dcsimg
巨型管蠕蟲的圖片
Life » » Metazoa » » 環節動物門 » » 须腕动物门 »

巨型管蠕蟲

Riftia pachyptila Jones 1981

無標題 ( 英語 )

由Animal Diversity Web提供

The taxonomic status of this strange group of worms is still being determined. There are several different scientific opinions about which group the species belongs to (Pearse et al. 1987; Black et al. 1997).

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

Morphology ( 英語 )

由Animal Diversity Web提供

An adult R. pachyptila has a tough chitonous tube that grows to over 3 meters tall. At the top of the tube is a large red plume containing hemoglobin that gives R. pachyptila the appearence of a giant paintbrush . Inside the tube, the worm's body is colorless, and holds a large sack called a trophosome (along with its other organs). This sack contains billions of symbiotic bacteria that make food for the worm. The worm has no mouth, eyes, or stomach (Cary et al. 1989; Univ. of Delware Marine Studies 2000).

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

Habitat ( 英語 )

由Animal Diversity Web提供

R. pachyptila lives in sulfide rich environments along hydrothermal vents on the ocean floor (Black et al. 1997, Univ. of Delware Marine Studies. 2000).

Aquatic Biomes: benthic ; oceanic vent

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

Distribution ( 英語 )

由Animal Diversity Web提供

Riftia pachyptila lives on the ocean floor near hydrothermal vents on the East Pacific Rise, more than a mile under the sea (Cary et al. 1989).

Biogeographic Regions: pacific ocean (Native )

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

Conservation Status ( 英語 )

由Animal Diversity Web提供

US Federal List: no special status

CITES: no special status

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

Benefits ( 英語 )

由Animal Diversity Web提供

Unknown.

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

Trophic Strategy ( 英語 )

由Animal Diversity Web提供

R. pachyptila depends on a symbiotic relationship with chemosynthetic bacteria for its food. Although it has no mouth or gut it is born with a mouth through which the bacteria enter. The tube worm uses a feeding sac (called a trophosome) to gather sulfuric chemicals that the bacteria uses to make food for the worm. (Univ. of Delware Marine Studies 2000)

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

Benefits ( 英語 )

由Animal Diversity Web提供

Unknown.

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

Reproduction ( 英語 )

由Animal Diversity Web提供

Females release lipid rich eggs which float slowly upward. Males release sperm bundles that contain hundreds of sperm cells. The sperm bundles then swim up to meet the eggs where they are fertilized. The larval worms swim down near the hydrothermal vents and attach to the cooled lava where they grow to form new tube worm communities. (Cary et al. 1989, Univ. of Delware Marine Studies 2000)

許可
cc-by-nc-sa-3.0
版權
The Regents of the University of Michigan and its licensors
書目引用
Privett, B. 2001. "Riftia pachyptila" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Riftia_pachyptila.html
作者
Brent Privett, Fresno City College
編輯者
Jerry Kirkhart, Fresno City College
原始內容
參訪來源
合作夥伴網站
Animal Diversity Web

One Species at a Time ( 英語 )

由EOL authors提供
Host Ari Daniel Shapiro dives deep to discover a white worm as tall as your refrigerator that breathes through bright red feathery “lips.” This isn’t a creature from outer space. Meet Riftia, a tube worm that lives in deep-sea vents, and learn the surprising lessons this denizen of the abyss is teaching scientists about life on Earth.

Listen to the podcast, meet the featured scientist, hear intriguing extras and find relevant educational resources at the Learning + Education section of EOL.

許可
cc-by-3.0
原始內容
參訪來源
合作夥伴網站
EOL authors

Brief Summary ( 英語 )

由EOL staff提供

Riftia pachyptila is a giant tube-dwelling annelid in the family Siboglinidae. Siboglinids are important members of deep-sea chemosynthetic communities, which include hydrothermal vents, cold seeps, whale falls, and reduced sediments. As adults, these worms lack a functional digestive system and rely on microbial endosymbionts for their energetic needs. (Hilário et al. 2011)

Riftia pachyptila was discovered on hydrothermal vents at the Galapagos Rift in 1977. It is now known to be a widely distributed inhabitant of vents along the East Pacific Rise and Galápagos Rift (Coykendall et al. 2011). Larvae are estimated to disperse more than 100 km over a 5-week period (Marsh et al. 2001). Studies of vent community succession have shown that R. pachyptila is among the first species to colonize a new vent once suitable conditions are established. Within two years its numbers can grow to several thousand adult individuals, but changes in vent flow or overgrowth by mytilid mussels can lead to its replacement as the dominant species. This process can take months to years, depending on the location. (Coykendall et al. 2011 and references therein)

Coykendall et al. (2011) studied genetic variation among R. pachyptila populations at one mitochondrial and three nuclear loci. They found low rates of genetic variation, especially in southern populations, which exhibit lower occupancy (i.e., percentage of active vents occupied) than do more northern populations. They suggested that the observed geographic pattern of genetic variation is likely explained at least in part by geographic variation in rates of local extinction and (re)colonization. In the Eastern Pacific in general, vent habitats are highly ephemeral, persisting for a few years to several decades before fluid conduits are blocked, magma supplies shift, or lava flows extirpate local communities. On the source side, earthquakes can open fluid conduits, re-activating old vents, and magmatic eruptions spawn new vents.

Hilário et al. (2011) wrote of Riftia pachyptila: “[Riftia pachyptila] became the poster-child of deep-sea discovery, the ‘lost world’ of unknown animal lineages that scientists on the Challenger deep-sea expedition 100 years previously had so wanted, but failed, to find. Arguably, this single species of worm launched the careers of a generation of deep-sea biologists.” At one time, R. pachyptila was placed in its own phylum, the Vestimentifera, although this status was short-lived as a result of new phylogenetic investigations (for review, see Pleijel et al. 2009 and Hilário et al. 2011).

Like other siboglinids, adult R. pachyptila lack a gut, mouth, anus, and conventional feeding ability and possesses bacterial symbionts. (Hilário et al. 2011). Adult R. pachyptila are nourished entirely by sulfur-oxidizing endosymbiotic bacteria (Coykendall et al. 2011). Although the larvae of R. pachytila are symbiont-free and possess a transient digestive system, these digestive structures are lost during development, resulting in adult animals that are nutritionally dependent on their bacterial symbionts. Thus, each generation of tubeworms must be newly colonized with appropriate symbionts. (Nussbaumer et al. 2006)

In the deep sea, aggregations of vestimentiferan tubeworms at hydrothermal vents and hydrocarbon seeps host diverse assemblages of smaller invertebrates. At deep sea hydrothermal vents in the eastern Pacific, R. pachyptila form large and dense aggregations in a spatially and temporally variable environment. The density and diversity of smaller invertebrates is higher in association with aggregations of R. pachyptila than on the surrounding basalt rock seafloor. (Govenar and Fisher 2007 and references therein)

許可
cc-by-nc-sa-3.0
版權
Shapiro, Leo
作者
Shapiro, Leo
原始內容
參訪來源
合作夥伴網站
EOL staff

Riftiya ( 亞塞拜然語 )

由wikipedia AZ提供


Riftiya və ya nəhəng borucuqlu qurdlar ? (lat. Riftia pachyptila) - poqonoforlar fəsiləsindən heyvan.

許可
cc-by-sa-3.0
版權
Vikipediya müəllifləri və redaktorları
原始內容
參訪來源
合作夥伴網站
wikipedia AZ

Cuc tubular gegant ( 加泰隆語 )

由wikipedia CA提供

El cuc tubular gegant, Riftia pachyptila, és un animal invertebrat marí dins de l'embrancament Annelida[1] (anteriorment ubicat dins dels embrancaments Pogonophora i Vestimentifera) relacionat amb els cucs tubulars que es troben en les zones entre marees i pelàgiques. Riftia pachyptila viu des del voltant d'una milla marina de fondària fins diverses milles marines al sòl de l'Oceà pacífic prop de les fumaroles negres i tolera nivells extremadament alts de sulfur d'hidrogen. Aquests cucs poden arribar a fer 2,4 metres de llargada.

Tanmateix el nom comú de "cuc tubular gegant" també s'aplica al mol·lusc bivalve Kuphus polythalamia, que no és un anèlid.

Estructura del cos

 src=
Els cucs de les fumaroles hidrotermals tenen bacteris que viuen al seu trofosoma.

Tenen un plomall vermell molt vascularitzat a la punta del seu extrem lliure que bescanvia compostos químics amb elia ambient. El plomall és retràctil i proporciona nutrients essencials a bacteris que viuen en els òrgans especialitzats del cuc (com el trofosoma) dins una relació de simbiosi. No tenen tracte digestiu però els seus bacteris converteixen l'oxigen, el sulfur d'hidrogen i el diòxid de carboni, etc. en molècules orgàniques. Aquest procés és de quimiosíntesi, i va ser reconegut primer per Colleen Cavanaugh.[2]

El color vermell brillant de les estructures del plomall és le resultat de diversos complexos d'hemoglobina.[3][4]

Els bacteris quimioíntètics són capaços de convertir nitrat en ions amoni disponibles per a construir aminoàcids en els bacteris que s'alliberen cap als cucs.[5]

Energia i font de nutrients

Com l'energia de la llum no està disponible directament com a forma d'energia, aquests cucs disposen dels bacteris per oxidar el sulfur d'hidrogen,[6] usant l'oxigen dissolt dins l'aigua per a la respiració. Aquests cucs són parcialment dependents de l'energia solar.

Reproducció

Les femelles de Riftia pachyptila alliberen ous rics en lípids dins l'aigua que floten cap amunt. Els mascles aleshores deixen anar esperma. Les larves que es desclouen s'enganxen a les roques.


Referències

Notes
  1. Ruppert, E.; Fox, R.; Barnes, R.. Invertebrate Zoology: A functional Evolutionary Approach. 7th. Belmont: Thomson Learning, 2007. ISBN 0-03-025982-7.
  2. Cavanaugh, Colleen M.; Gardiner, S. L.; Jones, M. L.; Jannasch, H. W.; Waterbury, J. B. «Prokaryotic Cells in the Hydrothermal Vent Tube Worm Riftia pachyptila Jones: Possible Chemoautotrophic Symbionts». Science, 213, 4505, 1981, pàg. 340–342. DOI: 10.1126/science.213.4505.340. PMID: 17819907.
  3. Zal F, Lallier FH, Green BN, Vinogradov SN, Toulmond A «The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. II. Complete polypeptide chain composition investigated by maximum entropy analysis of mass spectra» (Free full text). J. Biol. Chem., 271, 15, Apr 1996, pàg. 8875–81. DOI: 10.1074/jbc.271.15.8875. ISSN: 0021-9258. PMID: 8621529.
  4. Minic Z, Hervé G «Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont» (Free full text). Eur. J. Biochem., 271, 15, Aug 2004, pàg. 3093–102. DOI: 10.1111/j.1432-1033.2004.04248.x. ISSN: 0014-2956. PMID: 15265029.
  5. Edda Hahlbeck, Mark A. Pospesel, Franck Zal, James Childress, Horst Felbeck «Proposed nitrate binding by hemoglobin in Riftia pachyptila» (Free full text). Deep-Sea Research, 52, 10, July 2005, pàg. 1885–1895. DOI: 10.1016/j.dsr.2004.12.011. ISSN: 0967-0637.
  6. C.Michael Hogan. 2011. Sulfur. Encyclopedia of Earth, eds. A.Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DC
Bibliografia

Enllaços externs

 src= A Wikimedia Commons hi ha contingut multimèdia relatiu a: Cuc tubular gegant Modifica l'enllaç a Wikidata
許可
cc-by-sa-3.0
版權
Autors i editors de Wikipedia
原始內容
參訪來源
合作夥伴網站
wikipedia CA

Cuc tubular gegant: Brief Summary ( 加泰隆語 )

由wikipedia CA提供

El cuc tubular gegant, Riftia pachyptila, és un animal invertebrat marí dins de l'embrancament Annelida (anteriorment ubicat dins dels embrancaments Pogonophora i Vestimentifera) relacionat amb els cucs tubulars que es troben en les zones entre marees i pelàgiques. Riftia pachyptila viu des del voltant d'una milla marina de fondària fins diverses milles marines al sòl de l'Oceà pacífic prop de les fumaroles negres i tolera nivells extremadament alts de sulfur d'hidrogen. Aquests cucs poden arribar a fer 2,4 metres de llargada.

Tanmateix el nom comú de "cuc tubular gegant" també s'aplica al mol·lusc bivalve Kuphus polythalamia, que no és un anèlid.

許可
cc-by-sa-3.0
版權
Autors i editors de Wikipedia
原始內容
參訪來源
合作夥伴網站
wikipedia CA

Riftie hlubinná ( 捷克語 )

由wikipedia CZ提供

Riftie hlubinná (Riftia pachyptila), někdy nazývaná bradatice[1], je hlubokomořský kroužkovec ze skupiny vláknonošců a jediný zástupce rodu riftie. Riftia pachyptila žije na dně Tichého oceánu v temnotě v hloubce přes 1,6 km v okolí tzv. černých kuřáků (black smokers). Snášejí extrémně vysoké teploty okolní vody a vysokou koncentraci síry. Dorůstají délky až 3 metrů a tloušťky kolem 5 cm, jsou tedy největšími žijícími druhy kroužkovců.[2]

Anatomie a fyziologie

Jejich dlouhé červovité tělo je zakončeno červeným koncem, který slouží k výměně plynů, zejména sirovodíku, oxidu uhličitého, kyslíku a podobně. Velká část těla je krytá v bílých rourkách. Nemá trávicí soustavu, základní živiny se přivádějí do těla do specializovaného orgánu, trofozomu, který obsahuje symbiotické bakterie. Ty pak mohou tvořit až polovinu hmotnosti celé riftie a mění chemosynteticky (oxidací sulfanu) plyny přijaté z vody na organické látky. Tento proces objevila jako první Colleen Cavanaugh[3].

Červená barva riftií je způsobená specializovanými molekulami hemoglobinu. Riftia musela vyřešit problém, že musí dopravovat do trofozomu nejen kyslík, ale i sirovodík. Aby se neotrávila sulfanem, který má u normálního hemoglobinu "přednost", má dva druhy hemoglobinu. První "velký hemoglobin" váže kyslík, druhý "malý hemoglobin" obsahuje 12 atomů zinku a váže sulfan.[4].

Reference

V tomto článku byl použit překlad textu z článku giant tube worm na anglické Wikipedii.

  1. http://www.osel.cz/index.php?clanek=1922 Osel.cz - Symbióza vznikla z infekce
  2. McClain C. R.; et al. (2015). Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ 3:e715 https://doi.org/10.7717/peerj.715
  3. http://www.oeb.harvard.edu/faculty/cavanaugh/index.htm
  4. Čepička, I., Kolář, F., Synek, P. (2007): Mutualismus, vzájemně prospěšná symbióza. Přípravný text - biologická olympiáda 2007-2008, NIDM ČR, Praha

Literatura

Lhotský, Josef (2015). Úvod do studia symbiotických interakcí mikroorganismů. Nový pohled na viry a bakterie. Praha, Academia, 208 s.

Externí odkazy

許可
cc-by-sa-3.0
版權
Wikipedia autoři a editory
原始內容
參訪來源
合作夥伴網站
wikipedia CZ

Riftie hlubinná: Brief Summary ( 捷克語 )

由wikipedia CZ提供

Riftie hlubinná (Riftia pachyptila), někdy nazývaná bradatice, je hlubokomořský kroužkovec ze skupiny vláknonošců a jediný zástupce rodu riftie. Riftia pachyptila žije na dně Tichého oceánu v temnotě v hloubce přes 1,6 km v okolí tzv. černých kuřáků (black smokers). Snášejí extrémně vysoké teploty okolní vody a vysokou koncentraci síry. Dorůstají délky až 3 metrů a tloušťky kolem 5 cm, jsou tedy největšími žijícími druhy kroužkovců.

許可
cc-by-sa-3.0
版權
Wikipedia autoři a editory
原始內容
參訪來源
合作夥伴網站
wikipedia CZ

Riftia pachyptila ( 德語 )

由wikipedia DE提供

Riftia pachyptila ist eine Art aus der Familie der Bartwürmer (Siboglinidae, älterer Name: Pogonophora) und die einzige Art ihrer Gattung. Die Art hat aufgrund ihrer Größe, ihrer Lebensweise an hydrothermalen Schloten in der Tiefsee (Schwarze Raucher) und ihrer symbiotischen Lebensweise mit chemoautotrophen Bakterien innerhalb und außerhalb der Wissenschaft große Aufmerksamkeit gefunden. Über Riftia sind mehrere hundert wissenschaftliche Veröffentlichungen und einige Film- und Fernsehdokumentationen erschienen.

