dcsimg
Plancia ëd Fusarium graminearum Schwabe 1839
Life » » Fungi » » Ascomycota » » Nectriaceae »

Fusarium graminearum Schwabe 1839

Associations ( Anglèis )

fornì da BioImages, the virtual fieldguide, UK
In Great Britain and/or Ireland:
Foodplant / saprobe
immersed, becoming erumpent conidioma of Dichomera coelomycetous anamorph of Gibberella zeae is saprobic on twig of Corylus

Foodplant / saprobe
immersed, becoming erumpent conidioma of Dichomera coelomycetous anamorph of Gibberella zeae is saprobic on twig of Rhamnus

Foodplant / pathogen
immersed, becoming erumpent conidioma of Dichomera coelomycetous anamorph of Gibberella zeae infects and damages live trunk of Acer pseudoplatanus

Foodplant / pathogen
Fusarium anamorph of Gibberella zeae infects and damages stem base of Poaceae

Foodplant / pathogen
Fusarium anamorph of Gibberella zeae infects and damages spikelet of Arrhenatherum elatius
Other: major host/prey

Foodplant / pathogen
Fusarium anamorph of Gibberella zeae infects and damages stem base of Avena

Foodplant / pathogen
Fusarium anamorph of Gibberella zeae infects and damages stem base of Glyceria maxima

Foodplant / pathogen
Fusarium anamorph of Gibberella zeae infects and damages stem base of Hordeum

Foodplant / pathogen
Fusarium anamorph of Gibberella zeae infects and damages stem base of Triticum

Foodplant / pathogen
Fusarium anamorph of Gibberella zeae infects and damages stem base of Phragmites australis

Fungus / associate
colony of Fusarium anamorph of Gibberella zeae is associated with colony of Sphacelia anamorph of Claviceps purpurea

Foodplant / saprobe
immersed, becoming erumpent conidioma of Dichomera coelomycetous anamorph of Gibberella zeae is saprobic on twig of Carpinus betulus

Foodplant / saprobe
immersed, becoming erumpent conidioma of Dichomera coelomycetous anamorph of Gibberella zeae is saprobic on twig of Frangula alnus

licensa
cc-by-nc-sa-3.0
drit d'autor
BioImages
proget
BioImages

Brief Summary ( Anglèis )

fornì da EOL authors

Fusarium graminearum is an ascomycete fungus that causes head blight in wheat and ear rot in corn. Crop damage in the United States over the last decade due to this fungus is estimated at several billion dollars, making it a significant plant pathogen. Additionally, F. graminearum produces mycotoxins known to be hazardous to humans and livestock.

The Fusarium genus, which includes two other species closely related to F. graminearum, has been the target of a comparative genomics project by the Broad Institute because it includes plant pathogens that cause disease in almost every economically important crop. Fusarium species are difficult to combat because of their worldwide distribution, persistence in the soil, and genetic plasticity, which allows them to evolve quickly in the face of resistant cultivars.

licensa
cc-by-3.0
drit d'autor
Rachel Sargent
original
visité la sorgiss
sit compagn
EOL authors

Fusarium Comparative Database ( Anglèis )

fornì da EOL authors

Overview of research on Fusarium species as well as access to a database of sequenced genomes in support of comparative genomic analysis projects.

Diagnostic Description ( Anglèis )

fornì da Mushroom Observer

The sexual state, Gibberella zeae, is characterized by purple to black perithecia – a distinguishing feature of the genus Gibberella. The ascospores, like the conidia, are septate, usually with three septa. In a mixed culture, where both ascospores and conidia are present, you can tell them apart because the ascospores are slightly shorter and fatter than the conidia, and the ascospores lack the foot cells. The spores are shot out of the ascus at 870,000 times the force of gravity; the most powerful acceleration yet known from a biological system.

licensa
cc-by-nc-sa-3.0
drit d'autor
Nathan Wilson, Tom Volk, Jake Cox
autor
Nathan Wilson, Tom Volk, Jake Cox
original
visité la sorgiss
sit compagn
Mushroom Observer

Distribution ( Anglèis )

fornì da Mushroom Observer

Worldwide.

licensa
cc-by-nc-sa-3.0
drit d'autor
Nathan Wilson, Tom Volk, Jake Cox
autor
Nathan Wilson, Tom Volk, Jake Cox
original
visité la sorgiss
sit compagn
Mushroom Observer

General Description ( Anglèis )

fornì da Mushroom Observer

This is the less common teleomorph or sexual state of the better known Fusarium graminearum. Technically (meaning according to the current International Code of Botanical Nomenclature), Gibberella zeae is the correct name for this species.

