों में 25 से 28 डिग्री सेंटीग्रेड तापमान पर संवर्धित करके कृत्रिम रूप से बने संवर्धन कक्ष में रखा जाता है।
ऊतक संवर्धन तकनीक द्वारा तैयार किये गए पौधे कृत्रिम परिस्थितियों में सख्त तकनीक के माध्यम से खेत में स्थानांतरित करने के लिए तैयार हो जाते हैं। इन पौधों को कांच की परखनलियों से निकालकर पौधों की जड़ों से कृत्रिम पौध पौषक माध्यम तथा चिपचिपे घटक (अगार) दूर करने के लिए उन्हें बहते पानी के नल के नीचे धोया जाता है। तत्पश्चात पौधों को निष्फल मिट्टी युक्त 10 सेमी व्यास के प्लास्टिक के गमले में रोपित कर दिया जाता है। पौधों युक्त गमलों को छिद्रित पारदर्शी पॉलीथीन बैग (20 × 30 सेमी) से ढककर 25 में 30 डिग्री सेल्सियस तापमान 10 μ मोल मीटर-2 प्रति सेकंड के विकिरण के साथ तापदीप्त बल्बों द्वारा प्रदान की रोशनी के नीचे एक सप्ताह के लिए 10 घंटे प्रकाश अवधि के तहत रखा जाता है। पौधों को एक दिन के अंतराल पर अगले सप्ताह के लिए एक चौथाई सामर्थ्य व् उसके बाद एक सप्ताह तक आधी सामर्थ्य वाले एमएस कृत्रिम पौध पौषक लवण से सिंचित किया जाता है। पौधों युक्त गमलों को छाया और उच्च आर्द्रता वाली परिस्थिति में रखा जाता है।. एक सप्ताह बाद पॉलीथीन बैग को थोड़ा सा हटा दिया जाता है और तीन सप्ताह बाद पौधों को पूरी तरह से प्रकाश में लाने के एक सप्ताह के बाद. मिट्टी, लकड़ी का बुरादा और फार्म क्षेत्र की खाद के मिश्रण 2:1:1 में स्थानांतरित कर दिया जाता है।
नरकट एक घास है जिसके पौधे का तना खोखला गाँठ वाला होता है। पहले इसकी कलम बनायी जाती थी। इसका उपयोग टाटी, झोपड़ा, छप्पर आदि बनाने के काम आती है। इसे कच्चे बांधों के बगल में लगा देने से इसकी जड़ें मिट्टी को बाँध लेती हैं जिससे मिट्टी का कटांव नहीं हो पाता। इसको ईंधन के रूप में एवं फर्नीचर आदि के लिये भी उपयोग में लाया जाता है।
எருவை என்பது செடியினத்தில் ஒருவகைப் புல். புல் என்பது உள்ளே துளை உடைய செடியினம். எருவை என்பது பெருநாணல். வேழம் என்பது சிறுநாணல். இருவகை நாணலையும் இக்காலத்தில் நாணல் என்றும், நாணாத்தட்டை என்றும், கொறுக்காந்தட்டை என்றும், பேக்கரும்பு என்றும் கூறுகின்றனர்.
நாணல் ஆற்றங்கரைகளில் செழித்து வளரும். கிளை இல்லாமல் செங்குத்தாக நேராக வளரும். மூங்கில் போலக் கணுக்கள் கொண்டது. இரண்டு-விரல் அளவு கூடப் பருக்கும். இதனை மூங்கில் போல் வளைக்க முடியாது. மூங்கில் அளவுக்குக் கெட்டித்தன்மை இல்லாதது. மிகவும் இலேசானது. எருவைப் பூ கரும்புப் பூப் போலவே இருக்கும்.
கோரை என்பது வேறு தாவரம். அது கணு இல்லாமல் நெல்லம்பயிர் போல வளரும். கோரை பாய் நெய்யப் பயன்படும்.
எருவை என்பது செடியினத்தில் ஒருவகைப் புல். புல் என்பது உள்ளே துளை உடைய செடியினம். எருவை என்பது பெருநாணல். வேழம் என்பது சிறுநாணல். இருவகை நாணலையும் இக்காலத்தில் நாணல் என்றும், நாணாத்தட்டை என்றும், கொறுக்காந்தட்டை என்றும், பேக்கரும்பு என்றும் கூறுகின்றனர்.
ပုံသဏ္ဌာန် : အပင် နှစ်ကြာခံ မြက်ပင်မျိုး ဖြစ်သည်။ ကျူပင် နှင့် တူသည်။ ၁၈ ပေ ထိ မြင့်သည်။ မြေအောက်၌ မြစ်အုံ ရှိသည်။ ထိုမှ မြေပေါ်ပိုင်း ပင်စည် ထွက်သည်။ ပင်စည်၌ အခေါင်း ရှိသည်။ ပင်စည် ချောမွတ်ပြီး အဆစ်များ၌ အဖြူရောင် အရစ်များ ရှိသည်။ အရွက် ရွက်လွှဲ ထွက်သည်။ ၁ ပေ - ၂ ပေ ခန့်ထိ ရှည်သည်။ သေးသွယ် ရှည်လျားသော ပုံသဏ္ဌာန် ရှိကာ အဖျားသို့ ရှူးသွားပြီး အောက်သို့ ငိုက်ကျ နေသည်။ ရွက်ပြား ချော၏။ ပင်စည်ကို တင်းကျပ်စွာ ကုပ်ထားသော ရွက်အိမ်ရှိသည်။ ရွက်ရင်း ပတ်လည် နူးညံ့သော အမွေးများ ရှိသည်။ ရွက်နား ရှသည်။ အပွင့် ပန်းခိုင် ပေါ်တွင် အညိုရောင် အပွင့်လေးများ ပွင့်သည်။ ပန်းပွင့်၌ ပွင့်ခံ ရွက်မာ ၂ ခု ရှိသည်။ ငှက်တောင်ပုံ လှံစွပ်ပုံ ရှိသည်။ ထိပ်ဘက်၌ အလွန်သေးငယ်သော အသွား ၂ ခု ရှိသည်။ ကိုင်းပွင့် နှင့်တူသည်။ အမြစ် မြစ်အုံ ရှိသည်။ မြစ်မြွှာ များစွာ ဖြာသည်။ အသုံးပြုနိုင်သည့် အစိတ်အပိုင်းများ : အမြစ်အုံ။ မြန်မာနိုင်ငံတွင် တွေ့နိုင်သောနေရာများ : မြန်မာ နိုင်ငံ အနှံ့ အပြား အမြင့်ပေ ၃၅၀၀ ထိ ပေါက်ရောက်သည်။ ဗန်းမော်၊ ကသာ၊ ပြင်ဦးလွင်၊ သရက်နယ် များတွင် အများဆုံး တွေ့သည်။ ပေါက်ရောက်ပုံ သဘာ၀ အလျောက် ပေါက်ရောက်သည်။ အသုံးဝင်ပုံ : အာနိသင် မြန်မာ ဆေးကျမ်း များအလိုအရ အလိုကျူသည် အေး၏။ ခါး၏။ ချို၏။ ဖန်၏။ ဝမ်းမီးကို တောက်စေ၏။ လေသလိပ် ကို ကြေစေ၍ သည်းခြေကို ပယ်တတ်၏။ သွေးဖောက်ပြန် ခြင်းကို ပျောက်ကင်းစေ တတ်၏။ နှလုံး၊ ဆီးအိမ်၊ သားအိမ် တို့၌ ပူခြင်း ၊ နာကျင် ကိုက်ခဲခြင်းနှင့် ရေယုန် ရောဂါ တို့ကို ပျောက်ကင်းစေ တတ်၍ နှုတ်ကို မြိန်စေ၏။ သုက်ကို ပွားစေ၏။ ဆီးကို စင်ကြယ်စေ၍ အသက်ရှူစေအား ကို ဖြစ်စေသည်။ အသုံးပြုပုံ- အမြစ်အုံ ၁။ အမြစ်အုံ ကို ပြုတ်သောက် ခြင်းဖြင့် ဆီးကို စင်ကြယ် စေ၏။ ညောင်းကျ ရောဂါနှင့် အသားအရေ ယားယံခြင်းကို ပျောက်ကင်း စေပြီး ရာသီသွေး ကိုလည်း ကျဆင်းသည်။ ၂။ အလိုကျူ ပြုတ်ရည်တွင် ကြွေပုပ်မှုန့် ထည့်ဖျော် သောက်ပါက အမျိုးသမီးများ ရိဖြူ ရိနီ ကျဆင်းခြင်း ပျောက်၏။ ၃။ အလိုကျူ ရွက်ခြောက်ကို လက်ဖက်ခြောက် ရော၍ သောက်ပါက ကာမအားကို ဖြစ်စေ၏။ သွေးအန် သွေးကျ ရောဂါနှင့် အညောင်း အညာ အကိုက်အခဲ များကိုလည်း ပျောက်ကင်းစေပြီး နှုတ်ကို မြိန်စေ၏။ ၄။ အလိုကျူသည် ဆီးကောင်း စေတတ်သဖြင့် ဆီးဆေး များစွာ တို့တွင် ထည့်သွင်း အသုံးပြုရ၏။ အထူးသဖြင့် ဆီးကျောက်တည် ရောဂါ၊ ဆီးအိမ် ကိုက်ခဲသော ရောဂါ၊ ဆီးအောင့် ရောဂါ၊ ဆီးနီ၊ ဆီးဝါ၊ ဆီးကျန်ခြင်းနှင့် ဒူလာသွေးဝမ်း ၊ မီးယပ် သွေးဝမ်း ရောဂါများ အတွက် အလိုကျူ ၁၀ ဆကို ကြွေပုပ် ၅ ဆ၊ သိန္ဓော ၂ ဆ၊ ဆင်နှာမောင်း ၅ ဆ၊ လိပ်ကျောက်ဆူး ၁ ဆ တို့နှင့် ရော၍ အခြောက်လှန်း အမှုန့်ပြု ကွမ်းသီးခန့် လုံး၍ နံနက်ည တစ်ကြိမ်စီ သောက်သုံးပါက ရောဂါများ ပျောက်ကင်း ချမ်းသာစေပြီး လူကို ကျန်းမာ ရွှင်လန်း ၀ဖြိုးစေ၏။ [၁]
ပုံသဏ္ဌာန် : အပင် နှစ်ကြာခံ မြက်ပင်မျိုး ဖြစ်သည်။ ကျူပင် နှင့် တူသည်။ ၁၈ ပေ ထိ မြင့်သည်။ မြေအောက်၌ မြစ်အုံ ရှိသည်။ ထိုမှ မြေပေါ်ပိုင်း ပင်စည် ထွက်သည်။ ပင်စည်၌ အခေါင်း ရှိသည်။ ပင်စည် ချောမွတ်ပြီး အဆစ်များ၌ အဖြူရောင် အရစ်များ ရှိသည်။ အရွက် ရွက်လွှဲ ထွက်သည်။ ၁ ပေ - ၂ ပေ ခန့်ထိ ရှည်သည်။ သေးသွယ် ရှည်လျားသော ပုံသဏ္ဌာန် ရှိကာ အဖျားသို့ ရှူးသွားပြီး အောက်သို့ ငိုက်ကျ နေသည်။ ရွက်ပြား ချော၏။ ပင်စည်ကို တင်းကျပ်စွာ ကုပ်ထားသော ရွက်အိမ်ရှိသည်။ ရွက်ရင်း ပတ်လည် နူးညံ့သော အမွေးများ ရှိသည်။ ရွက်နား ရှသည်။ အပွင့် ပန်းခိုင် ပေါ်တွင် အညိုရောင် အပွင့်လေးများ ပွင့်သည်။ ပန်းပွင့်၌ ပွင့်ခံ ရွက်မာ ၂ ခု ရှိသည်။ ငှက်တောင်ပုံ လှံစွပ်ပုံ ရှိသည်။ ထိပ်ဘက်၌ အလွန်သေးငယ်သော အသွား ၂ ခု ရှိသည်။ ကိုင်းပွင့် နှင့်တူသည်။ အမြစ် မြစ်အုံ ရှိသည်။ မြစ်မြွှာ များစွာ ဖြာသည်။ အသုံးပြုနိုင်သည့် အစိတ်အပိုင်းများ : အမြစ်အုံ။ မြန်မာနိုင်ငံတွင် တွေ့နိုင်သောနေရာများ : မြန်မာ နိုင်ငံ အနှံ့ အပြား အမြင့်ပေ ၃၅၀၀ ထိ ပေါက်ရောက်သည်။ ဗန်းမော်၊ ကသာ၊ ပြင်ဦးလွင်၊ သရက်နယ် များတွင် အများဆုံး တွေ့သည်။ ပေါက်ရောက်ပုံ သဘာ၀ အလျောက် ပေါက်ရောက်သည်။ အသုံးဝင်ပုံ : အာနိသင် မြန်မာ ဆေးကျမ်း များအလိုအရ အလိုကျူသည် အေး၏။ ခါး၏။ ချို၏။ ဖန်၏။ ဝမ်းမီးကို တောက်စေ၏။ လေသလိပ် ကို ကြေစေ၍ သည်းခြေကို ပယ်တတ်၏။ သွေးဖောက်ပြန် ခြင်းကို ပျောက်ကင်းစေ တတ်၏။ နှလုံး၊ ဆီးအိမ်၊ သားအိမ် တို့၌ ပူခြင်း ၊ နာကျင် ကိုက်ခဲခြင်းနှင့် ရေယုန် ရောဂါ တို့ကို ပျောက်ကင်းစေ တတ်၍ နှုတ်ကို မြိန်စေ၏။ သုက်ကို ပွားစေ၏။ ဆီးကို စင်ကြယ်စေ၍ အသက်ရှူစေအား ကို ဖြစ်စေသည်။ အသုံးပြုပုံ- အမြစ်အုံ ၁။ အမြစ်အုံ ကို ပြုတ်သောက် ခြင်းဖြင့် ဆီးကို စင်ကြယ် စေ၏။ ညောင်းကျ ရောဂါနှင့် အသားအရေ ယားယံခြင်းကို ပျောက်ကင်း စေပြီး ရာသီသွေး ကိုလည်း ကျဆင်းသည်။ ၂။ အလိုကျူ ပြုတ်ရည်တွင် ကြွေပုပ်မှုန့် ထည့်ဖျော် သောက်ပါက အမျိုးသမီးများ ရိဖြူ ရိနီ ကျဆင်းခြင်း ပျောက်၏။ ၃။ အလိုကျူ ရွက်ခြောက်ကို လက်ဖက်ခြောက် ရော၍ သောက်ပါက ကာမအားကို ဖြစ်စေ၏။ သွေးအန် သွေးကျ ရောဂါနှင့် အညောင်း အညာ အကိုက်အခဲ များကိုလည်း ပျောက်ကင်းစေပြီး နှုတ်ကို မြိန်စေ၏။ ၄။ အလိုကျူသည် ဆီးကောင်း စေတတ်သဖြင့် ဆီးဆေး များစွာ တို့တွင် ထည့်သွင်း အသုံးပြုရ၏။ အထူးသဖြင့် ဆီးကျောက်တည် ရောဂါ၊ ဆီးအိမ် ကိုက်ခဲသော ရောဂါ၊ ဆီးအောင့် ရောဂါ၊ ဆီးနီ၊ ဆီးဝါ၊ ဆီးကျန်ခြင်းနှင့် ဒူလာသွေးဝမ်း ၊ မီးယပ် သွေးဝမ်း ရောဂါများ အတွက် အလိုကျူ ၁၀ ဆကို ကြွေပုပ် ၅ ဆ၊ သိန္ဓော ၂ ဆ၊ ဆင်နှာမောင်း ၅ ဆ၊ လိပ်ကျောက်ဆူး ၁ ဆ တို့နှင့် ရော၍ အခြောက်လှန်း အမှုန့်ပြု ကွမ်းသီးခန့် လုံး၍ နံနက်ည တစ်ကြိမ်စီ သောက်သုံးပါက ရောဂါများ ပျောက်ကင်း ချမ်းသာစေပြီး လူကို ကျန်းမာ ရွှင်လန်း ၀ဖြိုးစေ၏။
Canna (Arundo donax) de sa Familia Graminacee. Creschet in totue in logos umidos, cun bacchiddos deretos de duos-tres metros, cun nodos, e cun fozas longas.
