dcsimg

Description of Dinophyceae

provided by BioPedia
Dinoflagellates with a motile stage having two flagella.
license
cc-by-nc
author
biopedia
provider
BioPedia
original
visit source
partner site
BioPedia

Dinofícies ( Catalan; Valencian )

provided by wikipedia CA

Les dinofícies (Dinophyceae) són la principal classe de dinoflagel·lats. Inclou les espècies amb un nucli que roman dinocariont durant tot el cicle cel·lular, que és anomenat per l'etapa haploide, i inclou tots els dinoflagel·lats típics, com Peridinium i Gymnodinium. D'altres són més inusuals, incloent-hi alguns colonials, ameboides o paràsits.

Són organismes unicel·lulars, la majoria biflagel·lats, si bé poden aparèixer formes flagel·lat: cocoides, filamentoses, palmeloides o ameboides, relacionades amb la gran varietat de formes de nutrició. Generalment fotosintètics, encara que també hi ha formes heteròtrofes: sapròfites, paràsites, simbiòtiques i holozoiques. Molts autòtrofs marins són auxòtrofs per diverses vitamines.

Com a pigments tenen: clorofil·la a i c, β-caroteno, xantofil·las, peridinina, neoperidinina, dinoxantina, neodinoxantina i diatoxantina. El material de reserva és el midó.

La paret cel·lular o teca, quan es presenta, està composta fonamentalment de cel·lulosa. Presenten dos flagels, situats en solcs o depressions de la superfície de la cèl·lula. Un flagel acronemàtic (llis, acabat en una fibril·la), de disposició posterior, localitzat en un solc longitudinal. Un altre flagel acintat situat en un solc transversal que permet el gir i el desplaçament.

Les dinofícies es classifiquen per la seva morfologia. Les espècies amb teca es divideixen en quatre ordres, basats en la disposició de les plaques de la seva armadura: Peridiniales (per ex. Peridinium), Gonyaulacales (per ex. Ceratium o Gonyaulax), Dinophysiales (per ex. Dinophysis) i Prorocentrales (per ex. Prorocentrum). Els peridinials són probablement parafilètics respecte als altres i amb els arbres d'ARNr es barregen amb espècies que manquen de teca. Els grups sense teca es considera que són polifilètics i es classifiquen en diversos ordres. Exemples de gèneres són Gymnodinium, Amphidinium, Symbiodinium, Dinamoeba i Pfiesteria.

Un grup de dinoflagel·lats paràsits, els blastodinials, a vegades es classifiquen aquí, encara que altres vegades se'ls assigna la seva pròpia classe de les blastodinofícies.

Referències

  • JF Saldarriaga i cols. «Dinoflagellate Nuclear SSU rRNA Phylogeny Suggests Multiple Plastid Losses and Replacements». Journal of Molecular Evolution, 53, 2001, pàg. 204-213.
  • F. J. R. "Max" Taylor «Illumination or confusion? Dinoflagellate molecular phylogenetic dataviewed from a primarily morphological standpoint». Phycological Research, 52, 2004, pàg. 308-324.
license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Dinofícies: Brief Summary ( Catalan; Valencian )

provided by wikipedia CA

Les dinofícies (Dinophyceae) són la principal classe de dinoflagel·lats. Inclou les espècies amb un nucli que roman dinocariont durant tot el cicle cel·lular, que és anomenat per l'etapa haploide, i inclou tots els dinoflagel·lats típics, com Peridinium i Gymnodinium. D'altres són més inusuals, incloent-hi alguns colonials, ameboides o paràsits.

Són organismes unicel·lulars, la majoria biflagel·lats, si bé poden aparèixer formes flagel·lat: cocoides, filamentoses, palmeloides o ameboides, relacionades amb la gran varietat de formes de nutrició. Generalment fotosintètics, encara que també hi ha formes heteròtrofes: sapròfites, paràsites, simbiòtiques i holozoiques. Molts autòtrofs marins són auxòtrofs per diverses vitamines.

Com a pigments tenen: clorofil·la a i c, β-caroteno, xantofil·las, peridinina, neoperidinina, dinoxantina, neodinoxantina i diatoxantina. El material de reserva és el midó.

La paret cel·lular o teca, quan es presenta, està composta fonamentalment de cel·lulosa. Presenten dos flagels, situats en solcs o depressions de la superfície de la cèl·lula. Un flagel acronemàtic (llis, acabat en una fibril·la), de disposició posterior, localitzat en un solc longitudinal. Un altre flagel acintat situat en un solc transversal que permet el gir i el desplaçament.

Les dinofícies es classifiquen per la seva morfologia. Les espècies amb teca es divideixen en quatre ordres, basats en la disposició de les plaques de la seva armadura: Peridiniales (per ex. Peridinium), Gonyaulacales (per ex. Ceratium o Gonyaulax), Dinophysiales (per ex. Dinophysis) i Prorocentrales (per ex. Prorocentrum). Els peridinials són probablement parafilètics respecte als altres i amb els arbres d'ARNr es barregen amb espècies que manquen de teca. Els grups sense teca es considera que són polifilètics i es classifiquen en diversos ordres. Exemples de gèneres són Gymnodinium, Amphidinium, Symbiodinium, Dinamoeba i Pfiesteria.

Un grup de dinoflagel·lats paràsits, els blastodinials, a vegades es classifiquen aquí, encara que altres vegades se'ls assigna la seva pròpia classe de les blastodinofícies.

license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Dinoflagellaten ( German )

provided by wikipedia DE

Die Dinoflagellaten (Dinoflagellata; von altgriechisch δῖνος dinos, deutsch ‚wirbelnd‘ und lateinisch flagellum ‚Peitsche‘, ‚Geißel‘), auch als Peridineae und Panzergeißler bezeichnet, sind ein Taxon, das vorwiegend Einzeller umfasst. Zu ihren kennzeichnenden Merkmalen gehören zwei während des mobilen Lebenszyklus vorhandene Flagellen und Chromosomen, die während der Interphase kondensiert sind. Dinoflagellaten haben keine Histone. Weltweit werden rund 2.400 rezente Arten unterschieden (Stand: 2012)[1], die großteils im Meer leben und dabei einen Hauptteil des Phytoplanktons bilden. Der Unterstamm umfasst sowohl autotrophe als auch heterotrophe Arten.

Merkmale

Grundsätzliche Merkmale

 src=
Basaler Bauplan eines Dinoflagellaten
 src=
Illustration mit Beispielen

Innerhalb der Dinoflagellaten herrscht eine extrem große Formenvielfalt. Die Größe reicht von 2 µm (Gymnodinium simplex) bis zu 2 mm (Noctiluca miliaris), wobei die meisten Arten zwischen 10 und 100 µm groß werden.

Die Form der freischwimmenden Zelle ist eiförmig bis rundlich, wobei das Anterior meist mehr zugespitzt ist als das Posterior. Die meisten Dinoflagellaten besitzen zwei lange Geißeln. Eine Geißel ist nach hinten gerichtet (longitudinale Geißel), sie liegt im inneren Abschnitt in einer Furche des Zellleibs, ragt aber meist mehr oder weniger lang nach hinten daraus hervor. Die andere Geißel, die in einer Ebene senkrecht dazu schlägt (transversale Geißel), windet sich nach links um den Zellleib, sie liegt meist vollständig innerhalb einer Furche. Die transversale Geißel erlaubt der Zelle Drehungen und trägt am meisten zum Vortrieb bei. Die longitudinale Geißel dient in erster Linie zur Steuerung der Bewegungsrichtung. Diese Anordnung der Geißeln wird als dinokont bezeichnet. Bei den Prorocentrales sitzen, abweichend dazu, beide Geißeln frei am Hinterende der Zelle, dies wird als desmokont bezeichnet. Bei einigen Gattungen treten völlig abweichend gestaltete, zum Teil geißellose Zellen auf.

Bei vielen Arten sind die direkt unterhalb der Zellmembran liegenden Vakuolen mit Zellulose gefüllt und so zu mehr oder weniger massiven Platten verstärkt.[2] Wenn solche intrazellulären Platten vorhanden sind, wird diese Hülle als Theka und die entsprechenden Arten thekat bezeichnet. Wenn die Alveolen nicht oder nur sehr wenig verstärkt sind, werden die Arten athekat oder nackt genannt. Die Theka bildet ein Mosaik aus einzelnen Platten; dieses kann zur Artbestimmung benutzt werden.

Eine Querfurche, das sogenannte Cingulum (Gürtel, en. auch girdle[3]) läuft rund um die Zelle und teilt diese somit in ein Anterior (Episoma) und Posterior (Hyposoma). Ist eine Theka vorhanden, werden die Teile als Epitheka bzw. Hypotheka bezeichnet. Ist keine Theka vorhanden, spricht man von athekaten Dinoflagellaten. Bei morphologischen Beschreibungen dieser Dinoflagellaten werden die Begriffe Epicone und Hypocone anstatt Epi- und Hypotheka verwendet. Nach posterior verläuft ausgehend von der Querfurche eine Längsfurche, der sogenannte Sulcus. Die transversale Geißel schlägt im Cingulum, die longitudinale Geißel im Sulcus.