Merkmale

Riftia lebt innerhalb einer am Meeresboden fest verankerten Röhre, die das Tier niemals verlässt. Der Körper besteht aus vier deutlich gegeneinander abgesetzten Abschnitten. Das Vorderende trägt ein Büschel von lebhaft rot gefärbten Filamenten, die teilweise lamellenartig zusammengewachsen sind. Die Filamente sind an einer steifen und festen Struktur, dem sog. Obturaculum, befestigt. Bei Störungen zieht das Tier die Filamente in die Röhre zurück, die vom Obturaculum als Deckel fest verschlossen wird. Auf die Obturacularregion folgt ein muskulärer Abschnitt, der Vestimentum genannt wird. Bei ausgestreckten Filamenten blockiert das Vestimentum den Zugang zur Wohnröhre. Hier sitzt das Gehirn des Tiers, sein kurzes, muskulöses Herz und ein Ausscheidungsorgan. Außerdem sitzen am Vestimentum die Genitalporen und spezielle Drüsen, die das Material der Wohnröhre abscheiden. Auf das Vestimentum folgt eine sehr lange Rumpfregion, die aus einem zentralen Hohlraum besteht, der von einem Muskelschlauch und einer Außenhaut (Epidermis) begrenzt wird. Die Epidermis ist von einer glatten Kutikula bedeckt, die vor allem aus Fasern des Proteins Kollagen besteht. Innerhalb der zentralen Leibeshöhle sitzt ein lappenartig gegliedertes Organ, der Trophosom, in dem die symbiotischen Schwefelbakterien leben, die die einzige Ernährungsgrundlage von Riftia bilden. Außerdem erstrecken sich hier die Keimdrüsen (Gonaden). Das Opisthosom genannte Hinterende besteht aus zahlreichen kurzen, gegeneinander abgesetzten Segmenten und trägt Reihen von langen Borsten, seine Funktion ist die Verankerung des Tiers in der Wohnröhre.

Die Wohnröhre von Riftia ist glatt und gerade, sie ist am hinteren Ende geschlossen. Aufgebaut wird sie aus einem in der Konsistenz flexiblen, lederartigen Material, das zu großen Teilen aus Fasern von beta-Chitin besteht. Die Röhre erlaubt dem Vorderende eine gewisse Beweglichkeit. Die Länge der Röhre kann unter Optimalbedingungen eine Länge von zwei Metern noch überschreiten, ist aber in den meisten Populationen erheblich kürzer, sie überschreitet die Länge des lebenden Tiers erheblich. Bei den Tieren, die auf dem Basaltboden der untermeerischen Rücken leben, liegt sie völlig frei und ist nur am Hinterende in einer Felsspalte verankert. Bei Tieren, die auf Sediment leben, kann sie auch teilweise eingegraben sein.

Symbiose

 src=
Riftia-Kolonie

Riftia lebt in Symbiose mit einer Bakterienart, die zu den Gammaproteobacteria gehört. Der Wurm kann keine Nahrung aufnehmen, weil er weder eine Mundöffnung noch einen Darm besitzt; daher ist er für sein Überleben von diesem Symbionten vollkommen abhängig. Riftia war die erste Art, bei der die Symbiose mit einem Schwefelbakterium beobachtet worden ist und ist bis heute ein Modellorganismus für diese Beziehung geblieben. Solche Symbiosen sind jedoch mittlerweile als viel weiter verbreitet bekannt, als ursprünglich angenommen[1]. Obwohl vieles über die Bakterienart herausgefunden wurde, ist es trotz jahrzehntelanger Versuche bis heute nicht gelungen, sie zu kultivieren. Unter anderem sind große Teile des Genoms und Proteoms entschlüsselt worden und der Art wurde der provisorische Name Candidatus Endoriftia persephone gegeben.[2] Ähnliche Symbiosen mit Gammaproteobakterien wurden bei den Gattungen Oasisia[3] und Tevnia[4] gefunden.[5][6][7][8][9]

Die symbiotischen Bakterien gewinnen durch die Oxidation von Sulfid-Ionen mit dem Sauerstoff des Meerwassers Energie. Sulfid ist im freien Wasser nicht beständig, wird aber gemeinsam mit etlichen Metallionen aus hydrothermalen Quellen am Meeresgrund freigesetzt, die im Zusammenhang mit der vulkanischen Aktivität an mittelozeanischen Rücken stehen. Hier wird in Spalten versickertes Meerwasser durch in geringer Tiefe liegendes Magma aufgeheizt und mit Mineralien angereichert. Andere Bartwurmarten können als Sulfidquellen auch sauerstofffreien Schlick oder verrottende organische Substanzen ausnutzen, dies ist bei Riftia nie beobachtet worden. Die Bakterien oxidieren das Sulfid zu Sulfat, wobei Energie frei wird. Sie können mittels mehrerer Stoffwechselwege außerdem im Wasser gelöstes Kohlendioxid zu organischer Substanz reduzieren. Dadurch werden sie für Riftia nicht nur zur Energie-, sondern auch zur Kohlenstoff- und Biomassequelle. Riftia fördert seinen Endosymbionten, indem sie ständig sulfidreiches Wasser herbeistrudelt, das aus den Spalten am Meeresgrund nicht gleichmäßig, sondern in kleinräumig stark wechselnder Zusammensetzung hervorquillt. Außerdem hilft sie, die Assimilation von Kohlendioxid durch einen angepassten pH-Wert zu erleichtern und führt schädliche Stoffwechselprodukte wie elementaren Wasserstoff ab. Es gibt Hinweise darauf, dass Riftia diesen Wasserstoff möglicherweise auch zur Energiegewinnung nutzen kann. Möglicherweise kann das Bakterium bei sauerstoffarmen Bedingungen auf Nitratatmung wechseln, zumindest kann es Nitrat als Stickstoffquelle aus dem Meerwasser aufnehmen.

Sulfid ist für Eukaryoten wie Riftia eigentlich ein Zellgift. Die Art hat einen besonderen Weg gefunden, diesen für sie giftigen Stoff dennoch anreichern und ihrem Symbionten liefern zu können. Sie nutzt dazu eine Form des roten Blutfarbstoffs Hämoglobin[10], der bei ihr nicht in Zellen eingeschlossen, sondern frei im Plasma gelöst vorkommt. Riftia besitzt drei verschiedene Hämoglobinformen, deren Globinfraktion zu großen Teilen übereinstimmt, diese Bausteine aber anders zusammensetzt. Das Globin besitzt räumlich voneinander getrennt jeweils eine Bindungsstelle für Sauerstoff und eine für Sulfid, dessen Bindungsstelle die schwefelhaltige Aminosäure Cystein als funktionalen Bestandteil enthält. Durch den hohen Hämoglobingehalt sind die Tentakel von Riftia rot gefärbt.

Die Symbionten sind in einem besonderen Organ, dem Trophosom, und dort innerhalb spezialisierter Zellen, der Bakteriozyten, eingeschlossen[11]. Sie machen aufgrund ihrer geringen Größe die weit überwiegende Zellzahl, aber nur etwa ein Viertel der Biomasse aus. Die Zellen des Trophosoms sind nicht wie früher angenommen endodermalen, sondern mesodermalen Ursprungs.

Inzwischen ist nachgewiesen, dass der heranwachsende Wurm die Bakterien nicht vom Muttertier her mitbringt, sondern sie im Laufe der Entwicklung jedes Mal neu aus der Umwelt aufnehmen muss. Dort sind sie auch frei lebend nachweisbar[12]. Mehrere Röhrenwurmarten können dabei denselben Endosymbionten nutzen.

Fortpflanzung und Entwicklung

Riftia ist getrenntgeschlechtlich, das Geschlechterverhältnis vermutlich 1:1. Die männlichen Tiere geben begeißelte Spermatozoen ins freie Wasser ab, die zu den weiblichen Tieren schwimmen und dort die Eier (intern) befruchten. Die befruchteten Eier werden ins Wasser abgegeben. Sie entwickeln sich zum typischen Larvenstadium der Anneliden, der Trochophora-Larve. Diese Larven sind auch das wesentliche Ausbreitungsstadium. Da die hydrothermalen Quellen, an denen die Tiere leben, recht kurzlebig sind (ihre Lebensdauer ist im Durchschnitt kaum höher als diejenige der Würmer), sind diese auf einen effizienten Verbreitungsweg unbedingt angewiesen. Es wird beobachtet, dass neu entstandene Quellen, die Hunderte Kilometer von bestehenden entfernt liegen, rasch besiedelt werden können. Aus der Lebensdauer der Larven von etwa 38 Tagen und den typischen Strömungsmustern wurde eine durchschnittliche Verbreitungsstrecke von ca. 100 Kilometern abgeleitet[13]. Trotz intensiver Suche sind aber bisher noch niemals lebende Larven direkt im Ozean tatsächlich gefunden worden. Ist ein günstiger neuer Lebensraum entdeckt worden, wandelt sich die schwimmende Larve in ein bodenlebendes Larvenstadium um. In diesem Stadium werden die symbiotischen Bakterien aufgenommen. Die Larven wachsen zum ausgewachsenen Wurm aus. Damit wird der bei der Larve vorübergehend ausgebildete Darmkanal funktionslos und zurückgebildet.

Das Wachstum von Riftia ist außergewöhnlich rasch. Misst man die Röhrenlänge als Maß für den Zuwachs, so kann diese mit 85 Zentimetern im Jahr für einen Wirbellosen Rekordwerte erreichen, innerhalb einer Röhre von 2 Metern Länge sitzt allerdings ein Wurm von nur etwa 80 Zentimeter Körpergröße.

Ökologie

 src=
Bathymodiolus thermophilus

Die Art besitzt in ihrem Lebensraum die typischen Merkmale einer Pionierart: Schnelle Kolonisation, sehr rasches Jugendwachstum. Aus Beobachtungen an Quellen am Meeresgrund weiß man, dass es sich in der Tat um einen Erstbesiedler handelt. Experimentell freigekratzte Quellen wurden binnen kürzester Zeit von der Art wiederbesiedelt. An länger bestehenden Quellen wird die Art nach und nach durch andere Arten verdrängt. Häufig ist die Muschelart Bathymodiolus thermophilus Folgebesiedler. Riftia kann in günstigen Lebensräumen sehr hohe Individuendichten von vielen Hundert Individuen pro Quadratmeter erreichen, die einer Biozönose von Aufwuchsarten Lebensraum bieten. Generell ist der Lebensraum von Riftia aber ein typisches Extremhabitat, in dem nur wenige Arten leben können, die hier aber extreme Dichten erreichen.

Erwachsene Bartwürmer besitzen kaum Fressfeinde. Die Krabbenarten Bythograea thermydron und Munidopsis subsquamosa wurden beobachtet, wie sie Filamente der lebenden Würmer abweideten.

Verbreitung

Riftia pachyptila lebt ausschließlich im Pazifik. Dort besiedelt sie einen langen Abschnitt des ostpazifischen Rückens unter Aussparung der polnahen Abschnitte sowie den rechtwinklig davon abzweigenden Galapagos-Rücken. Hier wurde die Art von dem Meeresbiologen Meredith Jones bei einer Tauchfahrt des Tiefseetauchboots Alvin entdeckt und beschrieben. An anderen untersuchten untermeerischen Spreizungszonen wurde die Art nicht gefunden (am mittelatlantischen Rücken bis heute keine einzige riftbewohnende Bartwurmart!). Im mittleren, küstennäheren Abschnitt des Rückens vor der Bucht von Kalifornien wurden Tiere an hydrothermalen Quellen in Sedimentgestein gefunden, deren Endosymbionten offenbar etwas von denjenigen der mittelozeanischen Rücken auf Basaltgestein abweichen.[14]

Belege

  1. eine Übersicht: Nicole Dubilier, Claudia Bergin, Christian Lott (2008): Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Natue Review Microbiology 6: 725-740. doi:10.1038/nrmicro1992
  2. NCBI: Candidatus Endoriftia (genus), eine weitere Art ist endosymbiont of Riftia pachyptila (species) und
  3. NCBI: endosymbiont of Oasisia alvinae (species)
  4. NCBI: endosymbiont of Tevnia jerichonana (species)
  5. Feldman RA, Black MB, Cary CS, Lutz RA, Vrijenhoek RC: Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. In: Molecular Marine Biology and Biotechnology. 6, Nr. 3, September 1997, S. 268–277. PMID 9284565.
  6. Laue BE, Nelson DC: Sulfur-oxidizing symbionts have not co-evolved with their hydrothermal vent tube worm hosts: an RFLP analysis. In: Molecular Marine Biology and Biotechnology. 6, Nr. 3, September 1997, S. 180–188. PMID 9284558.
  7. Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC: Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. In: Applied and Environmental Microbiology. 66, Nr. 2, Februar 2000, S. 651–658. doi:10.1128/AEM.66.2.651-658.2000. PMID 10653731. PMC 91876 (freier Volltext).
  8. Nelson K, Fisher CR: Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. In: Symbiosis. 28, Nr. 1, 2000, S. 1–15.
  9. McMullin ER, Hourdez ST, Schaeffer SW, Fisher CR: Phylogeny and Biogeography of Deep Sea Vestimentiferan Tubeworms and Their Bacterial Symbionts. In: Symbiosis. 34, 2003, S. 1–41.
  10. Franck Zal, Emmanuelle Leize, François H. Lallier, André Toulmond, Alain Van Dorsselaer, James J. Childress (1998): S-Sulfohemoglobin and disulfide exchange: The mechanisms of sulfide binding by Riftia pachyptila hemoglobins. Proceedings of the National Academy of Sciences 95(15): 8997-9002.
  11. Monika Bright & Angelika Sorgo (2003): Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invertebrate Biology 122(4): 347–368 doi:10.1111/j.1744-7410.2003.tb00099.x
  12. Tara L. Harmer, Randi D. Rotjan, Andrea D. Nussbaumer, Monika Bright, Andrew W. Ng, Eric G. DeChaine, Colleen M. Cavanaugh (2008): Free-Living Tube Worm Endosymbionts Found at Deep-Sea Vents. Applied and Environmental Microbiology 74(12):3895. doi:10.1128/AEM.02470-07
  13. Adam G. Marsh, Lauren S. Mullineaux, Craig M. Young, Donald T. Manahan (2001): Larval dispersal potential of the tubeworm Riftiapachyptila at deep-sea hydrothermal vents. Nature 411, 77-80. doi:10.1038/35075063
  14. Julie C. Robidart, Annelys Roque, Pengfei Song, Peter R. Girguis: Linking Hydrothermal Geochemistry to Organismal Physiology: Physiological Versatility in Riftia pachyptila from Sedimented and Basalt-hosted Vents. PLoS one 6(7): e21692. doi:10.1371/journal.pone.0021692

Literatur

  • Monika Bright & Francois H. Lallier (2010): The biology of Vestimentiferan tubeworms. Oceanography and Marine Biology: An Annual Review 48: 213–266.
  • Ana Hilario, Marıa Capa, Thomas G. Dahlgren, Kenneth M. Halanych, Crispin T. S. Little, Daniel J. Thornhill, Caroline Verna, Adrian G. Glover: New perspectives on the ecology and evolution of siboglinid tubeworms. In: PloS one. Band 6, Nummer 2, 2011, S. e16309, doi:10.1371/journal.pone.0016309, PMID 21339826, PMC 3038861 (freier Volltext) (Review).

Weblinks

 src=
– Sammlung von Bildern, Videos und Audiodateien
 title=
許可
cc-by-sa-3.0
版權
Autoren und Herausgeber von Wikipedia
原始內容
參訪來源
合作夥伴網站
wikipedia DE

Riftia pachyptila: Brief Summary ( 德語 )

由wikipedia DE提供

Riftia pachyptila ist eine Art aus der Familie der Bartwürmer (Siboglinidae, älterer Name: Pogonophora) und die einzige Art ihrer Gattung. Die Art hat aufgrund ihrer Größe, ihrer Lebensweise an hydrothermalen Schloten in der Tiefsee (Schwarze Raucher) und ihrer symbiotischen Lebensweise mit chemoautotrophen Bakterien innerhalb und außerhalb der Wissenschaft große Aufmerksamkeit gefunden. Über Riftia sind mehrere hundert wissenschaftliche Veröffentlichungen und einige Film- und Fernsehdokumentationen erschienen.

