The Mycocaliciaceae are a family of seven genera and about 90 species of fungi in the order Mycocaliciales.
Taxonomy
Calicioid fungi are a heterogeneous assemblage of fungi sharing the presence of a mazaedium, a structure in which loose masses of ascospores accumulate and which then are passively disseminated. Before 1970, the presence of a mazaedium was considered to be the defining trait of the order Caliciales, historically considered to be a monophyletic group.[2] Mycocaliciaceae was circumscribed in 1970 by lichenologist Alexander Schmidt. He showed that some of the genera that had been traditionally classified in the Caliciales had active spore dispersal rather than a mazaedium. He resurrected Chaenothecopsis, Mycocalicium and Strongyleuma, accepted Stenocybe and described the new genus Phaeocalicium.[3] The Mycocaliciaceae and the Sphinctrinaceae are the families in the order Mycocaliciales, which was created in 2000 by Leif Tibell and Mats Weden.[4] Mycocaliciaceae was shown in several studies to belong to the class Eurotiomycetes.[5][6][7]
In 2005, molecular phylogenetic analysis of internal transcribed spacer DNA sequences suggested that the Sphinctrinaceae nested in the Mycocaliciaceae, and further, that some of the morphological features traditionally used to classify Mycocaliciales genera were found to be homoplasious.[8] A recent (2020) source places the Sphinctrinaceae in synonymy with the Mycocaliciaceae.[1]
Description
The thallus of Mycocaliciaceae species are immersed in the substrate, and often absent. Ascomata are stalked, brown or black, and topped by a head that is disc-like to somewhat spherical. Interascal tissue is absent in the hymenium. The asci are small, cylindrical, thick-walled at least in the apex, and not evanescent at an early stage. Ascospores are ellipsoidal to cylindrical in shape, pale to mid brown in colour, with walls that are smooth and thin. The ascospores are not released in a mazaedial mass.[9]
Genera
This is a list of the genera in the Mycocaliciaceae; this includes taxa formerly classified in the Sphinctrinaceae.[1] Following the genus name is the taxonomic authority, year of publication, and the number of species:
Fossil record
The first fossil record of a member of the Mycocaliciaceae was reported in 2000. The species, Chaenothecopsis bitterfeldensis, was described and illustrated from Bitterfeld amber dating back to at least 20 million years ago. The similarity in morphology to some extant East Asian species suggests that the genus had an ancient Laurasian distribution.[11] Since then, several new calicioid fossil specimens have been discovered from Baltic amber (50–35 million years ago).[12][13] For example, in 2020, nine new fossils were reported. Of all reported calicioid fossils, six are assigned to Chaenothecopsis and one to Phaeocalicium.[14]
References
-
^ a b c Wijayawardene, Nalin; Hyde, Kevin; Al-Ani, LKT; Dolatabadi, S; Stadler, Marc; Haelewaters, Danny; et al. (2020). "Outline of Fungi and fungus-like taxa". Mycosphere. 11: 1060–1456. doi:10.5943/mycosphere/11/1/8.
-
^ Prieto, Maria; Baloch, Elisabeth; Tehler, Anders; Wedin, Mats (2013). "Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship". Cladistics. 29 (3): 296–308. doi:10.1111/j.1096-0031.2012.00429.x.
-
^ a b Schmidt, A. (1970). "Anatomisch-taxonomische Untersuchungen a europaischen Arten der Flechtenfamilie Caliciaceae" [Anatomical-taxonomic studies of a European species of the lichen family Caliciaceae] (PDF). Mitteilungen aus den Botanischen Staatsinstituten in Hamburg (in German). 13: 111–166.
-
^ Tibell, Leif; Wedin, Mats (2000). "Mycocaliciales, a new order for nonlichenized calicioid fungi". Mycologia. 92 (3): 577–581. doi:10.2307/3761518.
-
^ Gargas, A.; DePriest, P.; Grube, M.; Tehler, A. (1995). "Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny". Science. 268 (5216): 1492–1495. doi:10.1126/science.7770775. PMID 7770775.
-
^ Wedin, Mats; Tibell, Leif (1997). "Phytogeny and evolution of Caliciaceae, Mycocaliciaceae, and Sphinctrinaceae (Ascomycota), with notes on the evolution of the prototunicate ascus". Canadian Journal of Botany. 75 (8): 1236–1242. doi:10.1139/b97-837.
-
^ Wedin, Mats; Wiklund, Elisabeth; Crewe, Anna; Döring, Heidi; Ekman, Stefan; Nyberg, Åsa; Schmitt, Imke; Lumbsch, H. Thorsten (2005). "Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data". Mycological Research. 109 (2): 159–172. doi:10.1017/S0953756204002102.
-
^ Tibell, Leif; Vinuesa, Maria (2005). "Chaenothecopsis in a molecular phylogeny based on nuclear rDNA ITS and LSU sequences". Taxon. 54 (2): 427–442. doi:10.2307/25065370.
-
^ Cannon, P.F.; Kirk, P.M. (2007). Fungal Families of the World. pp. 227–228. ISBN 978-0851998275.
-
^ Crous, P.W.; Wingfield, M.J.; Richardson, D.M.; Leroux, J.J.; Strasberg, D.; Edwards, J.; et al. (2016). "Fungal Planet description sheets: 400–468". Persoonia - Molecular Phylogeny and Evolution of Fungi. 36 (1): 316–458. doi:10.3767/003158516X692185. PMC 4988374.
-
^ Rikkinen, Jouko; Poinar, George (2000). "A new species of resinicolous Chaenothecopsis (Mycocaliciaceae, Ascomycota) from 20 million year old Bitterfeld amber, with remarks on the biology of resinicolous fungi". Mycological Research. 104 (1): 7–15. doi:10.1017/S0953756299001884.
-
^ Tuovila, Hanna; Schmidt, Alexander R.; Beimforde, Christina; Dörfelt, Heinrich; Grabenhorst, Heinrich; Rikkinen, Jouko (2012). "Stuck in time – a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber". Fungal Diversity. 58 (1): 199–213. doi:10.1007/s13225-012-0210-9.
-
^ Kettunen, Elina; Sadowski, Eva-Maria; Seyfullah, Leyla J.; Dörfelt, Heinrich; Rikkinen, Jouko; Schmidt, Alexander R.; Lomax, Barry (2019). "Caspary's fungi from Baltic amber: historic specimens and new evidence". Papers in Palaeontology. 5 (3): 365–389. doi:10.1002/spp2.1238. hdl:10138/309518.
-
^ Rikkinen, Jouko; Meinke, S. Kristin L.; Grabenhorst, Heinrich; Gröhn, Carsten; Kobbert, Max; Wunderlich, Jörg; Schmidt, Alexander R. (2018). "Calicioid lichens and fungi in amber – Tracing extant lineages back to the Paleogene". Geobios. 51 (5): 469–479. doi:10.1016/j.geobios.2018.08.009. hdl:10138/308761.