Geißeln

Die longitudinale Geißel ist meist etwas abgeflacht. Sie trägt gelegentlich einen spärlichen Besatz mit Flimmerhärchen (Mastigonema), der aber auch vollständig fehlen kann. Die transversale Geißel ist innerhalb des furchenartigen Cingulum über eine bandförmige Verbindung längs mit der Zelle verbunden. Sie schlägt mit einer wellenartigen Bewegung. Ihre freie Außenkante ist meist mit Härchen besetzt. Das Cingulum umgibt die Zelle meist nicht kreisförmig, sondern ist etwas spiralig gestaltet, so dass das hintere Ende der transversalen Geißel weiter hinten zu liegen kommt als die Wurzel, die Spirale ist meist relativ flach, kann aber bei einigen Gattungen recht steil sein. Beim Schlag wird die Zelle so in eine Drehbewegung (immer nach links) versetzt.

Amphiesma und Zellskelett

Der äußere Region des Zellkörpers der Dinoflagellaten weist eine Reihe morphologischer Besonderheiten auf. Unterhalb der Zellmembran sitzt ein System von flachen Vakuolen, die als amphiesmale Vesikel oder Alveolen bezeichnet werden, diese haben die Dinoflagellaten mit einer Reihe anderer Einzeller wie den Wimperntierchen (Ciliaten) gemeinsam, mit denen sie, nach diesem Merkmal, im Taxon der Alveolata vereinigt werden. Die äußere Region, die die Vakuolen enthält, wird als Amphiesma oder auch Cortex (Rinde) bezeichnet. Innerhalb der Vesikel wird bei den gepanzerten (thekaten) Dinoflagellaten, in jeweils einem Vesikel immer eine Platte aus Zellulose abgeschieden, die sich letztlich zu einer geschlossenen Hülle verbinden können. Durch die Bildung und Lage innerhalb einer Vakuole liegt die Hülle allerdings innerhalb der Zelle (intrazellulär) und ist also von der Zellmembran umschlossen. Bei wenigen Dinoflagellaten sind die Vakuolen des Amphiesmas ausschließlich mit Flüssigkeit gefüllt. Bei vielen anderen enthalten sie festes Material, dass sich aber nicht zu einem geschlossenen Panzer versteift, diese werden gemeinsam athekat (also: ohne Theka) genannt. Bei den thekaten Dinoflagellaten wird die Anordnung der Platten zur Bestimmung der Gattungen und Arten verwendet, jede Platte hat dazu in einem ausgefeilten System jeweils einen besonderen Namen erhalten. Unterhalb der Vesikel sitzt bei manchen Arten eine zweite, dünne Lage aus Fasern, die Pellicula genannt wird. Sie enthält neben Zellulose das Polymer Sporopollenin. Bei vielen Dinoflagellaten kann der äußere Panzer abgeworfen werden (Ecdysis genannt), die Pellicula bildet dann die äußere Hülle von Cysten genannten Überdauerungsstadien.

Einige basale athekate Dinoflagellaten, zum Beispiel der Gattung Oxyrrhis, besitzen auf der Oberfläche (also extrazellulär) kleine, oft sternförmige Schüppchen aus Zellulose. Andere, wie Dicroerisma und Actinscus besitzen interne Skelettelemente aus Siliciumdioxid. Bei Achradina und Monaster können diese die Zelle körbchenartig einschließen.

Zellkern

Innerhalb der Eukaryoten besitzt der Zellkern der Dinoflagellaten einzigartige Eigenschaften, er wird deshalb mit dem besonderen Ausdruck Dinokaryon belegt. Die DNA ist bei ihnen nicht in Nukleosomen organisiert, deren charakteristische Proteine, die Histone, fehlen fast vollständig. Insgesamt ist der Proteinanteil des Zellkerns weitaus geringer als bei anderen Eukaryoten, meist nur etwa 10 Prozent. Anstelle der Histone werden nur bei ihnen vorkommende, besondere Proteine nachgewiesen, deren Herkunft durch horizontalen Gentransfer aus Viren nachgewiesen werden konnte (dinoflagellate viral nucleoproteins; DVNPs). Während früher angenommen wurde, dass Histone völlig fehlen, wurden inzwischen alle Histonfamilien, wenn auch in geringerem Gehalt und in teilweise stark abweichender Struktur, bei den Dinoflagellaten nachgewiesen, sie haben vermutlich bei ihnen eine besondere Rolle bei der Transkription beibehalten.[4]

Sowohl der DNA-Gehalt der Dinoflagellaten gehört zu den höchsten bei allen Eukaryoten, auch ihr Genom ist ungewöhnlich umfangreich. Die Chromosomen sind auch während der Interphase kondensiert und im Elektronenmikroskop sichtbar. Die Chromosomen bilden eine Girlandenstruktur, wobei die einzelnen Fibrillen nur 2,5 nm im Durchmesser haben. Die übrigen Eukaryoten besitzen Fibrillen mit zehnfachem Durchmesser mit einem zentralen Nucleohistonstrang. Die Struktur der Chromosomen wurde mit Flüssigkristallen verglichen. Der Gehalt an nicht-kodierender DNA der Dinoflagellaten ist außergewöhnlich hoch. Es wird angenommen, dass nur die äußeren, schleifenförmigen Enden der Chromosomen, die aus dem Zellkern nach außen vorragen, kodierende Abschnitte enthalten. Auch die Mitose ist bei ihnen äußerst ungewöhnlich. Die den Nukleus umgebende Membran bleibt während des gesamten Mitosezyklus erhalten. Bei der Teilung bilden sich fingerförmige Einstülpungen, die letztlich den Kern ganz durchdringen und so Torus-artige Strukturen hervorbringen. Die Mitosespindel wird innerhalb des Torus ausgebildet, wobei seine Anheftungsstellen (die Kinetochoren) in der inneren Membran des Torus sitzen. Je nach Verwandtschaftsgruppe werden zwischen einem und fünf (oder sechs) solcher Tunnel durch den Zellkern ausgebildet. Auch während der Interphasen ist der Zellkern, neben der üblichen Kernhülle, durch ein Netzwerk aus Membranen durchzogen, aus denen ie Tunnelstrukturen gebildet werden.[5]

Weiterhin ist nur innerhalb der Dinoflagellaten die modifizierte Base Hydroxymethyluracil (HOMeU) in der DNA nachgewiesen. Mit einem Gesamtanteil von 4–19 % ersetzt sie 12–70 % der Thymin-Basen.[6] Die Chromosomenzahl schwankt zwischen 5 bei Syndinium turbo und 274 bei Ceratium hirundinella.[7]

Chloroplast

Der Chloroplast hat wie der der Euglenida drei Membranen. Im Unterschied zu diesen gleicht er aber nicht dem einer Grünalge, sondern dem einer Rotalge, was auf die Herkunft von einer symbiontischen Rotalge hindeutet.[8]

Nematocysten

Viele Dinoflagellaten besitzen komplexe, der Verteidigung oder dem Beutererwerb dienende Organellen, die Extrusomen, Trichozysten, Mucocysten oder Nematocysten genannt werden (genauso benannt, aber nicht homolog zu den Nematocysten der Nesseltiere). Bei Polykrikos kofoidii wurden die Nematocysten im Detail untersucht. Dinoflagellaten der Gymnodiniales besitzt harpunen-artige Nematocysten, die der räuberischen Ernährung dienen. Sie arbeiten quasi im Tandem mit einem weiteren, Taeniocyste genannten, Organell, mit dem sie einen morphologisch verbundenen Komplex bilden. Die Taeniocysten bilden dabei eine weitere Art von Extrusomen. Die Nematocysten bestehen aus einer quergestreiften Kapsel, die im Zellinneren liegt und durch eine deckelartige Struktur (Operculum) außen aus der Zellhülle hervorragt. Im Inneren der quer gestreiften Kapsel liegt ein aufgerollter Faden, an dessen Vorderende ein verstärkte, stilett-artige Spitze sitzt. Die Nematocysten feuern, indem der Deckel abgeworfen wird und der Faden mit der Spitze, unter hohem Druck, herausgeschleudert wird. Auslösend dafür könnte entweder, wie bei den Nematocysten der Nesseltiere, erhöhter osmotischer Druck sein, oder die Kapselwand wird muskelartig kontrahiert. Bei anderen Dinoflagellaten-Arten sitzt anstelle eines Stiletts eine hohle nadelartige Spitze an, die in Art einen Injektionsnadel ein Toxin appliziert. Bei Nematodinium sitzt innerhalb der Kapsel noch ein Ring von Unterkapseln, die den Vortrieb des Stiletts weiter verstärken. Die Nematocysten der Dinoflagellaten gehören zu den komplexesten Organellen überhaupt.[9]

Biolumineszenz

 src=
Biolumineszenz von Dinoflagellaten, durch das Brechen der Wellen hervorgerufen

Einige Arten sind zur Biolumineszenz fähig, wobei dieses Leuchten eine Reaktion auf mechanische Stimulation ist. In der Natur sind dies Deformationen der Zellmembran, die durch Scherkräfte hervorgerufen werden. Stark aufgewühltes Wasser, wie brechende Wellen oder schnell schwimmende Fische können solche Stimulationen auslösen. Im Labor kann auch mittels Chemikalien eine Reaktion induziert werden. Zu den Dinoflagellaten gehören die einzigen biolumineszenten autotrophen Lebewesen wie etwa Vertreter der Gattungen Gonyaulax, Protogonyaulax, Pyrodinium und Pyrocystis. Auch bei heterotrophen Arten wie Noctiluca miliaris oder einigen Vertretern der Gattungen Ceratium kann Biolumineszenz beobachtet werden.