Arundo donax is a tall perennial cane. It is one of several so-called reed species. It has several common names including giant cane, elephant grass, carrizo, arundo, Spanish cane, Colorado river reed, wild cane, and giant reed. Arundo and donax are respectively the old Latin and Greek names for reed.[3]
Arundo donax grows in damp soils, either fresh or moderately saline, and is native to the Greater Middle East.[4][5] It has been widely planted and naturalised in the mild temperate, subtropical and tropical regions of both hemispheres, especially in the Mediterranean, California, the western Pacific and the Caribbean and is considered invasive in North America and Oceania.[6][4][5][7][8] It forms dense stands on disturbed sites, sand dunes, in wetlands and riparian habitats.
Arundo donax generally grows to 6 metres (20 ft) in height, or in ideal conditions can exceed 10 metres (33 ft). The hollow stems are 2 to 3 centimetres (0.79 to 1.18 in) in diameter. The grey-green swordlike leaves are alternate, 30 to 60 centimetres (12 to 24 in) long and 2 to 6 centimetres (0.79 to 2.36 in) wide with a tapered tip, and have a hairy tuft at the base. Overall, the plant resembles an outsize common reed (Phragmites australis) or a bamboo (subfamily Bambusoideae).
A. donax flowers in late summer, bearing upright, feathery plumes 40 to 60 centimetres (16 to 24 in) long, that are usually seedless or with seeds that are rarely fertile.[9] Instead, it mostly reproduces vegetatively by tough, fibrous underground rhizomes that form knotty, spreading mats which penetrate deep into the soil, up to 1 metre (3.3 ft) deep.[10][11] Stem and rhizome pieces less than 5 centimetres (2.0 in) long and containing a single node could sprout readily under a variety of conditions.[12] This vegetative propagation appears well adapted to floods, which may break up individual A. donax clumps, spreading the pieces, which may sprout and colonise downstream.[10]
Arundo donax is a tall, perennial grass in the subfamily Arundinoideae, characterised by C3 photosynthesis. The stems produced during the first growing season are unbranched and photosynthetic. In the Mediterranean, where a temperate climate is characterized by warm and dry summer and mild winter, new shoots of giant reed emerge around March, growing rapidly in June and July and producing stems and leaves. From late July the lower leaves start to dry, depending on seasonal temperature patterns. Drying accelerates during autumn when anthesis occurs from the beginning of October to the end of November. In this phenological stage moisture content falls significantly. In the low temperatures of winter giant reed stops its growth; regrowth occurs in springtime. Giant reed behaves as an annual in Central Europe where soil temperatures are low, due to poor freeze tolerance of the rhizomes.
The base growth temperature reported for giant reed is 7 °C,[13] with a maximum temperature of 30 °C. It has a high photosynthetic capacity, associated with absence of light saturation. Carbon dioxide exchange rates are high compared to other C3 and C4 species; maximum CO2 uptake ranged from 19.8 to 36.7 µmol m−2 s−1 under natural conditions, depending on irradiance and leaf age. Carbon dioxide exchange is regulated by leaf conductance.[14]
Studies have found this plant to be rich in active tryptamine compounds, but there are more indications of the plants in India having these compounds than in the United States.[15] Toxins such as bufotenidine[16] and gramine[15] have also been found.
The dried rhizome with the stem removed has been found to contain 0.0057% DMT, 0.026% bufotenine, 0.0023% 5-MeO-MMT.[15] The flowers are also known to have DMT and the 5-methoxylated N-demethylated analogue, also 5-MeO-NMT. The quite toxic quaternary methylated salt of DMT, bufotenidine,[15] has been found in the flowers, and the cyclic dehydrobufotenidine has been found in the roots. A. donax is also known to release volatile organic compounds (VOCs), mainly isoprene.[17]
In most areas where giant reed grows (Mediterranean area and US), viable seeds are not produced.[18] It is reported that sterility of giant reed results from failure of the megaspore mother cell to divide.[19] This sterility, which drastically limits genetic variability, is an obstacle for breeding programs which aim to increase the productivity and biomass quality for energy conversion.[20] A total of 185 clones of A. donax were collected from California to South Carolina and genetically fingerprinted with the SRAP and TE-based markers.[21] Giant reed exhibited no molecular genetic variation despite the wide genomic coverage of the markers used in this study. The molecular data strongly point to a single genetic clone of A. donax in the United States, although multiple introductions of this plant into the United States have been documented. Another study conducted in the Mediterranean area sampled giant reed from 80 different sites, and demonstrated low gene diversity in this region as well. Results indicate the occurrence of post-meiotic alterations in the ovule and pollen developmental pathway. AFLP data support a monophyletic origin of giant reed and suggest that it originated in Asia, spreading from there into the Mediterranean Basin.
Giant reed is adapted to a wide variety of ecological conditions, but is generally associated with riparian and wetland systems. It is distributed across the southern United States from Maryland to California. Plants can grow in a variety of soils, from heavy clays to loose sands and gravelly soils, but prefer wet drained soils, where they produce dense monotypic stands.
Arundo is a highly invasive plant in southwestern North American rivers, and its promotion as a biofuel in other regions is of great concern to environmental scientists and land managers.[22] Arundo donax was introduced from the Mediterranean to California in the 1820s for roofing material and erosion control in drainage canals in the Los Angeles area.[23][10] Through spread and subsequent plantings as an ornamental plant, and for use as reeds in woodwind instruments, it has become naturalised throughout warm coastal freshwaters of North America, and its range continues to spread.
It has been planted widely through South America and Australasia[23][12] and in New Zealand it is listed under the National Pest Plant Accord as an "unwanted organism".[24] Despite its invasive characteristics in regions around the world where it is not native, Arundo is being promoted by the energy industry as a bio-fuel crop. Some of the regions, such as the southeastern United States have natural disturbances, such as hurricanes and floods, that could widely disperse this plant.
It is among the fastest-growing terrestrial plants in the world (nearly 10 centimetres (3.9 in) per day).[8] To present knowledge, Arundo does not provide any food sources or nesting habitats for wildlife. Replacement of native plant communities by Arundo results in low-quality habitat and altered ecosystem functioning.[23][10] For example, it damages California's riparian ecosystems by outcompeting native species, such as willows, for water. A. donax stems and leaves contain a variety of harmful chemicals, including silica and various alkaloids, which protect it from most insect herbivores and deter wildlife from feeding on it.[23][25][10] Grazing animals such as cattle, sheep, and goats may have some effect on it, but are unlikely to be useful in keeping it under control.[8]
Arundo donax appears to be highly adapted to fires. It is highly flammable throughout the year, and during the drier months of the year (July to October), it can increase the probability, intensity, and spread of wildfires through the riparian environment, changing the communities from flood-defined to fire-defined communities.[26] After fires, A. donax rhizomes can resprout quickly, outgrowing native plants, which can result in large stands of A. donax along riparian corridors.[27][23] Fire events thus push the system further toward mono-specific stands of A. donax.
A waterside plant community dominated by A. donax may also have reduced canopy shading of the in-stream habitat, which may result in increased water temperatures. This may lead to decreased oxygen concentrations and lower diversity of aquatic animals.[23]
As the impact of Arundo donax increased in the environment and native species various efforts have been taken to reduce its population. It has few natural enemies in its introduced range. Several Mediterranean insects have been imported into the United States as biological control agents.[23][25][10] The Arundo wasp, Tetramesa romana, the Arundo scale insect, Rhizaspidiotus donacis, and the Arundo fly, Cryptonevra are known to have some effect in damaging the plant. Tetramesa romana and more recently Rhizaspidiotus donacisis were registered in the US as biological control agents.
Other remedies like using mechanical force have also been employed, since outside its native range Arundo donax does not reproduce by seeds, so removing its root structure can be effective at controlling it. Preventing it from getting sunlight will deplete the plant of its resources and eventually kill it.[10] Systemic herbicides and glyphosate are also used as chemical remedies.
The US Department of Homeland Security considers this plant invasive and in 2007 began researching biological controls.[28] In 2015, Texas Senator Carlos Uresti passed legislation to create a program to eradicate Arundo donax using herbicides and the Arundo wasp.[29]
In New Zealand's northernmost region, Arundo donax crowds out native plants,[30] reduces wildlife habitat, contributes to higher fire frequency and intensity, and modifies river hydrology.[31]
Energy crops are plants which are produced with the express purpose of using their biomass energetically [32] and at the same time reduce carbon dioxide emission. Biofuels derived from lignocellulosic plant material represent an important renewable energy alternative to transportation fossil fuels.[33] Perennial rhizomatous grasses display several positive attributes as energy crops because of their high productivity, low (no) demand for nutrient inputs consequent to the recycling of nutrients by their rhizomes, exceptional soil carbon sequestration - 4X switchgrass, multiple products, adaptation to saline soils and saline water, and resistance to biotic and abiotic stresses.
Giant reed is one of the most promising crops for energy production in the Mediterranean climate of Europe and Africa, where it has shown advantages as an indigenous crop (already adapted to the environment), durable yields, and resistant to long drought periods. Several field studies have highlighted the beneficial effect of giant reed crop on the environment due to its minimal soil tillage, fertilizer and pesticide needs. Furthermore, it offers protection against soil erosion,[34] one of the most important land degradation processes in Mediterranean and US environments. A. donax bioenergy feedstock has an impressive potential for several conversion processes. Dried biomass has a direct combustion high heating value of 19,000 kJ/kg (8,000 BTU/lb). In Italy, Arundo donax was used in one instance from 1937 to 1962 on a large-scale industrial basis for paper and dissolving pulp. This interest was stimulated primarily by the desire of the dictatorship, just before World War II, to be independent of foreign sources of textile fibres and the desire for an export product.[6] According to historical records made by Snia Viscosa, giant reed was established on 6 300 ha in Torviscosa (Udine), reaching the average annual production of 35 t ha−1.[35] Today several screening studies on energy crops have been carried out by several universities in the US as well as in EU to evaluate and identify best management practices for maximizing biomass yields and assess environmental impacts.
Establishment is a critical point of cultivation. Stem and rhizome have a great ability to sprout after removal from mother plant and both can be used for clonal propagation. The use of rhizomes was found to be the better propagation method for this species, achieving better survival rate.[36] In this field study, it was noticed how the lowest density (12 500 rhizomes ha−1) resulted in taller and thicker plants compared to denser plantation (25 000 rhizomes ha−1). Seedbed preparation is conducted in the spring, immediately before planting, by a pass with a double-disk harrowing and a pass with a field cultivator. Giant reed has the possibility of adopting low plant density. The rhizomes were planted at 10–20 centimetres (3.9–7.9 in) of soil depth, with a minimum plant density of 10 000 plants per ha), while mature stems, with two or more nodes, can be planted 10–15 centimetres (3.9–5.9 in) deep. In order to ensure good root stand and adequate contact with the soil, sufficient moisture is needed immediately after planting. Pre-plant fertilizer is distributed according to the initial soil fertility, but usually an application of P at a rate of 80–100 kilograms (180–220 lb) ha−1 is applied.