許可
cc-by-sa-3.0
版權
Autoren und Herausgeber von Wikipedia
原始內容
參訪來源
合作夥伴網站
wikipedia DE

பெருங்குழாய்ப் புழு ( 坦米爾語 )

由wikipedia emerging languages提供

பெருங்குழாய்ப் புழு (Giant tube worms, Riftia pachyptila,) என்பவை பெருங்கடலில் வாழக்கூடிய வளையப் புழு தொகுதியைச் சேர்ந்த ஒரு உயிரினமாகும். [1] இவை பசிபிக் பெருங்கடலின் ஆழ்கடல் மண்டலங்களில்தான் மிகுதியாகக் காணப்படுகின்றன. கடலினுள் டெக்ரானிக் தகடுகள் நகர்ந்து எரிமலையாக வெடித்து சிதறுவதால் உண்டாகும் கரும்புகை மண்டலத்தில் இவை விரும்பி வசிக்கின்றன, மேலும் இவை அக்கடல் பகுதியில் உள்ள ஐதரன் சல்பைடை சகித்து வாழக்கூடியவை. இந்தப் புழுக்கள் 2.4 m (7 ft 10 in) நீளம்வரை வளரக்கூடியன. புழுவின் உடல் விட்டம் 4 cm (1.6 in) வரை இருக்கும். அவற்றின் இயற்கையான சூழலில் சுற்றுப்புற வெப்பநிலை 2 முதல் 30 டிகிரி செல்சியஸ் வரை மாறுபடுகிறது.[2]

வளர்ச்சி

கடலுக்கடியில் எரிமலை வெடிப்பாலும் அதனால் ஏற்படும் நில நடுக்கத்தாலும் பெரிய பள்ளங்கள் ஏற்படுகின்றன இந்தப் பெரிய பள்ளத்தில் நிரம்பும் நீர், பூமியின் அப்பகுதியில் எரிமலையால் ஏற்படும் அதிக வெப்பத்தால் மிகவும் சூடாகிறது. வழக்கமாக 5 அல்லது 6 டிகிரி செல்சியஸ் வெப்பநிலையில் இருக்கவேண்டிய கடல் நீர், பூகம்பத்தால் 400 டிகிரி செல்சியஸ் அளவுக்கு உயர்கிறது. இந்த 400 டிகிரி தகிக்கும் வெப்ப நிலையில்தான் அந்தப் புழுக்கள் தோன்றுகிறன. இவை உருவான இரண்டே ஆண்டுகளில் 7 அடி வரை வளர்ந்துவிடும். நிலநடுக்கத்தாலும், எரிமலைச் சிதைவிலும் நச்சுப்புகையும், நச்சு அமிலமும்தான் இந்த ஆழ்கடல் பகுதியில் இருக்கும். இந்தப் புழு இந்த அமிலம், வெப்பம், அழுத்தம் இவற்றையெல்லாம் உணவாக்கிக்கொண்டு தன் வளர்ச்சிக்குப் பயன்படுத்திக் கொள்கிறது. இந்த புழுக்களின் உடலில் பாதியளவு பாக்டீரியாக்களால் நிரம்பியிருக்கும். இந்த பாக்டீரியா சுற்றுப்புறத்தில் உள்ள வேதிபொருட்களுடன் வினைபுரிந்து புழுவின் உடலுக்குத் தேவையான உயிர்ச்சத்தை அளிக்கிறது. இந்தப் புழுக்களின் உடல் அமைப்பை ‘வாங்குலர்’ உடலமைப்பு என்று சொல்வார்கள். இதன் உடம்பு நீர்மப் பொருட்களை, உடலின் பல்வேறு பகுதிகளுக்குக் கடத்திச் செல்லும் வகையில் குழாய் போன்ற அமைப்பால் ஆனது.

இந்தப் புழுக்களின் தலைப்பகுதியில் ப்ளும் என்ற சிவப்பு நிறக் கொப்பி காணப்படுகிறது. இது சுற்றுப்புறத்தில் உள்ள வேதிப் பொருட்களை உடலின் உள்ளே பாக்டீரியாவுக்குக் கடத்துகிறது. இந்தப் பாக்டீரியாக்கள் ஐட்ரஜன் சல்பைடு, கார்பன்-டை-ஆக்சைடு போன்றவற்றுடன் வேதி வினைகளில் ஈடுபட்டு உயிர்ப் பொருட்களாக மாற்றி புழுக்களுக்குத் தேவையான உயிர்சக்தியை அளிக்கிறது. இந்தப் புழு ஒரு வேதித் தொழிற்சாலை மாதிரிச் செயல்படுவதால் இதற்குச் செரிமான மண்டலம், கழிவு நீக்க மண்டலம் என்றெல்லாம் எதுவும் இல்லை. இந்தப் புழு வேதி வினைகளால் உயிர் வாழ்வதால் அதிக வெப்பத்தைத் தாங்கி உயிர் வாழ்கிறது. அதிக அளவில் ஹீமோகுளோபின் இருப்பதால் இதன் மொட்டு போன்ற நுனிப்பகுதி சிவப்பு நிறத்தில் காணப்படுகிறது.

தோற்றம்

இதன் உருவம் இராட்சத அளவுக்கு இருக்கும் என்றாலும் பார்ப்பதற்கு மிகவும் அழகாக இருக்கும். மேலே இறகு போன்ற சிவப்பு நிற ஒரு குப்பி கிரீடம் வைத்தது போல இருக்கும். தூரத்திலிருந்து பார்க்கும் போது பெண்கள் உபயோகப்படுத்தும் உதட்டுச்சாய குப்பிகள் மாதிரி இருப்பதால் இதற்கு லிப்ஸ்டிக் புழுக்கள் என்றும் பெயரும் உண்டு.[3]

மேற்கோள்கள்

  1. Ruppert, E.; Fox, R.; Barnes, R. (2007). Invertebrate Zoology: A functional Evolutionary Approach (7th ). Belmont: Thomson Learning. பன்னாட்டுத் தரப்புத்தக எண்:0-03-025982-7.
  2. Bright, M.; Lallier, F. H. (2010). "The biology of vestimentiferan tubeworms". Oceanography and Marine Biology: An Annual Review (Taylor & Francis) 48: 213–266. doi:10.1201/ebk1439821169-c4. http://www.sb-roscoff.fr/Ecchis/pdf/10-Bright-OMBAR.pdf. பார்த்த நாள்: 2013-10-30.
  3. ஆதலையூர் சூரியகுமார் (2017 மார்ச் 29). "காரணம் ஆயிரம்: எரியும் எரிமலைக்குள் ஒரு புழு". கட்டுரை. தி இந்து. பார்த்த நாள் 29 மார்ச் 2017.

許可
cc-by-sa-3.0
版權
விக்கிபீடியா ஆசிரியர்கள் மற்றும் ஆசிரியர்கள்
原始內容
參訪來源
合作夥伴網站
wikipedia emerging languages

பெருங்குழாய்ப் புழு: Brief Summary ( 坦米爾語 )

由wikipedia emerging languages提供

பெருங்குழாய்ப் புழு (Giant tube worms, Riftia pachyptila,) என்பவை பெருங்கடலில் வாழக்கூடிய வளையப் புழு தொகுதியைச் சேர்ந்த ஒரு உயிரினமாகும். இவை பசிபிக் பெருங்கடலின் ஆழ்கடல் மண்டலங்களில்தான் மிகுதியாகக் காணப்படுகின்றன. கடலினுள் டெக்ரானிக் தகடுகள் நகர்ந்து எரிமலையாக வெடித்து சிதறுவதால் உண்டாகும் கரும்புகை மண்டலத்தில் இவை விரும்பி வசிக்கின்றன, மேலும் இவை அக்கடல் பகுதியில் உள்ள ஐதரன் சல்பைடை சகித்து வாழக்கூடியவை. இந்தப் புழுக்கள் 2.4 m (7 ft 10 in) நீளம்வரை வளரக்கூடியன. புழுவின் உடல் விட்டம் 4 cm (1.6 in) வரை இருக்கும். அவற்றின் இயற்கையான சூழலில் சுற்றுப்புற வெப்பநிலை 2 முதல் 30 டிகிரி செல்சியஸ் வரை மாறுபடுகிறது.

許可
cc-by-sa-3.0
版權
விக்கிபீடியா ஆசிரியர்கள் மற்றும் ஆசிரியர்கள்
原始內容
參訪來源
合作夥伴網站
wikipedia emerging languages

Riftia pachyptila ( 英語 )

由wikipedia EN提供

Riftia pachyptila, commonly known as the giant tube worm and less commonly known as the giant beardworm, is a marine invertebrate in the phylum Annelida[1] (formerly grouped in phylum Pogonophora and Vestimentifera) related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents, the vents provide a natural ambient temperature in their environment ranging from 2 to 30 °C,[2] at the same time it can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m (9 ft 10 in),[3] and their tubular bodies have a diameter of 4 cm (1.6 in).

Its common name "giant tube worm" is, however, also applied to the largest living species of shipworm, Kuphus polythalamius, which despite the name "worm", is a bivalve mollusc rather than an annelid.

Discovery

DSV Alvin, the Navy research submarine

R. pachyptila was discovered in 1977 on an expedition of the American bathyscaphe DSV Alvin to the Galápagos Rift led by geologist Jack Corliss.[4] The discovery was unexpected, as the team was studying hydrothermal vents and no biologists were included in the expedition. Many of the species found living near hydrothermal vents during this expedition had never been seen before.

At the time, the presence of thermal springs near the midoceanic ridges was known. Further research uncovered aquatic life in the area, despite the high temperature (around 5–30 °C).[5][6]

Many samples were collected, for example, bivalves, polychaetes, large crabs, and R. pachyptila.[7][8] It was the first time that species was observed.

Development

R. pachyptila develops from a free-swimming, pelagic, nonsymbiotic trochophore larva, which enters juvenile (metatrochophore) development, becoming sessile, and subsequently acquiring symbiotic bacteria.[9][10] The symbiotic bacteria, on which adult worms depend for sustenance, are not present in the gametes, but are acquired from the environment through the skin in a process akin to an infection. The digestive tract transiently connects from a mouth at the tip of the ventral medial process to a foregut, midgut, hindgut, and anus and was previously thought to have been the method by which the bacteria are introduced into adults. After symbionts are established in the midgut, they undergo substantial remodelling and enlargement to become the trophosome, while the remainder of the digestive tract has not been detected in adult specimens.[11]

Body structure

Isolating the vermiform body from white chitinous tube, a small difference exists from the classic three subdivisions typical of phylum Pogonophora:[12] the prosoma, the mesosoma, and the metasoma.

R. pachyptila community with extroflexion of red branchial plume

The first body region is the vascularized branchial plume, which is bright red due to the presence of hemoglobin that contain up to 144 globin chains (each presumably including associated heme structures). These tube worm hemoglobins are remarkable for carrying oxygen in the presence of sulfide, without being inhibited by this molecule, as hemoglobins in most other species are.[13][14] The plume provides essential nutrients to bacteria living inside the trophosome. If the animal perceives a threat or is touched, it retracts the plume and the tube is closed due to the obturaculum, a particular operculum that protects and isolates the animal from the external environment.[15]

The second body region is the vestimentum, formed by muscle bands, having a winged shape, and it presents the two genital openings at the end.[16][17] The heart, extended portion of dorsal vessel, enclose the vestimentum.[18]

Hydrothermal vent tubeworms get organic compounds from bacteria that live in their trophosome.

In the middle part, the trunk or third body region, is full of vascularized solid tissue, and includes body wall, gonads, and the coelomic cavity. Here is located also the trophosome, spongy tissue where a billion symbiotic, thioautotrophic bacteria and sulfur granules are found.[19][20] Since the mouth, digestive system, and anus are missing, the survival of R. pachyptila is dependent on this mutualistic symbiosis.[21] This process, known as chemosynthesis, was recognized within the trophosome by Colleen Cavanaugh.[21]

The soluble hemoglobins, present in the tentacles, are able to bind O2 and H2S, which are necessary for chemosynthetic bacteria. Due to the capillaries, these compounds are absorbed by bacteria.[22] During the chemosynthesis, the mitochondrial enzyme rhodanase catalyzes the disproportionation reaction of the thiosulfate anion S2O32- to sulfur S and sulfite SO32- .[23][24] The R. pachyptila’s bloodstream is responsible for absorption of the O2 and nutrients such as carbohydrates.

Nitrate and nitrite are toxic, but are required for biosynthetic processes. The chemosynthetic bacteria within the trophosome convert nitrate to ammonium ions, which then are available for production of amino acids in the bacteria, which are in turn released to the tube worm. To transport nitrate to the bacteria, R. pachyptila concentrates nitrate in its blood, to a concentration 100 times more concentrated than the surrounding water. The exact mechanism of R. pachyptila’s ability to withstand and concentrate nitrate is still unknown.[14]

In the posterior part, the fourth body region, is the opistosome, which anchors the animal to the tube and is used for the storage of waste from bacterial reactions.[25]

Symbiosis

The discovery of bacterial invertebrate chemoautotrophic symbiosis, particularly in vestimentiferan tubeworms R. pachyptila[21] and then in vesicomyid clams and mytilid mussels revealed the chemoautotrophic potential of the hydrothermal vent tube worm.[26] Scientists discovered a remarkable source of nutrition that helps to sustain the conspicuous biomass of invertebrates at vents.[26] Many studies focusing on this type of symbiosis revealed the presence of chemoautotrophic, endosymbiotic, sulfur-oxidizing bacteria mainly in R. pachyptila,[27] which inhabits extreme environments and is adapted to the particular composition of the mixed volcanic and sea waters.[28] This special environment is filled with inorganic metabolites, essentially carbon, nitrogen, oxygen, and sulfur. In its adult phase, R. pachyptila lacks a digestive system. To provide its energetic needs, it retains those dissolved inorganic nutrients (sulfide, carbon dioxide, oxygen, nitrogen) into its plume and transports them through a vascular system to the trophosome, which is suspended in paired coelomic cavities and is where the intracellular symbiotic bacteria are found.[20][29][30] The trophosome[31] is a soft tissue that runs through almost the whole length of the tube's coelom. It retains a large number of bacteria on the order of 109 bacteria per gram of fresh weight.[32] Bacteria in the trophosome are retained inside bacteriocytes, thereby having no contact with the external environment. Thus, they rely on R. pachyptila for the assimilation of nutrients needed for the array of metabolic reactions they employ and for the excretion of waste products of carbon fixation pathways. At the same time, the tube worm depends completely on the microorganisms for the byproducts of their carbon fixation cycles that are needed for its growth.

Initial evidence for a chemoautotrophic symbiosis in R. pachyptila came from microscopic and biochemical analyses showing Gram-negative bacteria packed within a highly vascularized organ in the tubeworm trunk called the trophosome.[21] Additional analyses involving stable isotope,[33] enzymatic,[34][26] and physiological[35] characterizations confirmed that the end symbionts of R. pachyptila oxidize reduced-sulfur compounds to synthesize ATP for use in autotrophic carbon fixation through the Calvin cycle. The host tubeworm enables the uptake and transport of the substrates required for thioautotrophy, which are HS, O2, and CO2, receiving back a portion of the organic matter synthesized by the symbiont population. The adult tubeworm, given its inability to feed on particulate matter and its entire dependency on its symbionts for nutrition, the bacterial population is then the primary source of carbon acquisition for the symbiosis. Discovery of bacterial–invertebrate chemoautotrophic symbioses, initially in vestimentiferan tubeworms[21][26] and then in vesicomyid clams and mytilid mussels,[26] pointed to an even more remarkable source of nutrition sustaining the invertebrates at vents.

Endosymbiosis with chemoautotrophic bacteria

A wide range of bacterial diversity is associated with symbiotic relationships with R. pachyptila. Many bacteria belong to the phylum Campylobacterota (formerly class Epsilonproteobacteria)[36] as supported by the recent discovery in 2016 of the new species Sulfurovum riftiae belonging to the phylum Campylobacterota, family Helicobacteraceae isolated from R. pachyptila collected from the East Pacific Rise.[37] Other symbionts belong to the class Delta-, Alpha- and Gammaproteobacteria.[36] The Candidatus Endoriftia persephone (Gammaproteobacteria) is a facultative R. pachyptila symbiont and has been shown to be a mixotroph, thereby exploiting both Calvin Benson cycle and reverse TCA cycle (with an unusual ATP citrate lyase) according to availability of carbon resources and whether it is free living in the environment or inside a eukaryotic host. The bacteria apparently prefer a heterotrophic lifestyle when carbon sources are available.[31]

Evidence based on 16S rRNA analysis affirms that R. pachyptila chemoautotrophic bacteria belong to two different clades: Gammaproteobacteria[38][20] and Campylobacterota (e.g. Sulfurovum riftiae)[37] that get energy from the oxidation of inorganic sulfur compounds such as hydrogen sulfide (H2S, HS, S2-) to synthesize ATP for carbon fixation via the Calvin cycle.[20] Unfortunately, most of these bacteria are still uncultivable. Symbiosis works so that R. pachyptila provides nutrients such as HS, O2, CO2 to bacteria, and in turn it receives organic matter from them. Thus, because of lack of a digestive system, R. pachyptila depends entirely on its bacterial symbiont to survive.[39][40]

In the first step of sulfide-oxidation, reduced sulfur (HS) passes from the external environment into R. pachyptila blood, where, together with O2, it is bound by hemoglobin, forming the complex Hb-O2-HS and then it is transported to the trophosome, where bacterial symbionts reside. Here, HS is oxidized to elemental sulfur (S0) or to sulfite (SO32-).[20]

In the second step, the symbionts make sulfite-oxidation by the "APS pathway", to get ATP. In this biochemical pathway, AMP reacts with sulfite in the presence of the enzyme APS reductase, giving APS (adenosine 5'-phosphosulfate). Then, APS reacts with the enzyme ATP sulfurylase in presence of pyrophosphate (PPi) giving ATP (substrate-level phosphorylation) and sulfate (SO42-) as end products.[20] In formulas:

  • AMP + SO 3 2 − → A P S r e d u c t a s e APS {displaystyle {ce {AMP + SO3^2- ->[APSreductase] APS}}} {displaystyle {ce {AMP + SO3^2- ->[APSreductase] APS}}}
  • APS + PPi → A T P s u l f u r y l a s e ATP + SO 4 2 − {displaystyle {ce {APS + PPi ->[ATP sulfurylase] ATP + SO4^2-}}} {displaystyle {ce {APS + PPi ->[ATP sulfurylase] ATP + SO4^2-}}}

The electrons released during the entire sulfide-oxidation process enter in an electron transport chain, yielding a proton gradient that produces ATP (oxydative phosphorylation). Thus, ATP generated from oxidative phosphorylation and ATP produced by substrate-level phosphorylation become available for CO2 fixation in Calvin cycle, whose presence has been demonstrated by the presence of two key enzymes of this pathway: phosphoribulokinase and RubisCO.[26][41]

To support this unusual metabolism, R. pachyptila has to absorb all the substances necessary for both sulfide-oxidation and carbon fixation, that is: HS, O2 and CO2 and other fundamental bacterial nutrients such as N and P. This means that the tubeworm must be able to access both oxic and anoxic areas.