Das emittierte Licht ist blau-grün und hat ein Maximum bei 474–476 nm. Da diese Wellenlänge nahe dem maximalen Transmissionsgrad des Meerwassers liegt, wird angenommen, dass die Sichtbarkeit des Lichtes den selektiven Vorteil verursacht. In Experimenten mit leuchtenden und nicht-leuchtenden Spezies konnte gezeigt werden, dass im Falle von Biolumineszenz die Prädation vermindert wurde. Vermutlich werden Feinde durch den Lichtblitz abgeschreckt. Wie bei fast allen Arten der Biolumineszenz ist dies auf eine Reaktion von Luciferasen und Luciferinen zurückzuführen.

Toxine

Einige Arten produzieren äußerst starke Gifte. Das Saxitoxin beispielsweise wird von Vertretern der Gattung Alexandrium (Gonyaulax) produziert. Wenn die giftigen Dinoflagellaten von Muscheln gefressen werden, reichert sich das Gift in den Muscheln an und kann dann auch für Menschen gefährlich werden. Bei einer Massenvermehrung von giftigen Arten wird soviel Gift produziert, dass auch Fische und andere Meereslebewesen getötet werden.[10] Karenia brevis produziert die Brevetoxine und kann bei den von ihnen erzeugten „Roten Tiden“ zu Massensterben bei Fischen, Vögeln und Säugern führen.

Die Krankheit Ciguatera,[11] eine Art Fischvergiftung, wird durch Stoffwechselprodukte der Art Gambierdiscus toxicus hervorgerufen. Über die Nahrungskette gelangen die Dinoflagellaten-Toxine Ciguatoxin und Maitotoxin in Fische, die dadurch ebenfalls stark giftig werden. Die Vergiftung kann unter Umständen beim Menschen tödlich verlaufen.

Das Toxin von Pfiesteria piscicida dagegen wird nicht über die Nahrungskette angereichert, sondern ist direkt giftig für Fische und Menschen.[12]

Verbreitung und Lebensräume

 src=
Noctiluca scintillans ist ein marines Lebewesen

Dinoflagellaten sind kosmopolitisch im Salz- wie auch im Süßwasser verbreitet und können dort aufgrund ihres Formenreichtums viele Habitate besiedeln. Rund 75 % aller Arten werden dem marinen Plankton zugerechnet,[1] mit der größten Artenvielfalt in tropischen Gewässern. Sie sind aber auch benthische Lebewesen und dringen auch in die Sedimente ein. Darüber hinaus sind sie ebenfalls in der Polarregion und in Meereis anzutreffen.

Im Süßwasser sind weniger Arten verbreitet. Weltweit sind 420 Arten aus Binnengewässern bekannt (etwa 17 Prozent der Artenzahl),[1] die Seen, Tümpel und Moore besiedeln. Das Verbreitungsgebiet reicht etwa vom Äquator bis 78° nördlicher Breite (Insel Spitzbergen). Die Höhenunterschiede reichen von −209 Meter in Israel bis auf 4150 Meter in Hochgebirgsseen von Mexiko.

Da einige Arten Symbiosen eingehen oder als Parasiten leben, werden auch Lebewesen als Habitate genutzt. Beispielsweise leben Dinoflagellaten als Endosymbionten in vielen Korallen und werden dann als Zooxanthellen bezeichnet. Autotrophe Arten sind auf lichtdurchflutete Wasserschichten angewiesen, heterotrophe Arten können auch in vollkommen dunkle Tiefen vordringen.

Ernährung

Etwa die Hälfte der Dinoflagellaten ist autotroph und kann mit Hilfe der Assimilation der Chloroplasten anorganischen Kohlenstoff nutzen. Jedoch sind fast sämtliche photosynthetisch aktive Arten auxotroph und benötigen Vitamine (Cobalamine, Biotin, Thiamin) für katalytische Zwecke. Diese werden über Phagocytose aufgenommen. Autotrophe Arten gehen auch eine Symbiose mit Nesseltieren (Cnidaria), insbesondere Korallen, Weichtieren (Mollusca) aber auch Foraminiferen (Foraminifera) und Wimpertierchen (Ciliata), ein.

Heterotrophe Dinoflagellaten ernähren sich von einem vielfältigen Spektrum von Planktonorganismen, das von Nanoplankton bis zu großen Kieselalgen reicht.[13][14] Darunter fallen auch Dinoflagellaten der eigenen wie auch anderer Arten, Detritus und selbst Eier und Larven von Ruderfußkrebsen. Im einfachsten Fall wird die Nahrung durch Phagocytose aufgenommen (beispielsweise Noctiluca miliaris). Durch spezielle Zellstrukturen wie Pedunkel oder Pallium können sich heterotrophe Dinoflagellaten aber auch von Organismen ernähren, die um ein Vielfaches größer als sie selbst sind (beispielsweise Pfiesteria[15] oder Protoperidinium).[13][14]

Autotrophie

Die autotrophen Arten enthalten Plastiden mit Chlorophyll a bzw. einige Arten auch Chlorophyll c. Als Haupt-Carotinoid enthalten sie meist Peridinin anstatt von Fucoxanthin. Ihre Färbung reicht von gelbbraun bis rötlich, da das Chlorophyll von braunen und gelben Carotinoiden und roten Xanthophyllen überdeckt wird. Stärke ist das Hauptassimilationsprodukt, das in Körnchen außerhalb der Chloroplasten gespeichert wird. Es wurden aber auch fettartige Stoffe nachgewiesen. Die Plastiden sind meist mit drei Membranen umgeben, von denen eine mit dem endoplasmatischen Retikulum verbunden ist.

Grundsätzlich können Dinoflagellaten sehr verschiedene Plastiden beherbergen, die vom Grundtyp abweichen. Dies ist auf Phagotrophie zurückzuführen, die auch bei autotrophen Arten aufrechterhalten wird. Dies führte in der Stammesgeschichte zu einer weiteren, tertiären Endocytobiose. Die aufgenommenen Organismen können hierbei aus unterschiedlichen Gruppen, wie Haptophyta, Cryptophyceae, Heterokontophyta oder eines Chlorophyten zurückgehen. Der ursprünglich von den Rotalgen stammende Chloroplast ist hierbei völlig oder weitgehend zurückgebildet und erscheint im letzteren Fall als inaktiver Augenfleck (Stigma). Gelegentlich ist in den Chloroplasten auch ein Nucleomorph enthalten.

Grundtypen der Heterotrophie

 src=
Grundtypen der Heterotrophie bei Dinoflagellaten

Die Fraßmechanismen heterotropher Dinoflagellaten lassen sich mit drei Grundtypen beschreiben.

  • Phagozytose: Die Beute wird durch den Sulcus direkt und vollständig aufgenommen und in eine Fraßvakuole eingeschlossen (beispielsweise Noctiluca miliaris).
  • Myzozytose: Vom Sulcus aus wird ein charakteristischer Plasmastrang ausgestülpt. Dieser Pedunkel durchstößt die Zellhülle der Beute, und saugt den Zellinhalt in eine Fraßvakuole. Die Zellbestandteile der Beute werden dabei nicht sofort verdaut. Chloroplasten beispielsweise können erhalten bleiben und so als Kleptoplastiden im Dinoflagellaten weiter funktionieren (beispielsweise Dinophysis[16]) Die Zellhülle der Beute wird nicht in die Vakuole eingeschlossen.
  • Pallium: Vom Sulcus aus wird ein schlauch- oder segelförmiges Pseudopodium ausgestülpt, dass die Beute mit einer dünnen Lage Zellplasma umgibt und so eine Fraßvakuole bildet. Da diese Vakuole außerhalb der Theka gebildet wird, ist die Größe des Palliums und damit die Größe der Beute nicht von der Größe des Dinoflagellaten begrenzt, so dass auch eine um ein Vielfaches größere Beute verdaut werden kann (beispielsweise Protoperidinium.[17]) Im Pallium wird die Beute verdaut und in verflüssigter Form aufgenommen.

Die Grundtypen Myzozytose und Pallium kommen hauptsächlich bei thekaten (gepanzerten) Arten vor und werden gelegentlich als extrazelluläre Verdauung bezeichnet. Dies stimmt genau betrachtet nicht, denn in jedem Fall wird die Beute in einer Fraßvakuole innerhalb des Zellplasmas verdaut, jedoch können sich diese Fraßvakuolen außerhalb der Theka befinden. Dies kann als Überwindung der Beschränkungen durch die Theka interpretiert werden und eröffnete den heterotrophen Arten ein erweitertes Beutespektrum.

Beutefang

Der untypische Dinoflagellat Noctiluca miliaris besitzt einen kurzen Tentakel, der wie eine Leimrute eingesetzt wird. Nahrungspartikel wie Kieselalgen und Detritus bleiben daran hängen und werden dann vom Tentakel zum Cytostom befördert.