A. donax maintains a high productive aptitude without irrigation under semi-arid climate conditions. In Southern Italy, a trial was carried out testing the yields performance of 39 genotypes, and an average yields of 22.1 t ha−1 dry matter in the second year were reached,[37] a comparable result with others results obtained in Spain (22.5 t ha−1) as well as in South Greece (19.0 t ha−1). Several reports underlined that it is more economical to grow giant reed under moderate irrigation.
In order to evaluate different management practices, nitrogen fertilizer and input demand was evaluated in a 6-year field study conducted at the University of Pisa. Fertilizer enhanced the productive capacity in the initial years, but as the years go by and as the radical apparatus progressively deepens, the differences due to fertilizer decrease until disappearing. Harvest time and plant density were found to not affect the biomass yields.
Due to its high growth rate and superior resource-capture capacity (light, water and nutrients), A. donax is not affected by weed competition from the second year. An application of post-emergence treatment is usually recommended. Giant reed has few known diseases or insect pests, but in intensive cultivation, no pesticides are used.
To remove giant reed at the end of the crop cycle, there are mainly two methods: mechanical or chemical.[38] An excavator can be useful to dig out the rhizomes or alternatively a single late-season application of 3% glyphosate onto the foliar mass is efficient and effective with least hazardous to biota.[39] Glyphosate was selected as the most appropriate product for specific considerations on efficacy, environmental safety, soil residual activity, operator safety, application timing, and cost-effectiveness. However, glyphosate is only effective in fall when plants are actively transporting nutrients to the root zone, and multiple retreatments are usually needed. Other herbicides registered for aquatic use can be very effective in controlling Arundo at other times of the year.
Arundo donax is a strong candidate for use as a renewable biofuel source because of its fast growth rate and its ability to grow in different soil types and climatic conditions. A. donax will produce an average of three kilograms of biomass per square metre (12 tons per acre/year) once established.[40] The total energy input needed for the growing of one ha increases from not fertilised (4 GJ ha−1) to fertilised (18 GJ ha−1) crops, while the maximum energy yield output was 496 GJ ha−1, obtained with 20,000 plants per ha and fertilisation; fertilisation brought a 15% increase in biomass. The biomass calorific mean value (technically, the calorific value obtained from combustion of biomass sample in an adiabatic system) of Giant reed is about 17 MJ kg−1 dry matter regardless of fertilizer usage.[40]
Studies in the European Union have identified A. donax as the most productive and lowest impact of all energy biomass crops (see FAIR REPORT E.U. 2004).
Its ability to grow for 20 to 25 years without replanting is also significant.
In the UK it is considered suitable for planting in and around water areas.[41]
Arundo donax grown in Australia was demonstrated as potential feedstock for producing advanced biofuels through hydrothermal liquefaction.[42]
Outside its native range, the interest as a biofuel crop needs to be balanced against its major invasive potential.
An increased environmental concern is the health of soil system as one of the main factors affecting quality and productivity of agroecosystems. Around the world, several regions are subjected to a decline of fertility due to an increasing degradation of soils, loss of organic matter and increasing desertification.[43] Recently research was carried out to evaluate, in the same pedological and climatic conditions, the impact of three long-term (14 years) agricultural systems, continuous giant reed, natural grassland, and cropping sequence, on the organic-matter characteristics and microbial biomass size in soil.[44] The study pointed out that a long term Giant reed cropping system, characterized by low tillage intensity, positively affect the amount and quality of soil organic matter. Arundo donax showed greater values than tilled management system for total soil organic carbon, light fraction carbon, dissolved organic carbon, and microbial biomass carbon. Regarding the humification parameters, there were noticed any statistically differences between giant reed and a cropping sequence (cereals-legumes cultivated conventionally).
Arundo donax has been cultivated throughout Asia, southern Europe, northern Africa, and the Middle East for thousands of years. Ancient Egyptians wrapped their dead in the leaves. The canes contain silica, perhaps the reason for their durability, and have been used to make fishing rods, and walking sticks. Its stiff stems are also used as support for climbing plants or for vines.
This plant may have been used in combination with harmal (Peganum harmala) to create a brew similar to the South American ayahuasca, and may trace its roots to the Soma of lore.[45]
Mature reeds are used in construction as raw material, given their excellent properties and tubular shape. Its resemblance to bamboo permits their combination in buildings, though Arundo is more flexible.
In rural regions of Spain, for centuries there has existed a technique named cañizo, consisting of rectangles of approximately 2 by 1 meters of woven reeds to which clay or plaster could be added. A properly insulated cañizo in a roof could keep its mechanical properties for over 60 years. Its high silicon content allows the cane to keep its qualities through time. Its low weight, flexibility, good adherence of the cañizo fabric and low price of the raw material have been the main reasons that this technique has been used. However, in the last decades, the rural migration from the countryside to urban centres and the extensive exploitation of land has reduced its use.
Recently, initiatives are being taken to recover the use of this material, combining ancient techniques from southern Iraq mudhif (reed houses) with new materials.
Diverse associations and collectives, such as CanyaViva, are pioneering in the research in combination with Spanish universities.
Ancient Greeks used cane to make flutes, known as kalamaulos, from kalamos ("cane") + aulos ("flute"). At the time, the best cane for flutes came from the banks of river Cephissus, in Attica, Greece. Several kalamauloi tuned differently and tied together, made a syrinx. A. donax is still the principal source material of reed makers for clarinets, saxophones, oboes, bassoons, bagpipes, and other woodwind instruments.[46] The Var country in southern France contains the best-known supply of instrument reeds.
Additionally, giant reed has been used to make flutes for over 5,000 years. The pan pipes consist of ten or more pipes made from the cane. Also, the ancient end-blown flute ney (a) is made from the same reeds.
When young, A. donax is readily browsed by ruminants, but it becomes unpalatable when maturing.[47] A. donax has also been used in constructed wetlands for wastewater treatment.[48]
Arundo donax is a tall perennial cane. It is one of several so-called reed species. It has several common names including giant cane, elephant grass, carrizo, arundo, Spanish cane, Colorado river reed, wild cane, and giant reed. Arundo and donax are respectively the old Latin and Greek names for reed.
Arundo donax grows in damp soils, either fresh or moderately saline, and is native to the Greater Middle East. It has been widely planted and naturalised in the mild temperate, subtropical and tropical regions of both hemispheres, especially in the Mediterranean, California, the western Pacific and the Caribbean and is considered invasive in North America and Oceania. It forms dense stands on disturbed sites, sand dunes, in wetlands and riparian habitats.
Arundo donaxArundo donax, la caña común, caña de Castilla, carrizo, chin o cañabrava es una especie de planta herbácea perteneciente a la familia Poaceae.
Es una planta semejante al bambú, del que se diferencia porque de cada nudo sale una única hoja que envaina el tallo.
Alcanza los 3-6 m de altura,[1] tiene tallo grueso y hueco. Las hojas lanceoladas son largas de 5-7 cm que envuelven el tallo en forma de láminas verdes brillante. Las flores están en una gran panícula de espiguillas violáceas o amarillas de 3-6 dm de longitud. Cada espiguilla tiene una o dos flores. Floración, final del verano y otoño. Es la mayor de las gramíneas de la región mediterránea.
Humedales de aguas permanentes o estacionales. Las cañas se extienden por sus rizomas subterráneos que crecen formando largas colonias de varios kilómetros a lo largo de los cursos de agua o donde se acumula agua freática o humedad.
Parece ser originaria de Asia,[1] y ha colonizado el área mediterránea y norte de África desde la antigüedad, a lo largo de ríos y acequias. También extendida por toda América. Está incluida en la lista 100 de las especies exóticas invasoras más dañinas del mundo[2] de la Unión Internacional para la Conservación de la Naturaleza.
En Canarias, debido a su potencial colonizador y constituir una amenaza grave para las especies autóctonas, los hábitats o los ecosistemas, esta especie ha sido incluida en el Catálogo Español de Especies Exóticas Invasoras, regulado por el Real Decreto 630/2013, de 2 de agosto, estando prohibida en Canarias su introducción en el medio natural, posesión, transporte, tráfico y comercio.[3]
Sirve de protección a la fauna al ser muchas veces la única vegetación densa disponible. Muchas especies de aves, anidan o duermen en los cañaverales.
Se emplea para la fabricación de lengüetas ("cañas") para los instrumentos de viento-madera de lengüeta simple (clarinete, saxofón) y doble (oboe, fagot, corno inglés). También para fabricar instrumentos de vientos tradicionales, tales como el ney, originario de Medio Oriente, y el siku andino, entre otros.
Se ha utilizado como diurético y para disminuir la producción de leche (antigalactogogo). Por vía externa se usa para evitar la caída del cabello. Su consumo excesivo puede producir hipotensión y depresión respiratoria.
Arundo donax produce más biomasa por hectárea que cualquier otra planta de biomasa conocida, aparte del bambú. Esta planta desde hace tiempo se reconoce como importante productora de biomasa industrial que pueden cultivarse en una amplia variedad de tipos de suelos y condiciones climáticas. Alcanza la madurez (5 a 8 metros) en aproximadamente un año, puede ser cosechado, dependiendo del clima, de una vez a tres veces al año.[cita requerida]
A. donax produce un promedio de 50 toneladas de alta calidad de fibra por hectárea dos veces al año. Muy importante también es la importancia de un cultivo con de 20 a 25 años sin ciclo de cultivo anual de replantación, y la capacidad de excluir a muchos costosos fertilizantes y herbicidas que son también una preocupación ambiental.
A. donax es ideal para biocarburantes (18000 kJ/kg), que produce metanol a partir de la difusión gaseosa como subproducto en la fabricación de celulosa. La opción de gasificar este producto es la producción de forma independiente de un valioso producto energético. Es posible utilizar los nuevos sistemas de alta eficiencia para sistemas de gasificación y convertir en diferentes fuentes de energía, como gas de síntesis, la norma de turbina de vapor, la generación eléctrica, el etanol y el biodiésel.[cita requerida]
Arundo donax fue descrita por Carlos Linneo y publicado en Species Plantarum 1: 81. 1753.[4]
Arundo: nombre genérico que proviene del latín antiguo y que significa "caña".
donax: nombre latino y griego de una especie de "caña", que en principio se usó como nombre genérico, pero que resultó ser sinónimo de Arundo.
Castellano: bardiza, cana (3), carda, caña (45), caña común (15), caña gigante, caña grande de huertas, caña licera, caña macho, caña silvestre, caña vera, caña vulgar, cañabera, cañas, cañavana, cañaveira, cañavera (10), cañifecha, cañizo (3), cnaveira, guisopo (inflorescencia), lata, licera. Entre paréntesis, la frecuencia de uso del vocablo en España.[6]
Arundo donax, la caña común, caña de Castilla, carrizo, chin o cañabrava es una especie de planta herbácea perteneciente a la familia Poaceae.
Vista de la planta Detalle del tallo Formando maleza Ilustración En su hábitatKanabera (Arundo donax) landare lastoduna da, eremu hezeetakoa, 4 metroko garaiera izan dezakeena, zurtoin zuzena eta leuna duena. Kanaberak zurtoin gogor malgua, egurtsua, barru-hutsa eta azal leunekoa izaten du, hostoak luze zabalak eta iraunkorrak. Lorea buru txiki askoz osatua eta zabalera handian banatua du, kolorez hori-zurixka. Berez sortaldeko landarea da, baina Mediterraneo itsasoaren inguruetako lurraldeetan ere oso zabaldua dago gaur egun. Leku hezeetan hazten da. Arrantzako esku-tresnak egiteko erabiltzen da batez ere.
Kanabera (Arundo donax) landare lastoduna da, eremu hezeetakoa, 4 metroko garaiera izan dezakeena, zurtoin zuzena eta leuna duena. Kanaberak zurtoin gogor malgua, egurtsua, barru-hutsa eta azal leunekoa izaten du, hostoak luze zabalak eta iraunkorrak. Lorea buru txiki askoz osatua eta zabalera handian banatua du, kolorez hori-zurixka. Berez sortaldeko landarea da, baina Mediterraneo itsasoaren inguruetako lurraldeetan ere oso zabaldua dago gaur egun. Leku hezeetan hazten da. Arrantzako esku-tresnak egiteko erabiltzen da batez ere.
Jättiruoko (Arundo donax) on nimensä mukaisesti isokokoinen heinäkasvi (heimo Poaceae). Sitä voidaan käyttää monivuotisena koristekasvina.[2] Jättiruokoa pidetään yhtenä maailman sadasta haitallisimmasta vieraslajista.[3]
Juurakko suomuinen, haarova, polveileva ja tukeva. Varsi 2-6 metriä korkea ja 1-1,5 cm halkaisijaltaan, haarautumaton, bambun tapainen. Lehdet 30-60 cm pitkiä ja 2-5 cm leveitä, kapenevat kärkeen päin lankamaisen ohuiksi. Kukinto on tähkämäinen huiskilo, yleensä sinipunainen.[4] Yksikotinen.[5] Jättiruoko kuuluu C4-kasveihin eli käyttää yhteyttämiseen C4-yhteyttämistä.[6]
Jättiruoko on kotoisin välimereltä. Se suosii kosteita paikkoja mutta kasvaa hyvin myös kuivassa ja kaikenlaisessa maassa, tienvarsilla, joutomailla. Sitä käytetään myös aitakasvina.[5][7][8]
Yhdysvalloissa kasvia käytetään sekä paperin että bioenergian raaka-aineena.oboen ja fagotin suuttimen, röörin tekemiseen, se muodostuu kahdesta vastakkain sidotusta ruokolehdykästä.[9][10]
Jättiruoko (Arundo donax) on nimensä mukaisesti isokokoinen heinäkasvi (heimo Poaceae). Sitä voidaan käyttää monivuotisena koristekasvina. Jättiruokoa pidetään yhtenä maailman sadasta haitallisimmasta vieraslajista.