Oxidation of reduced sulfur compounds requires the presence of oxidized reagents such as oxygen and nitrate. Hydrothermal vents are characterized by conditions of high hypoxia. In hypoxic conditions, sulfur-storing organisms start producing hydrogen sulfide. Therefore, the production of in H2S in anaerobic conditions is common among thiotrophic symbiosis. H2S can be damaging for some physiological processes as it inhibits the activity of cytochrome c oxidase, consequentially impairing oxidative phosphorilation. In R. pachyptila the production of hydrogen sulfide starts after 24h of hypoxia. In order to avoid physiological damage some animals, including Riftia pachyptila are able to bind H2S to haemoglobin in the blood to eventually expel it in the surrounding environment.

Carbon fixation and organic carbon assimilation

Unlike metazoans, which respire carbon dioxide as a waste product, R. pachyptila-symbiont association has a demand for a net uptake of CO2 instead, as a cnidarian-symbiont associations.[42] Ambient deep-sea water contains an abundant amount of inorganic carbon in the form of bicarbonate HCO3, but it is actually the chargeless form of inorganic carbon, CO2, that is easily diffusible across membranes. The low partial pressures of CO2 in the deep-sea environment is due to the seawater alkaline pH and the high solubility of CO2, yet the pCO2 of the blood of R. pachyptila may be as much as two orders of magnitude greater than the pCO2 of deep-sea water.[42]

CO2 partial pressures are transferred to the vicinity of vent fluids due to the enriched inorganic carbon content of vent fluids and their lower pH.[20] CO2 uptake in the worm is enhanced by the higher pH of its blood (7.3–7.4), which favors the bicarbonate ion and thus promotes a steep gradient across which CO2 diffuses into the vascular blood of the plume.[43][20] The facilitation of CO2 uptake by high environmental pCO2 was first inferred based on measures of elevated blood and coelomic fluid pCO2 in tubeworms, and was subsequently demonstrated through incubations of intact animals under various pCO2 conditions.[30]

Once CO2 is fixed by the symbionts, it must be assimilated by the host tissues. The supply of fixed carbon to the host is transported via organic molecules from the trophosome in the hemolymph, but the relative importance of translocation and symbiont digestion is not yet known.[30][44] Studies proved that within 15 min, the label first appears in symbiont-free host tissues, and that indicates a significant amount of release of organic carbon immediately after fixation. After 24 h, labeled carbon is clearly evident in the epidermal tissues of the body wall. Results of the pulse-chase autoradiographic experiments were also evident with ultrastructural evidence for digestion of symbionts in the peripheral regions of the trophosome lobules.[44][45]

Sulfide acquisition

In deep-sea hydrothermal vents, sulfide and oxygen are present in different areas. Indeed, the reducing fluid of hydrothermal vents is rich in sulfide, but poor in oxygen, whereas sea water is richer in dissolved oxygen. Moreover, sulfide is immediately oxidized by dissolved oxygen to form partly, or totally, oxidized sulfur compounds like thiosulfate (S2O32-) and ultimately sulfate (SO42-), respectively less, or no longer, usable for microbial oxidation metabolism.[46] This causes the substrates to be less available for microbial activity, thus bacteria are constricted to compete with oxygen to get their nutrients. In order to avoid this issue, several microbes have evolved to make symbiosis with eukaryotic hosts.[47][20] In fact, R. pachyptila is able to cover the oxic and anoxic areas to get both sulfide and oxygen[48][49][50] thanks to its hemoglobin that can bind sulfide reversibly and apart from oxygen by functional binding sites determined to be zinc ions embedded in the A2 chains of the hemoglobins.[51][52][53] and then transport it to the trophosome, where bacterial metabolism can occur. It has also been suggested that cysteine residues are involved in this process.[54][55][56]

Symbiont acquisition

The acquisition of a symbiont by a host can occur in these ways:

  • Environmental transfer (symbiont acquired from a free-living population in the environment)
  • Vertical transfer (parents transfer symbiont to offspring via eggs)
  • Horizontal transfer (hosts that share the same environment)

Evidence suggests that R. pachyptila acquires its symbionts through its environment. In fact, 16S rRNA gene analysis showed that vestimentiferan tubeworms belonging to three different genera: Riftia, Oasisia, and Tevnia, share the same bacterial symbiont phylotype.[57][58][59][60][61]

This proves that R. pachyptila takes its symbionts from a free-living bacterial population in the environment. Other studies also support this thesis, because analyzing R. pachyptila eggs, 16S rRNA belonging to the symbiont was not found, showing that the bacterial symbiont is not transmitted by vertical transfer.[62]

Another proof to support the environmental transfer comes from several studies conducted in the late 1990s.[63] PCR was used to detect and identify a R. pachyptila symbiont gene whose sequence was very similar to the fliC gene that encodes some primary protein subunits (flagellin) required for flagellum synthesis. Analysis showed that R. pachyptila symbiont has at least one gene needed for flagellum synthesis. Hence, the question arose as to the purpose of the flagellum. Flagellar motility would be useless for a bacterial symbiont transmitted vertically, but if the symbiont came from the external environment, then a flagellum would be essential to reach the host organism and to colonize it. Indeed, several symbionts use this method to colonize eukaryotic hosts.[64][65][66][67]

Thus, these results confirm the environmental transfer of R. pachyptila symbiont.

Reproduction

R. pachyptila[68] is a dioecious vestimentiferan.[69] Individuals of this species are sessile and are found clustered together around deep-sea hydrothermal vents of the East Pacific Rise and the Galapagos Rift.[70] The size of a patch of individuals surrounding a vent is within the scale of tens of metres.[71]

The male's spermatozoa are thread-shaped and are composed of three distinct regions: the acrosome (6 μm), the nucleus (26 μm) and the tail (98 μm). Thus, the single spermatozoa is about 130 μm long overall, with a diameter of 0.7 μm, which becomes narrower near the tail area, reaching 0.2 μm. The sperm is arranged into an agglomeration of around 340-350 individual spermatozoa that create a torch-like shape. The cup part is made up of acrosomes and nucleus, while the handle is made up by the tails. The spermatozoa in the package are held together by fibrils. Fibrils also coat the package itself to ensure cohesion.

The large ovaries of females run within the gonocoel along the entire length of the trunk and are ventral to the trophosome. Eggs at different maturation stages can be found in the middle area of the ovaries, and depending on their developmental stage, are referred to as: oogonia, oocytes, and follicular cells. When the oocytes mature, they acquire protein and lipid yolk granules.

Males release their sperm into sea water. While the released agglomerations of spermatozoa, referred to as spermatozeugmata, do not remain intact for more than 30 seconds in laboratory conditions, they may maintain integrity for longer periods of time in specific hydrothermal vent conditions. Usually, the spermatozeugmata swim into the female's tube. Movement of the cluster is conferred by the collective action of each spermatozoon moving independently. Reproduction has also been observed involving only a single spermatozoon reaching the female's tube. Generally, fertilization in R. pachyptila is considered internal. However, some argue that, as the sperm is released into sea water and only afterwards reaches the eggs in the oviducts, it should be defined as internal-external.

R. pachyptila is completely dependent on the production of volcanic gases and the presence of sulfide-oxidizing bacteria. Therefore, its metapopulation distribution is profoundly linked to volcanic and tectonic activity that create active hydrothermal vent sites with a patchy and ephemeral distribution. The distance between active sites along a rift or adjacent segments can be very high, reaching hundreds of km.[70] This raises the question regarding larval dispersal. R. pachytpila is capable of larval dispersal across distances of 100 to 200 km[70] and cultured larvae show to be viable for 38 days.[72] Though dispersal is considered to be effective, the genetic variability observed in R. pachyptila metapopulation is low compared to other vent species. This may be due to high extinction events and colonization events, as R. pachyptila is one of the first species to colonize a new active site.[70]

The endosymbionts of R. pachyptila are not passed to the fertilized eggs during spawning, but are acquired later during the larval stage of the vestimentiferan worm. R. pachyptila planktonic larvae that are transported through sea-bottom currents until they reach active hydrothermal vents sites, are referred to as trophocores. The trophocore stage lacks endosymbionts, which are acquired once larvae settle in a suitable environment and substrate. Free-living bacteria found in the water column are ingested randomly and enter the worm through a ciliated opening of the branchial plume. This opening is connected to the trophosome through a duct that passes through the brain. Once the bacteria are in the gut, the ones that are beneficial to the individual, namely sulfide- oxidizing strains are paghocytized by epithelial cells found in the midgut are then retained. Bacteria that do not represent possible endosymbionts are digested. This raises questions as to how R. pachyptila manages to discern between essential and nonessential bacterial strains. The worm's ability to recognise a beneficial strain, as well as preferential host-specific infection by bacteria have been both suggested as being the drivers of this phenomenon.[11]

Growth rate and age

R. pachyptila has the fastest growth rate of any known marine invertebrate. These organisms have been known to colonize a new site, grow to sexual maturity, and increase in length to 4.9 feet (1.5 m) in less than two years.[73]

Because of the peculiar environment in which R. pachyptila thrives, this species differs greatly from other deep-sea species that do not inhabit hydrothermal vents sites; the activity of diagnostic enzymes for glycolysis, citric acid cycle and transport of electrons in the tissues of R. pachyptila is very similar to the activity of these enzymes in the tissues of shallow-living animals. This contrasts with the fact that deep-sea species usually show very low metabolic rates, which in turn suggests that low water temperature and high pressure in the deep sea do not necessarily limit the metabolic rate of animals and that hydrothermal vents sites display characteristics that are completely different from the surrounding environment, thereby shaping the physiology and biological interactions of the organisms living in these sites.[32]

