dcsimg

Ranavirus ( Alman )

fornì da wikipedia DE
 src=
TEM-Aufnahme einer von Ranaviren infizierten Zelle, die sich im Zytoplasma ansammeln und neben dem Zellkern Klumpen bilden

Ranavirus ist eine Gattung von Riesenviren (Nucleocytoviricota, NCLDVs) aus der Familie der Iridoviridae, Unterfamilie Alphairidovirinae.[2] Ranavirus ist die einzige Gattung in dieser Familie, deren Viren sowohl für Amphibien als auch Reptilien ansteckend sind. Wie auch die beiden anderen Gattungen Lymphocystivirus und Megalocytivirus der Unterfamilie Alphairidovirinae können Viren der Gattung Ranavirus auch Echte Knochenfische (Teleostei) infizieren.[3]

Auswirkungen auf die Ökologie

Die Ranaviren sind wie die Megalocytiviren eine Gruppe eng verwandter dsDNA-Viren, deren Bedeutung immer mehr zunimmt. Sie verursachen systemische Erkrankungen bei einer Vielzahl von wilden und kultivierten Süß- und Salzwasserfischen. Wie bei Megalocytiviren sind Ranavirus-Ausbrüche in Aquakulturen von erheblicher wirtschaftlicher Bedeutung, da Tierseuchen zu beträchtlichem Verlust oder gar Massensterben von Zuchtfischen führen können. Im Gegensatz zu den Megalocytiviren wurden Ranavirus-Infektionen bei Amphibien als ein Faktor für den weltweiten Rückgang der Amphibienpopulationen in Betracht gezogen.[4][5] Der Einfluss von Ranaviren auf Amphibienpopulationen wurde mit dem des Chytridenpilz Batrachochytrium dendrobatidis, dem Erreger der Chytridiomykose, verglichen.[6][7][8] Im Vereinigten Königreich wird angenommen, dass die Schwere der Krankheitsausbrüche aufgrund des Klimawandels (soll heißen: der globalen Erwärmung) zugenommen hat.[9]

Die Vorsilbe von lateinisch Rana ‚Frosch‘ abgeleitet[10] und erinnert an die erste Isolierung eines Ranavirus aus dem Nördlichen Leopardfrosch (Rana pipiens alias Lithobates pipiens) in den 1960er Jahren.[11][12][13]

Wirte

Von den folgenden Reptilienarten ist bekannt, dass sie Ranavirus infiziert werden können:

Aufbau

 src=
Genomkarte von ATV

Ranaviren sind große ikosaedrische DNA-Viren mit einem Durchmesser von etwa 150 nm und einem unsegmentierten linearen dsDNA-Genom von etwa 105 kbp,[22] Es gibt etwa 100 Proteine kodierende Gene.[23]

Das Genom von Frog virus 3 hat eine Länge von 105.903 bp und kodiert voraussichtlich 99 Proteine.[24]

Reproduktionszyklus

 src=
Schemazeichnung zum Replikationszyklus der Gattung Ranavirus

Die Replikation der Ranaviren ist bei der Typspezies Frog virus 3 (FV3) gut untersucht. Die Replikation von FV3 erfolgt bei 12 bis 32 °C.[23] Ranaviren gelangen durch Rezeptor-vermittelte Endozytose in die Wirtszelle.[25] Die Viruspartikel (Virionen) sind unbeschichtet und wandern nach dem Eindringen durch die Endocytose in den Zellkern, wo die virale DNA-Replikation über eine viruskodierte DNA-Polymerase beginnt.[26] Die Virus-DNA verlässt dann den Zellkern und es beginnt die zweite Stufe der DNA-Replikation im Zytoplasma, wobei letztendlich DNA-Concatemere gebildet werden.[26] Die virale DNA wird dann in infektiöse Virionen verpackt.[27]

Auch die Spezies Singapore Grouper Iridovirus (SGIV), Erreger der Krankheit Singapore Grouper Iridovirus Disease (SGIVD)[28] beim Rostflecken-Zackenbarsch (Epinephelus tauvina, en. Greasy grouper [en])[29] ist inzwischen gut untersucht. Deren Viruspartikel werden in sog. viral assembly sites (VAS) zusammengebaut (assembliert).[30]

Das Genom von Ranavirus weist wie bei anderen Iridoviridae terminal redundante DNA auf.[26]

Es wird angenommen, dass die Übertragung von Ranaviren auf mehreren Wegen erfolgt, unter anderem über kontaminiertem Boden, direkten Kontakt, Exposition durch Wasser und Verschlucken von infiziertem Gewebe während der Jagd, Nekrophagie oder Kannibalismus. Ranaviren sind in Gewässern relativ stabil und können außerhalb eines Wirtsorganismus mehrere Wochen oder länger überdauern.[12]

Evolution

Die Ranaviren scheinen sich aus einem Fischvirus entwickelt zu haben, das anschließend Amphibien und Reptilien infizierte.[31]

Systematik

Die innere Systematik der Gattung Iridovirus ist mit Stand März 2021 nach ICTV, ergänzt um einige Vorschläge in doppelten Anführungszeichen (nach NCBI, wo nicht anders angegeben):[1]

  • Unterfamilie Alphairidovirinae
  • Gattung: Ranavirus
 src=
Ein Zelle des Chinesischen Riesensalamanders (Andrias davidianus), infiziert mit Andrias davidianus ranavirus (ADRV)
  • Andrias davidianus ranavirus (ADRV)[33]
  • Pelophylax esculentus virus
  • Pike-perch iridovirus
  • Rana esculenta virus
  • Testudo hermanni ranavirus[34][35]
  • Tortoise ranavirus (ToRV1)[34]
  • Bohle iridovirus (BIV)[38]
  • German gecko ranavirus (GGRV)[34]
  • Giant salamander iridovirus (GSIV)[30]
  • Pike perch iridovirus (PPIV)[34]
  • Rana grylio iridovirus (RGV)[34]
  • Soft-shelled turtle iridovirus (STIV)[34]
  • Tiger frog virus (alias Rana tigrina ranavirus, Tiger frog ranavirus, TFV)[35][34]
 src=
EM-Aufnahmen von Virionen des Singapore grouper iridovirus (SGIV) in verschiedenen Stadien.
  • Grouper iridovirus (GIV)[34]
  • Spezies „Cod iridovirus“ (CoIV)[34]
  • Ranavirus maximus (Rmax)
  • Spezies „Short-finned eel ranavirus“ (SERV)[34][35]

Es gibt etliche nach ICTV mit Stand März 2021 noch nicht klassifizierten Kandidaten, siehe etwa Halaly et al. (2019).[34]