Canne de Provence
Arundo donax est une espèce de plantes herbacées de la famille des Poaceae, sous-famille des Arundinoideae, connue en France sous le nom de canne de Provence. Son cultivar panaché la rend plus attractive et on l'utilise beaucoup pour cette raison dans les parcs et jardins.
Cette espèce figure dans la liste des cent espèces envahissantes parmi les plus nuisibles du monde[1] de l'Union internationale pour la conservation de la nature (UICN).
C'est une graminée à rhizome caractéristique des lieux humides des régions méditerranéennes. Elle a de grandes feuilles effilées, retombantes, glauques, et des panicules terminales d'épillets de couleur vert pâle à violacé.
Elle ressemble à un roseau ou à un bambou, notamment avant l'apparition des épillets. Sa hauteur varie de 1 m à 8 m selon les variétés et les conditions de culture[2]. Avec l'hiver elle prend un aspect desséché.
Les feuilles des cannes permettent de les distinguer des bambous, ces derniers ayant des feuilles découpées.
L'inflorescence apparaît de septembre à octobre, c’est une panicule d’épillets pollinisée par le vent (anémophilie). Le fruit est un caryopse.
Arundo donax. Source : Pr Otto Wilhelm Thomé, Flore d'Allemagne, Autriche et Suisse, 1885.
En latin, arundo signifie « roseau » et donax désigne aussi une sorte de roseau[3].
Cette espèce est nommée canne de Provence, cannevelle, grand roseau, quenouille, roseau à quenouilles, roseau canne, roseau de Fréjus, roseau des jardins ou encore jonc ordinaire[4].
Même si elle supporte très bien la sécheresse une fois installée, la canne de Provence se cultive idéalement sur terrains humides et bien drainés.
Elle se multiplie par prélèvement de rhizomes au printemps ou par bouturage dans l'eau de tronçons de chaumes de 1 an (1 à 2 cm de diamètre, 3 nœuds) en utilisant la partie ou pousse des rameaux latéraux[5]. On peut également utiliser des chaumes de l'année mais le bouturage fonctionnera moins bien.
Arundo donax est assez rustique une fois installée (jusqu'à −10 °C pour les chaumes et −15 °C pour les rhizomes) et est peu sensible aux parasites ou maladies.
Comme toutes les espèces panachées, le cultivar Versicolor (le plus utilisée en jardinage) est beaucoup moins vigoureuse que l'espèce type (la partie blanche du feuillage ne participe pas à la photosynthèse).
L'aire de répartition originelle d’Arundo donax s'étend dans les régions tempérées et tropicales de l'Ancien Monde.
Bien que l'espèce soit souvent considérée comme indigène dans le bassin méditerranéen ou d'autres régions plus chaudes de l'Ancien Monde, il pourrait s'agir d'une introduction ancienne en Europe depuis l'Asie tropicale. Son aire originelle pourrait donc être purement asiatique[6].
Cette espèce est de nos jours largement répandue dans toutes les régions chaudes du monde. Elle s'est naturalisée dans de nombreuses régions et est parfois devenue envahissante, en particulier en Afrique australe, dans les régions subtropicales des États-Unis, au Mexique, dans les Antilles, en Amérique du Sud et dans les îles du Pacifique[7].
Arundo donax figure dans la liste des cent espèces envahissantes parmi les plus nuisibles du monde[1] de l'Union internationale pour la conservation de la nature (UICN).
En France, l'espèce n'est pas réglementée dans l'hexagone, mais a fait l'objet d'un arrêté ministériel concernant La Réunion en 2019 en raison de l'inquiétude concernant un scénario similaire à la Nouvelle-Calédonie[9]. Elle est présente dans la liste des plantes soumises à recommandations du Code de conduite professionnel relatif aux plantes exotiques envahissantes[10]. Ce code se base sur le volontariat et a été rédigé par un groupe inter-professionnel[11]. La canne de Provence étant très présente dans le sud de la France, est présente dans le document de stratégie régionale de Provence-Alpes-Côte d'Azur. L'espèce y est décrite comme ne faisant pas partie des espèces exotiques envahissantes dans la région, même si sa compétition avec la végétation indigène y est mentionnée[12].
En Espagne, des opérations d'arrachage ou le désherbage ciblent cette espèce dans certains programmes de renaturation de berges de cours d'eau[13].
Aux îles Canaries, l'espèce est classée comme plante envahissante et, à ce titre, interdite de détention, commerce et propagation par le décret royal 1628/2011[14].
En Nouvelle-Calédonie, où elle a été introduite en 1883 pour stabiliser les talus des routes[15], elle fait partie des trois espèces les plus envahissantes, avec Lantana camara et Pinus caribaea[16]. Le Code de l'environnement de la Province Sud interdit l’introduction dans la nature de cette espèce ainsi que sa production, son transport, son utilisation, son colportage, sa cession, sa mise en vente, sa vente ou son achat[17].
Sur le plan industriel, la canne de Provence est l'une des cultures les plus prometteuses pour la production de bioénergie sous climat méditerranéen où elle est déjà adaptée à l'environnement, donne des rendements importants et durables, et résiste à des périodes de sécheresse. Plusieurs études sur le terrain ont mis en évidence ses faibles besoins en travail du sol, engrais et pesticides. Elle a l'avantage de ne pas rivaliser avec les cultures alimentaires car ses faibles besoins lui permettent de pousser là ou aucune culture alimentaire ne serait envisageable. En outre, Arundo donax offre une protection contre l'érosion des sols, l'un des processus les plus importants de dégradation des terres dans le bassin méditerranéen. A. donax a un potentiel impressionnant pour plusieurs processus de conversion en matières premières bioénergétiques. Son record historique de production a été établi en Italie par SNIA Viscosa sur 6 300 ha à Torviscosa, pour atteindre la production annuelle moyenne de 35 t/ha de matière sèche. Aujourd'hui, plusieurs études de dépistage sur les cultures énergétiques ont été menées par plusieurs universités aux États-Unis ainsi que dans l'UE pour évaluer et identifier les meilleures pratiques de gestion pour maximiser les rendements de biomasse et évaluer les impacts environnementaux.
Souvent utilisée en haies brise-vent dans le Midi de la France, elle se plaît en situation abritée et bien ensoleillée, avec un sol humide et plutôt sablonneux, mais bien drainé l'hiver. Elle supporte la salinité des sols.
Traditionnellement, elle fournit le matériau de base pour réaliser les cannisses et est encore utilisée pour fabriquer des paniers (surtout en Espagne). Si les tiges sont mal stockées, les « cannissiers » sont sujets à une dermatose spectaculaire et spécifique au contact des moisissures qui s'y développent[18].
Dans les potagers méditerranéens, grâce à sa hauteur, sa facilité de procuration et sa rigidité, nombreux jardiniers l’utilisent pour tuteurer les pieds d’espèces végétales grimpantes, tel que les tomates ou les haricots verts par exemple.
On fabrique également des anches à partir d’Arundo donax, pour la clarinette, le saxophone, le hautbois, le basson et les instruments à anche. On peut aussi noter l'utilisation de ces roseaux dans la confection de calames, instruments d'écriture et de calligraphie (notamment orientale).
Du fait de ses faibles qualités en termes de résistance à la fatigue et une élasticité faible, le matériau servait autrefois de support d'enduits de plâtre dans les habitations anciennes, pour la création de cloisons et faux plafonds, avec de faibles besoins en contrainte mécanique. Ce matériau présente toutefois de bonnes qualités en termes de régulation et transfert de l'humidité, et des qualités isolantes plutôt correctes.
Canne de Provence
Arundo donax est une espèce de plantes herbacées de la famille des Poaceae, sous-famille des Arundinoideae, connue en France sous le nom de canne de Provence. Son cultivar panaché la rend plus attractive et on l'utilise beaucoup pour cette raison dans les parcs et jardins.
Cette espèce figure dans la liste des cent espèces envahissantes parmi les plus nuisibles du monde de l'Union internationale pour la conservation de la nature (UICN).
A cana ou cana común (Arundo donax) é unha especie de planta herbácea pertencente á familia Poaceae. É unha especie común en Galicia.
É unha planta semellante ao bambú, do que se diferenza porque de cada nó sae unha única folla que envaíña o talo.
Acada os 2–5 m de altura, ten o talo groso e oco. As follas lanceoladas son longas de 5–7 cm que envolven o caule a xeito de láminas verdes brillante. As flores fican nunha gran panícula de mazaroquiñas violáceas ou amarelas de 3-6 dm de lonxitude. Cada mazaroca ten unha ou dúas flores. A floración acontece a finais do verán e no outono. É a meirande das gramíneas do sur de Europa.
Brañas e lameiros de augas permanentes ou estacionais; sistemas sunares das praias, sebes etc. As canas esparéxense grazas aos rizomas subterráneos que medran formando grandes colonias de varios quilómetros ao longo dos regueiros ou en illós.
Semella ser orixinaria de Asia, de onde colonizou a área mediterránea e mais o norte de África dende a antigüidade ao longo das ribeiras e gabias de rega. Do Mediterráneo chegaría a Galicia. Tamén está espallada polas Américas. Está incluída na listaxe 100 das especies exóticas invasoras máis daniñas do mundo[1] da Unión Internacional para a Conservación da Natureza.
O nome galego cana, vén do latín: canna. Esta planta tamén recibe os nomes de canaveira, canavela e canivela. Un lugar poboado de canas chámase canedo ou canaval.
O nome xenérico Arundo era o nome da cana no latín antigo. O nome específico: donaxé un termo latino e grego dunha especie de cana, que en principio se usara como nome xenérico, mais que resultou sinónimo de Arundo.
Serve de protección á fauna especialmente en zonas áridas, por ser moitas veces a única vexetación mesta dispoñíbel. Moitas especies de aves, aniñan ou dormen nos canavais.
Emprégase como guía das plantas e coma soporte ou trabes nas viñas, onde se atan as vides.
Tamén se emprega para a produción de lingüetas para os instrumentos de vento (simple (clarinete e saxofón) e dupla (óboe e fagot). Tamén para fabricar instrumentos de vento coma o ney do Oriente Medio ou a frauta de pan, entre outros instrumentos tradicionais.
Utilizouse coma diurético e para diminuír a produción de leite (antigalactogogo). Por vía externa úsase para evitar a caída do cabelo. O consumo excesivo pode producir hipotensión e depresión respiratoria.
A cana Arundo donax produce máis biomasa por hectárea que calquera outra planta de biomasa coñecida, á parte do bambú. Esta planta recoñécese dende hai tempo como importante produtora de biomasa industrial xa que pode cultivarse nunha ampla variedade de tipos de solos e condicións climáticas. Acada a madureza (15 a 25 pés) en aproximadamente un ano, e pode ser colleitada, dependendo do clima, dunha a tres veces ao ano. Ademais produce unha media de 25 toneladas de fibra de alta calidadade por acre dúas veces ao ano. Ademais cómpre salientar que pode ficar o cultivo no mesmo terreo uns 20 ou 25 anos antes de replantar. Non ten grandes necesidades de fertilizantes e herbicidas, polo que o custo e o impacto no contorno é baixo.
A partir da cana tamén se fabrican biocarburantes (biodiésel 8000 BTU/lb), grazas á obtención de metanol a partir da difusión gasosa como subproduto na fabricación de celulosa.
A cana ou cana común (Arundo donax) é unha especie de planta herbácea pertencente á familia Poaceae. É unha especie común en Galicia.
Hoberska sćina (Arundo donax) je rostlina ze swójby słódkich trawow (Poaceae).
Hoberska sćina (Arundo donax) je rostlina ze swójby słódkich trawow (Poaceae).
La canna comune (Arundo donax L., 1753) o canna domestica è una pianta erbacea perenne e dal fusto lungo, cavo e robusto, che cresce in terreni anche relativamente poveri. La sua area di origine si estende dal bacino del Mediterraneo al Medio Oriente fino all'India, ma attualmente la canna si può trovare sia piantata che naturalizzata nelle regioni temperate e subtropicali di entrambi gli emisferi. Forma dense macchie in terreni umidi di ambiente ripariale, lungo gli argini di fiumi e stagni ma anche sui margini di campi coltivati e sulle dune sabbiose, anche vicino al mare.[2]
La nomenclatura binomiale assegnata rivela una ripetizione. Il nome generico deriva dal latino arundō o harundō, "canna", "bastone", "freccia" o "stecca ortopedica" (secondo Hjalmar Frisk da associare al greco ἄρον áron "gigaro")[3], mentre il nome della specie viene dal greco δόναξ dónax, ovvero "canna"[4].
Fisiologicamente presenta un ciclo C3 con un'inusuale alta capacità fotosintetica che le conferisce peculiari vantaggi ecologici. Analizzando alcuni parametri come scambio di gas, fluorescenza e conduttanza stomatica in condizioni di crescita naturali, si è registrato un massimo tasso fotosintetico pari a 37 µmoli m−2 s−1, un valore molto superiore ad altre piante dotate di ciclo C4[5]. Questa alta efficienza fotosintetica è associata all'assenza di saturazione alla luce, mentre l'efficienza idrica determinata (WUE = water use efficiency) è tra 4.1 e 9.3 µmol mmol−1.