Der thekate Dinoflagellat Stoeckeria algicida dagegen nutzt ein schlagartig ausgestoßenes Proteinfilament (englisch: tow filament), um die Beute über eine vergleichsweise große Entfernung einzufangen.[18] Ein vergleichbares Filament wird von Protoperidinium benutzt, um sich an Kieselalgen-Ketten zu verankern.[13]

Fortpflanzung

Die Fortpflanzung erfolgt überwiegend vegetativ. Bei bepanzerten Arten werden die Platten in der Regel schräg zum Gürtel gesprengt, wobei die fehlende Hälfte später nachwächst. Es besteht aber auch die Möglichkeit, dass der Panzer abgeworfen und von den Tochterzellen völlig neu gebildet wird. Unter ungünstigen Lebensbedingungen entstehen dickwandige, überdauerungsfähige Zysten.

Geschlechtliche Fortpflanzung wurde nur bei wenigen Arten nachgewiesen. Hierbei wurden Anisogamie mit zygotischem Kernphasenwechsel als auch Isogameten, die in Gametangien entstehen, freigesetzt werden und miteinander verschmelzen, beschrieben.

 src=
Lebenszyklus der Dinoflagellaten:
1Binäre Fissiparie, 2Sexuelle Reproduktion, 3 – Planozygote, 4 – Hypnozygote, 5 – Planomeiocyte.

Ökologische Bedeutung

Zusammen mit den Kieselalgen sind die Dinoflagellaten die Hauptprimärproduzenten organischer Stoffe im Meer, bilden dort also zusammen mit den Kieselalgen den Hauptteil der Basis der Nahrungspyramide. In Hochgebirgsseen können sie bis zu 50 % der Biomasse ausmachen.

Die heterotrophen Dinoflagellaten können mit ihren spezialisierten Fraßmechanismen ein weites Spektrum von Beuteorganismen fressen, das von Nanoplankton kleiner als 10 µm bis zu großen kettenbildenden Kieselalgen reicht. Dadurch stellen die heterotrophen Dinoflagellaten einen wichtigen Teil der mikrobiellen Schleife[19] dar (englisch microbial loop[20]).

Unter für sie günstigen Bedingungen vermehren sich in tropischen und subtropischen Gewässern bestimmte Arten in extremem Ausmaß, so dass sich die oberen Schichten des Meeres rot bis braun färben. Man nennt diese Algenblüte auch Rote Flut oder Rote Tide (englisch red tide).

Biostratigraphie

Durch ihre sehr widerstandsfähige, organische Zellwand werden Dinoflagellatenzysten nicht durch Kalklösung zerstört, sondern bleiben auch nach langen Zeiträumen erhalten. Außerdem haben viele Zysten eine charakteristische Form. Das spielt für die Altersdatierung (Biostratigraphie) von Sedimenten eine entscheidende Rolle.

Andere Fossilgruppen wie Foraminiferen besitzen eine zu geringe Artenvielfalt und Dinoflagellatenzysten treten nahezu in allen Gewässern auf, wo sie heute als Klimaindikatoren verwendet werden. Erst 1988 begann man in Deutschland mit der Aufstellung von „Dinoflagellaten-Zonen“, die nun regelmäßig verbessert werden.

Systematik

Durch die teilweise sehr komplexen Lebenszyklen der Dinoflagellaten ist die systematische Gliederung Gegenstand wissenschaftlicher Diskussion. Das Taxon gilt als polyphyletisch. Die hier angeführte Gliederung (Gattungen exemplarisch) folgt im Wesentlichen Adl et al. 2012:[21]

  • Dinophyceae
  • Dinophysiphycidae (Dinophysaceae Stein 1883 [Citharistaceae Kofoid & Skogsberg 1928; Ornithocercaceae Kofoid & Skogsberg 1928])
  • Gonyaulacaceae Er.Lindemann 1928
  • Gonyaulax Diesing, 1866
  • Gymnodiniphycidae (Gymnodiniaceae (Bergh 1881a) Lankester 1885 [Polykrikaceae Kofoid & Swezy 1921])
  • Noctilucaceae Kent, 1881
  • Noctiluca scintillans (Macartney) Kofoid & Swezy, 1921 (syn. Noctiluca miliaris Suriray, nomen invalidum)

Belege

Soweit nicht unter Einzelnachweisen angegeben, basiert der Artikel auf folgenden Unterlagen:

Literatur

  • Stefan Nehring: Dinoflagellaten-Dauercysten in deutschen Küstengewässern : Vorkommen, Verbreitung und Bedeutung als Rekrutierungspotential (= Christian-Albrechts-Universität zu Kiel. Institut für Meereskunde: Berichte aus dem Institut für Meereskunde, Nr. 259). Institut für Meereskunde, Abteilung Marine Planktologie, Kiel 1994, (Dissertation Universität Kiel [1994], 231 Seiten).

Einzelnachweise

  1. a b c Fernando Gómez (2012): A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Systematics and Biodiversity 10 (3): 267–275. doi:10.1080/14772000.2012.721021
  2. Loeblich, Alfred R. & Loeblich, Laurel A. (1985).Dinoflagellates: Structure of the amphiesma and re-analysis of thecal plate patterns. Hydrobiologia, Band 123, Nr. 2, S. 177–179. (Abstract und Volltext).
  3. Nordic Microalgae: (Pouchet) J.Schiller, 1933
  4. Georgi K. Marinov & Michael Lynch (2016): Diversity and Divergence of Dinoflagellate Histone Proteins. G3 Genes Genomes Genetics, Band 6, S. 397-422. doi:10.1534/g3.115.023275.
  5. Gregory S. Gavelis, Maria Herranz, Kevin C. Wakeman, Christina Ripken, Satoshi Mitarai, Gillian H. Gile, Patrick J. Keeling, Brian S. Leander (2019): Dinoflagellate nucleus contains an extensive endomembrane network, the nuclear net. Scientific Reports Band 9, Nr. 839. doi:10.1038/s41598-018-37065-w
  6. Taylor: The Biology of dinoflagellates. Blackwell, 1987, ISBN 0-632-00915-2, S. 160.
  7. Taylor: The Biology of dinoflagellates. Blackwell, 1987, ISBN 0-632-00915-2, S. 618.
  8. Robert Edward Lee: Phycology, 5. Aufl., Cambridge 2018. S. 231.
  9. Gregory S. Gavelis, Kevin C. Wakeman, Urban Tillmann, Christina Ripken, Satoshi Mitarai, Maria Herranz, Suat Özbek, Thomas Holstein, Patrick J. Keeling, Brian S. Leander (2017): Microbial arms race: Ballistic “nematocysts” in dinoflagellates represent a new extreme in organelle complexity. Science Advances 3 (3): e1602552. doi:10.1126/sciadv.1602552
  10. J. H. Landsberg (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2): 113–390.
  11. A. Swift, T. Swift (1993). Ciguatera. In: J Toxicol Clin Toxicol. 31: 1–29. (Abstract).
  12. P. D. Moeller, K. R. Beauchesne, K. M. Huncik, W. C. Davis, S. J. Christopher, P. Riggs-Gelasco, A. K. Gelasco (2007). Metal complexes and free radical toxins produced by Pfiesteria piscicida. Environ. Sci. Technol. 41 (4): 1166–1172. doi:10.1021/es0617993
  13. a b c E. Schnepf und M. Elbrächter: Nutritional strategies in dinoflagellates. Europ. J. Phycology, 1992, Vol. 28: 3–24.
  14. a b Vgl. J. Hansen und A. J. Calado: Phagotrophic mechanisms and prey selection in free- living dinoflagellates. Journal of Eukaryotic Microbiology, 1999, Vol. 46, No. 4: 382–389. doi:10.1111/j.1550-7408.1999.tb04617.x.
  15. A. Gordon und B. Dyer: Relative contribution of exotoxin and micropredation to icthyotoxicity of two strains of Pfiesteria shumwayae (Dinophyceae) Harmful algae. 2005, Vol. 4, No. 2: 423–431.
  16. Kiyotaka Takishitaa, Kazuhiko Koikeb, Tadashi Maruyamaa und Takehiko Ogatab: Molecular Evidence for Plastid Robbery (Kleptoplastidy) in Dinophysis, a Dinoflagellate causing Diarrhetic Shellfish Poisoning. Protist, 2002, Vol. 153, 293–302. PMID 12389818.
  17. G. Gaines, F. J. R. Taylor: Extracellular digestion in marine dinoflagellates. Journal of Plankton Research, 1984, Vol. 6, No. 6: 1057–1061.
  18. Hae Jin Jeong, Jae Seong Kim, Jong Hyeok Kim, Seong Taek Kim, Kyeong Ah Seong, Tae Hoon Kim, Jae Yoon Song, Soo Kyeum Kim (2005). Feeding and grazing impact of the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo. Mar Ecol Prog Ser, Vol. 295: 69–78.
  19. Naustvoll, Lars J. (2001). The role of heterotrophic dinoflagellates in marine pelagic food webs. Dissertation, University of Oslo.
  20. S. D. Azam, T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, F. Thingstad: The ecological role of water- column microbes in the sea. Marine Ecology Progress Series, 1983, Vol. 10: 257–263. (Volltext; PDF; 3,8 MB).
  21. S. M. Adl, A. G. B. Simpson, C. E. Lane, J. Lukeš, D. Bass, S. S. Bowser, M. W. Brown, F. Burki, M. Dunthorn, V. Hampl, A. Heiss, M. Hoppenrath, E. Lara, L. le Gall, D. H. Lynn, H. McManus, E. A. D. Mitchell, S. E. Mozley-Stanridge, L. W. Parfrey, J. Pawlowski, S. Rueckert, L. Shadwick, C. L. Schoch, A. Smirnov und F. W. Spiegel: The Revised Classification of Eukaryotes. Journal of Eukaryotic Microbiology. 59, 2012, S. 429–514, PDF Online.
 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Dinoflagellaten: Brief Summary ( German )