The teleomorph is characterized by purple to black perithecia.

Gibberella ascospores

Tom Volk’s page on Fusarium graminearum, aka Gibberella zeae

licensa
cc-by-nc-sa-3.0
drit d'autor
Nathan Wilson, Tom Volk, Jake Cox
autor
Nathan Wilson, Tom Volk, Jake Cox
original
visité la sorgiss
sit compagn
Mushroom Observer

Habitat ( Anglèis )

fornì da Mushroom Observer

Widely distributed on plants and in the soil.

licensa
cc-by-nc-sa-3.0
drit d'autor
Nathan Wilson, Tom Volk, Jake Cox
autor
Nathan Wilson, Tom Volk, Jake Cox
original
visité la sorgiss
sit compagn
Mushroom Observer

Uses ( Anglèis )

fornì da Mushroom Observer

This ascomycete fungus is the causal agent of head blight of wheat and, as such, has caused an estimated several billion dollars worth of damage in the US alone over the past decade. Plant pathologist study plant diseases in an effort to be able to control them. Every crop plant has a cadre of diseases that affect the way it can be used by people or at least affect its yield.

F. graminearum is a plant pathogen and soil saprophyte. This organism causes wheat headblight disease and ear rot of corn. Fusarium head blight causes significant losses in yield and quality. The common symptom is the blighted or bleached heads. Partially blighted heads are most common, and the head blight symptom is most easily recognized in wheat. The symptoms are more difficult to recognize in barley. The grains in blighted heads often do not fill properly. Kernels can be shriveled and bleached, and these Fusarium damaged kernels, or FDK, are also known as tombstone kernels.

Fusarium graminearum also produces mycotoxins which can be harmful to human and animals that ingest contaminated wheat. The two main mycotoxins are deoxynivalenol (DON), also known as vomitoxin, and zearalenone. DON inhibits protein biosynthesis and zearalenone is an estrogen analog. These mycotoxins can contaminate food and when ingested by humans can cause vomiting and liver damage. Reproductive defects are also seen in livestock. In farm animals, zearalenone has been known to cause abortions in pregnant females, and feminization of males.

licensa
cc-by-nc-sa-3.0
drit d'autor
Nathan Wilson, Tom Volk, Jake Cox
autor
Nathan Wilson, Tom Volk, Jake Cox
original
visité la sorgiss
sit compagn
Mushroom Observer

Fusarium graminearum ( Alman )

fornì da wikipedia DE

Fusarium graminearum (Synonym: Gibberella zeae (Schwein.) Petch) ist ein Pilz aus der Gruppe der Ascomyceten.[1] Der Pilz lebt im Boden, kann aber auch Pflanzen befallen. Das Genom des Pilzes ist vollständig sequenziert.[2]

Merkmale

Merkmale auf Nährmedien

Fusarium graminearum bildet auf Nelkenblatt-Agar (CLA) recht selten blass-orangen Sporodochien, die oft unter dem Mycel versteckt sind. Die Hauptfruchtform wird normalerweise auf dem Agar oder auf den Nelkenblattstückchen gebildet. Als homothallischer Pilz können Peritezien gebildet werden, ohne verschiedene Isolate zu kreuzen.[3] Auf Kartoffel-Dextrose-Agar (PDA) wächst Fusarium graminearum schnell und bildet ein reichlich vorhandenes, recht dichtes Myzel, das in der Farbe von weiß bis blass-orange und gelb variiert. Sporodochien sind rotbraun bis orange und werden nur langsam gebildet, d. h. nach mehr als 30 Tagen. Rote Pigmente werden im Agar gebildet, die aber je nach pH-Wert ins Gelbe umschlagen können.[3]