È la più grande tra le canne d'Europa, raggiungendo generalmente i 6 m di altezza. In condizioni ideali può anche superare i 10 m, con fusti, detti culmi, cavi del diametro di 2–3 cm. Le foglie sono alternate, di colore grigio-verde, lunghe 30–60 cm e larghe 2–6 cm; hanno una forma lanceolata, rastremata in punta, e alla base presentano un ciuffo di peli lanosi. Nell'insieme A. donax assomiglia a una cannuccia di palude di grandi dimensioni o a una canna di bambù. Esistono due varietà: A. donax variegata e A. donax versicolor delle quali la seconda è ritenuta più attraente grazie al suo colore screziato.
Questa specie ad impollinazione anemogama fiorisce in settembre-ottobre producendo pannocchie piumose fusiformi, di colore da verde pallido a violaceo, lunghe 40–60 cm e con portamento verticale. I fiori sono monoici, i semi raramente sono fertili e la riproduzione avviene per lo più per via vegetativa, attraverso rizomi sotterranei. Questi ultimi sono legnosi, fibrosi e formano estesi tappeti nodosi che penetrano fino a un metro di profondità nel terreno[6][7]. La parte aerea della pianta durante l'autunno secca e cade a terra, per rigenerarsi poi in primavera a partire dai rizomi.[8]
L'avanzamento dei rizomi è assolutamente locale, e quindi la colonia di steli avanza a macchia d'olio, ad estendere la propria superficie. Porzioni di fusto e di rizoma lunghi meno di 5 cm e che contengono almeno un nodo germogliano facilmente[9]. Questa diffusione per via vegetativa sembra costituire un efficace adattamento al verificarsi delle inondazioni. Infatti durante questi eventi catastrofici, gli individui di A. donax possono rompersi diffondendo frammenti in grado di germogliare e colonizzare nuove aree a valle[7].
La canna comune preleva grandi quantità di acqua dal suolo umido per sostenere la sua rapida crescita, che può arrivare fino a 5 cm al giorno durante la stagione primaverile[10]. È capace di crescere in macchie dense che possono soffocare altre piante e impedirne così la diffusione.
Dal punto di vista ecologico una macchia di Arundo donax vigorosa indica sempre ricchezza di acqua nel sottosuolo, e profondità del suolo stesso. Quindi anche se si adatta a suoli poveri, la presenza di suoli aridi e ridotti in profondità è direttamente indicata dal ridotto vigore dei culmi.
Arundo donax è stata coltivata in tutta l'Asia, in Europa meridionale, in nord Africa e in Medio Oriente per migliaia di anni. Gli antichi Egizi usavano le foglie di questa pianta per avvolgere le spoglie dei defunti. Data la grande densità di individui che ne caratterizza la crescita, spesso è stata utilizzata per creare siepi frangivento. Le canne contengono silice e forse questa è la principale ragione per la loro resistenza e durabilità. Sono state inoltre usate per realizzare canne da pesca, calami (strumenti per scrivere), bastoni da passeggio e per produrre carta. I fusti duri trovano impiego come supporto per piante rampicanti e piante di vite e di pomodoro.
Il materiale che costituisce il fusto è contemporaneamente flessibile e abbastanza resistente da essere considerato come il migliore per il confezionamento di ance di strumenti musicali a fiato come oboe, fagotto, clarinetto e sassofono. In particolare, le canne provenienti dalle coltivazioni della Provenza sono celebri per il lor impiego nella produzione di ance. L'impresa Selmer, fondata a Parigi nel 1885 dal clarinettista Henri Selmer, ha cominciato la sua attività proprio producendo ance per strumenti musicali. Nel 1905 il clarinettista Eugène Van Doren ha fondato la compagnia Vandoren, oggi leader mondiale nel mercato delle ance di canna. I culmi di A. donax vengono inoltre impiegati per realizzare le canne di molti tipi di cornamuse. La canna domestica è stata usata per oltre 5000 anni nella produzione di flauti e il flauto di Pan è formato da 10 o più canne di diverse dimensioni legate o incollate fra loro.
Dato il suo ritmo di crescita molto elevato, la specie A. donax costituisce un ottimo candidato per la produzione di biomassa per uso combustibile e anche come fonte di cellulosa per l'industria della carta. La canna domestica è infatti una pianta perenne di grandi dimensioni che produce ogni anno più biomassa per acro di qualsiasi altra pianta erbacea. È stata a lungo riconosciuta come importante fonte non legnosa di biomassa ad uso industriale. Infatti può essere coltivata su un grande numero di tipi diversi di suolo e nelle condizioni climatiche più varie. Produce un profondo apparato radicale, 6 volte maggiore del sorgo, più del doppio rispetto al miscanto[11], riuscendo a ottenere alte rese unitarie anche in condizioni asciutte e non irrigue. Gli studi evidenziano inoltre come A. donax mantenga una capacità di assorbimento idrico costante lungo il profilo radicale. La pianta raggiunge la maturità (lunghezza di 5–6 m) in circa un anno e, a seconda del clima in cui è cresciuta, può essere raccolta da una a 3 volte all'anno. Produce una media di 25 tonnellate di fibra di alta qualità per acro. Un campo di canna domestica può essere sfruttato per 20-25 anni senza la necessità di ripiantare nuovi individui né di utilizzare costose e inquinanti sostanze fertilizzanti e diserbanti.
Uno dei suoi possibili impieghi consiste nella lavorazione dei trucioli per la produzione di pellet di biocombustibile, questi tuttavia sono caratterizzati da elevati livelli di silice. La canna comune è un biocombustibile ad alto rendimento (3.400 kJ/kg) e l'uso di moderne ed efficienti tecniche di trasformazione consente di convertire la materia organica della pianta in diversi vettori energetici: syngas, etanolo[12] e biodisel. Studi approfonditi sull'utilizzo della canna domestica come biocombustibile sono in corso in Florida, dove il Biomass Investment Group (BIG) porta avanti un progetto per la realizzazione di una centrale elettrica che utilizzi come combustibile la canna domestica. Questo progetto rappresenta la prima operazione di grande portata nello sfruttamento della combustione di una pianta per la produzione di energia elettrica. Tra i vantaggi arrecati dal punto di vista ambientale troviamo: la natura rinnovabile della fonte energetica, l'assorbimento da parte della pianta nel corso della sua vita di una quantità di CO2 equivalente a quella emessa durante la sua combustione, il carattere essenzialmente rispettoso del suolo dei metodi di coltivazione di questa specie e infine le ridotte emissioni di gas inquinanti conseguenti la combustione. La biomassa verrà convertita in combustibile liquido che alimenterà delle turbine collegate a degli alternatori.
All'interno della Comunità Economica Europea, sin dalla fine degli anni sessanta, sono stati realizzati importati progetti nell'ambito di specifici programmi finalizzati allo studio delle colture agrarie come possibili fonti di biomassa per la produzione di energia. Le colture da energia sono coltivazioni destinate a fornire massa lignocellulosica per la produzione di energia elettrica e/o termica. Oggi la politica agricola dell'Unione europea, individuando nelle colture non-food un valido strumento per rafforzare lo sviluppo rurale e opportunità di crescita per le sue popolazioni, spinge verso la conversione dei terreni agricoli marginali e/o messi a riposo (ex set-asides), pari in Italia a 230 000 ha, così come il recupero di quelle superfici nel tempo abbandonate dagli agricoltori, oggi stimabili in 1,8 milioni di ettari di SAU (Superficie Agricola Utile)[13].
Il primo strumento di attuazione operativa in ambito nazionale per avviare le azioni derivanti dall'applicazione delle direttive previste dal protocollo di Kyoto è stato il programma nazionale combustibili PROBIO. Tale programma ha finanziato tra il 1999 e il 2001 numerosi progetti, tra cui il progetto PRISCA, Progetto di RIcerca Sulle Colture Alternative. Sono state identificate, confrontate e caratterizzate diverse colture, tra cui specie erbacee annuali (girasole (Helianthus annuus L.), colza (Brassica napus L.), kenaf (Hibiscus cannabinus L.), sorgo (Sorghum bicolor L. Moench), topinambur (Helianthus tuberosus L.), ecc.), poliennali (cardo (Cynara cardunculus L.), miscanto (vedi Miscanthus Giganteus), canna comune, ecc.), e specie legnose (pioppo (Populus spp., salice (Salix spp.), eucalipto (Eucaliptus spp.), robinia (Robinia pseudoacacia L.) ecc.), caratterizzando la qualità della biomassa e la capacità di ricrescita dopo la ceduazione[14].
Idealmente le colture da energia devono fornire alte rese con minimo input. Rispetto alle specie annuali, le colture erbacee perenni presentano vantaggi energetici significativi, permettendo di ammortizzare i costi d'impianto (pari al 50% dell'energia totale spesa per la coltura) lungo l'intera durata della coltivazione[15]. Le colture perenni, inoltre, presentano importanti vantaggi ecologici, tra cui il limitato bisogno di lavorazioni del suolo, riducendo i rischi di erosione in ambienti collinari[16] e incrementando la biodiversità tellurica e il sequestro del carbonio nel suolo agrario[17][18]. Inoltre, grazie alla notevole rusticità, queste specie hanno una bassa domanda di elementi nutritivi, alta resistenza ad agenti patogeni e parassiti fitofagi, resistenza a stress idrici e termici, e presentano una capacità di crescita in substrati a forte concentrazione salina. La canna comune, irrigata, ha fatto registrare rese superiori a 45 t ha−1 anche con acqua salmastra con una concentrazione di sali pari a 9 dS m−1[19].
Tra le erbacee perenni, A. donax è stata oggetto di un vasto studio promosso dalla Comunità Europea, denominato FAIR 3 CT96 2028 “Giant reed (Arundo donax L.) Network” che ne ha considerato l'adattabilità e produttività in otto distinti areali[20]. In base alle ricerche svolte, questa specie viene indicata come una tra le più promettenti specie erbacee da biomassa in ambiente mediterraneo[21][22]. In queste regioni è considerata, infatti, come una coltura spontaneizzata, archeofita, già adattata a queste specifiche condizioni pedoclimatiche, ed in grado di garantire alte rese di biomassa, con un'epoca di raccolta flessibile (da fine autunno ad inverno) anche in rapporto alle esigenze aziendali. Si caratterizza, inoltre, per gli scarsi input di cui necessita e per una buona resistenza alla siccità.
In Italia, a Torviscosa (Ud), si è avuta dal 1937 al 1962 un'importante esperienza di coltivazione estensiva con questa specie (pari a 5400 ha su terreni di bonifica) per alimentare la locale fabbrica per la produzione di fibra artificiale, ottenuta da cellulosa[23]. Oggi la canna comune è al centro di numerose esperienze scientifiche volte a valutare e caratterizzare, dal punto di vista agronomico, tale coltura in differenti ambienti italiani.
Negli Stati Uniti, Arundo donax è al centro d'importanti progetti condotti sia in ambito pubblico (Auburn University, Washington State University, University of Washington, State of Alabama, il Dipartimento di Agricoltura – USDA – ARS, presso la stazione sperimentale di Tifton, GA) che privato (TreeFree Biomass Solutions, White Technology LLC, Innovative Energy Group e compagnie cartiere come Nile Group, Boise and Weyerhauser, ecc.).
La tecnica colturale non comporta particolari problemi alle comuni aziende cerealicole. Per la preparazione del terreno si ricorre, infatti, a una normale aratura o ripuntatura, facoltativamente accompagnata da una concimazione di fondo con 100 kg di P2O5 ha−1 (variazioni sono da considerare in accordo con la dotazione iniziale del terreno).
La pianta si caratterizza per la sterilità del seme, causata dal fallimento della divisione delle cellule madri delle megaspore. Ne consegue che la propagazione vegetativa rappresenta il principale aspetto meritevole di approfondimenti e ricerche. Per la messa a dimora vi sono due opzioni:
Partendo da rizoma il trapianto è effettuato quando il rischio di gelate tardive è minimo (fine inverno – inizio primavera) mentre il fusto può esser prelevato dalla pianta madre ed interrato all'inizio dell'inverno.
Per quanto riguarda la difesa della coltura, non sono previsti impieghi significativi di fitofarmaci. A. donax risulta essere, infatti, una coltura fortemente competitiva contro le infestanti a partire dal secondo anno, richiedendo, eventualmente, un trattamento erbicida di post-emergenza solo il primo anno.
In un recente studio effettuato in pieno campo presso l'Università di Pisa, sono stati confrontati due livelli di concimazione (0 N vs 200 N kg ha−1), epoca di raccolta (autunno vs inverno) e due sesti d'impianto (20 000 vs 40 000 piante ha−1) per sei anni. La coltura ha fatto segnare una maggior densità e produzione (pari a 0,3 kg sostanza secca m−2) in corrispondenza dell'investimento iniziale inferiore[15]. Anche la fertilizzazione ha permesso un sostanziale miglioramento della sostanza secca prodotta. Tale effetto scompare però nel tempo. Lo studio evidenzia che, ritardando la raccolta, il contenuto idrico diminuisce del 10%, consentendo una migliore qualità della biomassa prodotta. Rispetto ad altre colture da biomassa, la canna comune ha mostrato una positiva capacità di assorbimento idrico, costante lungo tutto il profilo di suolo esplorato dalle radici. Ciò consente di raggiungere rese soddisfacenti anche in condizioni di siccità[24]. Nello stesso studio è stato evidenziato che, in confronto a miscanto e panico (Panicum virgatum L.), la canna comune è in grado di mantenere un più alto tenore di umidità nei livelli superficiali del suolo, in ragione di un marcato ombreggiamento dello stesso.