Einzelnachweise

  1. a b c d e f ICTV: ICTV Master Species List 2019.v1, New MSL including all taxa updates since the 2018b release, March 2020 (MSL #35)
  2. ICTV: Iridoviridae (en) In: ICTV Online (10th) Report.
  3. RJ Whittington, JA Becker, MM Dennis: Iridovirus infections in finfish – critical review with emphasis on ranaviruses. In: Journal of Fish Diseases. 33, Nr. 2, 2010, S. 95–122. doi:10.1111/j.1365-2761.2009.01110.x. PMID 20050967.
  4. A. G. F. Teacher, A. A. Cunningham, T. W. J. Garner: Assessing the long-term impact of Ranavirus infection in wild common frog populations: Impact of Ranavirus on wild frog populations. In: Animal Conservation. 13, Nr. 5, 10. Juni 2010, S. 514–522. doi:10.1111/j.1469-1795.2010.00373.x.
  5. Stephen J. Price, Trenton W. J. Garner, Richard A. Nichols, François Balloux, César Ayres, Amparo Mora-Cabello de Alba, Jaime Bosch: Collapse of Amphibian Communities Due to an Introduced Ranavirus. In: Current Biology. 24, Nr. 21, November 2014, S. 2586–2591. doi:10.1016/j.cub.2014.09.028.
  6. James K. Jancovich, Jinghe Mao, V. Gregory Chinchar, Christopher Wyatt, Steven T. Case, Sudhir Kumar, Graziela Valente, Sankar Subramanian, Elizabeth W. Davidson, James P. Collins, Bertram L. Jacobs: Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America. In: Virology. 316, Nr. 1, 2003, S. 90–103. doi:10.1016/j.virol.2003.08.001. PMID 14599794.
  7. Jesse L. Brunner, Danna M. Schock, Elizabeth W. Davidson, James P. Collins: Intraspecific Reservoirs: Complex Life History and the Persistence of a Lethal Ranavirus. In: Ecology. 85, Nr. 2, 2004, S. 560. doi:10.1890/02-0374.
  8. Pearman, Peter B., Trenton W. J. Garner: Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. In: Ecology Letters. 8, Nr. 4, 2005, S. 401. doi:10.1111/j.1461-0248.2005.00735.x.
  9. Stephen J. Price, William T. M. Leung, Christopher J. Owen, Robert Puschendorf, Chris Sergeant, Andrew A. Cunningham, Francois Balloux, Trenton W. J. Garner, Richard A. Nichols: Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease. In: Global Change Biology. 9. Mai 2019, . doi:10.1111/gcb.14651.
  10. Harper, Douglas: ‚frog‘, in: Online Etymology Dictionary.
  11. A. Granoff, P. E. Came, K. A. Rafferty: The isolation and properties of viruses from Rana pipiens: their possible relationship to the renal adenocarcinoma of the leopard frog. In: Annals of the New York Academy of Sciences. 126, Nr. 1, 1965, S. 237–255. bibcode:1965NYASA.126..237G. doi:10.1111/j.1749-6632.1965.tb14278.x. PMID 5220161.
  12. a b MJ Gray, DL Miller, JT Hoverman: Ecology and pathology of amphibian ranaviruses. In: Diseases of Aquatic Organisms. 87, Nr. 3, 2009, S. 243–266. doi:10.3354/dao02138. PMID 20099417.
  13. K. A. Rafferty: The cultivation of inclusion-associated viruses from Lucke tumor frogs. In: Annals of the New York Academy of Sciences. 126, Nr. 1, 1965, S. 3–21. bibcode:1965NYASA.126....3R. doi:10.1111/j.1749-6632.1965.tb14266.x. PMID 5220167.
  14. First identification of a ranavirus from green pythons (Chondropython viridis), Williamson, Coupar, Middleton, Hengstberger, Gould, Selleck, Wise, Kattenbelt, Cunningham, Lee: First identification of a ranavirus from green pythons (Chondropython viridis). In: Journal of Wildlife Diseases. 38, Nr. 2, 2002, S. 239–252. doi:10.7589/0090-3558-38.2.239. PMID 12038121.
  15. Benetka V.: First report of an iridovirus (genus Ranavirus) infection in a leopard tortoise (Geochelone pardalis pardalis). In: Vet Med Austria. 94, 2007, S. 243–248.
  16. A. P. De Matos, M. F. Caeiro, T Papp, B. A. Matos, A. C. Correia, R. E. Marschang: New viruses from Lacerta monticola (Serra da Estrela, Portugal): Further evidence for a new group of nucleo-cytoplasmic large deoxyriboviruses (NCLDVs). In: Microscopy and Microanalysis. 17, Nr. 1, 2011, S. 101–108. bibcode:2011MiMic..17..101A. doi:10.1017/S143192761009433X. PMID 21138619.
  17. J Mao, RP Hedrick, VG Chinchar: Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses. In: Virology. 229, Nr. 1, 1997, S. 212–220. doi:10.1006/viro.1996.8435. PMID 9123863.
  18. a b A. J. Johnson, A. P. Pessier, E. R. Jacobson: Experimental transmission and induction of ranaviral disease in Western Ornate box turtles (Terrapene ornata ornata) and red-eared sliders (Trachemys scripta elegans). In: Veterinary Pathology. 44, Nr. 3, 2007, S. 285–297. doi:10.1354/vp.44-3-285. PMID 17491069.
  19. Blahak S., Uhlenbrok C. "Ranavirus infections in European terrestrial tortoises in Germany". Proceedings of the 1st International Conference on Reptile and Amphibian Medicine; Munich, Germany. 4–7 March 2010; pp. 17–23
  20. Z. X. Chen, J. C. Zheng, Y. L. Jiang: A new iridovirus isolated from soft-shelled turtle. In: Virus Research. 63, Nr. 1–2, 1999, S. 147–151. doi:10.1016/S0168-1702(99)00069-6. PMID 10509727.
  21. R. E. Marschang, S Braun, P Becher: Isolation of a ranavirus from a gecko (Uroplatus fimbriatus). In: Journal of Zoo and Wildlife Medicine: Official Publication of the American Association of Zoo Veterinarians. 36, Nr. 2, 2005, S. 295–300. doi:10.1638/04-008.1. PMID 17323572.
  22. Williams T, Barbosa-Solomieu V, Chinchar GD: "A decade of advances in iridovirus research" S. 173-148. In: Maramorosch K, Shatkin A (Hrsg.): Advances in virus research, Vol. 65, Academic Press, New York, USA, 2005
  23. a b VG Chinchar: Ranaviruses (family Iridoviridae) emerging cold-blooded killers. In: Archives of Virology. 147, Nr. 3, 2002, S. 447–470. doi:10.1007/s007050200000. PMID 11958449.
  24. Disa Bäckström, Natalya Yutin, Steffen L. Jørgensen, Jennah Dharamshi, Felix Homa, Katarzyna Zaremba-Niedwiedzka, Anja Spang, Yuri I. Wolf, Eugene V. Koonin, Thijs J. G. Ettema; Richard P. Novick (Hrsg.): Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support Independent Origins of Viral Gigantism, in: mBio Vol. 10, Nr. 2, März–April 2019, S. e02497-18, PDF, doi:10.1128/mBio.02497-18, PMC 6401483 (freier Volltext), PMID 30837339, ResearchGate
  25. Heather E. Eaton, Brooke A. Ring, Craig R. Brunetti: The genomic diversity and phylogenetic relationship in the family Iridoviridae. In: Viruses. 2, Nr. 7, 2010, S. 1458–1475. doi:10.3390/v2071458. PMID 21994690. PMC 3185713 (freier Volltext).
  26. a b c R Goorha: Frog virus 3 DNA replication occurs in two stages. In: Journal of Virology. 43, Nr. 2, 1982, S. 519–528. PMID 7109033. PMC 256155 (freier Volltext).
  27. Chinchar VG, Essbauer S, He JG, Hyatt A, Miyazaki T, Seligy V, Williams T: "Family Iridoviridae" S. 145–162, in: Fauquet CM, Mayo MA, Maniloff J, Desselburger U, Ball LA (Hrsg.): Virus Taxonomy, Eighth report of the International Committee on Taxonomy of Viruses., Academic Press, San Diego, USA, 2005.
  28. Gilda D. Lio-Po, Leobert D. de la Peňa; Kazuya Nagasawa, Erlinda R. Cruz-Lacierda (Hrsg.): Diseases of Cultured Groupers, Southeast Asian Fisheries Development Center (SEAFDEC), Aquaculture Department, Government of Japan Trust Fund, Dezember 2004, ISBN 971-8511-70-9
  29. Virus-Host DB: Singapore grouper iridovirus
  30. a b c Yang Liu, Bich Ngoc Tran, Fan Wang, Puey Ounjai, Jinlu Wu, Choy L. Hew: Visualization of Assembly Intermediates and Budding Vacuoles of Singapore Grouper Iridovirus in Grouper Embryonic Cells, in: Sci Rep 6, 18696, 4, Januar 2016, doi:10.1038/srep18696
  31. JK Jancovich, M Bremont, JW Touchman, BL Jacobs: Evidence for multiple recent host species shifts among the Ranaviruses (family Iridoviridae). In: J Virol. 84, Nr. 6, 2010, S. 2636–2647. doi:10.1128/JVI.01991-09. PMID 20042506. PMC 2826071 (freier Volltext).
  32. NCBI: Common midwife toad virus (species)
  33. Zhongyuan Chen, Jianfang Gui, Xiaochan Gao, Chao Pei, Yijiang Hong & Qiya Zhang: Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV), in: Veterinary Research Band 44, Nr. 101, 21. Oktober 2013, doi:10.1186/1297-9716-44-101
  34. a b c d e f g h i j k Maya A. Halaly, Kuttichantran Subramaniam, Samantha A. Koda, Vsevolod L. Popov, David Stone, KeithWay, Thomas B. Waltzek: Characterization of a Novel Megalocytivirus Isolated from European Chub (Squalius cephalus), in: MDPI – Viruses 2019, 11, 440; doi:10.3390/v11050440, PDF
  35. a b c d Julien Andreani, Jacques Y. B. Khalil, Emeline Baptiste, Issam Hasni, Caroline Michelle, Didier Raoult, Anthony Levasseur, Bernard La Scola: Orpheovirus IHUMI-LCC2: A New Virus among the Giant Viruses, in: Front. Microbiol., 22. Januar 2018, doi:10.3389/fmicb.2017.02643
  36. Virus-Host DB: European catfish virus
  37. ICTV: European catfish virus, proposal 20162986
  38. Paul M. Hick, Kuttichantran Subramaniam Patrick Thompson Richard J. Whittington and Thomas B. Waltzekb: Complete Genome Sequence of a Bohle iridovirus Isolate from Ornate Burrowing Frogs (Limnodynastes ornatus) in Australia, in: Genome Announcv. 4(4); Juli-August 2016, PMC 4991696 (freier Volltext), PMID 27540051, doi:10.1128/genomeA.00632-16
  39. William H Wilson, Ilana C Gilg, Mohammad Moniruzzaman, Erin K Field, Sergey Koren, Gary R LeCleir, Joaquín Martínez Martínez, Nicole J Poulton, Brandon K Swan, Ramunas Stepanauskas, Steven W Wilhelm: Genomic exploration of individual giant ocean viruses, in: ISME Journal 11(8), August 2017, S. 1736–1745, doi:10.1038/ismej.2017.61, PMC 5520044 (freier Volltext), PMID 28498373
licensa
cc-by-sa-3.0
drit d'autor
Autoren und Herausgeber von Wikipedia
original
visité la sorgiss
sit compagn
wikipedia DE