See also

References

  1. ^ Ruppert E, Fox R, Barnes R (2007). Invertebrate Zoology: A functional Evolutionary Approach (7th ed.). Belmont: Thomson Learning. ISBN 978-0-03-025982-1.
  2. ^ Bright M, Lallier FH (2010). "The biology of vestimentiferan tubeworms". Oceanography and Marine Biology (PDF). Oceanography and Marine Biology - an Annual Review. Vol. 48. Taylor & Francis. pp. 213–266. doi:10.1201/ebk1439821169-c4. ISBN 978-1-4398-2116-9. Archived from the original (PDF) on 31 October 2013. Retrieved 30 October 2013.
  3. ^ McClain, Craig R.; Balk, Meghan A.; Benfield, Mark C.; Branch, Trevor A.; Chen, Catherine; Cosgrove, James; Dove, Alistair D.M.; Gaskins, Lindsay C.; Helm, Rebecca R. (2015-01-13). "Sizing ocean giants: patterns of intraspecific size variation in marine megafauna". PeerJ. 3: e715. doi:10.7717/peerj.715. PMC 4304853. PMID 25649000.
  4. ^ "Giant Tube Worm: Riftia pachyptila". Smithsonian National Museum of Natural History. Archived from the original on 24 October 2018. Retrieved 25 October 2018.
  5. ^ "Exploring the deep ocean floor: Hot springs and strange creatures".
  6. ^ Koschinsky A, Garbe-Schönberg D, Sander S, Schmidt K, Gennerich HH, Strauss H (2008). "Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge". Geology. 36 (8): 615. Bibcode:2008Geo....36..615K. doi:10.1130/g24726a.1.
  7. ^ Childress JJ (October 1988). "Biology and chemistry of a deep-sea hydrothermal vent on the Galapagos Rift; the Rose Garden in 1985. Introduction". Deep Sea Research Part A. Oceanographic Research Papers. 35 (10–11): 1677–1680. Bibcode:1988DSRA...35.1677C. doi:10.1016/0198-0149(88)90043-X.
  8. ^ Lutz R (1 January 1991). "The biology of deep-sea vents and seeps: Alvin's magical mystery tour". Oceanus. 34 (4): 75–83. ISSN 0029-8182. Archived from the original on 22 December 2019. Retrieved 22 December 2019.
  9. ^ Bright M. "Riftia pachyptila". Archived from the original on 2015-04-02. Retrieved 2015-03-19.
  10. ^ Adams DK, Arellano SM, Govenar B (Mar 2012). "Larval dispersal: Vent life in the ocean column" (PDF). Oceanography.
  11. ^ a b Jones ML, Gardiner SL (Oct 1989). "On the early development of the vestimentiferan tube worm Ridgeia sp. and observations on the nervous system and trophosome of Ridgeia sp. and Riftia pachyptila" (PDF). Biological Bulletin. 177 (2): 254–276. doi:10.2307/1541941. JSTOR 1541941. Archived from the original (PDF) on 2015-09-23. Retrieved 2015-03-19.
  12. ^ De Beer G (November 1955). "The Pogonophora". Nature. 176 (4488): 888. Bibcode:1955Natur.176..888D. doi:10.1038/176888a0. S2CID 4198316.
  13. ^ Zal F, Lallier FH, Green BN, Vinogradov SN, Toulmond A (April 1996). "The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. II. Complete polypeptide chain composition investigated by maximum entropy analysis of mass spectra". The Journal of Biological Chemistry. 271 (15): 8875–81. doi:10.1074/jbc.271.15.8875. PMID 8621529.
  14. ^ a b Hahlbeck E, Pospesel MA, Zal F, Childress JJ, Felbeck H (July 2005). "Proposed nitrate binding by hemoglobin in Riftia pachyptila" (Free full text). Deep-Sea Research Part I: Oceanographic Research Papers. 52 (10): 1885–1895. doi:10.1016/j.dsr.2004.12.011.
  15. ^ Monaco A, Prouzet P (2015-10-02). Marine Ecosystems: Diversity and Functions. John Wiley & Sons. ISBN 978-1-119-23246-9.
  16. ^ Desbruyères D, Segonzac M (1997). Handbook of Deep-sea Hydrothermal Vent Fauna. Editions Quae. ISBN 978-2-905434-78-4.
  17. ^ Gibson RN, Atkinson RJ, Gordon JD (2010-05-12). Oceanography and Marine Biology: An Annual Review. CRC Press. ISBN 978-1-4398-5925-4.
  18. ^ Bartolomaeus T, Purschke G (2006-03-30). Morphology, Molecules, Evolution and Phylogeny in Polychaeta and Related Taxa. Dordrecht: Springer Science & Business Media. ISBN 978-1-4020-3240-0.
  19. ^ "Hydrothermal vents Terza parte". www.biologiamarina.eu. Retrieved 2019-12-10.
  20. ^ a b c d e f g h i Stewart FJ, Cavanaugh CM (2006). Overmann J (ed.). "Symbiosis of thioautotrophic bacteria with Riftia pachyptila". Progress in Molecular and Subcellular Biology. Springer-Verlag. 41: 197–225. doi:10.1007/3-540-28221-1_10. ISBN 978-3-540-28210-5. PMID 16623395.
  21. ^ a b c d e Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (July 1981). "Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts". Science. 213 (4505): 340–342. Bibcode:1981Sci...213..340C. doi:10.1126/science.213.4505.340. PMID 17819907.
  22. ^ Childress J, Fisher CR (1992). "The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses". Oceanography and Marine Biology: An Annual Review.
  23. ^ Corbera J (2017-04-21). "La vida que brolla a la foscor: les fumaroles hidrotermals submarines". L'Atzavara. 27: 39–53. ISSN 2339-9791.
  24. ^ Simon V, Purcarea C, Sun K, Joseph J, Frebourg G, Lechaire JP, Gaill F, Hervé G (2000-01-18). "The enzymes involved in synthesis and utilization of carbamylphosphate in the deep-sea tube worm Riftia pachyptila". Marine Biology. 136 (1): 115–127. doi:10.1007/s002270050014. S2CID 85309709.
  25. ^ "Riftia pachyptila - Wikipedia - Symbiotic relationship between chemosynthetic bacteria and riftia tube worms". Archived from the original on 2019-12-10. Retrieved 2019-12-10.
  26. ^ a b c d e f Felbeck H (July 1981). "Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera)". Science. 213 (4505): 336–8. Bibcode:1981Sci...213..336F. doi:10.1126/science.213.4505.336. PMID 17819905.
  27. ^ Thiel M (2001-10-17). "Cindy Lee Van Dover: The ecology of deep-sea hydrothermal vents". Helgoland Marine Research. 55 (4): 308–309. doi:10.1007/s10152-001-0085-8.
  28. ^ Minic Z (2004). "Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont". European Journal of Biochemistry. 271 (15): 3093–102. doi:10.1111/j.1432-1033.2004.04248.x. PMID 15265029.
  29. ^ Childress JJ, Lee RW, Sanders NK, Felbeck H, Oros DR, Toulmond A, Desbruyeres D, Kennicutt II MC, Brooks J (1993). "Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pCO2". Nature. 362 (6416): 147–149. Bibcode:1993Natur.362..147C. doi:10.1038/362147a0. S2CID 4341949.
  30. ^ a b c Childress JJ, Arp AJ, Fisher CR (1984). "Metabolic and blood characteristics of the hydrothermal vent tube-worm Riftia pachyptila". Marine Biology. 83 (2): 109–124. doi:10.1007/bf00394718. S2CID 84806980.
  31. ^ a b Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, et al. (March 2008). "Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics". Environmental Microbiology. 10 (3): 727–37. doi:10.1111/j.1462-2920.2007.01496.x. PMID 18237306.
  32. ^ a b Hand SC, Somero GN (August 1983). "Energy Metabolism Pathways of Hydrothermal Vent Animals: Adaptations to a Food-Rich and Sulfide-Rich Deep-Sea Environment". The Biological Bulletin. 165 (1): 167–181. doi:10.2307/1541362. JSTOR 1541362.
  33. ^ Rau GH (July 1981). "Hydrothermal Vent Clam and Tube Worm 13C/12C: Further Evidence of Nonphotosynthetic Food Sources". Science. 213 (4505): 338–40. Bibcode:1981Sci...213..338R. doi:10.1126/science.213.4505.338. PMID 17819906.
  34. ^ Renosto F, Martin RL, Borrell JL, Nelson DC, Segel IH (October 1991). "ATP sulfurylase from trophosome tissue of Riftia pachyptila (hydrothermal vent tube worm)". Archives of Biochemistry and Biophysics. 290 (1): 66–78. doi:10.1016/0003-9861(91)90592-7. PMID 1898101.
  35. ^ Fisher CR (1995). "Toward an Appreciation of Hydrothennal-Vent Animals: Their Environment, Physiological Ecology, and Tissue Stable Isotope Values". Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophysical Monograph Series. American Geophysical Union. pp. 297–316. doi:10.1029/gm091p0297. ISBN 978-1-118-66399-8.
  36. ^ a b López-García P, Gaill F, Moreira D (April 2002). "Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila". Environmental Microbiology. 4 (4): 204–15. doi:10.1046/j.1462-2920.2002.00286.x. PMID 12010127. S2CID 3940740.
  37. ^ a b Giovannelli D, Chung M, Staley J, Starovoytov V, Le Bris N, Vetriani C (July 2016). "Sulfurovum riftiae sp. nov., a mesophilic, thiosulfate-oxidizing, nitrate-reducing chemolithoautotrophic epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete Riftia pachyptila". International Journal of Systematic and Evolutionary Microbiology. 66 (7): 2697–2701. doi:10.1099/ijsem.0.001106. PMID 27116914.
  38. ^ Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, et al. (June 1988). "Sulfur-oxidizing bacterial endosymbionts: Analysis of phylogeny and specificity by 16S rRNA sequences". Journal of Bacteriology. 170 (6): 2506–10. doi:10.1128/jb.170.6.2506-2510.1988. PMC 211163. PMID 3286609.
  39. ^ Fisher CR (1995). "Toward an appreciation of hydrothennal-vent animals: Their environment, physiological ecology, and tissue stable isotope values". Washington DC American Geophysical Union Geophysical Monograph Series. Geophysical Monograph Series. 91: 297–316. Bibcode:1995GMS....91..297F. doi:10.1029/GM091p0297. ISBN 9781118663998.
  40. ^ Nelson DC (1995). "Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps". The Microbiology of Deep-Sea Hydrothermal Vents.
  41. ^ Robinson JJ, Stein JL, Cavanaugh CM (March 1998). "Cloning and sequencing of a form II ribulose-1,5-biphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila". Journal of Bacteriology. 180 (6): 1596–9. doi:10.1128/JB.180.6.1596-1599.1998. PMC 107066. PMID 9515935.
  42. ^ a b Van Dover CL, Lutz RA (2004). "Experimental ecology at deep-sea hydrothermal vents: a perspective". Journal of Experimental Marine Biology and Ecology. 300 (1–2): 273–307. doi:10.1016/j.jembe.2003.12.024.
  43. ^ Goffredi SK, Childress JJ (2001). "Activity and inhibitor sensitivity of ATPases in the hydrothermal vent tubeworm Riftia pachyptila: a comparative approach". Marine Biology. 138 (2): 259–265. doi:10.1007/s002270000462. S2CID 83539580.
  44. ^ a b Bright M, Keckeis H, Fisher CR (2000-05-19). "An autoradiographic examination of carbon fixation, transfer and utilization in the Riftia pachyptila symbiosis". Marine Biology. 136 (4): 621–632. doi:10.1007/s002270050722. S2CID 84235858.
  45. ^ Bright M, Sorgo A (2005-05-11). "Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae)". Invertebrate Biology. 122 (4): 347–368. doi:10.1111/j.1744-7410.2003.tb00099.x.
  46. ^ Zhang JZ, Millero FJ (1993). "The products from the oxidation of H2S in seawater". Geochimica et Cosmochimica Acta. 57 (8): 1705–1718. Bibcode:1993GeCoA..57.1705Z. doi:10.1016/0016-7037(93)90108-9.
  47. ^ Cavanaugh CM (1985). "Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments". Bulletin of the Biological Society of Washington. 6: 373–388.
  48. ^ Cavanaugh CM (February 1994). "Microbial symbiosis: patterns of diversity in the marine environment". American Zoologist. 34 (1): 79–89. doi:10.1093/icb/34.1.79.
  49. ^ Fisher CR (1996). Ecophysiology of primary production at deep-sea vents and seeps (PDF).
  50. ^ Polz MF, Ott JA, Bregut M, Cavanaugh CM (2000). "When Bacteria Hitch a Ride". ASM News-American Society for Microbiology. 66 (9): 531–539.
  51. ^ Flores, Jason F.; Fisher, Charles R.; Carney, Susan L.; Green, Brian N.; Freytag, John K.; Schaeffer, Stephen W.; Royer, William E. (2005-02-22). "Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin". Proceedings of the National Academy of Sciences. 102 (8): 2713–2718. doi:10.1073/pnas.0407455102. ISSN 0027-8424. PMC 549462. PMID 15710902.
  52. ^ Flores, Jason F.; Hourdez, téphane M. (2006). "The zinc-mediated sulfide-binding mechanism of hydrothermal vent tubeworm 400-kDa hemoglobin". Cahiers de Biologie Marine (CBM). 47: 371–377. doi:10.21411/cbm.a.11ae33dc.
  53. ^ Royer, William E.; Zhu, Hao; Gorr, Thomas A.; Flores, Jason F.; Knapp, James E. (2005). "Allosteric Hemoglobin Assembly: Diversity and Similarity". Journal of Biological Chemistry. 280 (30): 27477–27480. doi:10.1074/jbc.r500006200. ISSN 0021-9258.
  54. ^ Zal F, Suzuki T, Kawasaki Y, Childress JJ, Lallier FH, Toulmond A (December 1997). "Primary structure of the common polypeptide chain b from the multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila: an insight on the sulfide binding-site". Proteins. 29 (4): 562–574. doi:10.1002/(SICI)1097-0134(199712)29:4<562::AID-PROT15>3.0.CO;2-K. PMID 9408952. S2CID 25706128.
  55. ^ Zal F, Leize E, Lallier FH, Toulmond A, Van Dorsselaer A, Childress JJ (July 1998). "S-Sulfohemoglobin and disulfide exchange: the mechanisms of sulfide binding by Riftia pachyptila hemoglobins". Proceedings of the National Academy of Sciences of the United States of America. 95 (15): 8997–9002. Bibcode:1998PNAS...95.8997Z. doi:10.1073/pnas.95.15.8997. PMC 21191. PMID 9671793.
  56. ^ Bailly X, Jollivet D, Vanin S, Deutsch J, Zal F, Lallier F, Toulmond A (September 2002). "Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila". Molecular Biology and Evolution. 19 (9): 1421–133. doi:10.1093/oxfordjournals.molbev.a004205. PMID 12200470.
  57. ^ Feldman RA, Black MB, Cary CS, Lutz RA, Vrijenhoek RC (September 1997). "Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts". Molecular Marine Biology and Biotechnology. 6 (3): 268–77. PMID 9284565.
  58. ^ Laue BE, Nelson DC (September 1997). "Sulfur-oxidizing symbionts have not co-evolved with their hydrothermal vent tube worm hosts: an RFLP analysis". Molecular Marine Biology and Biotechnology. 6 (3): 180–8. PMID 9284558.
  59. ^ Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC (February 2000). "Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms". Applied and Environmental Microbiology. 66 (2): 651–8. doi:10.1128/AEM.66.2.651-658.2000. PMC 91876. PMID 10653731.
  60. ^ Nelson K, Fisher CR (2000). "Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts". Symbiosis. 28 (1): 1–15.
  61. ^ McMullin ER, Hourdez ST, Schaeffer SW, Fisher CR (2003). "Phylogeny and Biogeography of Deep Sea Vestimentiferan Tubeworms and Their Bacterial Symbionts" (PDF). Symbiosis. 34: 1–41.
  62. ^ Cary SC, Warren W, Anderson E, Giovannoni SJ (February 1993). "Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques". Molecular Marine Biology and Biotechnology. 2 (1): 51–62. PMID 8364689.
  63. ^ Millikan DS, Felbeck H, Stein JL (July 1999). "Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila". Applied and Environmental Microbiology. 65 (7): 3129–33. doi:10.1128/AEM.65.7.3129-3133.1999. PMC 91466. PMID 10388713.
  64. ^ Chua KL, Chan YY, Gan YH (April 2003). "Flagella are virulence determinants of Burkholderia pseudomallei". Infection and Immunity. 71 (4): 1622–9. doi:10.1128/IAI.71.4.1622-1629.2003. PMC 152022. PMID 12654773.
  65. ^ Gavín R, Merino S, Altarriba M, Canals R, Shaw JG, Tomás JM (July 2003). "Lateral flagella are required for increased cell adherence, invasion and biofilm formation by Aeromonas spp". FEMS Microbiology Letters. 224 (1): 77–83. doi:10.1016/S0378-1097(03)00418-X. PMID 12855171.
  66. ^ Kirov SM (July 2003). "Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis". FEMS Microbiology Letters. 224 (2): 151–9. doi:10.1016/S0378-1097(03)00445-2. PMID 12892877.
  67. ^ Dons L, Eriksson E, Jin Y, Rottenberg ME, Kristensson K, Larsen CN, et al. (June 2004). "Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence". Infection and Immunity. 72 (6): 3237–44. doi:10.1128/IAI.72.6.3237-3244.2004. PMC 415653. PMID 15155625.
  68. ^ Jones ML (July 1981). "Riftia pachyptila Jones: Observations on the Vestimentiferan Worm from the Galapagos Rift". Science. 213 (4505): 333–6. Bibcode:1981Sci...213..333J. doi:10.1126/science.213.4505.333. PMID 17819904.
  69. ^ Karaseva NP, Rimskaya-Korsakova NN, Galkin SV, Malakhov VV (December 2016). "Taxonomy, geographical and bathymetric distribution of vestimentiferan tubeworms (Annelida, Siboglinidae)". Biology Bulletin. 43 (9): 937–969. doi:10.1134/S1062359016090132. S2CID 16005133.
  70. ^ a b c d Coykendall DK, Johnson SB, Karl SA, Lutz RA, Vrijenhoek RC (April 2011). "Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents". BMC Evolutionary Biology. 11 (1): 96. doi:10.1186/1471-2148-11-96. PMC 3100261. PMID 21489281.
  71. ^ Cary SC, Felbeck H, Holland ND (1989). "Observations on the reproductive biology of the hydrothermal vent tube worm Riftia pachyptila". Marine Ecology Progress Series. 52: 89–94. Bibcode:1989MEPS...52...89C. doi:10.3354/meps052089.
  72. ^ Marsh AG, Mullineaux LS, Young CM, Manahan DT (May 2001). "Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents". Nature. 411 (6833): 77–80. Bibcode:2001Natur.411...77M. doi:10.1038/35075063. PMID 11333980. S2CID 411076.
  73. ^ Lutz RA, Shank TM, Fornari DJ, Haymon RM, Lilley MD, Von Damm KL, Desbruyeres D (1994). "Rapid growth at deep-sea vents". Nature. 371 (6499): 663–664. Bibcode:1994Natur.371..663L. doi:10.1038/371663a0. S2CID 4357672.

許可
cc-by-sa-3.0
版權
Wikipedia authors and editors
原始內容
參訪來源
合作夥伴網站
wikipedia EN

Riftia pachyptila: Brief Summary ( 英語 )

由wikipedia EN提供

Riftia pachyptila, commonly known as the giant tube worm and less commonly known as the giant beardworm, is a marine invertebrate in the phylum Annelida (formerly grouped in phylum Pogonophora and Vestimentifera) related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents, the vents provide a natural ambient temperature in their environment ranging from 2 to 30 °C, at the same time it can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m (9 ft 10 in), and their tubular bodies have a diameter of 4 cm (1.6 in).

Its common name "giant tube worm" is, however, also applied to the largest living species of shipworm, Kuphus polythalamius, which despite the name "worm", is a bivalve mollusc rather than an annelid.

許可
cc-by-sa-3.0
版權
Wikipedia authors and editors
原始內容
參訪來源
合作夥伴網站
wikipedia EN

Giganta tubvermo ( 世界語 )

由wikipedia EO提供

Gigantaj tubvermoj, Riftia pachyptila, estas maraj senvertebruloj en la filumo Annelida[1] (antaŭe grupigita en filumo Pogonophora kaj Vestimentifera) ligita al tubvermoj ofte trovite en la intertajdaj kaj pelagaj zonoj. Riftia pachyptila vive pli ol mejlon profunda, kaj ĝis pluraj mejloj profundaj, sur la planko de la Pacifiko proksime de nigraj fumantoj, kaj povas toleri ekstreme altajn hidrogensulfidajn nivelojn. Tiuj vermoj povas atingi longon de 2.4 m (7 ft 10 in) kaj siajn tubulajn korpojn havas diametron de 4 cm (1.6 in).[1][2]

La komunnomo "grandega tubvermo" estas tamen ankaŭ aplikita al la plej granda vivanta specio de teredo, Kuphus polythalamia, kiu malgraŭ la nom "vermo" estas konka molusko, prefere ol anelido.

Korpostrukturo

Ili havas tre vaskularigitan, ruĝan "plumon" ĉe la pinto de sia libera fino kiu estas organo por interŝanĝado de kunmetaĵoj kun la medio (ekz., H2S, CO2, O2 , ktp.). La tubvermo ne havas multajn predantojn. Se minacite, la plumo povas esti retirita en la protektan tubon de la vermo. La plumo disponigas esencajn nutraĵojn al bakterioj vivantaj ene de la trofosome. Tubo vermoj havas neniun digestkanalon, sed la bakterioj (kiuj povas konsistigi la duonon de la korpopezo de vermo) ŝanĝas oksigenon, hidrogenan sulfidon, karbondioksido, ktp. en organikajn molekulojn je kiuj iliaj mastro-vermoj nutriĝas. Tiu proceso, konata kiel kemisintezo, estis rekonita ene de la trofosome fare de Colleen Cavanaugh.[3]

La klarruĝa koloro de la plumaj strukturrezultoj de pluraj eksterordinare kompleksaj hemoglobinoj, kiuj enhavas ĝis 144 globinkatenojn (ĉiu supozeble inkluzive de rilataj Hemstrukturoj). Tiuj entubigas vermon kiun hemoglobinoj estas rimarkindaj por portado de oksigeno en la ĉeesto de sulfido, sen esti inhibiciitaj per tiu molekulo kiel hemoglobinoj en la plej multaj aliaj specioj estas.[4][5]

Nitrato kaj nitrito estas toksaj, sed nitrogeno estas postulata por biosintezaj procesoj. La kemosintezaj bakterioj ene de la trofosome transformas tiun nitraton al amonio jonoj, kiuj tiam estas haveblaj por produktado de aminoacidoj en la bakterioj, kiuj estas en victurno liberigis al la tubvermo. Transporti nitraton al la bakterioj, R. pachyptila koncentraĵnitrato en ilia sango, al koncentriĝo 100 fojojn pli koncentriĝis ol la ĉirkaŭa akvo. La preciza mekanismo de la kapablo de R. pachyptila elteni kaj koncentri nitraton daŭre estas nekonata.