L'anidride carbonica (CO2) è il principale gas serra rilasciato nell'atmosfera a seguito delle attività antropiche. È stato stimato che, a fronte di un incremento annuale di C atmosferico pari a 3.5 Pg (petagrammo), l'agricoltura ha il potenziale di sequestrare circa 42 – 90 Pg nei prossimi 50 - 100 anni[25]. L'ecologia agraria ha quindi focalizzato l'attenzione sulle colture erbacee perenni da biomassa, evidenziando le loro positive capacità di accumulo di C nel suolo. L'emissione di CO2 per unità di energia prodotta da queste colture è 10 volte minore rispetto al petrolio[26]. Venturi e Monti[27] (2005) hanno sottolineato come circa metà del C sequestrato sia localizzato nell'apparato radicale, permettendo uno stoccaggio prolungato nel tempo. McLauglin e Walsh[28] (1998) stimano un sequestro di carbonio 20 – 30 volte superiore rispetto ad una coltura annuale, in ragione delle ridotte lavorazioni del terreno e quindi minori perdite per mineralizzazione ossidativa. Arundo donax, a differenza di altre specie, presenta, inoltre, un'architettura dell'apparato radicale profonda, difficilmente mineralizzabile. La sostanza secca della parte ipogea di A. donax è stata riscontrata pari a 13.6 t ha−1, 6 volte maggiore rispetto al sorgo e due volte al miscanto[24]. Valutando l'effetto di una coltivazione decennale di A. donax, in confronto a normali colture avvicendate ed un suolo non coltivato, a carico di alcune caratteristiche pedologiche, sono state evidenziati positivi miglioramenti sulla quantità totale di carbonio e di biomassa microbica presente[18].
In rapporto all'intero ciclo della coltura, A. donax presenta tre stadi principali. Al primo anno, il giovane impianto registra una resa pari al 50 - 60% di quanto la stessa potrà produrre al secondo anno e a maturità. Dopo una lunga fase di plateau, si registra un marcato declino produttivo a partire dall'ottavo anno[29]. In bibliografia, si trova indicazione di rese pari fino a 100 t ha−1 anno−1 di sostanza fresca, ottenute in climi temperati e sufficiente irrigazione[30]. In Spagna centrale sono state registrate rese pari a 45,9 t di sostanza secca in condizioni di input non limitanti. A Torviscosa furono raggiunte medie produttive pari a 30 t ha−1.
I risultati di cui sopra testimoniano l'importanza dell'effetto “ambiente” per quanto concerne la produttività della specie, in rapporto alla lunghezza del ciclo considerato.
È stata introdotta dal Mediterraneo in Nord America nel XIX secolo come materiale per la costruzione di tetti e come agente di controllo dell'erosione nei canali di drenaggio[7][31]. Esempio di tale invasività, ristretta limitatamente all'ambito ripariale, è riportata negli ambienti ripariali sud californiani e Texas. Introdotta con successo dall'uomo al fine di consolidare i margini di fiumi e ruscelli, è diventata abbondante grazie alla involontaria azione antropica che, con la movimentazione di macchine pesanti quali bulldozers, ruspe, escavatori e trattori, hanno indotto la frammentazione dei rizomi e favorito la diffusione su larga scala[32]. Tali macchine vengono utilizzate per dragare i piccoli canali, tagliare le strade sterrate indesiderate, estrarre sabbia e ghiaia, per il taglio e il controllo della vegetazione. L'evidente incidenza dell'attività umana circa la diffusione di Arundo donax è stata documentata in uno studio condotto tra il 2004 e 2006 lungo la valle del fiume Tijuana; dallo studio è emerso come le stesse inondazioni abbiano in realtà una scarsa influenza sulla rottura dei rizomi e degli steli. Durante tali eventi infatti, gli steli sono rimasti attaccati alla pianta così come un 7% su circa 50 arundineti hanno evidenziato danni parziali. Di contro in un ambiente disturbato dall'attività incontrollata dell'uomo è stata documentata una densità di piante 61 volte maggiore di quella in ambiente non disturbato. Viene coltivata anche come pianta ornamentale e si è rapidamente naturalizzata lungo le coste di bacini dulciacquicoli del Nord America, del Sud America e dell'Australasia[9][31]. Il suo areale continua ad estendersi. È stata inserita nell'elenco delle 100 tra le specie esotiche invasive più dannose al mondo. Mack[33] evidenzia l'importanza di una attenta, neutrale e trasparente valutazione dei rischi e benefici presenti nell'introduzione di una qualsiasi pianta in un nuovo areale a qualsiasi scala (locale, nazionale e regionale). Questa dovrebbe includere le caratteristiche biologiche (dormienza, germinazione, riproduzione, fitness, suscettibilità e resistenza a parassiti e locali predatori). È tra le specie di piante terrestri a crescita più rapida al mondo (può arrivare a quasi 10 cm al giorno[34]); in America si sta diffondendo rapidamente provocando la scomparsa di piante autoctone[7][31] e danneggiando così gli ecosistemi ripariali. Il fusto e le foglie di A. donax contengono numerose sostanze chimiche che possono risultare dannose; tra queste troviamo la silice e vari alcaloidi, il cui compito è quello di proteggere la pianta dalla maggior parte degli insetti erbivori e scoraggiare altri animali dal nutrirsene[7][31][35]. Animali brucatori come le mucche, le pecore e le capre riescono a limitarne la diffusione ma difficilmente possono essere utili nel tenere la specie sotto controllo[34].
Le macchie di canna comune sono particolarmente esposte al rischio di incendio. La pianta infatti è altamente infiammabile durante tutto l'arco dell'anno e nei mesi più secchi la sua presenza può far aumentare la probabilità, l'intensità e la diffusione degli incendi nell'ambiente ripariale, producendo quindi una conversione delle comunità biologiche dalla tipologia regolata dalle inondazioni a quella regolata dagli incendi. Dopo l'incendio i rizomi di A. donax germogliamo rapidamente avendo anche in questo caso la meglio sulle piante americane autoctone. Si formano così grandi appezzamenti di terreno coperto da canna domestica lungo le rive dei fiumi o dei bacini dulciacquicoli[31][36]. In pratica, il verificarsi di incendi spinge ulteriormente verso la costituzione di comunità vegetali monospecifiche di A. donax. La presenza di estese macchie di canna domestica lungo le rive può anche portare alla riduzione della volta vegetale che fa ombra sull'habitat acquatico. Dirette conseguenze sono poi l'aumento della temperatura dell'acqua, la diminuzione della concentrazione di ossigeno e la riduzione della diversità biologica dell'intero habitat[31]. Considerando comunque che il fenomeno dell'autocombustione è da ritenersi estremamente raro in natura e che in Italia come nel resto del mondo la maggior parte degli incendi è di natura dolosa, il rischio di incendio associato ad Arundo donax non è un rischio specie specifico ma relativo, come nel caso dell'invasività, a una scorretta gestione (o all'assenza di gestione) dell'attività umana. Tant'è che quando Arundo donax viene allevata su estese superfici, presenta un rischio di incendio paragonabile ad altre colture erbacee.
Risulta quindi abbastanza evidente che i fattori di sensibilità associati ad A. donax (invasività, tendenza alla monocultura, rischio incendio) sono tutti legati a una scorretta gestione o all'assenza di gestione della coltura. Esplicativo è il caso di Torviscosa dove per oltre un ventennio è stata coltivata su una superficie di circa 5400 ha e non ha dato seguito né a problemi di invasività né a problemi di incendi o altro. Al riguardo, la sterilità della specie è un chiaro vantaggio, almeno se si fa riferimento a condizioni non ripariali. Come coltura agraria, infatti, il controllo risulta semplice, così come l'eradicazione a fine ciclo, vale a dire quando fenomeni di stanchezza naturali impongono la cessazione della coltura. La chiave del controllo è nella devitalizzazione della massa radicale, facilmente ottenibile con glyphosate (N-phosphonomethyl glycine), un erbicida ad applicazione di post-emergenza, sistemico, a largo spettro e non residuale nel suolo. Le dosi consigliate sono in funzione del tipo di trattamento scelto, anche in rapporto all'epoca d'intervento ed oscillano tra il 2-5% v/v. I sintomi associati al trattamento sono un ingiallimento o imbrunimento delle lamine fogliari, la morte dei meristemi, una ricrescita anormale ed un ricaccio multiplo (cespitoso) con presenza di foglie bianche nei nuovi germogli[37]. Una tecnica che ha fornito ottimi risultati presso il Santa Margherita and San Luis Watersheds weed Management Area, California, è il cut and spray, ovvero l'applicazione dell'erbicida mediante una soluzione pura, localizzata sul punto di taglio alla base dello stelo. Per un ottimale controllo è poi importante fare riferimento al momento in cui ha luogo l'applicazione dell'erbicida. I migliori risultati, in genere, si ottengono a seguito di applicazioni fogliari effettuate a fine estate – inizio autunno, quando la traslocazione alla parte epigea risulta superiore.
Il controllo biologico realizzato attraverso l'impiego di insetti erbivori specialisti provenienti dall'areale di origine di Arundo donax produce risultati piuttosto limitati. Nonostante la canna domestica possieda un'ampia varietà di sostanze chimiche nocive sia all'interno del fusto che nelle foglie, la protezione che tali sostanze forniscono è efficace contro la maggior parte degli insetti generalisti e dei vertebrati, ma non contro insetti che si sono specializzati a nutrirsi di questa pianta e che possono arrecarle danni considerevoli[7][31][35][38]. Tre di questi insetti erbivori specialisti sono stati importati dalla regione mediterranea e la loro efficacia come agenti di controllo biologico è in fase di valutazione. Le tre specie sono l'imenottero Chalcidoidea Tetramesa romana (una vespa), il rincoto Diaspididae Rhizaspidiotus donacis e il dittero Chloropidae Cryptonevra spp (una mosca). Altri organismi che hanno effetti negativi su Arundo donax sono i funghi Armillaria mellea, Leptostroma donacis, Papularia sphaerosperma, Puccinia coronata e Selenophoma donacis.
Infestazioni di piccole dimensioni possono essere estirpate manualmente facendo bene attenzione che l'intero apparato radicale e tutti i rizomi vengano rimossi completamente. Dato che la canna domestica cresce in macchie dense e possiede grosse radici, la rimozione manuale o meccanica delle parti sotterranee di ampie monocolture clonali risulta essere un processo lento, difficile e spesso inefficace. Pezzi di rizoma seppelliti sotto 1–3 m di terreno possono germogliare nuovamente e il disturbo arrecato dalla rimozione meccanica al suolo e alle comunità biologiche in esso presenti può essere forte.
Per strappare o rimuovere le piante germogliate da poco o gli individui giovani fino a 2 m di altezza, il momento ideale è quello subito successivo a forti acquazzoni, quando il terreno è morbido. I fusti delle piante più grandi possono essere tagliati con una sega elettrica o con il decespugliatore, mentre per togliere le radici conviene usare una vanga oppure un piccone. Quando possibile, l'uso di equipaggiamento pesante come un escavatore, è consigliabile.
Un altro metodo consiste nel soffocare le piante con una tela cerata. I fusti devono essere tagliati nel mese di maggio e quanto più possibile vicino al suolo e i monconi rimasti vanno coperti con una tela cerata molto spessa e lasciati così per un'intera stagione. In questo modo la luce non può raggiungere le piante che quindi vedono ridursi drasticamente la loro capacità di eseguire la fotosintesi. La mancanza di luce impedisce la crescita di nuovi germogli e infine costringe le piante a esaurire le loro riserve energetiche fino a provocarne la morte[7].
Per indurre la morte dell'apparato radicale, dopo la fioritura, degli erbicidi sistemici possono essere applicati il più possibile vicino al terreno sui pezzi di canna tagliati oppure sotto forma di spray foliari[31]. Il glifosato viene usato per il trattamento dei canneti nelle zone umide. Per informazioni dettagliate sull'uso e gli effetti di questo composto chimico vedere[39]. Quando si usano gli erbicidi, occorre seguire sempre le indicazioni di impiego in modo da non danneggiare gli altri organismi.
Sia i fusti trattati chimicamente che quelli non trattati possono essere lasciati sul terreno a decomporsi, ma il processo naturale di scomposizione avviene molto lentamente. Il compost derivante deve essere tenuto ben lontano dall'acqua. Se i fusti non sono stati trattati chimicamente e le condizioni del luogo lo permettono, i resti possono essere bruciati. Un'altra soluzione consiste nel ridurre le canne in frammenti molto piccoli da usare come concime. Questi trucioli possono essere buttati nei contenitori per i rifiuti organici o sparsi sul terreno come agente drenante. Inoltre, una volta innaffiati con erbicidi e sparsi su terreni coperti di canne fatte a pezzi sono efficaci nell'interrompere eventuali fenomeni di ricrescita[7].
La canna viene raccolta annualmente, preferibilmente durante il periodo invernale. La biomassa prodotta può essere destinata alla produzione di energia termica o alla produzione di etanolo di seconda generazione. La raccolta è meccanizzata: in seguito a recenti prove sperimentali sono state ottenute circa 47 t/ha di prodotto cippato[40]
Numerosi studi hanno recentemente messo in evidenza le capacità di A. donax per il risanamento o decontaminazione ambientale di siti fortemente inquinati da sostanze organiche o metalli pesanti mediante il loro assorbimento, degradazione e stabilizzazione come soluzione efficace e sostenibile da un punto di vista economico e ambientale. La canna comune presenta, inoltre, il vantaggio ecologico di non essere appetita dagli animali, e quindi evita la diffusione di sostanze tossiche e persistenti nella catena alimentare[41].