Mikroskopische Merkmale

Makrokonidien werden relativ selten gebildet, am häufigsten in Sporodochien. Sie sind recht schlank, sichelförmig bis beinahe gerade und dickwandig. Sie besitzen fünf bis sechs Septen und eine spitz zulaufende apikale Zelle und eine fußförmige Basalzelle. Die Bildung von Chlamydosporen ist variabel, sie findet häufig in den Makrokonidien statt. Sie werden in Haufen und Ketten gebildet. Sie sind kugelig mit einer leicht rauen, aber nicht warzigen Oberfläche. Es werden keine Mikrokonidien gebildet. Sporodochien werden selten gebildet und sind orange. Die Makrokonidien in ihrem Inneren sind gleichförmig und gleich groß.[3]

Ähnliche Arten

Fusarium pseudograminearum ist sehr ähnlich und kaum von Fusarium graminearum zu unterscheiden. Ersterer ist aber heterothallisch und bildet daher keine Perithecien von Einzelsporenkolonien. Von Fusarium culmorum und Fusarium crookwellense unterscheidet sich die Art in der Form der Makrokonidien.[3]

Befallsbild

Weizen und Gerste bilden eine typische Taubährigkeit aus. Die Körner sind schrumpelig und klein. Bei Mais wird eine Kolbenfäule ausgelöst. Es gibt zwischen den einzelnen Getreidesorten Unterschiede in der Anfälligkeit. So geht eine erhöhte Konzentration an Ferulasäure in den Körnern mit einer erhöhten Resistenz zu Fusarium graminearum einher.[3]

Relevanz

 src=
Eine gesunde Ähre (links) im Vergleich mit einer von Fusarium graminearum befallenen (rechts)

Ein Befall von landwirtschaftlich genutzten Kulturen wie Weizen oder Mais führt zu Ertragsverlusten und zur Belastung des Korns mit Pilzgiften (Mykotoxinen)[4]. Das am häufigsten und in den höchsten Konzentrationen in Weizenmehl vorkommende Mykotoxin ist Deoxynivalenol[5]. Lebens- und Futtermittel, die mit Mykotoxinen belastet sind, können die Gesundheit von Mensch und Tier beeinträchtigen.[6] Wichtige Aggressionsfaktoren sind auch die Bildung von Trichthecenen.[3] Für mehrere Fusarium-Toxine gelten gesetzlich festgelegte Höchstmengen in Rohgetreide und Lebensmitteln.[7][8]

Fortpflanzung und asexuelle Vermehrung

Gibberella zeae bildet sexuelle Sporen (Ascosporen) und asexuelle Sporen (Makrokonidien) zu seiner Verbreitung.[9] Die Sporen werden durch Wind und Regen verbreitet[10][11].

Viren

Fusarium graminearum wird infiziert von der Virusspezies Gemytripvirus fugra1 (alias Fusarium graminearum gemytripvirus 1, FgGMTV1), bisher (Mai 2021) einzige Spezies der Gattung Gemytripvirus in der Familie Genomoviridae.[12]

Systematik

Bis 2013 wurde die Hauptfruchtform Gibberella zeae genannt, die Nebenfruchtform Fusarium graminearum. Seit dem 1. Januar 2013 ist aber nur noch der Name der Hauptfruchtform für alle Pilze gültig, wie auf dem Nomenklaturkongress des International Code of Botanical Nomenclature (ICBN) in Melbourne 2011 beschlossen wurde. Da allerdings der Name Fusarium für die gesamte Gattung viel häufiger verwendet wird als Gibberella, wurde beschlossen, dass Fusarium der alleinige gültige Name wird. Für Fusarium graminearum ist Gibberella zeae daher nur noch ein Synonym.[13] Lange Zeit wurde noch weitere sehr ähnliche Arten von Fusarium graminearum abgetrennt, wie Fusarium acaciae-mearnsii, Fusarium asiaticum und Fusarium cortaderiae. Leslie und Summerell (2006) schlugen aber vor, alle diese Arten unter einer Art, Fusarium graminearum zusammenzufassen.[3]

Literatur

  • John F. Leslie, Brett A. Summerell: The Fusarium Laboratory Manual. Blackwell Publishing, 2006, ISBN 0-8138-1919-9, S. 268–269.