provided by wikipedia DE

Die Dinoflagellaten (Dinoflagellata; von altgriechisch δῖνος dinos, deutsch ‚wirbelnd‘ und lateinisch flagellum ‚Peitsche‘, ‚Geißel‘), auch als Peridineae und Panzergeißler bezeichnet, sind ein Taxon, das vorwiegend Einzeller umfasst. Zu ihren kennzeichnenden Merkmalen gehören zwei während des mobilen Lebenszyklus vorhandene Flagellen und Chromosomen, die während der Interphase kondensiert sind. Dinoflagellaten haben keine Histone. Weltweit werden rund 2.400 rezente Arten unterschieden (Stand: 2012), die großteils im Meer leben und dabei einen Hauptteil des Phytoplanktons bilden. Der Unterstamm umfasst sowohl autotrophe als auch heterotrophe Arten.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Dinophyceae ( Bosnian )

provided by wikipedia emerging languages

Dinophyceae je razred dinoflagelata.[1][2][3] Obuhvata bentoske dinoflagelate koji se nalaze u sedimentima.

Pregled

Dinophyceae su grupa protista, jednocelijskih organizama iz koljrna Dinoflagellata koja uključuje one vrste dinoflagelata čije jedro ostaje dinokariontno tokom cijelog ciklusa, kojim dominira haploidni stadij.[4] Uključuje sve tipske dinoflagelate, poput rodova Peridinium i Gymnodinium, pored drugih neobičnijih, uključujući neke kolonijalne, ameboidne ili parazitske oblike.

Dinofícea su jednoćelijski organizmi, većina sa dva biča, iako se mogu pojaviti aflagelirani oblici: kokoidi, vlaknasti, palmeloidi ili ameboidi, koji su povezani sa velikom raznolikošću oblika prehrane. Općenito su fotosintetski, mada postoje i heterotrofni oblici: saprofitski, paraziti, simbiotski i holozoici. Mnogi morski autotrofi su auksotrofi za nekoliko vitamina.

Ćelijski zid ili teke, kada ih ima, sastavljene su uglavnom od celuloze. Imaju dvije flagele, smještene u utorima ili udubljenjima čekijske površine. Bič je akronematski (glatka, završna fibrila), stražnji, smješten u uzdužnom utoru ili brazdi. Još jedan aktinski bič smješten je u poprečnom utoru, cingulumu, ekvatorski, koji omogućava rotaciju i pomicanje. Kao pigment imaju hlorofil a i c, β-karoten, ksantofile, peridinin, neoperidinin , dinoksantin, neodinoksantin i diatoksantin. Supstanca za skladištenje je skrob.

Dinophyceae su grupa protista, jednoćelijskih organizama iz koljena Dinoflagellata koja uključuje one vrste dinoflagelata čije jedro ostaje dinokariontno tokom cijelog ciklusa, kojim dominira haploidni stadij.[4] Uključuje sve tipske dinoflagelate, poput rodova Peridinium i Gymnodinium, pored drugih neobičnijih, uključujući neke kolonijalne, ameboidne ili parazitske oblike.

Dinofícea su jednoćelijski organizmi, većina sa dva biča, iako se mogu pojaviti aflagelirani oblici: kokoidi, vlaknasti, palmeloidi ili ameboidi, koji su povezani sa velikom raznolikošću oblika prehrane. Općenito su fotosintetski, mada postoje i heterotrofni oblici: saprofitski, paraziti, simbiotski i holozoici. Mnogi morski autotrofi su auksotrofi za nekoliko vitamina.

Ćelijski zid ili teke, kada ih ima, sastavljene su uglavnom od celuloze. Imaju dvije flagele, smještene u utorima ili udubljenjima čekijske površine. Bič je akronematski (glatka, završna fibrila), stražnji, smješten u uzdužnom utoru ili brazdi. Još jedan aktinski bič smješten je u poprečnom utoru, cingulumu, ekvatorski, koji omogućava rotaciju i pomicanje. Kao pigment imaju hlorofil a i c, β-karoten, ksantofile, peridinin, neoperidinin , dinoksantin, neodinoksantin i diatoksantin. Supstanca za skladištenje je skrob.

Dinofícea su klasificirane po svojoj morfologiji. Vrste sa tekama podijeljene su u četiri reda na temelju rasporeda njihovih ploča u oklopu: Peridiniales (npr. Peridinium), Gonyaulacales (npr. Ceratium, Gonyaulax ), Dinophysiales (ex. Dinophysis ) i Prorocentrales (ex. Prorocentrum). Peridinijales su vjerovatno parafiletski u odnosu na ostale, a na rRNK filogenetskim stablima pomiješani su s vrstama kojima nedostaje teka. Skupine bez teka smatraju se polifilitskim i svrstavaju se u nekoliko redova. Primjeri rodova su Gymnodinium, Amphidinium, Symbiodinium i Dinamoeba.[5][6] Skupina dinoflagelatnih parazita s dinokarionom, Blastodiniophyceae, je nevažeća. Uključivala je, između ostalog, i poznati rod Pfiesteria, pored Oodinijum i Haplozoon, koji su sada podijeljeni u nekoliko redova dinoficea.

Porijeklo

Proces simbiogeneze uključio bi se u porijeklo dinoficea, dan biološkom fuzijom dinoflagelatog heterotrofnog predatora koji je postao domaćin endosimbiontske alge Haptophyte. Zbog toga su njihovi tipiski plastidi naslijedili prisustvo hlorofile a, c1, c2, c3, β-karoten i raznolike ksantofile. Obje grupe većinom imaju peridinin, kao i Brachidiniales koji poseduju fukoksantin i povezane su s tim monofiletskim porijeklom.[7]

Filogenija

Dio podskupina filogenetski je povezan kako slijedi:[8]

Dinophyceae

Gymnodiniales

     

Brachidiniales

  Teka  

Prorocentrales

     

Peridiniales

     

Gonyaulacales

     

Dinophysiales

   

Suessiales (≈Dinococcales)

             

Pojava teke tipska za dinoficea bila bi jedinstvena pojava, pa bi dinoflagelatni oblici sa tekama bili monofiletska skupina. Teke sastoje se od celuloznih ploča unutar subkutikularnih alveola.[8]

Taksonomija

Također pogledajte

Reference

  1. ^ Gómez F (2012). "A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata)" (PDF). CICIMAR Océanides. 27 (1): 65–140. Arhivirano s originala (PDF), 2013-11-27.
  2. ^ Ruggiero; et al. (2015), "Higher Level Classification of All Living Organisms", PLoS ONE, 10 (4): e0119248, doi:10.1371/journal.pone.0119248, PMC 4418965, PMID 25923521
  3. ^ Silar, Philippe (2016), "Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes", HAL Archives-ouvertes: 1–462
  4. ^ a b Adl, S.M. et al. 2012. The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59(5), 429-514
  5. ^ JF Saldarriaga (2001). "Dinoflagellate Nuclear SSU rRNA Phylogeny Suggests Multiple Plastid Losses and Replacements". Journal of Molecular Evolution. 53: 204–213.
  6. ^ F. J. R. Max Taylor (2004). "Illumination or confusion? Dinoflagellate molecular phylogenetic dataviewed from a primarily morphological standpoint". Phycological Research. 52: 308–324.
  7. ^ Hwan Su Yoon, Jeremiah D. Hackett & Debashish Bhattacharya 2002, A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci U S A. 2002 Sep 3; 99(18): 11724–11729. doi: 10.1073/pnas.172234799 PMCID: PMC129336
  8. ^ a b Orr RJS, Murray SA, Stu¨ken A, Rhodes L, Jakobsen KS (2012) When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates. PLoS ONE 7(11): e50004. doi:10.1371/journal.pone.005000

license
cc-by-sa-3.0
copyright
Autori i urednici Wikipedije

Dinophyceae ( Interlingua (International Auxiliary Language Association) )

provided by wikipedia emerging languages

Dinophyceae es un classe de Dinoflagellata.