Energio kaj nutra fonto

Kun sunlumo ne haveblaj rekte kiel formo de energio, la tubvermoj dependas de bakterioj en sia vivejo por oksigeni hidrogenan sulfidon,[6] utiligante dissolvitan oksigenon en la akvo kiel elektronakceptanton. Tiu reago disponigas la energion necesan por kemosintezo. Tial, tubvermoj estas parte dependaj de sunlumo kiel energifonto, ĉar ili uzas liberan oksigenon, kiu estis liberigita per fotosintezo en akvotavoloj longe supre, por akiri nutraĵojn. Laŭ tiu maniero tubvermoj estas similaj al multaj formoj de vivo kiuj vivas en la oceano sub profundoj tiu sunlumo povas enpenetri. Tamen, tubvermoj estas unikaj en povi uzi bakteriojn nerekte akiri preskaŭ ĉiujn materialojn kiujn ili bezonas por kresko de molekuloj dissolvitaj en akvo. Kelkaj nutraĵoj devas esti filtritaj el la akvo. Tuba vermkresko similas tiun de hidroponical plenkreskaj fungoj pli ol ĝi faras tiun de tipaj bestoj kiuj devas "manĝi".

Reproduktado

Por reproduktiĝi, Riftiopachyptila inoj liberigas lipid-riĉajn ovojn en la ĉirkaŭan akvon tiel kiun ili komencas flosi supren. La maskloj tiam startas spermfaskojn kiuj naĝas por renkonti la ovojn. Post kiam la ovoj elkoviĝis, la larvoj naĝas malsupren por alkroĉi sin al la roko.

Kreskorapideco kaj aĝo

Riftia pachyptila havas la plej grandan rapidecon de iu konata mara senvertebrulo. Tiuj organismoj povas koloniigi novan lokon, kreski al seksa maturiĝo kaj pliiĝi en longo ĝis 4.9 futoj (1.5 m) en malpli ol du jaroj. Tio estas en akra kontrasto al Lamellibrachia luymesi, la tubvermoj kiuj vivas ĉe profunda marmalvarmo tralikiĝas kaj kreskas tre malrapide por la plej multaj el siaj vivoj. Daŭras de 170 ĝis 250 jarojn por Lamellibrachia luymesi kreski 2 metrojn en longo, kaj eĉ pli longaj vermoj estis malkovritaj.[7]

Referencoj

  1. 1,0 1,1 Ruppert, E.; Barnes, R.; Fox, R.. (2007) Invertebrate Zoology: A functional Evolutionary Approach, 7‑a eldono (angle), Belmont: Thomson Learning. ISBN 0-03-025982-7.
  2. (2010) “The biology of vestimentiferan tubeworms”, Oceanography and Marine Biology: An Annual Review 48, p. 213–266. doi:10.1201/ebk1439821169-c4.
  3. Cavanaugh, Colleen M.; Gardiner, S. L.; Jones, M. L.; Jannasch, H. W.; Waterbury, J. B. «Prokaryotic Cells in the Hydrothermal Vent Tube Worm Riftia pachyptila Jones: Possible Chemoautotrophic Symbionts». Science, 213, 4505, 1981, pàg. 340–342. COI: 10.1126/science.213.4505.340. PMID: 17819907.
  4. (Apr 1996) “The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. II. Complete polypeptide chain composition investigated by maximum entropy analysis of mass spectra”, J. Biol. Chem. (Free full text) 271 (15), p. 8875–81. doi:10.1074/jbc.271.15.8875.
  5. (Aug 2004) “Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont”, Eur. J. Biochem. (Free full text) 271 (15), p. 3093–102. doi:10.1111/j.1432-1033.2004.04248.x.
  6. C.Michael Hogan. 2011. Sulfur. Encyclopedia of Earth, eds. A.Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DC
  7. (1994) “Rapid growth at deep-sea vents”, Nature 371 (6499), p. 663. doi:10.1038/371663a0.

Literaturo

  • Minic, Zoran; Hervé, Guy «Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont». European Journal of Biochemistry, 271, 15, 2004, pàg. 3093–3102. COI: 10.1111/j.1432-1033.2004.04248.x. PMID: 15265029.
  • Zal, Franck; Lallier, FH; Green, BN; Vinogradov, SN; Toulmond, A «The Multi-hemoglobin System of the Hydrothermal Vent Tube Worm Riftia pachyptila: II. Complete polypeptide chain composition investigated by maximum entropy analysis of mass spectra». Journal of Biological Chemistry, 271, 15, 1996, pàg. 8875–8881. COI: 10.1074/jbc.271.15.8875. PMID: 8621529.
  • Jones, Meredith L. (1981). Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galápagos Rift geothermal vents (Pogonophora). Proceedings of the Biological Society of Washington. 93(4): 1295-1313.

許可
cc-by-sa-3.0
版權
Vikipedio aŭtoroj kaj redaktantoj
原始內容
參訪來源
合作夥伴網站
wikipedia EO

Giganta tubvermo: Brief Summary ( 世界語 )

由wikipedia EO提供

Gigantaj tubvermoj, Riftia pachyptila, estas maraj senvertebruloj en la filumo Annelida (antaŭe grupigita en filumo Pogonophora kaj Vestimentifera) ligita al tubvermoj ofte trovite en la intertajdaj kaj pelagaj zonoj. Riftia pachyptila vive pli ol mejlon profunda, kaj ĝis pluraj mejloj profundaj, sur la planko de la Pacifiko proksime de nigraj fumantoj, kaj povas toleri ekstreme altajn hidrogensulfidajn nivelojn. Tiuj vermoj povas atingi longon de 2.4 m (7 ft 10 in) kaj siajn tubulajn korpojn havas diametron de 4 cm (1.6 in).

La komunnomo "grandega tubvermo" estas tamen ankaŭ aplikita al la plej granda vivanta specio de teredo, Kuphus polythalamia, kiu malgraŭ la nom "vermo" estas konka molusko, prefere ol anelido.

許可
cc-by-sa-3.0
版權
Vikipedio aŭtoroj kaj redaktantoj
原始內容
參訪來源
合作夥伴網站
wikipedia EO

Riftia pachyptila ( 西班牙、卡斯蒂利亞西班牙語 )

由wikipedia ES提供

El gusano de tubo gigante o gusano vestimentífero gigante (Riftia pachyptila) es un invertebrado marino perteneciente al filo Annelida. Antaño se lo agrupaba en el filo Pogonophora (los gusanos de tubo de la zona pelágica), con el que está estrechamente emparentado. Muchos agrupan al gusano de tubo gigante en su propio filo (Vestimentifera).

Se aloja en el interior de un gran tubo quitinoso blanco. De su extremo superior, emergiendo del tubo, nace una gran pluma branquial roja. También posee un órgano especial en forma de saco llamado trofosoma. Este alberga miles de millones de bacterias simbióticas que pueden constituir más de la mitad del peso del gusano y que le ayudan a sintetizar su alimento. Puede crecer hasta una altura de 2.7 m, pero en general es más pequeño, en torno a 1,5 m. Tiene 4 cm de diámetro. Como todos los gusanos de tubo, carece de ojos y de aparato digestivo (boca, estómago, ano). Fue descubierto en 1977 por el sumergible estadounidense Alvin en la dorsal de Galápagos.

Los gusanos de tubo gigantes viven en grandes grupos en el fondo del Océano Pacífico, a profundidades de 2000-4000 m, cerca de fumarolas negras. Toleran condiciones extremas de altas temperaturas y grandes concentraciones de sulfuro. Como otras formas de vida que prosperan alrededor de las fumarolas, los gusanos tubícolas gigantes han desarrollado adaptaciones bioquímicas gracias a las cuales pueden vivir sin luz solar.

Son longevos: pueden vivir entre 170 y 250 años.[cita requerida]

Simbiosis

El color rojo brillante se debe a las hemoglobinas de su sangre. Estas hemoglobinas, extraordinariamente complejas, modificadas y especializadas, pueden transportar sulfuro de hidrógeno además de oxígeno, a diferencia de las de otras especies. Las plumas absorben las sustancias sulfurosas que expulsan las fuentes hidrotermales y que son el nutriente esencial de las bacterias quimiosintéticas que viven en sus tejidos. Las bacterias oxidan el azufre para obtener energía y fijan el carbono de las sustancias hidrotermales, permitiendo al gusano tubícola alimentarse sin depender (ni directa ni indirectamente) de la luz solar.

El descubrimiento de este animal causó sensación en el mundo de la ciencia. Fue el primer caso conocido de simbiosis entre un invertebrado y bacterias marinas. Modificó además el concepto que se tenía de la vida al vivir en un hábitat casi carente de oxígeno y utilizar elementos sulfurosos procedentes del interior de la tierra, compuestos químicos que para la inmensa mayoría de seres vivos resultan altamente tóxicos.

Referencias

  • Jones, Meredith L. (1981). Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galápagos Rift geothermal vents (Pogonophora). Proceedings of the Biological Society of Washington. 93(4): 1295-1313.

 title=
許可
cc-by-sa-3.0
版權
Autores y editores de Wikipedia
原始內容
參訪來源
合作夥伴網站
wikipedia ES

Riftia pachyptila: Brief Summary ( 西班牙、卡斯蒂利亞西班牙語 )

由wikipedia ES提供

El gusano de tubo gigante o gusano vestimentífero gigante (Riftia pachyptila) es un invertebrado marino perteneciente al filo Annelida. Antaño se lo agrupaba en el filo Pogonophora (los gusanos de tubo de la zona pelágica), con el que está estrechamente emparentado. Muchos agrupan al gusano de tubo gigante en su propio filo (Vestimentifera).

Se aloja en el interior de un gran tubo quitinoso blanco. De su extremo superior, emergiendo del tubo, nace una gran pluma branquial roja. También posee un órgano especial en forma de saco llamado trofosoma. Este alberga miles de millones de bacterias simbióticas que pueden constituir más de la mitad del peso del gusano y que le ayudan a sintetizar su alimento. Puede crecer hasta una altura de 2.7 m, pero en general es más pequeño, en torno a 1,5 m. Tiene 4 cm de diámetro. Como todos los gusanos de tubo, carece de ojos y de aparato digestivo (boca, estómago, ano). Fue descubierto en 1977 por el sumergible estadounidense Alvin en la dorsal de Galápagos.

Los gusanos de tubo gigantes viven en grandes grupos en el fondo del Océano Pacífico, a profundidades de 2000-4000 m, cerca de fumarolas negras. Toleran condiciones extremas de altas temperaturas y grandes concentraciones de sulfuro. Como otras formas de vida que prosperan alrededor de las fumarolas, los gusanos tubícolas gigantes han desarrollado adaptaciones bioquímicas gracias a las cuales pueden vivir sin luz solar.

Son longevos: pueden vivir entre 170 y 250 años.[cita requerida]

許可
cc-by-sa-3.0
版權
Autores y editores de Wikipedia
原始內容
參訪來源
合作夥伴網站
wikipedia ES

Riftia pachyptila ( 芬蘭語 )

由wikipedia FI提供

Riftia pachyptila on yli kaksi metriä pitkäksi kasvava putkimatolaji, joka esiintyy Tyynessä valtameressä, mustien savuttajien läheisyydessä. Laji sietää ympäristössään korkeaa lämpötilaa ja korkeita rikkipitoisuuksia. Se on esimerkki ekstremofiilisestä eliölajista. Laji kuvattiin tieteelle vuonna 1981.

Suurin osa madosta on pysyvästi eläimen ympärilleen erittämän putken sisällä. Ainoa putken ulkopuolelle tuleva osa on punainen kidus, jonka väri aiheutuu pitkälle erikoistuneesta hemoglobiinista, joka kykenee sitomaan sekä happea että rikkiä[1]. Häirittynä mato vetää kiduksen suojaan putken sisään. Kiduksen avulla mato kerää ympäröivästä merivedestä happea, hiilidioksidia sekä rikkivetyä. R. pachyptilan aineenvaihdunta on sikäli erikoinen, ettei sillä ole lainkaan suuta tai suolistoa vaan kaikki madon tarvitsema ravinto syntyy sen sisällä, trofosomiksi kutsutussa kudoksessa elävien rikkibakteerien tuottamana. Näiden bakteerien energianlähteenä toimii rikkivedyn hapettaminen ja hiilen lähteenä madon keräämä hiilidioksidi.[2][3] Erikoinen strategia on tehokas ja R. pachyptila onkin nopeimmin kasvava meressä elävä selkärangaton ja mato kasvaa jopa 3mm vuorokaudessa. Sen tiedetään saavuttaneen 1,5 metrin pituuden alle kahdessa vuodessa.[4]

Riftia pachyptilan saalistajiin kuuluvat savuttajan ympäristössä elävät ravut. Yksittäinen musta savuttaja ei ole välttämättä kovin pitkäikäinen ja lähteen sammuttua myös kaikki sen ympärillä elävät putkimadot menehtyvät. Laji kuitenkin lisääntyy tehokkaasti. Hedelmöitys on ulkoinen: koiras ja naarasmadot laskevat sukusolunsa meriveteen, missä munasolut hedelmöityvät. Hedelmöityneestä munasolusta syntyvät toukat kiinnittyvät kiviin hydrotermisen lähteen läheisyydessä, mahdollisesti jopa satojen kilometrien päässä paikasta, jolla niiden vanhemmat elävät[5].

Aiheesta muualla

Katso myös

Lähteet

許可
cc-by-sa-3.0
版權
Wikipedian tekijät ja toimittajat
原始內容
參訪來源
合作夥伴網站
wikipedia FI

Riftia pachyptila: Brief Summary ( 芬蘭語 )

由wikipedia FI提供

Riftia pachyptila on yli kaksi metriä pitkäksi kasvava putkimatolaji, joka esiintyy Tyynessä valtameressä, mustien savuttajien läheisyydessä. Laji sietää ympäristössään korkeaa lämpötilaa ja korkeita rikkipitoisuuksia. Se on esimerkki ekstremofiilisestä eliölajista. Laji kuvattiin tieteelle vuonna 1981.

Suurin osa madosta on pysyvästi eläimen ympärilleen erittämän putken sisällä. Ainoa putken ulkopuolelle tuleva osa on punainen kidus, jonka väri aiheutuu pitkälle erikoistuneesta hemoglobiinista, joka kykenee sitomaan sekä happea että rikkiä. Häirittynä mato vetää kiduksen suojaan putken sisään. Kiduksen avulla mato kerää ympäröivästä merivedestä happea, hiilidioksidia sekä rikkivetyä. R. pachyptilan aineenvaihdunta on sikäli erikoinen, ettei sillä ole lainkaan suuta tai suolistoa vaan kaikki madon tarvitsema ravinto syntyy sen sisällä, trofosomiksi kutsutussa kudoksessa elävien rikkibakteerien tuottamana. Näiden bakteerien energianlähteenä toimii rikkivedyn hapettaminen ja hiilen lähteenä madon keräämä hiilidioksidi. Erikoinen strategia on tehokas ja R. pachyptila onkin nopeimmin kasvava meressä elävä selkärangaton ja mato kasvaa jopa 3mm vuorokaudessa. Sen tiedetään saavuttaneen 1,5 metrin pituuden alle kahdessa vuodessa.

Riftia pachyptilan saalistajiin kuuluvat savuttajan ympäristössä elävät ravut. Yksittäinen musta savuttaja ei ole välttämättä kovin pitkäikäinen ja lähteen sammuttua myös kaikki sen ympärillä elävät putkimadot menehtyvät. Laji kuitenkin lisääntyy tehokkaasti. Hedelmöitys on ulkoinen: koiras ja naarasmadot laskevat sukusolunsa meriveteen, missä munasolut hedelmöityvät. Hedelmöityneestä munasolusta syntyvät toukat kiinnittyvät kiviin hydrotermisen lähteen läheisyydessä, mahdollisesti jopa satojen kilometrien päässä paikasta, jolla niiden vanhemmat elävät.