Einzelnachweise

  1. J. C. Sutton: Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. In: Canadian Journal of Plant Pathology. 4, 1982, S. 195–209.
  2. Fusarium Genom Datenbank des Broad Institutes (Memento des Originals vom 12. Februar 2011 im Internet Archive)  src= Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.broadinstitute.org
  3. a b c d e f g John F. Leslie, Brett A. Summerell: The Fusarium Laboratory Manual. Blackwell Publishing, 2006, ISBN 0-8138-1919-9, S. 173–179 (englisch, eingeschränkte Vorschau in der Google-Buchsuche).
  4. A. Bottalico, G. Perrone: Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. In: European Journal of Plant Pathology. 108, 2002, S. 611–624. doi:10.1023/A:1020635214971
  5. M. Schollenberger, H. T. Jara, S. Sucy, W. Drochner, H. M. Müller: Fusarium toxins in wheat flour collected in an area in southwest Germany. In: International Journal of Food Microbiology. 72, 2002, S. 85–89. doi:10.1016/S0168-1605(01)00627-4
  6. K. K. Sinha, D. Bhatnagar: Mycotoxins in Agriculture and Food Safety. Marcel Dekker, New York 1998, ISBN 0-8247-0192-5.
  7. Höchstgehalte für bestimmte Kontaminanten in Lebensmitteln. Zusammenfassung der Gesetzgebung. In: EUR-Lex. Amt für Veröffentlichungen der Europäischen Union, abgerufen am 28. Oktober 2021.
  8. . In: Amtsblatt der Europäischen Union. L, Nr. 364, S. 5–24.
  9. S. G. Markell, L. J. Francl: Fusarium head blight inoculum: species prevalence and Gibberella zeae spore type. In: Plant Disease. 87, 2003, S. 814–820. doi:10.1094/PDIS.2003.87.7.814
  10. M. Beyer, S. Röding, A. Ludewig, J-A. Verreet: Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. In: Journal of Phytopathology. 152, 2004, S. 92–97, doi:10.1111/j.1439-0434.2003.00807.x
  11. M. Beyer, J-A. Verreet: Germination of Gibberella zeae ascospores as affected by age of spores after discharge and environmental factors. In: European Journal of Plant Pathology. 111, 2005, S. 381–389, doi:10.1007/s10658-004-6470-9
  12. Pengfei Li, Shuangchao Wang, Lihang Zhang, Dewen Qiu, Xueping Zhou, Lihua Guo: A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions, in: Science Advances, Band 6, Nr. 14, 3. April 2020, eaay9634, doi:10.1126/sciadv.aay9634
  13. D. M. Geiser, T. Aoki, C. W. Bacon, S. E. Baker, M. K. Bhattacharyya, M. E. Brandt, D. W. Brown, L. W. Burgess, S. Chulze, J. J. Coleman, J. C. Correll, S. F. Covert, P. W. Crous, C. A. Cuomo, G. S. De Hoog, A. Di Pietro, W. H. Elmer, L. Epstein, R. J. N. Frandsen, S. Freeman, T. Gagkaeva, A. E. Glenn, T. R. Gordon, N. F. Gregory, K. E. Hammond-Kosack, L. E. Hanson, M. del Mar Jímenez-Gasco, S. Kang, H. C. Kistler, G. A. Kuldau, J. F. Leslie, A. Logrieco, G. Lu, E. Lysøe u. a.: One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. In: Phytopathology. Band 103, 2013, S. 400–408, doi:10.1094/PHYTO-07-12-0150-LE (englisch, One Fungus, One Name: Defining the Genus Fusarium in a Scientifically Robust Way That Preserves Longstanding Use [PDF]).
licensa
cc-by-sa-3.0
drit d'autor
Autoren und Herausgeber von Wikipedia
original
visité la sorgiss
sit compagn
wikipedia DE