Ranavirus: Brief Summary ( Alman )

fornì da wikipedia DE
 src= TEM-Aufnahme einer von Ranaviren infizierten Zelle, die sich im Zytoplasma ansammeln und neben dem Zellkern Klumpen bilden

Ranavirus ist eine Gattung von Riesenviren (Nucleocytoviricota, NCLDVs) aus der Familie der Iridoviridae, Unterfamilie Alphairidovirinae. Ranavirus ist die einzige Gattung in dieser Familie, deren Viren sowohl für Amphibien als auch Reptilien ansteckend sind. Wie auch die beiden anderen Gattungen Lymphocystivirus und Megalocytivirus der Unterfamilie Alphairidovirinae können Viren der Gattung Ranavirus auch Echte Knochenfische (Teleostei) infizieren.

licensa
cc-by-sa-3.0
drit d'autor
Autoren und Herausgeber von Wikipedia
original
visité la sorgiss
sit compagn
wikipedia DE

Ranavirus ( Anglèis )

fornì da wikipedia EN

Transmission electron micrograph of a cell infected with ranaviruses, which gather in the cytoplasm and in the assembly bodies next to the contorted nucleus.

Ranavirus is a genus of viruses, in the family Iridoviridae.[1] There are six other genera of viruses within the family Iridoviridae, but Ranavirus is the only one that includes viruses that are infectious to amphibians and reptiles. Additionally, it is one of the three genera within this family which infect teleost fishes, along with Lymphocystivirus and Megalocytivirus.[2]

Ecological impact

The Ranaviruses, like the Megalocytiviruses, are an emerging group of closely related dsDNA viruses which cause systemic infections in a wide variety of wild and cultured fresh and saltwater fishes. As with Megalocytiviruses, Ranavirus outbreaks are therefore of considerable economic importance in aquaculture, as epizootics can result in moderate fish loss or mass mortality events of cultured fishes. Unlike Megalocytiviruses, however, Ranavirus infections in amphibians have been implicated as a contributing factor in the global decline of amphibian populations.[3][4] The impact of Ranaviruses on amphibian populations has been compared to the chytrid fungus Batrachochytrium dendrobatidis, the causative agent of chytridiomycosis.[5][6][7] In the UK, the severity of disease outbreaks is thought to have increased due to climate change.[8]

Etymology

Rana is derived from the Latin for "frog",[9] reflecting the first isolation of a Ranavirus in 1960s from the Northern leopard frog (Lithobates pipiens).[10][11][12]

Evolution

VOA report about Ranavirus

The ranaviruses appear to have evolved from a fish virus which subsequently infected amphibians and reptiles.[13]

Hosts

Anuran Hosts

Urodelan Hosts

Reptilian Hosts

Taxonomy

The genus contains the following species:[24]

The family Iridoviridae is divided into seven genera which include Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus.[1] The genus Ranavirus contains three viruses known to infect amphibians (Ambystoma tigrinum virus (ATV), Bohle iridovirus (BIV), and frog virus 3).[25]

Structure

Ranaviruses are large icosahedral DNA viruses measuring approximately 150 nm in diameter with a large single linear dsDNA genome of roughly 105 kbp[26] which codes for around 100 gene products.[27] The main structural component of the protein capsid is the major capsid protein (MCP).