Nota
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors

Dinophyceae: Brief Summary ( Bosnian )

provided by wikipedia emerging languages

Dinophyceae je razred dinoflagelata. Obuhvata bentoske dinoflagelate koji se nalaze u sedimentima.

license
cc-by-sa-3.0
copyright
Autori i urednici Wikipedije

Dinoflagellate

provided by wikipedia EN

The dinoflagellates (Greek δῖνος dinos "whirling" and Latin flagellum "whip, scourge") are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata[5] and are usually considered algae. Dinoflagellates are mostly marine plankton, but they also are common in freshwater habitats. Their populations vary with sea surface temperature, salinity, and depth. Many dinoflagellates are photosynthetic, but a large fraction of these are in fact mixotrophic, combining photosynthesis with ingestion of prey (phagotrophy and myzocytosis).[6][7]

In terms of number of species, dinoflagellates are one of the largest groups of marine eukaryotes, although substantially smaller than diatoms.[8] Some species are endosymbionts of marine animals and play an important part in the biology of coral reefs. Other dinoflagellates are unpigmented predators on other protozoa, and a few forms are parasitic (for example, Oodinium and Pfiesteria). Some dinoflagellates produce resting stages, called dinoflagellate cysts or dinocysts, as part of their lifecycles, and are known from 84 of the 350 described freshwater species, and form a little more than 10% of the known marine species.[9][10] Dinoflagellates are alveolates possessing two flagella, the ancestral condition of bikonts.

About 1,555 species of free-living marine dinoflagellates are currently described.[11] Another estimate suggests about 2,000 living species, of which more than 1,700 are marine (free-living, as well as benthic) and about 220 are from fresh water.[12] The latest estimates suggest a total of 2,294 living dinoflagellate species, which includes marine, freshwater, and parasitic dinoflagellates.[2]

A rapid accumulation of certain dinoflagellates can result in a visible coloration of the water, colloquially known as red tide (a harmful algal bloom), which can cause shellfish poisoning if humans eat contaminated shellfish. Some dinoflagellates also exhibit bioluminescence—primarily emitting blue-green light. Thus, some parts of the ocean light up at night giving blue-green light.

Etymology

The term "dinoflagellate" is a combination of the Greek dinos and the Latin flagellum. Dinos means "whirling" and signifies the distinctive way in which dinoflagellates were observed to swim. Flagellum means "whip" and this refers to their flagella.[13]

History

In 1753, the first modern dinoflagellates were described by Henry Baker as "Animalcules which cause the Sparkling Light in Sea Water",[14] and named by Otto Friedrich Müller in 1773.[15] The term derives from the Greek word δῖνος (dînos), meaning whirling, and Latin flagellum, a diminutive term for a whip or scourge.

In the 1830s, the German microscopist Christian Gottfried Ehrenberg examined many water and plankton samples and proposed several dinoflagellate genera that are still used today including Peridinium, Prorocentrum, and Dinophysis.[16]

These same dinoflagellates were first defined by Otto Bütschli in 1885 as the flagellate order Dinoflagellida.[17] Botanists treated them as a division of algae, named Pyrrophyta or Pyrrhophyta ("fire algae"; Greek pyrr(h)os, fire) after the bioluminescent forms, or Dinophyta. At various times, the cryptomonads, ebriids, and ellobiopsids have been included here, but only the last are now considered close relatives. Dinoflagellates have a known ability to transform from noncyst to cyst-forming strategies, which makes recreating their evolutionary history extremely difficult.

Morphology

Longitudinal (l.f.) and transverse flagellum (t.f.); sack pusule (s.p.); nucleus (n).
Dinoflagellate anatomy

Dinoflagellates are unicellular and possess two dissimilar flagella arising from the ventral cell side (dinokont flagellation). They have a ribbon-like transverse flagellum with multiple waves that beats to the cell's left, and a more conventional one, the longitudinal flagellum, that beats posteriorly.[18][19][20] The transverse flagellum is a wavy ribbon in which only the outer edge undulates from base to tip, due to the action of the axoneme which runs along it. The axonemal edge has simple hairs that can be of varying lengths. The flagellar movement produces forward propulsion and also a turning force. The longitudinal flagellum is relatively conventional in appearance, with few or no hairs. It beats with only one or two periods to its wave. The flagella lie in surface grooves: the transverse one in the cingulum and the longitudinal one in the sulcus, although its distal portion projects freely behind the cell. In dinoflagellate species with desmokont flagellation (e.g., Prorocentrum), the two flagella are differentiated as in dinokonts, but they are not associated with grooves.

Dinoflagellates have a complex cell covering called an amphiesma or cortex, composed of a series of membranes, flattened vesicles called alveoli (= amphiesmal vesicles) and related structures.[21][22] In thecate ("armoured") dinoflagellates, these support overlapping cellulose plates to create a sort of armor called the theca or lorica, as opposed to athecate ("nude") dinoflagellates. These occur in various shapes and arrangements, depending on the species and sometimes on the stage of the dinoflagellate. Conventionally, the term tabulation has been used to refer to this arrangement of thecal plates. The plate configuration can be denoted with the plate formula or tabulation formula. Fibrous extrusomes are also found in many forms.[23][24]

A transverse groove, the so-called cingulum (or cigulum) runs around the cell, thus dividing it into an anterior (episoma) and posterior (hyposoma). If and only if a theca is present, the parts are called epitheca and hypotheca, respectively. Posteriorly, starting from the transverse groove, there is a longitudinal furrow called the sulcus. The transverse flagellum strikes in the cingulum, the longitudinal flagellum in the sulcus.[25][24]

Together with various other structural and genetic details, this organization indicates a close relationship between the dinoflagellates, the Apicomplexa, and ciliates, collectively referred to as the alveolates.[23]

Dinoflagellate tabulations can be grouped into six "tabulation types": gymnodinoid, suessoid, gonyaulacoidperidinioid, nannoceratopsioid, dinophysioid, and prorocentroid.

The chloroplasts in most photosynthetic dinoflagellates are bound by three membranes, suggesting they were probably derived from some ingested algae. Most photosynthetic species contain chlorophylls a and c2, the carotenoid beta-carotene, and a group of xanthophylls that appears to be unique to dinoflagellates, typically peridinin, dinoxanthin, and diadinoxanthin. These pigments give many dinoflagellates their typical golden brown color. However, the dinoflagellates Karenia brevis, Karenia mikimotoi, and Karlodinium micrum have acquired other pigments through endosymbiosis, including fucoxanthin.[26] This suggests their chloroplasts were incorporated by several endosymbiotic events involving already colored or secondarily colorless forms. The discovery of plastids in the Apicomplexa has led some to suggest they were inherited from an ancestor common to the two groups, but none of the more basal lines has them. All the same, the dinoflagellate cell consists of the more common organelles such as rough and smooth endoplasmic reticulum, Golgi apparatus, mitochondria, lipid and starch grains, and food vacuoles. Some have even been found with a light-sensitive organelle, the eyespot or stigma, or a larger nucleus containing a prominent nucleolus. The dinoflagellate Erythropsidinium has the smallest known eye.[27]

Some athecate species have an internal skeleton consisting of two star-like siliceous elements that has an unknown function, and can be found as microfossils. Tappan[28] gave a survey of dinoflagellates with internal skeletons. This included the first detailed description of the pentasters in Actiniscus pentasterias, based on scanning electron microscopy. They are placed within the order Gymnodiniales, suborder Actiniscineae.[5]

Theca structure and formation

The formation of thecal plates has been studied in detail through ultrastructural studies.[22]

The dinoflagellate nucleus: dinokaryon

'Core dinoflagellates' (dinokaryotes) have a peculiar form of nucleus, called a dinokaryon, in which the chromosomes are attached to the nuclear membrane. These carry reduced number of histones. In place of histones, dinoflagellate nuclei contain a novel, dominant family of nuclear proteins that appear to be of viral origin, thus are called Dinoflagellate viral nucleoproteins (DVNPs) which are highly basic, bind DNA with similar affinity to histones, and occur in multiple posttranslationally modified forms.[29] Dinoflagellate nuclei remain condensed throughout interphase rather than just during mitosis, which is closed and involves a uniquely extranuclear mitotic spindle.[30] This sort of nucleus was once considered to be an intermediate between the nucleoid region of prokaryotes and the true nuclei of eukaryotes, so were termed "mesokaryotic", but now are considered derived rather than primitive traits (i. e. ancestors of dinoflagellates had typical eukaryotic nuclei). In addition to dinokaryotes, DVNPs can be found in a group of basal dinoflagellates (known as Marine Alveolates, "MALVs") that branch as sister to dinokaryotes (Syndiniales).[31]

Classification

Generality

1. Ornithocercus; 2. diagram; 3. Exuviaella; 4. Prorocentrum; 5, 6. Ceratium; 7. Warnowia; 8. Citharistes; 9. Polykrikos

Dinoflagellates are protists and have been classified using both the International Code of Botanical Nomenclature (ICBN, now renamed as ICN) and the International Code of Zoological Nomenclature (ICZN). About half of living dinoflagellate species are autotrophs possessing chloroplasts and half are nonphotosynthesising heterotrophs.

The peridinin dinoflagellates, named after their peridinin plastids, appear to be ancestral for the dinoflagellate lineage. Almost half of all known species have chloroplasts, which are either the original peridinin plastids or new plastids acquired from other lineages of unicellular algae through endosymbiosis. The remaining species have lost their photosynthetic abilities and have adapted to a heterotrophic, parasitic or kleptoplastic lifestyle.[32][33]

Most (but not all) dinoflagellates have a dinokaryon, described below (see: Life cycle, below). Dinoflagellates with a dinokaryon are classified under Dinokaryota, while dinoflagellates without a dinokaryon are classified under Syndiniales.