Gibberella zeae ( Anglèis )

fornì da wikipedia EN

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley.[1] The pathogen is responsible for billions of dollars in economic losses worldwide each year.[2] Infection causes shifts in the amino acid composition of wheat,[3] resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

Life cycle

F. graminearum is a haploid homothallic ascomycete. The fruiting bodies, perithecia, develop on the mycelium and give rise to ascospores, which land on susceptible parts of the host plant to germinate. The fungus causes fusarium head blight on wheat, barley, and other grass species, as well as ear rot on corn. The primary inocula are the ascospores, sexual spores which are produced in the perithecia.[4] Spores are forcibly discharged and can germinate within six hours upon landing on the plant surface. The scab disease is monocyclic; after one cycle of infection with ascospores, the fungus produces macroconidia by asexual reproduction.[5] These structures overwinter in the soil or in plant debris on the field and give rise to the mycelium in the next season.

Host and symptoms

The pathogen is capable of causing a variety of diseases: head blight or 'scab' on wheat (Triticum), barley (Hordeum), rice (Oryza), oats (Avena), and Gibberella stalk and ear rot disease on maize (Zea). Additionally, the fungus may infect other plant species without causing any disease symptoms.[6]

Maize

In Gibberella stalk rot, the leaves on early-infected plants will turn a dull greyish-green, and the lower internodes will soften and turn a tan to dark-brown. A pink-red discoloration occurs within the stalks of diseased tissue. Shredding of the pith may reveal small, round, black perithecia on the stalks.[7] Gibberella (red) ear rot can have a reddish mold that is often at the ear tip. The infection occurs by colonizing corn silk and symptoms first occur at the ear's apex. The white mycelium turns from pink to red over time, eventually covering the entire ear. Ears that become infected early don't fully develop the reddish mold near the ear tip, as the mold grows between the husks and ear.[6]

Rice

Gibberella zeae can turn affected seeds red and cause brown discoloration in certain areas on the seed or the entire seed surface. The surface of husks develop white spots that later become yellow and salmon or carmine. Infected grains are light, shrunken and brittle. Stem nodes begin to rot and wilt, eventually causing them to turn black and disintegrate when they are infected by the fungal pathogen.[7]

Wheat

Brown, dark purple-black necrotic lesions will form on the outer surface of the spikelets, what the wheat ear breaks up into. The lesions may be referred to as scabs, but this is not to be confused and associated with other scab diseases such as those with different host and pathogen. Head blight is visible before the spikes mature.[7] Spikelets begin to appear water-soaked before the loss of chlorophyll, which gives a white straw color. Peduncles that are directly under the inflorescence can become discolored into a brown-purple color. Tissues of the inflorescence typically become blighted into a bleached tan appearance, and the grain within it atrophies.[6] The awn will become deformed, twisted and curve in a downward direction.

Barley

Infections on barley are not always visible in the field. Similar to wheat, infected spikelets show a browning or water-soaked appearance. The infected kernels display a tan to dark brown discoloration. During long periods of wetness, pink to salmon-orange spore masses can be seen on the infected spikelets and kernels.[6] The cortical lesions of infected seeds become a reddish-brown in cool, moist soil. Warm soil can cause head blight to occur after emergence, and crown and basal culm rot can be observed in later plant development.[7]

Infection process

Wheat scab caused by G. zeae (artificial inoculation)

F. graminearum infects wheat spikes from anthesis through the soft dough stage of kernel development. The fungus enters the plant mostly through the flowers; however, the infection process is complex and the complete course of colonization of the host has not been described. Germ tubes seem not to be able to penetrate the hard, waxy surface of the lemma and palea which protect the flower. The fungus enters the plant through natural openings such as stomates, and needs soft tissue such as the flowers, anthers and embryo to infect the plant.[8] From the infected floret, the fungus can grow through the rachis and cause severe damage in a short period of time under favorable conditions. Upon germination of the spores on the anthers and the surface of the developing kernel, hyphae penetrate the epicarp and spread through the seed coat. Successively, the different layers of the seed coat and finally the endosperm are colonized and killed.[9]