Replication

Ranaviral replication is well-studied using Frog virus 3 (FV3).[25][26] Replication of FV3 occurs between 12 and 32 degrees Celsius.[27] Ranaviruses enter the host cell by receptor-mediated endocytosis.[28] Viral particles are uncoated and subsequently move into the cell nucleus, where viral DNA replication begins via a virally encoded DNA polymerase.[29] Viral DNA then abandons the cell nucleus and begins the second stage of DNA replication in the cytoplasm, ultimately forming DNA concatemers.[29] The viral DNA is then packaged via a headful mechanism into infectious virions.[25] The ranavirus genome, like other iridoviral genomes is circularly permuted and exhibits terminally redundant DNA.[29] There is evidence that ranavirus infections target macrophages as a mechanism for gaining entry to cells. [30]

Transmission

Transmission of ranaviruses is thought to occur by multiple routes, including contaminated soil, direct contact, waterborne exposure, and ingestion of infected tissues during predation, necrophagy or cannibalism.[11][31] Ranaviruses are relatively stable in aquatic environments, persisting several weeks or longer outside a host organism.[11]

Epizoology

Amphibian mass mortality events due to Ranavirus have been reported in Asia, Europe, North America, and South America.[11] Ranaviruses have been isolated from wild populations of amphibians in Australia, but have not been associated with mass mortality on that continent.[11][32][33]

Pathogenesis

Synthesis of viral proteins begins within hours of viral entry[27] with necrosis or apoptosis occurring as early as a few hours post-infection.[26][34]

Seasonal Disease Dynamics

There are several hypothesis for seasonal outbreak patterns observed for Ranavirosis mortality events.[35] Ranaviruses grow in vitro between 8-30 °C, however for most isolates, warmer temperature result in faster viral replication.[35] A combination of this optimal growth temperature along with shifts in larval amphibian susceptibility result in seasonal outbreak events most often observed during warm summer months.[36] Amphibian mortality events are often observed as larval amphibians reach late Gosner stages approaching metamorphosis.[37] As larval amphibians reach metamorphic stages of development, their immune system is reorganized prior to the development of adult tissues.[38] During this time period, amphibians are stressed, and their immune systems are down regulated. This decrease in immune function and warmer environmental temperatures allows for greater viral replication and cellular damage to occur. Across 64 mortality events in the United States 54% were found to occur between June-August.[36]

Environmental Persistence

The environmental persistence of Ranaviruses is not understood well, however in realistic environmental conditions the T90 value of an FV3-like virus is 1 day.[39] The duration of persistence is likely affected by temperature and microbial conditions. It is unlikely that ranaviruses persist in the environment outside of host species between outbreak events. Researchers have explored several pathogen reservoirs for the virus which might explain how the virus can persist within an amphibian community. In some amphibian populations, sub-clinically infected individuals may serve as reservoirs for the pathogen.[6] These sub-clinically infected individuals are responsible for reintroduction of the virus to the larval population. With ranaviruses being capable of infected multiple taxa, and with there being differences in susceptibility between taxa, it is likely that sympatric fish and reptile species may serve as reservoirs for virus as well. Interclass transmission has been proven through the use of mesocosm studies.[40]

Gross pathology

Gross lesions associated with Ranavirus infection include erythema, generalized swelling, hemorrhage, limb swelling, and swollen and friable livers.[11]