許可
cc-by-sa-3.0
版權
Wikipedian tekijät ja toimittajat
原始內容
參訪來源
合作夥伴網站
wikipedia FI

Riftia pachyptila ( 法語 )

由wikipedia FR提供

Le ver tubicole géant (Riftia pachyptila) est l'une des espèces extrêmophiles de vers vestimentifères tubicoles vivant dans les grands fonds marins, en colonies pouvant atteindre 100 à 200 individus par m².

C'est une espèce à symbiose obligatoire (avec des bactéries chimioautotrophes). Elle est utilisée comme espèce modèle pour l'étude de ces symbioses, notamment en France à la station de biologie marine de Roscoff[1].

Description

Il s'agit d'un ver souple, de couleur brunâtre, qui peut mesurer jusqu’à 2 mètres de long. Il n'a ni bouche, ni intestin, ni anus.

Il est muni de branchies rouges rétractiles à son extrémité supérieure.

Son corps d'un diamètre atteignant 4 à 5 cm est protégé par un tube qu'il agrandit au fur et à mesure de sa croissance.

Répartition et habitat

Riftia pachyptila vit toujours à proximité des émissaires de cheminées hydrothermales, dans des zones de températures allant de 5 à 25 °C.

Il a été notamment observé le long de la dorsale océanique du Pacifique Est, la dorsale des Galapagos et dans le bassin de Guaymas.

Alimentation

Riftia est dépourvu de système digestif, mais son tronc héberge un organe interne appelé trophosome qui héberge des symbiotes bactériens. Il s’agit de bactéries sulfo-oxydantes qui utilisent les molécules de sulfure d'hydrogène (H2S), de dioxyde de carbone (CO2), et de dioxygène (O2) pour synthétiser des sucres que le ver peut assimiler. Ces bactéries forment jusqu'à 35 % du poids du trophosome de Riftia pachyptila[2].

Respiration

L’oxygène et les sulfures nécessaires à la chimiosynthèse des bactéries sont puisés par le ver au niveau des filaments branchiaux puis semblent être transportés vers les bactéries grâce à une hémoglobine particulière. H2S étant très toxique, son transport sous une forme stable protège à la fois le ver et les bactéries.

Voir aussi

Notes et références

  1. Marie-Cécile De Cian (2002), thèse de doctorat intitulée Transport du CO2 et échanges ioniques chez un animal autotrophe, le vestimentifère Riftia pachyptila ; Étude de l'anhydrase carbonique et des transporteurs impliqués, soutenue à l'Université Paris VI, sous la direction du Dr. François Lallier le 31 mai 2002
  2. L'éventail du vivant, le mythe du progrès, Stephen Jay Gould, Coll Points Sciences, p 229

許可
cc-by-sa-3.0
版權
Auteurs et éditeurs de Wikipedia
原始內容
參訪來源
合作夥伴網站
wikipedia FR

Riftia pachyptila: Brief Summary ( 法語 )

由wikipedia FR提供

Le ver tubicole géant (Riftia pachyptila) est l'une des espèces extrêmophiles de vers vestimentifères tubicoles vivant dans les grands fonds marins, en colonies pouvant atteindre 100 à 200 individus par m².

C'est une espèce à symbiose obligatoire (avec des bactéries chimioautotrophes). Elle est utilisée comme espèce modèle pour l'étude de ces symbioses, notamment en France à la station de biologie marine de Roscoff.

許可
cc-by-sa-3.0
版權
Auteurs et éditeurs de Wikipedia
原始內容
參訪來源
合作夥伴網站
wikipedia FR

Riftia pachyptila ( 加利西亞語 )

由wikipedia gl Galician提供

Riftia pachyptila é unha especie de verme anélido xigante mariño tubícola[1] (anteriormente clasificado nos filos Pogonophora e Vestimentifera) relacionado con outros vemes tubícolas que se encontran en zonas peláxicas e intermareais. Riftia pachyptila vive desde uns 1 600 m de profundidade a varios miles de m, sobre o fondo do océano Pacífico preto das chemineas negras e pode tolerar niveis de sulfuro de hidróxeno extremadamente altos. Estes vermes poden alcanzar a lonxitude de 2,4 m e os seus corpos tubulares teñen un diámetro de 4 cm. A temperatura ambiental no seu medio natural está entre os 2 e os 30 °C.[2]

Non se debe confundir co molusco bivalvo Kuphus.

Desenvolvemento

Riftia desenvólvese a partir dunha larva trocófora peláxica nadadora e non simbiótica, que entra no desenvolvemento xuvenil (metatrocófora), converténdose en sésil e adquire seguidamente bacterias simbióticas.[3][4] As bacterias simbióticas, das cales os vermes adultos dependen para o seu sustento, non están presentes nos gametos, senón que son incorporadas do ambiente a través da pel nun proceso parecido a unha infección. O tracto dixestivo conecta transitoriamente a boca, situada no extremo do proceso medio ventral, a un intestino anterior, medio e posterior e ao ano e pensábase previamente que era o camiño polo que se introducían as bacterias no corpo dos adultos. Despois de que se establecen os simbiontes no intestino medio, o intestino sofre unha remodelación substancial e un agrandamento do trofosoma, mentres que o resto do tracto dixestivo xa non se detecta nos espécimes adultos.[5]

Estrutura corporal

 src=
Os vermes tubícolas de chemineas hidrotermais obteñen compostos orgánicos das bacterias que viven no seu trofosoma.

Teñen unha "pluma" vermella moi vasclarizada no extremo do seu extremo libre, que é un órgano para o intercambio de compostos co ambiente (por exemplo, H2S, CO2, O2, etc.). Os vermes tubulares non teñen moitos predadores. Se son ameazados, a pluma pode retraerse dentro do tubo protector do verme. A pluma proporciona nutrientes esenciais ás bacterias que viven dentro do trofosoma. Estes vermes tubícolas non teñen tracto dixestivo de adultos, pero as bacterias (que poden supoñer ata a metade do peso corporal do verme) converten o oxíxeno, sulfuro de hidróxeno, dióxido de carbono, etc. en moléculas orgánicas das cales se alimentan os vermes hóspedes. Este proceso,coñecido como quimiosíntese, foi recoñecido no trofosoma por Colleen Cavanaugh.[6]

A viva cor vermella das estruturas da pluma é o resultado de ter varias hemoglobinas extremadamente complexas, que conteñen ata 144 cadeas de globina (cada unha presumiblemente inclúe estruturas hemo asociadas). Estas hemoglobinas de verme tubícola xigante son salientables por transportar oxíxeno en presenza de sulfuro, sen seren inhibidas por esta molécula como o son as hemoglobinas da maioría das especies.[7][8]

O nitrato e nitrito son tóxicos, pero cómpre nirtóxeno para os procesos biosintéticos. As bacterias quimiosintéticas que están dentro do trofosoma converten este nitrato en ións amonio, que despois están dispoñibles para a produción de aminoácidos na bacteria, e que son á súa vez liberados no verme tubícola. Para transportar nitratos ás bacterias, R. pachyptila concentra o nitrato no seu sangue, a unha concentración 100 veces maior que na auga que o rodea. O mecanismo exacto desta capacidade de R. pachyptila para resistir e concentrar o nitrato aínda non se coñece.[9]

Fontes de nutrientes e enerxía

Como non dispoñen de luz solar como fonte de enerxía directa, estes vermes tubícolas xigantes dependen das bacterias do seu hábitat para oxidar o sulfuro de hidróxeno,[10] e usan o oxíxeno disolto na auga como aceptor de electróns. Esta reacción proporciona a enerxía necesaria para a quimiosíntese. Por esa razón estes vermes son parcialmente dependentes da luz solar de forma indirecta, xa que usan o oxíxeno libre, que foi liberado na fotosíntese en capas da auga moi superiores, para así obter nutrientes. Deste modo, os vermes tubícolas xigantes son similares a moitas formas de vida oceánica que viven a profundidades ás que a luz do sol non pode penetrar. Porén, os vermes tubícolas son salientables por poderen usar as bacterias para obter indirectamente case todos os materiais que precisan para crecer a partir de moléculas disoltas na auga. Algúns nutrientes teñen que ser filtrados da auga. Por tanto, o crecemento destes vermes lembra o crecemento hidropónico dos fungos máis que o dos animais típicos que necesitan "comer". Hai outra especie que ten un estilo de vida similar, pero é un molusco, o Kuphus.

Reprodución

Para reproducirse, as femias de Riftia pachyptila liberan ovos ricos en lípidos na auga que os rodea polo que flotan a capas superiores da auga. Os machos entón liberan paquetes de esperma que nadan en busca dos ovos. Unha vez que os ovos eclosionan, as larvas nadan cara ás profundidades para adherirse a unha rocha.

Taxa de crecemento e idade

Riftia pachyptila ten a taxa de crecemento máis rápida de calquera invertebrado mariño coñecido. Estes organismos sábese que colonizan un novo sitio, crecen ata a madurez sexual e incrementan a súa lonxitude ata os 1,5 m en menos de dous anos.[11] Isto contrasta fortemente cos Lamellibrachia luymesi, os vermes tubícolas que viven nas emanacións frías do mar profundo e medran moi lentamente durane a maioría das súas vidas. Lamellibrachia luymesi tarda de 170 a 250 anos en medrar ata os 2 metros de lonxitude, e téñense descuberto espécimes aínda meirandes.[12]

Notas

  1. Ruppert, E.; Fox, R.; Barnes, R. (2007). Invertebrate Zoology: A functional Evolutionary Approach (7th ed.). Belmont: Thomson Learning. ISBN 0-03-025982-7.
  2. Bright, M.; Lallier, F. H. (2010). "The biology of vestimentiferan tubeworms" (PDF). Oceanography and Marine Biology: An Annual Review (Taylor & Francis) 48: 213–266. doi:10.1201/ebk1439821169-c4. Arquivado dende o orixinal (PDF) o 31 de outubro de 2013. Consultado o 2013-10-30.
  3. Monica Bright. "Riftia pachyptila". Arquivado dende o orixinal o 02 de abril de 2015. Consultado o 27 de abril de 2018.
  4. Diane K. Adams; et al. (Mar 2012). "Larval dispersal: Vent life in the ocean column" (PDF). Oceanography.
  5. Meredith L. Jones; Stephen L. Gardiner (Oct 1989). "On the early development of the vestimentiferan tube worm Ridgeia sp. and Observations on the Nervous System and Trophosome of Ridgeia sp. and Riftia pachyptila" (PDF). Biol Bull. pp. 254–276.
  6. Cavanaugh, Colleen M.; et al. (1981). "Prokaryotic Cells in the Hydrothermal Vent Tube Worm Riftia pachyptila Jones: Possible Chemoautotrophic Symbionts". Science 213 (4505): 340–342. PMID 17819907. doi:10.1126/science.213.4505.340.
  7. Zal F, Lallier FH, Green BN, Vinogradov SN, Toulmond A (Apr 1996). "The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. II. Complete polypeptide chain composition investigated by maximum entropy analysis of mass spectra" (Free full text). J. Biol. Chem. 271 (15): 8875–81. ISSN 0021-9258. PMID 8621529. doi:10.1074/jbc.271.15.8875.
  8. Minic Z, Hervé G (Aug 2004). "Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont". Eur. J. Biochem. (Free full text)|format= require |url= (Axuda) 271 (15): 3093–102. ISSN 0014-2956. PMID 15265029. doi:10.1111/j.1432-1033.2004.04248.x.
  9. Edda Hahlbeck; Mark A. Pospesel; Franck Zal; James Childress; Horst Felbeck (July 2005). "Proposed nitrate binding by hemoglobin in Riftia pachyptila". Deep-Sea Research (en inglés) 52 (10): 1885–1895. ISSN 0967-0637. doi:10.1016/j.dsr.2004.12.011.
  10. C.Michael Hogan. 2011. Sulfur. Encyclopedia of Earth, eds. A.Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DC Arquivado October 28, 2012, en Wayback Machine.
  11. Lutz, R. A.; Shank, T. M.; Fornari, D. J.; Haymon, R. M.; Lilley, M. D.; Von Damm, K. L.; Desbruyeres, D. (1994). "Rapid growth at deep-sea vents". Nature 371 (6499): 663. doi:10.1038/371663a0.
  12. "Tube Worms In Deep Sea Discovered To Have Record Long Life Spans". ScienceDaily.

Kristen M. Kusek :: Oceanus Magazine, publicado orixinalmente on line o 12 de xaneiro de 2007 [1]

Véxase tamén

Véxase tamén

  • Giant Tube Worm page at the Smithsonian
  • Podcast on Giant Tube Worm at the Encyclopedia of Life
  • http://www.seasky.org/monsters/sea7a1g.html
  • https://web.archive.org/web/20180418060346/http://www.ucmp.berkeley.edu/annelida/pogonophora.html
  • https://web.archive.org/web/20090408022512/http://www.ocean.udel.edu/deepsea/level-2/creature/tube.html
  • 許可
    cc-by-sa-3.0
    版權
    Autores e editores de Wikipedia
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia gl Galician

    Riftia pachyptila: Brief Summary ( 加利西亞語 )

    由wikipedia gl Galician提供

    Riftia pachyptila é unha especie de verme anélido xigante mariño tubícola (anteriormente clasificado nos filos Pogonophora e Vestimentifera) relacionado con outros vemes tubícolas que se encontran en zonas peláxicas e intermareais. Riftia pachyptila vive desde uns 1 600 m de profundidade a varios miles de m, sobre o fondo do océano Pacífico preto das chemineas negras e pode tolerar niveis de sulfuro de hidróxeno extremadamente altos. Estes vermes poden alcanzar a lonxitude de 2,4 m e os seus corpos tubulares teñen un diámetro de 4 cm. A temperatura ambiental no seu medio natural está entre os 2 e os 30 °C.

    Non se debe confundir co molusco bivalvo Kuphus.

    許可
    cc-by-sa-3.0
    版權
    Autores e editores de Wikipedia
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia gl Galician

    Riftia pachyptila ( 義大利語 )

    由wikipedia IT提供

    Riftia pachyptila, conosciuto anche come verme tubo gigante, è un anellide policheta[2] della famiglia Siboglinidae[2][4].

    Aspetti morfologici

    In grado di sopportare temperature elevate e alti livelli di zolfo. Cresce fino a 2,4 metri di lunghezza.

    Distribuzione e habitat

    Habitat tipicamente abissale sulle sorgenti idrotermali, nell'Oceano Pacifico e sul Galápagos rift, a partire da più di 1500 metri di profondità, associato a fumarole nere.

    Associati a batteri endosimbionti e chemioautotrofi caratterizzano le strutture della fauna delle sorgenti.

    Biologia

    I vermi tubo sono una parte importante della comunità attorno alle bocche idrotermali. I vermi tubo, come parassiti, assorbono i nutrienti direttamente nei loro tessuti. Questo perché i vermi non hanno né bocca né un tubo digerente, così i batteri vivono al loro interno: vi sono circa 285 miliardi di batteri per grammo di tessuto. I vermi tubo hanno branchie rossastre che contengono emoglobina. L'emoglobina combina acido solfidrico e lo trasferisce ai batteri che vivono all'interno del tubo. In cambio, i batteri nutrono il verme con composti di carbonio.

    Note

    1. ^ Pogonophora secondo Integrated Taxonomic Information System e Catalogue of Life.
    2. ^ a b c d e Secondo UNESCO-IOC Register of Marine Organisms.
    3. ^ Riftiida Secondo Integrated Taxonomic Information System, Vestimentifera secondo Catalogue of Life.
    4. ^ a b Riftiidae secondo Integrated Taxonomic Information System e Catalogue of Life.

     title=
    許可
    cc-by-sa-3.0
    版權
    Autori e redattori di Wikipedia
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia IT

    Riftia pachyptila: Brief Summary ( 義大利語 )

    由wikipedia IT提供

    Riftia pachyptila, conosciuto anche come verme tubo gigante, è un anellide policheta della famiglia Siboglinidae.

    許可
    cc-by-sa-3.0
    版權
    Autori e redattori di Wikipedia
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia IT

    Reusachtige kokerworm ( 荷蘭、佛萊明語 )

    由wikipedia NL提供

    De reusachtige kokerworm (Riftia pachyptila) is een kokerworm[1] die bekendstaat als extremofiel. Ze komen voornamelijk voor rondom vulkanische schoorstenen (black smokers) op grote diepte in de Grote Oceaan. Het dier leeft in symbiose met een bacterie die zwavel nodig heeft als energiebron. Vanaf de geboorte begint de worm deze bacterie in te slikken die ze vestigt in haar trofosoom (een speciaal orgaan) welke de helft van de massa van de worm heeft. De worm neemt met zijn rode pluim sulfiden, koolstof en zuurstof op die met een speciale soort hemoglobine naar de bacteriën getransporteerd worden. (Menselijk hemoglobine zou door de hoge aanwezigheid van zwavel niet meer in staat zijn zuurstof te transporteren). Zodra het sulfide bij de bacterie aangekomen is, begint deze met de vrijgekomen energie suikers aan te maken waardoor de bacteriën en de worm kunnen groeien. De reusachtige kokerworm staat bekend als de snelst groeiende ongewervelde. In twee jaar kunnen ze een lengte van 1,5 meter bereiken.