In base a fattori di traslocazione e di bioaccumulo di arsenico, A. donax si è mostrata pianta iperaccumulatrice, capace cioè di non mostrare sintomi di tossicità fino a 600 µg L−1 di As né stress ossidativi nell'apparato fogliare[41]. La capacità di accumulo avviene principalmente a carico della parte aerea della pianta (steli e foglie), permettendo quindi una facile rimozione dal sito. In un precedente studio sono state valutate le capacità fitoestrattive potenziali di piombo, zinco e cadmio, rispettivamente pari a 0,54, 1,43 e 0,08 kg ha−1[42]. Sono state riscontrate, inoltre, positive capacità di ridurre il carico inquinante presente nelle acque reflue di provenienza zootecnica utilizzando un sistema idroponico chiuso[43]. Gou e Miao[44] (2010) hanno osservato come la canna gentile possieda una forte tolleranza ai metalli pesanti, osservando una debole riduzione della biomassa secca prodotta, quando i tenori di As, Cd e Pb nel suolo sono al di sotto di, rispettivamente, a 254; 76.1 e 1 552 mg kg−1. In presenza di forti concentrazioni di metalli pesanti, come cadmio e nichel, non sono stati osservati effetti depressivi a carico del tasso fotosintetico e della crescita della pianta[45], così come di altri importanti parametri fisiologici, quali conduttanza stomatica, concentrazione intercellulare di CO2, resistenza stomatica, contenuto e fluorescenza della clorofilla[46]. Le sopra dette caratteristiche quindi permetterebbero la messa a coltura e la messa a rendita di aree attualmente inutilizzate sia per colture food che per colture feed.
La canna comune (Arundo donax L., 1753) o canna domestica è una pianta erbacea perenne e dal fusto lungo, cavo e robusto, che cresce in terreni anche relativamente poveri. La sua area di origine si estende dal bacino del Mediterraneo al Medio Oriente fino all'India, ma attualmente la canna si può trovare sia piantata che naturalizzata nelle regioni temperate e subtropicali di entrambi gli emisferi. Forma dense macchie in terreni umidi di ambiente ripariale, lungo gli argini di fiumi e stagni ma anche sui margini di campi coltivati e sulle dune sabbiose, anche vicino al mare.
Arundo donax, antique donax (ex Graeco δόναξ) et calamus (ex Graeco κάλαμος) est species Arundinis, Europae et Asiae meridionalis endemica, utilis rusticis pro perticis et palis, animalibus autem inedulis. A cultoribus haec species interdum ponitur, sed hodie in permultis orbis terrarum locis hi arundines situs humidos invadunt speciesque vernaculas expellunt.
Arundo donax, antique donax (ex Graeco δόναξ) et calamus (ex Graeco κάλαμος) est species Arundinis, Europae et Asiae meridionalis endemica, utilis rusticis pro perticis et palis, animalibus autem inedulis. A cultoribus haec species interdum ponitur, sed hodie in permultis orbis terrarum locis hi arundines situs humidos invadunt speciesque vernaculas expellunt.
Pijlriet (Arundo donax) is een op riet lijkende, vaste plant, die behoort tot de grassenfamilie (Poaceae). De soort kan een dicht tapijt vormen.
De plant wordt tot zes meter hoog, maar kan onder zeer goede groeiomstandigheden meer dan tien meter hoog worden. Pijlriet plant zich hoofdzakelijk vegetatief voort door de vorming van wortelstokken. Ook afgebroken stengelstukjes met ten minste nog één knoop wortelen makkelijk. De holle stengels zijn 2-3 cm dik en bevatten veel silicium. De grijsgroene bladeren zijn 30-60 cm lang en 2-6 cm breed.
Pijlriet bloeit in de nazomer met 40-60 cm lange pluimen. Het zaad is meestal niet kiemkrachtig.
Pijlriet wordt al duizenden jaren geteeld in Azië, Zuid-Europa, Noord-Afrika en het Midden-Oosten. De oude Egyptenaren wikkelden hun doden in de bladeren van pijlriet. De stengels werden gebruikt voor vishengels, wandelstokken en papier. Het stond bekend als Spaans Riet. Later is hierover naamsverwarring ontstaan toen ook de rotan uit Oost-Indië met deze naam werd aangeduid.
Stukjes stengel worden gebruikt bij bepaalde muziekinstrumenten, zoals de hobo, klarinet, fagot en saxofoon (rietblazers). Het blazen langs (een klein stukje van) het riet zorgt ervoor dat het riet gaat trillen, waardoor er geluid ontstaat. In het midden oosten wordt de plant gebruikt als fluit, ney genoemd. Er is bewijs dat dit instrument minstens 4500 jaar geleden gebruikt werd, waardoor het een van de oudste instrumenten is die nu nog steeds wordt gebruikt. Het instrument wordt hoofdzakelijk in het voormalige Perzische Rijk bespeeld.
Pijlriet (Arundo donax) is een op riet lijkende, vaste plant, die behoort tot de grassenfamilie (Poaceae). De soort kan een dicht tapijt vormen.
De plant wordt tot zes meter hoog, maar kan onder zeer goede groeiomstandigheden meer dan tien meter hoog worden. Pijlriet plant zich hoofdzakelijk vegetatief voort door de vorming van wortelstokken. Ook afgebroken stengelstukjes met ten minste nog één knoop wortelen makkelijk. De holle stengels zijn 2-3 cm dik en bevatten veel silicium. De grijsgroene bladeren zijn 30-60 cm lang en 2-6 cm breed.
Pijlriet bloeit in de nazomer met 40-60 cm lange pluimen. Het zaad is meestal niet kiemkrachtig.
Kjemperør er en sumpplante i gressfamilien med uvanlig lange stengler. Hele planten kan bli opptil 10 meter høy, men 5-6 meter er vanlig. Diameteren på de hule stenglene kan være opptil 3 centimeter. Bladene er dolkeformede med avsmalende spiss. Fargen er grågrønn med en liten dusk ved basen. De blir 30 til 60 centimeter lange og 2-6 centimeter brede. Bladene er festet i et karakteristisk ledd på stenglen. Stenglene minner mye om bambus med sine ledd, men er noe mykere og mer smidige.
Planten blomstrer på sensommeren med lange, fjæraktige blomster, ikke ulikt takrør. Frøene er sjelden fruktbare, og planten formerer seg først og fremst gjennom rotskudd. Røttene danner tette matter som kan trenge opptil én meter ned i jorda. Mattene brekker ofte opp under flom. Løsrevne stengler med røtter slår lett rot på egnede steder.[1]
Kjemperør er blitt dyrket i flere tusen år i Asia, Sør-Europa, Nord-Afrika og Midtøsten, men hvor den opprinnelig kommer fra, er omdiskutert. Formeringen er hovedsakelig vegetativ, og det er derfor lite genetisk variasjon. Studier av den økologiske nisjen tyder på at de dyrkede og naturaliserte plantene stammer fra sørbredden av Det kaspiske hav, Sør-Iran eller Indusdalen.[2][3]
I middelhavslandene er kjemperør helt naturalisert. Her fins det i tillegg naturlig vekst av tre mer småvokste arter i slekten Arundo.[4]
Kjemperør blir nå dyrket og er naturalisert mange steder i verden. I California har den skapt store problemer ettersom de tette bestandene fortrenger naturlig vegetasjon, og er arnested for branner. Kjemperør tåler godt at omgivelsene brenner med jevne mellomrom, i motsetning til den opprinnelige vegetasjonen som ikke er tilpasset hyppige branner.[5] Den er tatt med i Verdens naturvernunions liste over de 100 mest skadelige invaderende artene i verden.[6]
Bruk av kjemperør går tilbake til antikken. De gamle egypterne gravla sine døde pakket i bladene, og stenglene har blitt brukt til stativer, spydskaft, fiskestenger og tilsvarende tilbake så langt man kjenner. Panfløyter lages tradisjonelt av kjemperør, og rørene brukes også som flis til treblåseinstrumenter.[7] Stenglene inneholder en del silisiumdioksid, noe som gjør dem uvanlig slitesterke. Kjemperør har vært brukt til å lage spaserstokker. Ved normal bruk kan en slik stokk holde seg i flere hundre år, noe som vel må sies å være bra for en gresstengel.[5]
Kjemperør produserer svært mye biomasse per areal. En italiensk studie som gikk over ti år, viste en gjennomsnittlig netto energiproduksjon på 637 GJ per ha og år.[8] Planten er svært tilpasningsdyktig til ulike vekstforhold, og en ser for seg at den kan bli en viktig kilde for bioenergi.[9]
Kjemperør er en sumpplante i gressfamilien med uvanlig lange stengler. Hele planten kan bli opptil 10 meter høy, men 5-6 meter er vanlig. Diameteren på de hule stenglene kan være opptil 3 centimeter. Bladene er dolkeformede med avsmalende spiss. Fargen er grågrønn med en liten dusk ved basen. De blir 30 til 60 centimeter lange og 2-6 centimeter brede. Bladene er festet i et karakteristisk ledd på stenglen. Stenglene minner mye om bambus med sine ledd, men er noe mykere og mer smidige.
Planten blomstrer på sensommeren med lange, fjæraktige blomster, ikke ulikt takrør. Frøene er sjelden fruktbare, og planten formerer seg først og fremst gjennom rotskudd. Røttene danner tette matter som kan trenge opptil én meter ned i jorda. Mattene brekker ofte opp under flom. Løsrevne stengler med røtter slår lett rot på egnede steder.
Lasecznica trzcinowata, arundo trzcinowate (Arundo donax L.) – gatunek rośliny z rodziny wiechlinowatych (Poaceae).
Gatunek pochodzi z części Azji o klimacie umiarkowanym i tropikalnym, ale rozprzestrzenił się szeroko i obecnie występuje także w Afryce Północnej, Australii i Nowej Zelandii, Europie, Ameryce Północnej i Południowej, na Hawajach. W Europie występuje w południowej części kontynentu (Szwajcarii, Albanii, Chorwacji, Grecji, Rumunii, we Włoszech, Francji, w Portugalii, Hiszpanii i na Krymie)[3], poza tym na wyspach Makaronezji[4].
Zakwita pod koniec lata – od września do grudnia[4]. Większość kwiatów jest bezpłodna, nasiona zawiązują się rzadko. Rozmnaża się głównie wegetatywnie przez kłącza. Kiełkować i rozwinąć się w samodzielną roślinę może już kawałek kłącza o długości poniżej 5 cm, jeśli tylko występuje na nim kolanko. Ukorzeniać się mogą także pędy powalone, np. przez powódź[5].
Hydrofit. Najlepiej rozwija się, gdy warstwa wody jest równa z powierzchnią podłoża, lub jeśli woda znajduje się niewiele poniżej niego. Rośnie w rowach i na ich brzegach, na brzegach strumieni i rzek, najlepiej w warunkach dużej wilgotności i dobrego oświetlenia. Może rosnąć zarówno na ciężkich glinach, jak i na luźnych piaskach, toleruje także duże nawet zasolenie gleby oraz okresowe zatapianie[5].
W wielu miejscach świata jest gatunkiem inwazyjnym. Rośnie tak bujnie (ok. 2–5 razy szybciej od innych roślin), że wypiera rodzime gatunki roślin. Stanowi zagrożenie pożarowe, gdyż wyschnięte pędy palą się intensywnie, a zapalają 3–4 razy łatwiej, niż suche pędy rodzimej roślinności. Grube masy kłączowe tworzą mosty i tamy zatykające rowy melioracyjne i strumyki, zmieniając w ten sposób warunki w ekosystemie[5].
Według badaczy roślin biblijnych występujące w wielu miejscach Biblii słowo trzcina odnosi się do lasecznicy trzcinowatej, która zarówno w czasach biblijnych, jak i obecnie występuje nad brzegami strumieni, rzek i Morza Martwego, a nawet na Pustyni Judzkiej i pustyni Negew. Gdy Jezus Chrystus mówi do tłumów (Mt 11,7) „Coście wyszli oglądać w pustyni? Trzcinę kołyszącą się na wietrze?", porównuje do trzciny (lasecznicy trzcinowatej) chwiejnego i pozbawionego zasad moralnych Heroda. W owych czasach bowiem trzcina była przyjętym przez Heroda symbolem wybijanym na pieczęciach oraz na monetach. Z trzciny wykonano opisany w Księdze Ezechiela (Ez 40,5) pręt mierniczy o długości 2,67 m, który miał: "aż sześć łokci, liczony po jednym łokciu i po jednej piędzi". Trzcina w Biblii była także symbolem niedoli Izraelitów w Egipcie. Ezechiel pisze (Ez 29,6–7): „Gdy się chwytali ciebie ręką, ty się łamałaś i rozrywałaś im całą rękę ...”[6].
Lasecznica trzcinowata, arundo trzcinowate (Arundo donax L.) – gatunek rośliny z rodziny wiechlinowatych (Poaceae).
A cana-do-reino ou cana comum (Arundo donax) é uma espécie de planta com flor pertencente à família Poaceae. A autoridade científica da espécie é L., tendo sido publicada em Species Plantarum 1: 81. 1753.[1] É uma alta planta perene, nativa do sul e este da Ásia, e da bacia do Mediterrâneo.[2] Não confundir com a "cana-da-india" originária da China e de nome científico Phyllostachys bambusoides(1).
Cresce por volta dos 4 m a 6 m, raramente passando dos 10 m, com ramos ocos de 2 a 3 cm de diâmetro. As folhas variam entre os 30 a 60 cm de comprimento e entre 2 a 6 cm de largura, de tonalidade verde-acizentado, cujas bases apresentam tufos.