See also

References

  1. ^ a b "Iridoviridae". ICTV Online (10th) Report.
  2. ^ Whittington, RJ; Becker, JA; Dennis, MM (2010). "Iridovirus infections in finfish – critical review with emphasis on ranaviruses". Journal of Fish Diseases. 33 (2): 95–122. doi:10.1111/j.1365-2761.2009.01110.x. PMID 20050967.
  3. ^ Teacher, A. G. F.; Cunningham, A. A.; Garner, T. W. J. (10 June 2010). "Assessing the long-term impact of Ranavirus infection in wild common frog populations: Impact of Ranavirus on wild frog populations". Animal Conservation. 13 (5): 514–522. doi:10.1111/j.1469-1795.2010.00373.x. S2CID 85889833.
  4. ^ Price, Stephen J.; Garner, Trenton W.J.; Nichols, Richard A.; Balloux, François; Ayres, César; Mora-Cabello de Alba, Amparo; Bosch, Jaime (November 2014). "Collapse of Amphibian Communities Due to an Introduced Ranavirus". Current Biology. 24 (21): 2586–2591. doi:10.1016/j.cub.2014.09.028. PMID 25438946.
  5. ^ Jancovich, James K; Mao, Jinghe; Chinchar, V.Gregory; Wyatt, Christopher; Case, Steven T; Kumar, Sudhir; Valente, Graziela; Subramanian, Sankar; Davidson, Elizabeth W; Collins, James P; Jacobs, Bertram L (2003). "Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America". Virology. 316 (1): 90–103. doi:10.1016/j.virol.2003.08.001. PMID 14599794.
  6. ^ a b Brunner, Jesse L.; Schock, Danna M.; Davidson, Elizabeth W.; Collins, James P. (2004). "Intraspecific Reservoirs: Complex Life History and the Persistence of a Lethal Ranavirus". Ecology. 85 (2): 560. doi:10.1890/02-0374.
  7. ^ Pearman, Peter B.; Garner, Trenton W. J. (2005). "Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity". Ecology Letters. 8 (4): 401. doi:10.1111/j.1461-0248.2005.00735.x.
  8. ^ Price, Stephen J.; Leung, William T. M.; Owen, Christopher J.; Puschendorf, Robert; Sergeant, Chris; Cunningham, Andrew A.; Balloux, Francois; Garner, Trenton W. J.; Nichols, Richard A. (9 May 2019). "Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease". Global Change Biology. 25 (8): 2648–2660. Bibcode:2019GCBio..25.2648P. doi:10.1111/gcb.14651. hdl:10026.1/13802. ISSN 1354-1013. PMID 31074105. S2CID 149444899.
  9. ^ Harper, Douglas. "frog". Online Etymology Dictionary.
  10. ^ Granoff, A; Came, PE; Rafferty, KA (1965). "The isolation and properties of viruses from Rana pipiens: their possible relationship to the renal adenocarcinoma of the leopard frog". Annals of the New York Academy of Sciences. 126 (1): 237–255. Bibcode:1965NYASA.126..237G. doi:10.1111/j.1749-6632.1965.tb14278.x. PMID 5220161. S2CID 1534726.
  11. ^ a b c d e f Gray, MJ; Miller, DL; Hoverman, JT (2009). "Ecology and pathology of amphibian ranaviruses". Diseases of Aquatic Organisms. 87 (3): 243–266. doi:10.3354/dao02138. PMID 20099417.
  12. ^ Rafferty, KA (1965). "The cultivation of inclusion-associated viruses from Lucke tumor frogs". Annals of the New York Academy of Sciences. 126 (1): 3–21. Bibcode:1965NYASA.126....3R. doi:10.1111/j.1749-6632.1965.tb14266.x. PMID 5220167. S2CID 38763155.
  13. ^ Jancovich, JK; Bremont, M; Touchman, JW; Jacobs, BL (2010). "Evidence for multiple recent host species shifts among the Ranaviruses (family Iridoviridae)". J Virol. 84 (6): 2636–2647. doi:10.1128/JVI.01991-09. PMC 2826071. PMID 20042506.
  14. ^ First identification of a ranavirus from green pythons (Chondropython viridis); Williamson; Coupar; Middleton; Hengstberger; Gould; Selleck; Wise; Kattenbelt; Cunningham; Lee (2002). "First identification of a ranavirus from green pythons (Chondropython viridis)". Journal of Wildlife Diseases. 38 (2): 239–52. doi:10.7589/0090-3558-38.2.239. PMID 12038121. S2CID 17427050.
  15. ^ Benetka V. (2007). "First report of an iridovirus (genus Ranavirus) infection in a leopard tortoise (Geochelone pardalis pardalis)" (PDF). Vet Med Austria. 94: 243–248.
  16. ^ De Matos, A. P.; Caeiro, M. F.; Papp, T; Matos, B. A.; Correia, A. C.; Marschang, R. E. (2011). "New viruses from Lacerta monticola (Serra da Estrela, Portugal): Further evidence for a new group of nucleo-cytoplasmic large deoxyriboviruses (NCLDVs)". Microscopy and Microanalysis. 17 (1): 101–8. Bibcode:2011MiMic..17..101A. doi:10.1017/S143192761009433X. PMID 21138619. S2CID 21932480.
  17. ^ Mao, J; Hedrick, RP; Chinchar, VG (1997). "Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses". Virology. 229 (1): 212–220. doi:10.1006/viro.1996.8435. PMID 9123863.
  18. ^ a b Johnson, A. J.; Pessier, A. P.; Jacobson, E. R. (2007). "Experimental transmission and induction of ranaviral disease in Western Ornate box turtles (Terrapene ornata ornata) and red-eared sliders (Trachemys scripta elegans)". Veterinary Pathology. 44 (3): 285–97. doi:10.1354/vp.44-3-285. PMID 17491069.
  19. ^ Blahak S., Uhlenbrok C. "Ranavirus infections in European terrestrial tortoises in Germany". Proceedings of the 1st International Conference on Reptile and Amphibian Medicine; Munich, Germany. 4–7 March 2010; pp. 17–23
  20. ^ McKenzie, C. M.; Piczak, M.L.; Snyman, H. N.; Joseph, T.; Theijin, C.; Chow-Fraser, P.; Jardine, C. M. (2019). "First report of ranavirus mortality in a common snapping turtle Chelydra serpentina" (PDF). Diseases of Aquatic Organisms. 132 (3): 221–227. doi:10.3354/dao03324. PMID 31188138. S2CID 92405818.
  21. ^ Chen, Z. X.; Zheng, J. C.; Jiang, Y. L. (1999). "A new iridovirus isolated from soft-shelled turtle". Virus Research. 63 (1–2): 147–51. doi:10.1016/S0168-1702(99)00069-6. PMID 10509727.
  22. ^ Marschang, R. E.; Braun, S; Becher, P (2005). "Isolation of a ranavirus from a gecko (Uroplatus fimbriatus)". Journal of Zoo and Wildlife Medicine. 36 (2): 295–300. doi:10.1638/04-008.1. JSTOR 20096453. PMID 17323572. S2CID 20616080.
  23. ^ Goodman, R.; Hargadon, K; Carter, E. (2018). "Detection of Ranavirus in Eastern Fence Lizards and Eastern Box Turtles in Central Virginia". Northeastern Naturalist. 25 (3): 391–398. doi:10.1656/045.025.0306. S2CID 91510246.
  24. ^ "Virus Taxonomy: 2020 Release". International Committee on Taxonomy of Viruses (ICTV). March 2021. Retrieved 22 May 2021.
  25. ^ a b c Chinchar VG, Essbauer S, He JG, Hyatt A, Miyazaki T, Seligy V, Williams T (2005). "Family Iridoviridae" pp. 145–162 in Fauquet CM, Mayo MA, Maniloff J, Desselburger U, Ball LA (eds). Virus Taxonomy, Eighth report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, USA.
  26. ^ a b c Williams T, Barbosa-Solomieu V, Chinchar GD (2005). "A decade of advances in iridovirus research" 173-148. In Maramorosch K, Shatkin A (eds). Advances in virus research, Vol. 65 Academic Press, New York, USA.
  27. ^ a b c Chinchar, VG (2002). "Ranaviruses (family Iridoviridae) emerging cold-blooded killers". Archives of Virology. 147 (3): 447–470. doi:10.1007/s007050200000. PMID 11958449. S2CID 24928231.
  28. ^ Eaton, Heather E.; Ring, Brooke A.; Brunetti, Craig R. (2010). "The genomic diversity and phylogenetic relationship in the family Iridoviridae". Viruses. 2 (7): 1458–75. doi:10.3390/v2071458. PMC 3185713. PMID 21994690.
  29. ^ a b c Goorha, R (1982). "Frog virus 3 DNA replication occurs in two stages". Journal of Virology. 43 (2): 519–28. doi:10.1128/JVI.43.2.519-528.1982. PMC 256155. PMID 7109033.
  30. ^ Girdhar, Khyati; Powis, Amaya; Raisingani, Amol; Chrudinová, Martina; Huang, Ruixu; Tran, Tu; Sevgi, Kaan; Dogus Dogru, Yusuf; Altindis, Emrah (29 September 2021). "Viruses and Metabolism: The Effects of Viral Infections and Viral Insulins on Host Metabolism". Annual Review of Virology. 8 (1): 373–391. doi:10.1146/annurev-virology-091919-102416. ISSN 2327-056X. PMC 9175272. PMID 34586876.
  31. ^ Brenes, Roberto; Gray, Matthew J.; Waltzek, Thomas B.; Wilkes, Rebecca P.; Miller, Debra L. (25 March 2014). "Transmission of Ranavirus between Ectothermic Vertebrate Hosts". PLOS ONE. 9 (3): e92476. Bibcode:2014PLoSO...992476B. doi:10.1371/journal.pone.0092476. ISSN 1932-6203. PMC 3965414. PMID 24667325.
  32. ^ Speare, R; Smith, JR (1992). "An iridovirus-like agent isolated from the ornate burrowing frog Limnodynastes ornatus in northern Australia". Diseases of Aquatic Organisms. 14: 51–57. doi:10.3354/dao014051.
  33. ^ Cullen, BR; Owens, L (2002). "Experimental challenge and clinical cases of Bohle iridovirus (BIV) in native Australian anurans". Diseases of Aquatic Organisms. 49 (2): 83–92. doi:10.3354/dao049083. PMID 12078986.
  34. ^ Chinchar, VG; Bryan, L; Wang, J; Long, S; Chinchar, GD (2003). "Induction of apoptosis in frog virus 3-infected cells". Virology. 306 (2): 303–312. doi:10.1016/S0042-6822(02)00039-9. PMID 12642103.
  35. ^ a b Brunner, Jesse L; Storfer, Andrew; Gray, Matthew J; Hoverman, Jason T (2015). Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates. New York: Springer. p. 71-104. doi:10.1007/978-3-319-13755-1_4. ISBN 978-3-319-13755-1.
  36. ^ a b Green, D E; Converse, K A; Schrader, A K (2002). "Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001". Domestic Animal/Wildlife Interface: Issues for Disease Control, Conservation, Sustainable Food Production, and Emerging Diseases. 969 (1): 323–339. Bibcode:2002NYASA.969..323G. doi:10.1111/j.1749-6632.2002.tb04400.x. PMID 12381613. S2CID 33944909.
  37. ^ Green, D E; Converse, K A (2005). "Diseases of frogs and toads". Wildlife Diseases: Landscape Epidemiology, Spatial Distribution, and Utilization of Remote Sensing Technology.: 89-117.
  38. ^ Rollins-Smith, L A (1998). "Metamorphosis and the amphibian immune system". Immunological Reviews. 166: 221–230. doi:10.1111/j.1600-065X.1998.tb01265.x. PMID 9914915. S2CID 27561247.
  39. ^ Johnson, A F; Brunner, J L (2014). "Persistence of an amphibian ranavirus in aquatic communities". Diseases of Aquatic Organisms. 111 (2): 129–138. doi:10.3354/dao02774. PMID 25266900.
  40. ^ Brenes, Roberto; Gray, MJ; Waltzek, TB; Wilkes, RP; Miller, DL (2014). "Transmission of Ranavirus between Ectothermic Vertebrate Hosts". PLOS ONE. 9 (3): e92476. Bibcode:2014PLoSO...992476B. doi:10.1371/journal.pone.0092476. PMC 3965414. PMID 24667325.

licensa
cc-by-sa-3.0
drit d'autor
Wikipedia authors and editors
original
visité la sorgiss
sit compagn
wikipedia EN

Ranavirus: Brief Summary ( Anglèis )

fornì da wikipedia EN
Transmission electron micrograph of a cell infected with ranaviruses, which gather in the cytoplasm and in the assembly bodies next to the contorted nucleus.