Management

The control of this disease can be achieved using a combination of the following strategies: fungicide applications, resistance breeding, proper storage, crop rotation, crop residue tillage, and seed treatment. The correct usage of fungicide applications against Fusarium head blight (FHB) can reduce the disease by 50 to 60 percent.[10] Fusarium refers to a large genus of soil fungi that are economically important due to the profound effects they have on crops. Application of fungicides is necessary at early heading date for barley and early flowering for wheat, where the early application can limit the infection of the ear. Barley and wheat differ in fungicide application because of their differences in developmental traits.[11] Some biofungicides control FHB.[12][13] Scaglioni et al., 2019 extract phenols from Spirulina spp. and demonstrate growth retardation by 25% (per weight).[12][13] The disease generally develops late in the season or during storage, so fungicide use is only effective in the early season. Management against insect pests such as ear borers, for corn, will also reduce the infection of the ear from wounds caused by insect feeding.[14]

Cultivating a variety of hosts that are resistant to FHB is one of the most evidence-based and cost-effective ways to manage the disease. Using varieties that have looser tusks that cover the ear are less vulnerable to FHB. Once the crop has been harvested, it is essential to store it at low moisture, below 15%, as this will reduce the appearance of Gibberella zeae and Fusarium species in storage.[14]

Avoiding the planting of small grain crops following other small grain crops or corn and tillage of crop residue minimizes the chances of FHB in environmentally favorable years. The rotation of small grains with soybean or other non-host crops has proven to reduce FHB and mycotoxin contamination.[10] Crop rotation with the tillage of residue prevents crops from remaining to infect on the soil surface. Residues can provide an overwintering medium for Fusarium species to cause FHB. As a result, the chances of infection are greatly improved in the succeeding small grain crop.[10] If minimal or no tillage occurs, the residue spreads and allows the fungus to overwinter on stalks and rotted ears of corn and produce spores.

The seeds (kernels) that colonize with the fungus have less resistance because of poor germination. Planting certified or treated seeds can reduce the amount of seedling blight, which is caused by the seeds colonized with the fungus. If it is necessary to replant seeds that were harvested from a FHB infected field, then the seeds should be treated to avoid reoccurrence of the infection.[10]

Importance

The loss of yield and contamination of seed with mycotoxins, alongside reduced seed quality, are the main contributions to the impact of this disease. Two mycotoxins, the trichothecene deoxynivalenol (DON), a strong biosynthesis inhibitor, and zearalenone, an estrogenic mycotoxin, can be found in grains after FHB epidemics.[15] DON is a type of vomitoxin and, as its name states, is an antifeedant. Livestock that consume crops contaminated with vomitoxin become sick and refuse to eat anymore. Zearalenone is a phytoestrogen, mimicking mammals' estrogen. It can be disastrous if it gets into the food chain, as zearalenone causes abortions in pregnant females and feminization of males.[16]

In 1982, a major epidemic affected 4 million hectares (9.9 million acres) of the spring wheat and barley growing in the northern Great Plains of North Dakota, South Dakota, and Minnesota. The yield losses exceeded 6.5 million short tons (5.9 million metric tons) worth approximately $826 million, with total losses related to the epidemic near one billion dollars.[7] Years that followed this epidemic, reported losses that have been estimated between $200-$400 million annually. Losses in barley because of FHB are large in part due to the presence of DON. Barley prices from 1996 in Minnesota fell from $3.00 to $2.75 per bushel if the mycotoxin was present and another $0.05 for each part per million of DON present.[7]

DON chemotypes of F. graminearum include 3ADON.[17]