Sua flor brota no verão tardio, nas secções elevadas da planta, com 40 a 60 cm de comprimento, e cujas sementes raramente são férteis. Por outro lado, essa planta reproduz-se por meio de rizomas subterrâneos. Os rizomas são rijos e fibrosos, aparentando nós, a dispersando-se pelo solo a até 1m de profundidade, compondo uma rígida base à cana-do-reino. Acredita-se que seja uma evolução a adequar-se às enchentes frequentes das regiões onde cresce, as quais poderiam enfraquecer e arrancar a planta.
Sua alta taxa de crescimento (5 cm por dia na primavera) requer grandes quantidades de água, disputando cada centímetro de solo com outras espécies vegetais locais.
A cana-do-reino tem sido cultivada pela Ásia (especialmente os Orientes Próximo e Médio), sul da Europa e norte da África por milénios. Os antigos egípcios envolviam seus mortos com as folhas dessa planta, ao passo que sua cana (a qual contém silício) tem sido usada na fabricação de varas-de-pescar, bengalas e papel.
Além disso, sua cana é ao mesmo tempo flexível e forte o bastante para ser usada como palheta para instrumentos de sopro como o oboé, clarinete, saxofone e gaita-de-fole; tal uso é constatado em flautas de mais de 5 000 anos. Para além de objetos como bengalas e varas-de-pesca, o característico crescimento rápido da cana-do-reino sugere que seja uma ótima opção para a produção de biomassa e celulose para papel. Em Portugal esta cana é ainda usada para fazer foguetes e serve também na agricultura para suportes de algumas espécies como o tomateiro e Abobrinha também designada curgete em Portugal. É ainda utilizada para suporte de flores e trepadeiras em vasos.
A cana-do-reino foi introduzida na Califórnia na década de 1820 a fim de fornecer matéria-prima para telhados e controle de erosão por meio da drenagem de canais na área de Los Angeles. Tornou-se popular como planta ornamental e passou a ser cultivada também para a produção de palhetas musicais. A omissão em seu controle e o clima costeiro quente do oeste estadunidense, a tornaram uma espécie invasora de rápida proliferação, ampliando sua área ainda nos dias de hoje. Também passou a ser cultivada na América do Sul e Australásia.[3] Actualmente é invasora em muitas regiões do mundo,[4] incluindo em Portugal.[5][6]
Trata-se de uma espécie presente no território português, nomeadamente em Portugal Continental, no Arquipélago dos Açores e no Arquipélago da Madeira. Na Madeira, e possivelmente noutras regiões de Portugal, é conhecida por cana-vieira (também grafado canavieira)[7] ou cana-de-roca.[8]
Em termos de naturalidade, foi introduzida em Portugal Continental e nos Arquipélago dos Açores e da Madeira,[9] sendo uma espécie invasora;[10][11]
Não se encontra protegida por legislação portuguesa ou da Comunidade Europeia.
A cana-do-reino ou cana comum (Arundo donax) é uma espécie de planta com flor pertencente à família Poaceae. A autoridade científica da espécie é L., tendo sido publicada em Species Plantarum 1: 81. 1753. É uma alta planta perene, nativa do sul e este da Ásia, e da bacia do Mediterrâneo. Não confundir com a "cana-da-india" originária da China e de nome científico Phyllostachys bambusoides(1).
Cresce por volta dos 4 m a 6 m, raramente passando dos 10 m, com ramos ocos de 2 a 3 cm de diâmetro. As folhas variam entre os 30 a 60 cm de comprimento e entre 2 a 6 cm de largura, de tonalidade verde-acizentado, cujas bases apresentam tufos.
Sua flor brota no verão tardio, nas secções elevadas da planta, com 40 a 60 cm de comprimento, e cujas sementes raramente são férteis. Por outro lado, essa planta reproduz-se por meio de rizomas subterrâneos. Os rizomas são rijos e fibrosos, aparentando nós, a dispersando-se pelo solo a até 1m de profundidade, compondo uma rígida base à cana-do-reino. Acredita-se que seja uma evolução a adequar-se às enchentes frequentes das regiões onde cresce, as quais poderiam enfraquecer e arrancar a planta.
Sua alta taxa de crescimento (5 cm por dia na primavera) requer grandes quantidades de água, disputando cada centímetro de solo com outras espécies vegetais locais.
Navadni trstikovec (tudi navadna kanela ali navadna trstenika) (znanstveno ime Arundo donax) je visoka trajnica, ki uspeva v slanih vodah solin ali ob morski obali.
V Sloveniji ni samonikla. Verjetno je podivjala iz nekdanje gojitve. Njena prava domovina je Azija, od koder so jo prinesli zaradi večstranske uporabnosti njenih olesenelih stebel (strehe za senčnice, koli za ograje, privezovanje paradižnikov in drugih kultur). Njena ozkolistna sorodnica je Plinijev trstikovec (Arundo plinii), ki pa je v Sredozemlju samonikel.
Kargı (Arundo donax), tatlı su ve hafif tuzlu su içeren bölgelerde yetişen bir bitki türü.
Akdeniz zonunda, Orta Doğu'da ve Hindistan'da yetişir. 6 metre boya kadar uzar eğer ideal koşulları bulursa 10 metreye uzadığı da görülmüştür. Yetişkin gövde, içi boş ve yaklaşık 2 cm çapındadır. 60 cm'ye kadar uzayabilen yapraklar 2–6 cm enindedir. Yaz sonu çiçeklenir. Gri-yeşil tüylü sorguca benzeyen 40–60 cm'lik çiçekler açar. Bulunduğu ortamda su miktarı uygun olduğu takdirde bahar aylarında günde 5 cm'ye kadar uzayabilir. Kök rizomlarıyla çoğalma gösteren kargı istilacı bir tür olarak tanınır. Günümüzde Türk sazı olarak anılan ney,kargı denilen bir çeşit budaklı kamıştan yapılır.
Tek çenekliler ile ilgili bu madde bir taslaktır. Madde içeriğini geliştirerek Vikipedi'ye katkıda bulunabilirsiniz.Багаторічна трав'яниста рослина. Стебла до 5 метрів і до 3,5 (-4) см у діаметрі, порожнисті. Листки ланцетні, 5-7 см завдовжки, плоскі, яскраво зелені. Великі волоті фіолетових або жовтих колосків 3-6 дм в довжину. Колоски (9-) 11-14 мм, з 2-5 квітками. Квітне в Європі в кінці літа і восени.
Природжений діапазон поширення: Азія: Саудівська Аравія; Афганістан; Іран; Ірак; Сирія; Казахстан; Туркменістан; Узбекистан; Китай — Фуцзянь, Гуандун, Гуйчжоу, Хайнань, Хунань, Цзянсу, Сичуань, Тибетський автономний район, провінції Юньнань, Чжецзян; Японія; Бутан; Індія; Непал; Пакистан; Камбоджа; Лаос; М'янма; Таїланд; В'єтнам; Індонезія; Малайзія. Натуралізований широко, в тому числі в Україні, в Криму. Знайдений у Кілійській дельті Дунаю.[2] Також культивується.
Це одна з найшвидкозростаючих рослин у світі. Його фітомаса може замінювати деревину. Продуктивність 1 га Arundo donax еквівалентна 25-30 га ліса. З 1 га можна отримати 25-50 т сухої фітомаси Arundo donax.[2] Росте в безпосередній близькості від водних шляхів; іноді використовується як декоративний.
Arundo donax là một loài thực vật có hoa trong họ Hòa thảo. Loài này được L. mô tả khoa học đầu tiên năm 1753.[1]
Arundo donax là một loài thực vật có hoa trong họ Hòa thảo. Loài này được L. mô tả khoa học đầu tiên năm 1753.
Arundo donax L.
Синонимы Охранный статусАру́ндо тростнико́вый, или Тростни́к гига́нтский (лат. Arundo donax) — вид цветковых растений рода Арундо (Arundo) семейства Злаки (Poaceae).
Многолетнее травянистое растение до 6 м высотой. Стебель прямой, диаметром 1—3,5 см. Междоузлия утолщены. Растение формирует толстые, деревянистые корневища.
Каждый лист отчётливо разделён главной жилкой на две линейные части. Листья линейно-ланцетные, 30—60 см и 1—8 см шириной. Как правило, они длиннее междоузлий и не опушены, кроме небольшого числа волосков на длинном клиновидном конце листа. Лигула 0,7—1,5 мм.
Соцветие — густая метёлка 30—90 см длиной и около 5,8 см шириной в середине. Каждая отдельная метёлка 10—25 см длиной. Колосок 11—14 мм длиной, состоит из 2—5 цветков. Узкие ланцетные колосковые чешуи неравные, 8—12 мм длиной. Ланцетные нижние цветковые чешуи 8,5—23 мм длиной, 3—7-зубчатые. Три жилки формируют ость до 1,5 мм длиной. Двузубые концы нижних цветковых чешуй сверху покрыты волосками 5—6 мм длиной. Цветковая чешуя составляет примерно половину длины нижней цветковой чешуи.
Пыльники около 3 мм длиной.
Цветёт и плодоносит с июля по ноябрь.
Арундо тростниковый произрастает во влажных местах вдоль побережий, рек и озёр или на болотах, хотя может расти и на сухой почве.
Место происхождения этого вида остаётся спорным, выдвигаются гипотезы, что это — Восточная Азия, Индия или Средиземноморье.
Арундо тростниковый издревле выращивался в Азии вплоть до Средиземноморья и отсюда распространился в другие земли. В Новом Свете он появился в начале XIX века, когда он был интродуцирован в Калифорнии и оттуда быстро распространился. В США в настоящее время этот вид признан инвазивным, особенно в Калифорнии, Техасе и Неваде.
В наши дни арундо тростниковый широко распространён в тропиках и субтропиках Старого и Нового Света, а также в Океании.
Арундо тростниковый нередко выращивается в составе ветроломных насаждений[2]. На юге его связанные стебли равной длины используют для покрытия террас.
Он также частично подходит в качестве корма для скота. Коровы едят молодые листья, однако пренебрегают старыми листьями и стеблями.
В Древнем Риме из стеблей арундо тростникового получали стилусы для письма. В наши дни из них изготавливают трости для таких музыкальных инструментов, как волынки, гобои, кларнеты, фаготы и саксофоны. Древнейший музыкальный инструмент, изготовленный из него, относится к эпохе фараонов. Кроме того, из него изготавливается музыкальный инструмент най, восточная флейта, популярная на Среднем Востоке в традиционной и современной панарабской музыке.
Арундо тростниковый также отчасти подходит для изготовления бумаги, но бумага из него низкокачественная.
Благодаря быстрому росту и неприхотливости этот вид можно рассматривать как потенциальный источник энергии (биотопливо)[3].
В синонимику вида входят следующие названия:
Ару́ндо тростнико́вый, или Тростни́к гига́нтский (лат. Arundo donax) — вид цветковых растений рода Арундо (Arundo) семейства Злаки (Poaceae).
蘆荻又名芦竹(学名:Arundo donax),是多年生挺水高大宿根草本,形如芦苇。地下茎短缩、粗壮,多分枝,叶片广披针形,圆锥花序顶生,穗状呈扫帚状,9-12月为花果期。为主要水边观景植物。
分布于热带、亚热带,中国华东、华南和西南等地。被國際自然保護聯盟物種存續委員會的入侵物種專家小組(ISSG)列入世界百大外來入侵種。
ダンチク(暖竹、Arundo donax)は暖地の海岸近くに生育するイネ科の多年草。
別名アセまたはヨシタケ。ヨシに似ているがはるかに大型で、高さは2-4メートルになり、茎も太くて竹のようになる。地下茎は短く横に這い、大きな株立ちになる。葉は幅広い線形で、先端は細く伸びる。花序はヨシのものに似て、茎の先端から夏-秋に出る。
旧世界の亜熱帯を中心に分布し、日本の関東南部以西、中国南部、東南アジア、インド、地中海沿岸にある。
世界の侵略的外来種ワースト100に選定されている。
花序が紫色を帯びるものをムラサキダンチク(A. donax L. var. barbigera (Honda) Ohwi)と言い、包頴に毛があることでも区別されると言われる。また、タカサゴダンチク(タカサゴチク A. donax L. var. coleotricha Hack.) は、沖縄以南にあり、若い葉鞘部に毛が密生することで区別される。
茎は二酸化ケイ素を含み、頑丈かつ柔軟性に富むため、オーボエ、クラリネットなどの木管楽器のリード部分の素材となる他、釣竿や杖を作る際にも使用された。古代エジプトでは、死人の埋葬の際ダンチクの葉で死体を蔽う慣習があった。斑入りの品種(西洋ダンチク・フイリダンチク)もあり、庭園に植える。
紀伊半島ではサバのなれ鮨を作る際、それを包むのに使われ香気を添える。そのほか、古くから防風林的に畑などの周辺に植栽した例や、護岸に利用した例などが知られており、地域の生活に密着した植物であったと見られる。
近年では、バイオ燃料の原料として注目され、研究の対象になっている[1]。
研究は、本種にトリプタミン系化合物が豊富であることを発見しており、アメリカ産のものよりもインド産のものから発見されており、またインドでは様々な目的で用いられる[2]。ブフォテニンや[3]、グラミンのような[2]、毒素もまた発見された。
茎を除去した乾燥根茎は、0.0057%のDMT、0.026%のブフォテニン、0.0023%の5-MeO-MMTを含有する[2]。花にもDMTや5-MeO-NMT(英語版)が含まれる。