Ranavirus is a genus of viruses, in the family Iridoviridae. There are six other genera of viruses within the family Iridoviridae, but Ranavirus is the only one that includes viruses that are infectious to amphibians and reptiles. Additionally, it is one of the three genera within this family which infect teleost fishes, along with Lymphocystivirus and Megalocytivirus.

licensa
cc-by-sa-3.0
drit d'autor
Wikipedia authors and editors
original
visité la sorgiss
sit compagn
wikipedia EN

Ranavirus ( Spagneul; Castilian )

fornì da wikipedia ES

Ranavirus es un género de virus perteneciente a la familia Iridoviridae. Pueden provocar enfermedad en anfibios reptiles y peces. Incluye diferentes especies: virus de la rana tipo 3, iridovirus Bohle, virus de la necrosis hematopoyética epizoótica, virus del bagre europeo, virus del siluro europeo y ranavirus de Santee-Cooper. La especie tipo es el virus de la rana tipo 3 (Frog virus 3) que causa enfermedad en ranas.[1]​ Se ha sugerido que las infecciones por ranavirus en anfibios han contribuido a la disminución de las poblaciones de estos vertebrados a nivel mundial.

Historia

El primer aislamiento se realizó en 1960 de una rana perteneciente a la especie Lithobates pipiens.

Estructura

Los ranavirus son virus ADN icosaédricos de gran tamaño que miden unos 150 nm de diámetro.

Referencias

  1. Infección por ranavirus. Manual Acuático de la OIE 2012, consultado el 15 de enero de 2014.
 title=
licensa
cc-by-sa-3.0
drit d'autor
Autores y editores de Wikipedia
original
visité la sorgiss
sit compagn
wikipedia ES

Ranavirus: Brief Summary ( Spagneul; Castilian )

fornì da wikipedia ES

Ranavirus es un género de virus perteneciente a la familia Iridoviridae. Pueden provocar enfermedad en anfibios reptiles y peces. Incluye diferentes especies: virus de la rana tipo 3, iridovirus Bohle, virus de la necrosis hematopoyética epizoótica, virus del bagre europeo, virus del siluro europeo y ranavirus de Santee-Cooper. La especie tipo es el virus de la rana tipo 3 (Frog virus 3) que causa enfermedad en ranas.​ Se ha sugerido que las infecciones por ranavirus en anfibios han contribuido a la disminución de las poblaciones de estos vertebrados a nivel mundial.

licensa
cc-by-sa-3.0
drit d'autor
Autores y editores de Wikipedia
original
visité la sorgiss
sit compagn
wikipedia ES

Ranavirus ( Fransèis )

fornì da wikipedia FR

Ranavirus est un genre de virus à ADN qui causent des nécroses hématopoïétiques épizootiques.

Ces virus touchent les animaux aquatiques comme les poissons (dont marins[2]) et les amphibiens (mort par hémorragie internes, avec symptômes d'ulcérations de la peau) ainsi que des reptiles (aux États-Unis, en Australie[3]).

Ils sont source de maladies émergentes[4] a priori impliquées dans le déclin général des amphibiens[4] ; tous les écosystèmes ne sont pas concernés, mais le virus s'étend, imposant des mesures prophylactiques[5]. On en découvre régulièrement de nouveaux isolats[6]

Histoire

Ces virus ont été isolés depuis la fin des années 1990 chez divers amphibiens[7],[8],[9], on pense que certains d'entre eux sont responsables ou coresponsables de taux de mortalité extrêmement élevés et localisés d'amphibiens[10] en Amérique du Nord, mais aussi en Europe, de l'Espagne [11] au Danemark[12], en passant par le Royaume-Uni[13],[14], la Belgique[15]. On trouve ces virus en Asie aussi, jusqu'au Japon[16].

Depuis la fin des années 2000, des ranavirus déciment des reptiles et amphibiens aux États-Unis[17],[18],[19].

Notes et références

  1. ICTV. International Committee on Taxonomy of Viruses. Taxonomy history. Published on the Internet https://talk.ictvonline.org/., consulté le 1er février 2021
  2. Evira, Ranaviruses from edible frog, cod and turbot
  3. Australian wildlife health network, Ranaviruses in wild reptiles in Australia, 05/02/10
  4. a et b Diversity, Emerging Ranaviral Infectious Diseases and Amphibian Decline ; 2010, 2, 314-330
  5. (fr) « Code sanitaire pour les animaux aquatiques », sur oie.org, organisation mondiale de la santé animale
  6. Mao J, Hedrick RP, Chichar VB. Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses. Virology. 1997;229:212–20.
  7. Cunningham, A. A., T. E. S. Langton, P. M. Bennett, J. F. Lewin, S. E. N. Drury, R. E. Gough, and S. K. Macgregor. 1996. Pathological and microbiological findings from incidents of unusual mortality of the common frog (Rana temporaria). Philosophical Transactions of the Royal Society of London B Biological Sciences 351:1539-1557.
  8. Zupanovic, Z., C. Musso, G. Lopez, C. L. Louriero, A. D. Hyatt, S. Hengstberger, and A. J. Robinson. 1998. Isolation and characterization of iridoviruses from the giant toad Bufo marinus in Venezuela. Diseases of Aquatic Organisms 33:1-9.
  9. Mao, J., D. E. Green, G. Fellers, and V. G. Chinchar. 1999. Molecular characterization of iridoviruses isolated from sympatric amphibians and fish. Virus Research 63:45-52.
  10. Iridoviruses (Ranavirus spp.) have been recently isolated in several other amphibians (Zupanovic et al. 1998, Mao et al. 1999) and have been associated with disease outbreaks in both captive and wild populations (Chinchar 2002)
  11. Balseiro A, Dalton KP, Del Cerro A, Marquez I, Cunningham AA, Parra F, Pathology, Isolation and molecular characterisation of a ranavirus from the common midwife toad Alytes obstetricans on the Iberian Peninsula. Dis Aquat Organ. 2009;84:95–104
  12. Ariel E, Kielgast J, Svart HE, Larsen K, Tapiovaara H, Jensen BB, Ranavirus in wild edible frogs Pelophylax kl. esculentus in Denmark. Dis Aquat Organ. 2009;85:7–14.
  13. Eurekalert, Killer disease decimates UK frog populations (Ranavirus), 07/10/10
  14. The Independent, Ranavirus:It's a frog's life - As a new virus cuts a swathe through their numbers, Gillian Orr discovers that we are only starting to unlock the secrets of these alluring amphibians ; 12/10/2010
  15. Sharifian-Fard M, Pasmans F, Adriaensen C, Devisscher S, Adriaens T, Louette G, et al. Ranavirosis in invasive bullfrogs, Belgium [letter]. Emerg Infect Dis ; 2011 Dec
  16. CDC EID - JUILLET 2009, Ranavirus Outbreak in North American Bullfrogs (Rana catesbeiana), Japan, 2008
  17. Science Daily, Killer Disease Decimates UK Frog Populations, 08/10/10
  18. Voice of america, Reptiles, Amphibians in US Succumbing to Deadly Ranavirus ; 13/04/12 et Vidéo sur YouTube
  19. Southeastern parc amphibian and reptile conservation, Amphibian ranavirus in the southeastern United States, 2010

Référence biologique

Voir aussi

licensa
cc-by-sa-3.0
drit d'autor
Auteurs et éditeurs de Wikipedia
original
visité la sorgiss
sit compagn
wikipedia FR

Ranavirus: Brief Summary ( Fransèis )

fornì da wikipedia FR

Ranavirus est un genre de virus à ADN qui causent des nécroses hématopoïétiques épizootiques.