Although classified as eukaryotes, the dinoflagellate nuclei are not characteristically eukaryotic, as some of them lack histones and nucleosomes, and maintain continually condensed chromosomes during mitosis. The dinoflagellate nucleus was termed 'mesokaryotic' by Dodge (1966),[34] due to its possession of intermediate characteristics between the coiled DNA areas of prokaryotic bacteria and the well-defined eukaryotic nucleus. This group, however, does contain typically eukaryotic organelles, such as Golgi bodies, mitochondria, and chloroplasts.[35]

Dinophytic microalga isolated from sediments of Amur Bay

Jakob Schiller (1931–1937) provided a description of all the species, both marine and freshwater, known at that time.[36] Later, Alain Sournia (1973, 1978, 1982, 1990, 1993) listed the new taxonomic entries published after Schiller (1931–1937).[37][38][39][40][41] Sournia (1986) gave descriptions and illustrations of the marine genera of dinoflagellates, excluding information at the species level.[42] The latest index is written by Gómez.[2]

Identification

English-language taxonomic monographs covering large numbers of species are published for the Gulf of Mexico,[43] the Indian Ocean,[44] the British Isles,[45] the Mediterranean[46] and the North Sea.[47]

The main source for identification of freshwater dinoflagellates is the Süsswasser Flora.[48]

Calcofluor-white can be used to stain thecal plates in armoured dinoflagellates.[49]

Ecology and physiology

Habitats

Dinoflagellates are found in all aquatic environments: marine, brackish, and fresh water, including in snow or ice. They are also common in benthic environments and sea ice.

Endosymbionts

All Zooxanthellae are dinoflagellates and most of them are members within Symbiodiniaceae (e.g. the genus Symbiodinium).[50] The association between Symbiodinium and reef-building corals is widely known. However, endosymbiontic Zooxanthellae inhabit a great number of other invertebrates and protists, for example many sea anemones, jellyfish, nudibranchs, the giant clam Tridacna, and several species of radiolarians and foraminiferans.[51] Many extant dinoflagellates are parasites (here defined as organisms that eat their prey from the inside, i.e. endoparasites, or that remain attached to their prey for longer periods of time, i.e. ectoparasites). They can parasitize animal or protist hosts. Protoodinium, Crepidoodinium, Piscinoodinium, and Blastodinium retain their plastids while feeding on their zooplanktonic or fish hosts. In most parasitic dinoflagellates, the infective stage resembles a typical motile dinoflagellate cell.

Nutritional strategies

Three nutritional strategies are seen in dinoflagellates: phototrophy, mixotrophy, and heterotrophy. Phototrophs can be photoautotrophs or auxotrophs. Mixotrophic dinoflagellates are photosynthetically active, but are also heterotrophic. Facultative mixotrophs, in which autotrophy or heterotrophy is sufficient for nutrition, are classified as amphitrophic. If both forms are required, the organisms are mixotrophic sensu stricto. Some free-living dinoflagellates do not have chloroplasts, but host a phototrophic endosymbiont. A few dinoflagellates may use alien chloroplasts (cleptochloroplasts), obtained from food (kleptoplasty). Some dinoflagellates may feed on other organisms as predators or parasites.[52]

Food inclusions contain bacteria, bluegreen algae, small dinoflagellates, diatoms, ciliates, and other dinoflagellates.[53][54][55][56][57][58][59]

Mechanisms of capture and ingestion in dinoflagellates are quite diverse. Several dinoflagellates, both thecate (e.g. Ceratium hirundinella,[58] Peridinium globulus[56]) and nonthecate (e.g. Oxyrrhis marina,[54] Gymnodinium sp.[60] and Kofoidinium spp.[61]), draw prey to the sulcal region of the cell (either via water currents set up by the flagella or via pseudopodial extensions) and ingest the prey through the sulcus. In several Protoperidinium spp., e.g. P. conicum, a large feeding veil—a pseudopod called the pallium—is extruded to capture prey which is subsequently digested extracellularly (= pallium-feeding).[62][63] Oblea, Zygabikodinium, and Diplopsalis are the only other dinoflagellate genera known to use this particular feeding mechanism.[63][64][65] Katodinium (Gymnodinium) fungiforme, commonly found as a contaminant in algal or ciliate cultures, feeds by attaching to its prey and ingesting prey cytoplasm through an extensible peduncle.[66] Two related species, polykrikos kofoidii and neatodinium, shoots out a harpoon-like organelle to capture prey.[67]

Some mixotrophic dinoflagellates are able to produce neurotoxins that have anti-grazing effects on larger copepods and enhance the ability of the dinoflagellate to prey upon larger copepods. Toxic strains of K. veneficum produce karlotoxin that kills predators who ingest them, thus reducing predatory populations and allowing blooms of both toxic and non-toxic strains of K. veneficum. Further, the production of karlotoxin enhances the predatory ability of K. veneficum by immobilizing its larger prey.[68] K. arminger are more inclined to prey upon copepods by releasing a potent neurotoxin that immobilizes its prey upon contact. When K. arminger are present in large enough, they are able to cull whole populations of its copepods prey.[69]

The feeding mechanisms of the oceanic dinoflagellates remain unknown, although pseudopodial extensions were observed in Podolampas bipes.[70]

Blooms

Introduction

Dinoflagellate blooms are generally unpredictable, short, with low species diversity, and with little species succession.[71] The low species diversity can be due to multiple factors. One way a lack of diversity may occur in a bloom is through a reduction in predation and a decreased competition. The first may be achieved by having predators reject the dinoflagellate, by, for example, decreasing the amount of food it can eat. This additionally helps prevent a future increase in predation pressure by cause predators that reject it to lack the energy to breed. A species can then inhibit the growth of its competitors, thus achieving dominance.[72]

Harmful algal blooms

Dinoflagellates sometimes bloom in concentrations of more than a million cells per millilitre. Under such circumstances, they can produce toxins (generally called dinotoxins) in quantities capable of killing fish and accumulating in filter feeders such as shellfish, which in turn may be passed on to people who eat them. This phenomenon is called a red tide, from the color the bloom imparts to the water. Some colorless dinoflagellates may also form toxic blooms, such as Pfiesteria. Some dinoflagellate blooms are not dangerous. Bluish flickers visible in ocean water at night often come from blooms of bioluminescent dinoflagellates, which emit short flashes of light when disturbed.

Algal bloom (akasio) by Noctiluca spp. in Nagasaki

A red tide occurs because dinoflagellates are able to reproduce rapidly and copiously as a result of the abundant nutrients in the water. Although the resulting red waves are an interesting visual phenomenon, they contain toxins that not only affect all marine life in the ocean, but the people who consume them, as well.[73] A specific carrier is shellfish. This can introduce both nonfatal and fatal illnesses. One such poison is saxitoxin, a powerful paralytic neurotoxin.[74][75][76]

Human inputs of phosphate further encourage these red tides, so strong interest exists in learning more about dinoflagellates, from both medical and economic perspectives. Dinoflagellates are known to be particularly capable of scavenging dissolved organic phosphorus for P-nutrient, several HAS species have been found to be highly versatile and mechanistically diversified in utilizing different types of DOPs.[74][75][76] The ecology of harmful algal blooms is extensively studied.[77]

Bioluminescence

Long exposure image of bioluminescence of N. scintillans in the yacht port of Zeebrugge, Belgium
Kayaking in the Bioluminescent Bay, Vieques, Puerto Rico

At night, water can have an appearance of sparkling light due to the bioluminescence of dinoflagellates.[78][79] More than 18 genera of dinoflagellates are bioluminescent,[80] and the majority of them emit a blue-green light.[81] These species contain scintillons, individual cytoplasmic bodies (about 0.5 µm in diameter) distributed mainly in the cortical region of the cell, outpockets of the main cell vacuole. They contain dinoflagellate luciferase, the main enzyme involved in dinoflagellate bioluminescence, and luciferin, a chlorophyll-derived tetrapyrrole ring that acts as the substrate to the light-producing reaction. The luminescence occurs as a brief (0.1 sec) blue flash (max 476 nm) when stimulated, usually by mechanical disturbance. Therefore, when mechanically stimulated—by boat, swimming, or waves, for example—a blue sparkling light can be seen emanating from the sea surface.[82]

Dinoflagellate bioluminescence is controlled by a circadian clock and only occurs at night.[83] Luminescent and nonluminescent strains can occur in the same species. The number of scintillons is higher during night than during day, and breaks down during the end of the night, at the time of maximal bioluminescence.[84]

The luciferin-luciferase reaction responsible for the bioluminescence is pH sensitive.[82] When the pH drops, luciferase changes its shape, allowing luciferin, more specifically tetrapyrrole, to bind.[82] Dinoflagellates can use bioluminescence as a defense mechanism. They can startle their predators by their flashing light or they can ward off potential predators by an indirect effect such as the "burglar alarm". The bioluminescence attracts attention to the dinoflagellate and its attacker, making the predator more vulnerable to predation from higher trophic levels.[82]

Bioluminescent dinoflagellate ecosystem bays are among the rarest and most fragile,[85] with the most famous ones being the Bioluminescent Bay in La Parguera, Lajas, Puerto Rico; Mosquito Bay in Vieques, Puerto Rico; and Las Cabezas de San Juan Reserva Natural Fajardo, Puerto Rico. Also, a bioluminescent lagoon is near Montego Bay, Jamaica, and bioluminescent harbors surround Castine, Maine.[86] Within the United States, Central Florida is home to the Indian River Lagoon which is abundant with dinoflagellates in the summer and bioluminescent ctenophore in the winter.[87]

Lipid and sterol production

Dinoflagellates produce characteristic lipids and sterols.[88] One of these sterols is typical of dinoflagellates and is called dinosterol.