See also

References

  1. ^ Bai G, Shaner G (2004):Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology 42: 135–161 [1]
  2. ^ De Wolf ED, Madden LV, Lipps PE (2003): Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology 93: 428-435. [2]
  3. ^ Beyer M, Aumann J (2008): Effects of Fusarium infection on the amino acid composition of winter wheat grain. Food Chemistry 111: 750-754. [3]
  4. ^ Beyer M, Verreet J-A (2005): Germination of Gibberella zeae ascospores as affected by age of spores after discharge and environmental factors. European Journal of Plant Pathology 111: 381-389. [4]
  5. ^ Beyer M, Röding S, Ludewig A, Verreet J-A (2004): Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. Journal of Phytopathology 152: 92-97.[5]
  6. ^ a b c d Rubella, Goswami; Kistler, Corby (2004). "Heading for disaster: Fusarium graminearum on cereal crop" (PDF). Molecular Plant Pathology. 5 (6): 515–525. doi:10.1111/J.1364-3703.2004.00252.X. PMID 20565626. S2CID 11548015.
  7. ^ a b c d e f "headblight of maize (Gibberella zeae)". www.plantwise.org. Retrieved 2017-10-25.
  8. ^ Bushnell WR, Leonard KJ (2003): Fusarium head blight of wheat and barley.APS Press, St. Paul, Minnesota
  9. ^ Jansen C, Von Wettstein D, Schäfer W, Kogel K-H, Felk A, Maier FJ (2005): Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences 102: 16892-16897 [6]
  10. ^ a b c d "Managing Fusarium Head Blight in Virginia Small Grains". Retrieved 2017-10-25.
  11. ^ Alqudah, Ahmad M.; Schnurbusch, Thorsten (2017-05-30). "Heading Date Is Not Flowering Time in Spring Barley". Frontiers in Plant Science. 8: 896. doi:10.3389/fpls.2017.00896. ISSN 1664-462X. PMC 5447769. PMID 28611811.
  12. ^ a b Nogueira, Wesclen Vilar; de Oliveira, Francine Kerstner; Garcia, Sabrina de Oliveira; Sibaja, Karen Vanessa Marimón; Tesser, Marcelo Borges; Garda Buffon, Jaqueline (2020-01-02). "Sources, quantification techniques, associated hazards, and control measures of mycotoxin contamination of aquafeed". Critical Reviews in Microbiology. Taylor & Francis. 46 (1): 26–37. doi:10.1080/1040841x.2020.1716681. ISSN 1040-841X. PMID 32065532. S2CID 216319608.
  13. ^ a b Munaro, Deise; Nunes, Aline; Schmitz, Caroline; Bauer, Cláudia; Coelho, Daniela Sousa; Oliveira, Eva Regina; Yunes, Rosendo Augusto; Moura, Sidnei; Maraschin, Marcelo (2021). "Metabolites produced by macro- and microalgae as plant biostimulants". Studies in Natural Products Chemistry. Vol. 71. Elsevier. pp. 87–120. doi:10.1016/b978-0-323-91095-8.00011-8. ISBN 9780323910958. ISSN 1572-5995. S2CID 240511172.
  14. ^ a b "Fusarium and gibberella ear rot (extended information)". maizedoctor.org. Archived from the original on 2018-03-06. Retrieved 2017-10-25.
  15. ^ Guenther, John C.; Trail, Frances (2005). "The Development and Differentiation of Gibberella zeae (Anamorph: Fusarium graminearum) during Colonization of Wheat". Mycologia. 97 (1): 229–237. doi:10.1080/15572536.2006.11832856. JSTOR 3762213. PMID 16389974. S2CID 19273705.
  16. ^ Volk, Tom. "Gibberella zeae or Fusarium graminearum, head blight of wheat". botit.botany.wisc.edu. Retrieved 2017-10-25.
  17. ^

licensa
cc-by-sa-3.0
drit d'autor
Wikipedia authors and editors
original
visité la sorgiss
sit compagn
wikipedia EN

Gibberella zeae: Brief Summary ( Anglèis )

fornì da wikipedia EN

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

licensa
cc-by-sa-3.0
drit d'autor
Wikipedia authors and editors
original
visité la sorgiss
sit compagn
wikipedia EN

Gibberella zeae ( Esperant )

fornì da wikipedia EO

Gibberella zeae estas specio de fungoj el la familio nektriacoj kiu parazitas tritikon.

Gia anamorfo estas Fusarium graminearum. Ĝi produktas toksojn, B-trikocenojn (DON kaj NIV) kaj zearalenonon

Priskribo

Askosporoj grandas ĉirkaŭ 21 X 3,5 µ.