Ces virus touchent les animaux aquatiques comme les poissons (dont marins) et les amphibiens (mort par hémorragie internes, avec symptômes d'ulcérations de la peau) ainsi que des reptiles (aux États-Unis, en Australie).

Ils sont source de maladies émergentes a priori impliquées dans le déclin général des amphibiens ; tous les écosystèmes ne sont pas concernés, mais le virus s'étend, imposant des mesures prophylactiques. On en découvre régulièrement de nouveaux isolats

licensa
cc-by-sa-3.0
drit d'autor
Auteurs et éditeurs de Wikipedia
original
visité la sorgiss
sit compagn
wikipedia FR

Ranavirus ( Galissian )

fornì da wikipedia gl Galician

 src=
Micrografía electrónica de transmisión dunha célula infectada por ranavirus, que se acumulan no citoplasma e en corpos de ensamblaxe preto do retorto núcleo.

Ranavirus é un xénero de virus da familia Iridoviridae.[1] Hai ademais outros catro xéneros de virus nesa familia, pero Ranavirus é o único que inclúe virus que son infecciosos para anfibios e réptiles. Adicionalmente, é un dos tres xéneros desta familia que infecta peixes teleósteos, xunto con Lymphocystivirus e Megalocytivirus.[2] A familia Iridoviridae é unha das cinco familias de virus de ADN grande nucleocitoplasmáticos.

Os Ranavirus foron illados por primeira vez na década de 1960 da ra Lithobates pipiens.[3][4][5]

Impacto ecolóxico

Os Ranavirus, como o Megalocytivirus, son un grupo emerxente de virus de ADN bicatenario estreitamente relacionados que causan infeccións sistémicas nunha ampla variedade de peixes de auga salgada e doce silvestres e criados en piscifactoría. Igual que os Megalocytivirus, os abrochos de Ranavirus teñen unha considerable importancia económica en acuicultura, como epizoóticos poden orixinar unha perda moderada de peixes ou episodios de mortaldade en masa en peixes de acicultura. Porén, a diferenza dos Megalocytivirus, as infeccións por Ranavirus en anfibios foron consideradas un factor que contribúe ao declive das poboacións de anfibios global. O impacto dos Ranavirus sobre as poboacións de anfibios foi comparada coa do fungo quitridio Batrachochytrium dendrobatidis, o axente causante da quitridiomicose.[6][7][8]

Evolución

Informe VOA sobre Ranavirus.

Os Ranavirus parece que evolucionaron a partir de virus de peixes que despois pasaron a infectar anfibios e réptiles.[9]

Hóspedes reptilianos

Ademais de peixes e anfibios, varias especies de réptiles son afectados por Ranavirus, como:

Taxonomía

Grupo: ADN bicatenario (dsDNA)

[1]

A familia Iridoviridae está dividida en cinco xéneros, que son Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, e Ranavirus.[1] O xénero Ranavirus está composto por 6 especies virais recoñecidas, 3 das cales infectan anfibios, que son: virus de Ambystoma tigrinum (Ambystoma tigrinum virus, ATV), iridovirus Bohle (Bohle iridovirus BIV) e o virus da ra 3 (frog virus 3).[18]

Estrutura

Os Ranavirus son grandes virus de ADN icosaédricos que miden aproximadamente 150 nm de diámetro cun gran xenoma dunha soa molécula de ADN bicatenario linear duns 105 kbp,[19] que codifica uns 100 produtos xénicos.[20] O principal compoñente estrutural da cápside proteica é a proteína maior da cápside (MCP).

Replicación

A replicación ranaviral foi ben estudada usando a especie tipo do xénero, o virus da ra 3 (Frog virus 3, FV3).[18][19] A replicación do FV3 ocorre entre 12 e 32 graos Celsius.[20] Os Ranavirus entran na célula hóspede por endocitose mediada por receptor.[21] As partículas virais perden a cuberta e seguidamente desprázanse ao núcleo celular, onde empeza a replicación do ADN viral por medio dunha ADN polimerase codificada polo virus.[22] O ADN viral abandona despois o núcleo da célula e empeza a segunda fase da replicación do ADN no citoplasma, formando finalmente concatémeros de ADN.[22] O ADN viral é despois empaquetado en virións infecciosos.[18] O xenoma do Ranavirus, igual que outros xenomas iridovirais está permutado circularmente e presenta un ADN redundante terminalmente.[22]

Transmisión

A transmisión dos Ranavirus crese que ocorre por moitas rutas, incluíndo o solo contaminado, o contacto directo, a exposición á auga e a inxestión de tecidos infectados durante a predación, necrofaxia ou canibalismo.[4] Os Ranavirus son relativamente estables en ambientes acuáticos, e poden persistir varias semanas ou máis fóra dun organismo hóspede.[4]

Epizooloxía

Informouse de episodios de mortalidade en masa de anfibios debido a Ranavirus en Asia, Europa, Norteamérica e Suramérica.[4] Os Ranavirus foron illados de poboaciósn silvestres de anfibios en Australia, mais non foron asociados coa mortalidade en masa nese continente.[4][23][24]

Patoxénese

A síntese de proteínas virais empeza en cuestión de poucas horas despois da entrada viral na célula[20] e a necrose ou apoptose ocorre só unhas poucas horas despois da infección.[19][25]

Patoloxías principais

As principais lesións asociadas coas infeccións de Ranavirus son eritemas, inchamento xeneralizado, hemorraxias, inchamento das extremidades e fígados inchados e fráxiles.[4]

Fontes de información

Pode atoparse máis información sobre Ranavirus e outros patóxenos que impactan as poboacións de anfibios, como sobre quitridios Batrachochytrium dendrobatidis e Batrachochytrium salamandrivorans na páxina web do Southeast Partners in Amphibian and Reptile Conservation disease task team. [1]