    Bronnen, noten en/of referenties
    1. Fauchald, K. (2013). Riftia pachyptila Jones, 1981. In: Read, G.; Fauchald, K. (Ed.) (2013) World Polychaeta database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=266010
    許可
    cc-by-sa-3.0
    版權
    Wikipedia-auteurs en -editors
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia NL

    Riftia pachyptila ( 波蘭語 )

    由wikipedia POL提供
    Commons Multimedia w Wikimedia Commons

    Riftia pachyptilagatunek wieloszczeta z rodziny Siboglinidae. Są to bezkręgowce morskie żyjące na dnie oceanicznym na głębokościach powyżej 2 km, wokół ujść kominów hydrotermalnych. Należą do zwierząt o wyjątkowo dużej tolerancji na wysokie temperatury (termofile) i na duże stężenia związków siarki. Ich ciało, osłonięte rurką chitynową, dorasta do 2,5 m długości. Czerwony "pióropusz" wystający z górnego, otwartego końca rurki jest silnie unaczynionym organem służącym do pobierania z otaczającej wody substancji niezbędnych do życia (np. H2S, CO2, O2). W razie zagrożenia "pióropusz" może być wciągany w głąb rurki. Substancje pobierane przez "pióropusz" są transportowane wraz z krwią do wnętrza ciała i stanowią materiał odżywczy dla bakterii chemosyntetyzujących żyjących w wyspecjalizowanym organie zwierzęcia (tzw. trofosomie). Dorosłe osobniki nie posiadają w ogóle układu pokarmowego (występuje on u postaci larwalnej). Odżywiają się substancjami organicznymi wytwarzanymi przez symbiotycznie współżyjące z rurkoczułkowcem bakterie, które mogą stanowić nawet połowę masy ciała zwierzęcia. Tworzą w ten sposób podstawę układów troficznych rozwijających się wokół kominów hydrotermalnych na dużych głębokościach, zupełnie niezależnych od dopływu światła słonecznego, a wykorzystujących proces chemosytezy związków organicznych kosztem energii chemicznej, prowadzony przez bakterie. Riftia pachyptila do transportu tlenu, dwutlenku węgla i siarczków do wnętrza ciała wykorzystuje specyficzne, zawarte w jej krwi, hemoglobiny o wyjątkowo złożonej strukturze (zawierają od 24 do 144 łańcuchów globiny i tyleż struktur hemu). Te złożone odmiany hemoglobiny są odporne (inaczej niż u innych zwierząt) na zatrucie siarkowodorem.

     src=
    Rurkoczułkowce żyjące wokół kominów hydrotermalnych żywią się substancjami organicznymi wytwarzanymi przez symbiotycznie współżyjące z nimi bakterie, zamieszkujące wnętrze ich ciała

    Zobacz też

    Bibliografia

    • M. L. Jones. Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galapagos rift geothermal vents (Pogonophora). „Proceedings of the Biological Society of Washington”. 93, s. 1295-1313, 1981 (ang.).
    • Derk C. Bergquist, Frederick M. Williams, Charles R. Fisher: "Longevity record for deep-sea invertebrate", Nature 403, 499 – 500 (03 Feb 2000) Brief Communications
    • Sharmishtha Dattagupta*, Lara L. Miles, Matthew S. Barnabei and Charles R. Fisher: Journal of Experimental Biology 209, 3795-3805 (2006)

    Linki zewnętrzne

    許可
    cc-by-sa-3.0
    版權
    Autorzy i redaktorzy Wikipedii
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia POL

    Riftia pachyptila: Brief Summary ( 波蘭語 )

    由wikipedia POL提供

    Riftia pachyptila – gatunek wieloszczeta z rodziny Siboglinidae. Są to bezkręgowce morskie żyjące na dnie oceanicznym na głębokościach powyżej 2 km, wokół ujść kominów hydrotermalnych. Należą do zwierząt o wyjątkowo dużej tolerancji na wysokie temperatury (termofile) i na duże stężenia związków siarki. Ich ciało, osłonięte rurką chitynową, dorasta do 2,5 m długości. Czerwony "pióropusz" wystający z górnego, otwartego końca rurki jest silnie unaczynionym organem służącym do pobierania z otaczającej wody substancji niezbędnych do życia (np. H2S, CO2, O2). W razie zagrożenia "pióropusz" może być wciągany w głąb rurki. Substancje pobierane przez "pióropusz" są transportowane wraz z krwią do wnętrza ciała i stanowią materiał odżywczy dla bakterii chemosyntetyzujących żyjących w wyspecjalizowanym organie zwierzęcia (tzw. trofosomie). Dorosłe osobniki nie posiadają w ogóle układu pokarmowego (występuje on u postaci larwalnej). Odżywiają się substancjami organicznymi wytwarzanymi przez symbiotycznie współżyjące z rurkoczułkowcem bakterie, które mogą stanowić nawet połowę masy ciała zwierzęcia. Tworzą w ten sposób podstawę układów troficznych rozwijających się wokół kominów hydrotermalnych na dużych głębokościach, zupełnie niezależnych od dopływu światła słonecznego, a wykorzystujących proces chemosytezy związków organicznych kosztem energii chemicznej, prowadzony przez bakterie. Riftia pachyptila do transportu tlenu, dwutlenku węgla i siarczków do wnętrza ciała wykorzystuje specyficzne, zawarte w jej krwi, hemoglobiny o wyjątkowo złożonej strukturze (zawierają od 24 do 144 łańcuchów globiny i tyleż struktur hemu). Te złożone odmiany hemoglobiny są odporne (inaczej niż u innych zwierząt) na zatrucie siarkowodorem.

     src= Rurkoczułkowce żyjące wokół kominów hydrotermalnych żywią się substancjami organicznymi wytwarzanymi przez symbiotycznie współżyjące z nimi bakterie, zamieszkujące wnętrze ich ciała
    許可
    cc-by-sa-3.0
    版權
    Autorzy i redaktorzy Wikipedii
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia POL

    Riftia pachyptila ( 葡萄牙語 )

    由wikipedia PT提供

    Riftia pachyptila Jones, 1981 é uma espécie de poliquetas[1][2][3] pertencente ao género Riftia da família Siboglinidae, e são parentes dos poliquetas de tubo, encontrados nas zonas de maré e costeiras dos litorais de todo o mundo.

    Descrição

    Os poliquetas da espécie Riftia pachyptila vivem nas zonas abissais dos oceanos, fixos em afloramentos rochosos das chaminés das fontes hidrotermais de profundidade das regiões abissais de todos os oceanos.

    Estes poliquetas são considerados extremófilos, pois além de suportarem a enorme pressão hidrostática resultante da profundidade, ocorrem em habitats caracterizados pela existência de altas concentrações de sulfeto de hidrogénio, um composto extremamente tóxico para a grande maioria das formas de vida.

    Os exemplares adultos de R. pachyptila podem atingir cerca de três metros de comprimento e quatro centímetros de diâmetro.[4][5]

    Referências

    1. UNESCO-IOC Register of Marine Organisms,
    2. Fauchald, Kristian (2007) World Register of Polychaeta,
    3. Jones, Meredith L. (1981) Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galápagos Rift geothermal vents (Pogonophora). Proceedings of the Biological Society of Washington, 93(4): 1295-1313.,
    4. Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglinawan L.E., Bailly N., Kirk P.M., Bourgoin T., Baillargeon G., Ouvrard D. (red.) (2011). «Species 2000 & ITIS Catalogue of Life: 2011 Annual Checklist.». Species 2000: Reading, UK. Consultado em 24 de setembro de 2012 !CS1 manut: Nomes múltiplos: lista de autores (link)
    5. WoRMS Polychaeta: World List of Polychaeta. Read G. & Fauchald K., 2010-12-10

    Galeria

     title=
    許可
    cc-by-sa-3.0
    版權
    Autores e editores de Wikipedia
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia PT

    Riftia pachyptila: Brief Summary ( 葡萄牙語 )

    由wikipedia PT提供

    Riftia pachyptila Jones, 1981 é uma espécie de poliquetas pertencente ao género Riftia da família Siboglinidae, e são parentes dos poliquetas de tubo, encontrados nas zonas de maré e costeiras dos litorais de todo o mundo.

    許可
    cc-by-sa-3.0
    版權
    Autores e editores de Wikipedia
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia PT

    Рифтія ( 烏克蘭語 )

    由wikipedia UK提供

    Опис

    Рифтія — великий трубчастий черв'як, що не має ні рота, ні травної системи, ні анального отвору. Довжина може перевищувати 1,5 м при товщині 4 см, а довжина білих циліндричних трубок з яскраво-червоними щупальцями, що з них висуваються, іноді перевищує 3 м. По біомасі у багато разів перевершує усі інші види гідротермальних угруповань. Живиться за рахунок бактерій, що містяться в клітинах. Червоний колір пов'язаний з підвищеним вмістом червоного пігменту — гемоглобіну.

    Біологія

    Оскільки рифтії не мають очей і травної системи, їх виживання залежить від симбіотичних відносин з мільярдами бактерій, які живуть всередині них. Ці бактерії перетворюють хімічні речовини, які виділяються з гідротермальних джерел, в їжу для черв'яків. Оскільки дорослі рифтії не мають рота, бактерії потрапляють в тіло черв'яка на час ранніх стадіях розвитку, коли у рифтій є рот і кишечник. Але поки черв росте, ці органи зникають. Іноді рифтії служать їжею для інших глибоководних мешканців. Риби і краби можуть відкушувати червону верхівку рифтій.[2]

    Примітки

    1. Ruppert, E.; Fox, R.; Barnes, R. (2007). Invertebrate Zoology: A functional Evolutionary Approach (вид. 7th). Belmont: Thomson Learning. ISBN 0-03-025982-7.
    2. http://www.ceoe.udel.edu/deepsea/level-2/creature/tube.html

    Джерела


    許可
    cc-by-sa-3.0
    版權
    Автори та редактори Вікіпедії
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia UK

    Рифтия ( 俄語 )

    由wikipedia русскую Википедию提供
    Латинское название Riftia pachyptila M. L. Jones, 1981

    wikispecies:
    Систематика
    на Викивидах

    commons:
    Изображения
    на Викискладе

    ITIS 563979 NCBI 6426

    Рифтия (лат. Riftia pachyptila) — животное из семейства погонофор.

    Обитает в области термальных источников рифтовой зоны (отсюда и название рода) у Галапагосских островов (глубина 2450 м) и в восточной части Тихого океана (21° с. ш., глубина 2620 м.). Длина тела этих животных достигает 1,5 м при толщине 4 см, а длина белых цилиндрических трубок с высовывающимися из них ярко-красными щупальцами иногда превышает 3 м.

    Рифтия не имеет ни рта, ни желудка. Её кормят симбиотические бактерии, занимающие почти всю полость тела и составляющие около половины веса червя. Красная кровь рифтии, проходя через щупальца на верхнем конце тела, поглощает из воды сероводород, углекислый газ и кислород, а также минеральные соли. Серобактерии синтезируют из всех этих соединений аминокислоты и белки, которыми и питается рифтия.

    По данным генетического анализа этих животных, возникли они менее 60 млн лет назад[1].

    Примечания

    1. Елена Краснова. Фауна океанических гидротерм: из реликтов в молодость // Наука и жизнь, № 8, август 2013


    Бабочка Это заготовка статьи по биологии. Вы можете помочь проекту, дополнив её.
    Это примечание по возможности следует заменить более точным.
    Есть более полная статья
    В другом языковом разделе есть более полная статья Giant tube worm (англ.).
    Вы можете помочь проекту, расширив текущую статью с помощью перевода.
    При этом, для соблюдения правил атрибуции, следует установить шаблон {{переведённая статья}} на страницу обсуждения, либо указать ссылку на статью-источник в комментарии к правке.
    Улучшение статьи
    Для улучшения этой статьи желательно:
     title=
    許可
    cc-by-sa-3.0
    版權
    Авторы и редакторы Википедии

    Рифтия: Brief Summary ( 俄語 )

    由wikipedia русскую Википедию提供

    Рифтия (лат. Riftia pachyptila) — животное из семейства погонофор.

    Обитает в области термальных источников рифтовой зоны (отсюда и название рода) у Галапагосских островов (глубина 2450 м) и в восточной части Тихого океана (21° с. ш., глубина 2620 м.). Длина тела этих животных достигает 1,5 м при толщине 4 см, а длина белых цилиндрических трубок с высовывающимися из них ярко-красными щупальцами иногда превышает 3 м.

    Рифтия не имеет ни рта, ни желудка. Её кормят симбиотические бактерии, занимающие почти всю полость тела и составляющие около половины веса червя. Красная кровь рифтии, проходя через щупальца на верхнем конце тела, поглощает из воды сероводород, углекислый газ и кислород, а также минеральные соли. Серобактерии синтезируют из всех этих соединений аминокислоты и белки, которыми и питается рифтия.

    По данным генетического анализа этих животных, возникли они менее 60 млн лет назад.

    許可
    cc-by-sa-3.0
    版權
    Авторы и редакторы Википедии

    巨型管蟲 ( 漢語 )

    由wikipedia 中文维基百科提供

    巨型管蟲(學名:Riftia pachyptila)是西伯加蟲科下的一種生物[1]。它生活在太平洋一英里以下的海底熱泉附近,可以忍受富含硫化氢、水溫在2至30攝氏度之間的海水。其長度可達2.4米(7英尺10英寸),直徑約4厘米(1.6英寸)[2]。不同於生長速度極為緩慢的Lamellibrachia luymesi(170至250年間只能生長2米)[3],巨型管蟲生長速度極快,兩年內就可以長1.5米(4英尺11英寸)[4]

    参考文献

    1. ^ Ruppert, E.; Fox, R.; Barnes, R. . Invertebrate Zoology: A functional Evolutionary Approach 7th. Belmont: Thomson Learning. 2007. ISBN 0-03-025982-7.
    2. ^ Bright, M.; Lallier, F. H. The biology of vestimentiferan tubeworms (PDF). Oceanography and Marine Biology: An Annual Review (Taylor & Francis). 2010, 48: 213–266 [2013-10-30]. doi:10.1201/ebk1439821169-c4. (原始内容 (PDF)存档于2013-10-31).
    3. ^ Tube Worms In Deep Sea Discovered To Have Record Long Life Spans. ScienceDaily.
    4. ^ Lutz, R. A.; Shank, T. M.; Fornari, D. J.; Haymon, R. M.; Lilley, M. D.; Von Damm, K. L.; Desbruyeres, D. Rapid growth at deep-sea vents. Nature. 1994, 371 (6499): 663. doi:10.1038/371663a0.

    外部鏈接

     src= 维基共享资源中相关的多媒体资源:巨型管蟲  src= 维基物种中的分类信息:巨型管蟲 物種識別信息
     title=
    許可
    cc-by-sa-3.0
    版權
    维基百科作者和编辑
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia 中文维基百科

    巨型管蟲: Brief Summary ( 漢語 )

    由wikipedia 中文维基百科提供

    巨型管蟲(學名:Riftia pachyptila)是西伯加蟲科下的一種生物。它生活在太平洋一英里以下的海底熱泉附近,可以忍受富含硫化氢、水溫在2至30攝氏度之間的海水。其長度可達2.4米(7英尺10英寸),直徑約4厘米(1.6英寸)。不同於生長速度極為緩慢的Lamellibrachia luymesi(170至250年間只能生長2米),巨型管蟲生長速度極快,兩年內就可以長1.5米(4英尺11英寸)。

    許可
    cc-by-sa-3.0
    版權
    维基百科作者和编辑
    原始內容
    參訪來源
    合作夥伴網站
    wikipedia 中文维基百科

    Habitat ( 英語 )

    由World Register of Marine Species提供
    abyssal

    參考資料

    van der Land, J. (ed). (2008). UNESCO-IOC Register of Marine Organisms (URMO).

    許可
    cc-by-4.0
    版權
    WoRMS Editorial Board
    原始內容
    參訪來源
    合作夥伴網站
    World Register of Marine Species

    Habitat ( 英語 )

    由World Register of Marine Species提供
    at hydrothermal vents

    參考資料

    van der Land, J. (ed). (2008). UNESCO-IOC Register of Marine Organisms (URMO).

    許可
    cc-by-4.0
    版權
    WoRMS Editorial Board
    原始內容
    參訪來源
    合作夥伴網站
    World Register of Marine Species