Vidu ankaŭ

licensa
cc-by-sa-3.0
drit d'autor
Vikipedio aŭtoroj kaj redaktantoj
original
visité la sorgiss
sit compagn
wikipedia EO

Gibberella zeae: Brief Summary ( Esperant )

fornì da wikipedia EO

Gibberella zeae estas specio de fungoj el la familio nektriacoj kiu parazitas tritikon.

Gia anamorfo estas Fusarium graminearum. Ĝi produktas toksojn, B-trikocenojn (DON kaj NIV) kaj zearalenonon

licensa
cc-by-sa-3.0
drit d'autor
Vikipedio aŭtoroj kaj redaktantoj
original
visité la sorgiss
sit compagn
wikipedia EO

Gibberella zeae ( Fransèis )

fornì da wikipedia FR

Gibberella zeae est une espèce de champignons ascomycètes de la famille des Nectriaceae. Cette espèce est également connue sous le nom de son anamorphe, Fusarium graminearum.

Ce champignon est l'un des agents pathogènes responsables de fusarioses chez les céréales, notamment la fusariose du blé et la fusariose du maïs. Ces maladies, outre les pertes de rendement, provoquent des contaminations des grains récoltés par des mycotoxines (fusariotoxines) dangereuses pour la santé humaine et animale

Liste des non-classés

Selon NCBI (7 octobre 2014)[2] :

  • non-classé Fusarium graminearum CS3005
  • non-classé Fusarium graminearum GZ363
  • non-classé Fusarium graminearum PH-1

Notes et références

Voir aussi

licensa
cc-by-sa-3.0
drit d'autor
Auteurs et éditeurs de Wikipedia
original
visité la sorgiss
sit compagn
wikipedia FR

Gibberella zeae: Brief Summary ( Fransèis )

fornì da wikipedia FR

Gibberella zeae est une espèce de champignons ascomycètes de la famille des Nectriaceae. Cette espèce est également connue sous le nom de son anamorphe, Fusarium graminearum.

Ce champignon est l'un des agents pathogènes responsables de fusarioses chez les céréales, notamment la fusariose du blé et la fusariose du maïs. Ces maladies, outre les pertes de rendement, provoquent des contaminations des grains récoltés par des mycotoxines (fusariotoxines) dangereuses pour la santé humaine et animale

licensa
cc-by-sa-3.0
drit d'autor
Auteurs et éditeurs de Wikipedia
original
visité la sorgiss
sit compagn
wikipedia FR

Gibberella zeae ( portughèis )

fornì da wikipedia PT

Gibberella zeae, também conhecida como Fusarium graminearum em seu estado anamorfo, é um fungo ascomiceto patógeno que causa a fusariose do trigo, responsável por perdas econômicas de bilhões de dólares em regiões onde o clima é úmido e quente, com precipitações pluviais elevadas.[1]

Ciclo de vida

A forma Fusarium graminearum é haplóide e homotálica. Os corpos de frutificação, denominados peritécios, desenvolvem-se no micélio e originam os esporos sexuais chamados ascosporos. Estes, por sua vez, são depositados nas partes sensíveis da planta hospedeira e começam a germinar. A germinação ocorre dentro de seis horas após a aterrissagem do esporo na planta.

Em seguida, o fungo produz macroconídios por reprodução assexuada. Estas estruturas hibernam no solo ou em restos de plantas em campo e dão origem ao micélio na próxima temporada.

Referências

  1. CASA, Ricardo T. et al. Danos causados pela infecção de Gibberella zeae em trigo. Fitopatologia Brasileira, vol.29 no.3, 2004.
 title=
licensa
cc-by-sa-3.0
drit d'autor
Autores e editores de Wikipedia
original
visité la sorgiss
sit compagn
wikipedia PT

Gibberella zeae: Brief Summary ( portughèis )

fornì da wikipedia PT

Gibberella zeae, também conhecida como Fusarium graminearum em seu estado anamorfo, é um fungo ascomiceto patógeno que causa a fusariose do trigo, responsável por perdas econômicas de bilhões de dólares em regiões onde o clima é úmido e quente, com precipitações pluviais elevadas.

licensa
cc-by-sa-3.0
drit d'autor
Autores e editores de Wikipedia
original
visité la sorgiss
sit compagn
wikipedia PT