Notas

  1. 1,0 1,1 1,2 "Iridoviridae". ICTV Online (10th) Report (en inglés).
  2. Whittington, RJ; Becker, JA; Dennis, MM (2010). "Iridovirus infections in finfish – critical review with emphasis on ranaviruses". Journal of Fish Diseases 33 (2): 95–122. PMID 20050967. doi:10.1111/j.1365-2761.2009.01110.x.
  3. Granoff, A; Came, PE; Rafferty, KA (1965). "The isolation and properties of viruses from Rana pipiens: their possible relationship to the renal adenocarcinoma of the leopard frog". Annals of the New York Academy of Sciences 126 (1): 237–255. Bibcode:1965NYASA.126..237G. PMID 5220161. doi:10.1111/j.1749-6632.1965.tb14278.x.
  4. 4,0 4,1 4,2 4,3 4,4 4,5 Gray, MJ; Miller, DL; Hoverman, JT (2009). "Ecology and pathology of amphibian ranaviruses". Diseases of Aquatic Organisms 87 (3): 243–266. PMID 20099417. doi:10.3354/dao02138.
  5. Rafferty, KA (1965). "The cultivation of inclusion-associated viruses from Lucke tumor frogs". Annals of the New York Academy of Sciences 126 (1): 3–21. Bibcode:1965NYASA.126....3R. PMID 5220167. doi:10.1111/j.1749-6632.1965.tb14266.x.
  6. Jancovich, James K; Mao, Jinghe; Chinchar, V.Gregory; Wyatt, Christopher; Case, Steven T; Kumar, Sudhir; Valente, Graziela; Subramanian, Sankar; Davidson, Elizabeth W; Collins, James P; Jacobs, Bertram L (2003). "Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America". Virology 316 (1): 90–103. PMID 14599794. doi:10.1016/j.virol.2003.08.001.
  7. Brunner, Jesse L.; Schock, Danna M.; Davidson, Elizabeth W.; Collins, James P. (2004). "Intraspecific Reservoirs: Complex Life History and the Persistence of a Lethal Ranavirus". Ecology 85 (2): 560. doi:10.1890/02-0374.
  8. Pearman, Peter B.; Garner, Trenton W. J. (2005). "Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity". Ecology Letters 8 (4): 401. doi:10.1111/j.1461-0248.2005.00735.x.
  9. Jancovich, JK; Bremont, M; Touchman, JW; Jacobs, BL (2010). "Evidence for multiple recent host species shifts among the Ranaviruses (family Iridoviridae)". J Virol 84 (6): 2636–2647. PMC 2826071. PMID 20042506. doi:10.1128/JVI.01991-09.
  10. First identification of a ranavirus from green pythons (Chondropython viridis); Williamson; Coupar; Middleton; Hengstberger; Gould; Selleck; Wise; Kattenbelt; Cunningham; Lee (2002). "First identification of a ranavirus from green pythons (Chondropython viridis)". Journal of Wildlife Diseases 38 (2): 239–52. PMID 12038121. doi:10.7589/0090-3558-38.2.239.
  11. Benetka V. (2007). "First report of an iridovirus (genus Ranavirus) infection in a leopard tortoise (Geochelone pardalis pardalis)" (PDF). Vet Med Austria 94: 243–248.
  12. De Matos, A. P.; Caeiro, M. F.; Papp, T; Matos, B. A.; Correia, A. C.; Marschang, R. E. (2011). "New viruses from Lacerta monticola (Serra da Estrela, Portugal): Further evidence for a new group of nucleo-cytoplasmic large deoxyriboviruses (NCLDVs)". Microscopy and Microanalysis : The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 17 (1): 101–8. Bibcode:2011MiMic..17..101A. PMID 21138619. doi:10.1017/S143192761009433X.
  13. Mao, J; Hedrick, RP; Chinchar, VG (1997). "Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses". Virology 229 (1): 212–220. PMID 9123863. doi:10.1006/viro.1996.8435.
  14. 14,0 14,1 Johnson, A. J.; Pessier, A. P.; Jacobson, E. R. (2007). "Experimental transmission and induction of ranaviral disease in Western Ornate box turtles (Terrapene ornata ornata) and red-eared sliders (Trachemys scripta elegans)". Veterinary Pathology 44 (3): 285–97. PMID 17491069. doi:10.1354/vp.44-3-285.
  15. Blahak S., Uhlenbrok C. "Ranavirus infections in European terrestrial tortoises in Germany". Proceedings of the 1st International Conference on Reptile and Amphibian Medicine; Munich, Germany. 4–7 March 2010; pp. 17–23
  16. Chen, Z. X.; Zheng, J. C.; Jiang, Y. L. (1999). "A new iridovirus isolated from soft-shelled turtle". Virus Research 63 (1–2): 147–51. PMID 10509727. doi:10.1016/S0168-1702(99)00069-6.
  17. Marschang, R. E.; Braun, S; Becher, P (2005). "Isolation of a ranavirus from a gecko (Uroplatus fimbriatus)". Journal of Zoo and Wildlife Medicine : Official Publication of the American Association of Zoo Veterinarians 36 (2): 295–300. JSTOR 20096453. PMID 17323572. doi:10.1638/04-008.1.
  18. 18,0 18,1 18,2 Chinchar VG, Essbauer S, He JG, Hyatt A, Miyazaki T, Seligy V, Williams T (2005). "Family Iridoviridae" pp. 145–162 in Fauquet CM, Mayo MA, Maniloff J, Desselburger U, Ball LA (eds). Virus Taxonomy, Eighth report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, USA.
  19. 19,0 19,1 19,2 Williams T, Barbosa-Solomieu V, Chinchar GD (2005). "A decade of advances in iridovirus research" 173-148. In Maramorosch K, Shatkin A (eds). Advances in virus research, Vol. 65 Academic Press, New York, USA.
  20. 20,0 20,1 20,2 Chinchar, VG (2002). "Ranaviruses (family Iridoviridae) emerging cold-blooded killers". Archives of Virology 147 (3): 447–470. PMID 11958449. doi:10.1007/s007050200000.
  21. Eaton, Heather E.; Ring, Brooke A.; Brunetti, Craig R. (2010). "The genomic diversity and phylogenetic relationship in the family Iridoviridae". Viruses 2 (7): 1458–75. PMC 3185713. PMID 21994690. doi:10.3390/v2071458.
  22. 22,0 22,1 22,2 Goorha, R (1982). "Frog virus 3 DNA replication occurs in two stages". Journal of Virology 43 (2): 519–28. PMC 256155. PMID 7109033.
  23. Speare, R; Smith, JR (1992). "An iridovirus-like agent isolated from the ornate burrowing frog Limnodynastes ornatus in northern Australia". Diseases of Aquatic Organisms 14: 51–57. doi:10.3354/dao014051.
  24. Cullen, BR; Owens, L (2002). "Experimental challenge and clinical cases of Bohle iridovirus (BIV) in native Australian anurans". Diseases of Aquatic Organisms 49 (2): 83–92. PMID 12078986. doi:10.3354/dao049083.
  25. Chinchar, VG; Bryan, L; Wang, J; Long, S; Chinchar, GD (2003). "Induction of apoptosis in frog virus 3-infected cells". Virology 306 (2): 303–312. PMID 12642103. doi:10.1016/S0042-6822(02)00039-9.

Véxase tamén

licensa
cc-by-sa-3.0
drit d'autor
Autores e editores de Wikipedia

Ranavirus: Brief Summary ( Galissian )

fornì da wikipedia gl Galician
 src= Micrografía electrónica de transmisión dunha célula infectada por ranavirus, que se acumulan no citoplasma e en corpos de ensamblaxe preto do retorto núcleo.

Ranavirus é un xénero de virus da familia Iridoviridae. Hai ademais outros catro xéneros de virus nesa familia, pero Ranavirus é o único que inclúe virus que son infecciosos para anfibios e réptiles. Adicionalmente, é un dos tres xéneros desta familia que infecta peixes teleósteos, xunto con Lymphocystivirus e Megalocytivirus. A familia Iridoviridae é unha das cinco familias de virus de ADN grande nucleocitoplasmáticos.

Os Ranavirus foron illados por primeira vez na década de 1960 da ra Lithobates pipiens.

licensa
cc-by-sa-3.0
drit d'autor
Autores e editores de Wikipedia