Transport

Dinoflagellate theca can sink rapidly to the seafloor in marine snow.[89]

Life cycle

Introduction

Dinoflagellates have a haplontic life cycle, with the possible exception of Noctiluca and its relatives.[5] The life cycle usually involves asexual reproduction by means of mitosis, either through desmoschisis or eleuteroschisis. More complex life cycles occur, more particularly with parasitic dinoflagellates. Sexual reproduction also occurs,[90] though this mode of reproduction is only known in a small percentage of dinoflagellates.[91] This takes place by fusion of two individuals to form a zygote, which may remain mobile in typical dinoflagellate fashion and is then called a planozygote. This zygote may later form a resting stage or hypnozygote, which is called a dinoflagellate cyst or dinocyst. After (or before) germination of the cyst, the hatchling undergoes meiosis to produce new haploid cells. Dinoflagellates appear to be capable of carrying out several DNA repair processes that can deal with different types of DNA damage.[92]

Dinoflagellata life cycle: 1-mitosis, 2-sexual reproduction, 3-planozygote, 4-hypnozygote, 5-planomeiocyte
The life cycle of dinoflagellates, including possible described transitions [93]

Dinoflagellate cysts

The life cycle of many dinoflagellates includes at least one nonflagellated benthic stage as a cyst. Different types of dinoflagellate cysts are mainly defined based on morphological (number and type of layers in the cell wall) and functional (long- or short-term endurance) differences. These characteristics were initially thought to clearly distinguish pellicle (thin-walled) cysts from resting (double-walled) dinoflagellate cysts. The former were considered short-term (temporal) and the latter long-term (resting) cysts. However, during the last two decades further knowledge has highlighted the great intricacy of dinoflagellate life histories.[93]

Resting cysts of Scripsiella sp. (a), Alexandrium pseudogoniaulax (b), Protoceratium reticulatum (c), A. taylori (d), A. tamarense (e), Protoperidinium oblongum (f), Kryptoperidinium triquetrum (g), and Gymnodinium catenatum (h). Scale bar: 10 µm.[93]

More than 10% of the approximately 2000 known marine dinoflagellate species produce cysts as part of their life cycle (see diagram on the right). These benthic phases play an important role in the ecology of the species, as part of a planktonic-benthic link in which the cysts remain in the sediment layer during conditions unfavorable for vegetative growth and, from there, reinoculate the water column when favorable conditions are restored.[93]

Indeed, during dinoflagellate evolution the need to adapt to fluctuating environments and/or to seasonality is thought to have driven the development of this life cycle stage. Most protists form dormant cysts in order to withstand starvation and UV damage.[94] However, there are enormous differences in the main phenotypic, physiological and resistance properties of each dinoflagellate species cysts. Unlike in higher plants most of this variability, for example in dormancy periods, has not been proven yet to be attributed to latitude adaptation or to depend on other life cycle traits.[95][96] Thus, despite recent advances in the understanding of the life histories of many dinoflagellate species, including the role of cyst stages, many gaps remain in knowledge about their origin and functionality.[93]

Recognition of the capacity of dinoflagellates to encyst dates back to the early 20th century, in biostratigraphic studies of fossil dinoflagellate cysts. Paul Reinsch was the first to identify cysts as the fossilized remains of dinoflagellates.[97] Later, cyst formation from gamete fusion was reported, which led to the conclusion that encystment is associated with sexual reproduction.[90] These observations also gave credence to the idea that microalgal encystment is essentially a process whereby zygotes prepare themselves for a dormant period.[98] Because the resting cysts studied until that time came from sexual processes, dormancy was associated with sexuality, a presumption that was maintained for many years. This attribution was coincident with evolutionary theories about the origin of eukaryotic cell fusion and sexuality, which postulated advantages for species with diploid resting stages, in their ability to withstand nutrient stress and mutational UV radiation through recombinational repair, and for those with haploid vegetative stages, as asexual division doubles the number of cells.[94] Nonetheless, certain environmental conditions may limit the advantages of recombination and sexuality,[99] such that in fungi, for example, complex combinations of haploid and diploid cycles have evolved that include asexual and sexual resting stages.[100][93]

However, in the general life cycle of cyst-producing dinoflagellates as outlined in the 1960s and 1970s, resting cysts were assumed to be the fate of sexuality,[90][101] which itself was regarded as a response to stress or unfavorable conditions. Sexuality involves the fusion of haploid gametes from motile planktonic vegetative stages to produce diploid planozygotes that eventually form cysts, or hypnozygotes, whose germination is subject to both endogenous and exogenous controls. Endogenously, a species-specific physiological maturation minimum period (dormancy) is mandatory before germination can occur. Thus, hypnozygotes were also referred to as "resting" or "resistant" cysts, in reference to this physiological trait and their capacity following dormancy to remain viable in the sediments for long periods of time. Exogenously, germination is only possible within a window of favorable environmental conditions.[93]

Yet, with the discovery that planozygotes were also able to divide it became apparent that the complexity of dinoflagellate life cycles was greater than originally thought.[102][103] Following corroboration of this behavior in several species, the capacity of dinoflagellate sexual phases to restore the vegetative phase, bypassing cyst formation, became well accepted.[104][105] Further, in 2006 Kremp and Parrow showed the dormant resting cysts of the Baltic cold water dinoflagellates Scrippsiella hangoei and Gymnodinium sp. were formed by the direct encystment of haploid vegetative cells, i.e., asexually.[106] In addition, for the zygotic cysts of Pfiesteria piscicida dormancy was not essential.[107][93]

Genomics

One of the most striking features of dinoflagellates is the large amount of cellular DNA that they contain. Most eukaryotic algae contain on average about 0.54 pg DNA/cell, whereas estimates of dinoflagellate DNA content range from 3–250 pg/cell,[30] corresponding to roughly 3000–215 000 Mb (in comparison, the haploid human genome is 3180 Mb and hexaploid Triticum wheat is 16 000 Mb). Polyploidy or polyteny may account for this large cellular DNA content,[108] but earlier studies of DNA reassociation kinetics and recent genome analyses do not support this hypothesis.[109] Rather, this has been attributed, hypothetically, to the rampant retroposition found in dinoflagellate genomes.[110][111]

In addition to their disproportionately large genomes, dinoflagellate nuclei are unique in their morphology, regulation, and composition. Their DNA is so tightly packed that exactly how many chromosomes they have is still uncertain.[112]

The dinoflagellates share an unusual mitochondrial genome organisation with their relatives, the Apicomplexa.[113] Both groups have very reduced mitochondrial genomes (around 6 kilobases (kb) in the Apicomplexa vs ~16kb for human mitochondria). One species, Amoebophrya ceratii, has lost its mitochondrial genome completely, yet still has functional mitochondria.[114] The genes on the dinoflagellate genomes have undergone a number of reorganisations, including massive genome amplification and recombination which have resulted in multiple copies of each gene and gene fragments linked in numerous combinations. Loss of the standard stop codons, trans-splicing of mRNAs for the mRNA of cox3, and extensive RNA editing recoding of most genes has occurred.[115][116] The reasons for this transformation are unknown. In a small group of dinoflagellates, called 'dinotoms' (Durinskia and Kryptoperidinium), the endosymbionts (diatoms) still have mitochondria, making them the only organisms with two evolutionarily distinct mitochondria.[117]

In most of the species, the plastid genome consist of just 14 genes.[118]

The DNA of the plastid in the peridinin-containing dinoflagellates is contained in a series of small circles called minicircles.[119] Each circle contains one or two polypeptide genes. The genes for these polypeptides are chloroplast-specific because their homologs from other photosynthetic eukaryotes are exclusively encoded in the chloroplast genome. Within each circle is a distinguishable 'core' region. Genes are always in the same orientation with respect to this core region.

In terms of DNA barcoding, ITS sequences can be used to identify species,[120] where a genetic distance of p≥0.04 can be used to delimit species,[121] which has been successfully applied to resolve long-standing taxonomic confusion as in the case of resolving the Alexandrium tamarense complex into five species.[122] A recent study[123] revealed a substantial proportion of dinoflagellate genes encode for unknown functions, and that these genes could be conserved and lineage-specific.

Evolutionary history

Dinoflagellates are mainly represented as fossils by dinocysts, which have a long geological record with lowest occurrences during the mid-Triassic,[124] whilst geochemical markers suggest a presence to the Early Cambrian.[125] Some evidence indicates dinosteroids in many Paleozoic and Precambrian rocks might be the product of ancestral dinoflagellates (protodinoflagellates).[126][127] Dinoflagellates show a classic radiation of morphologies during the Late Triassic through the Middle Jurassic.[128][129][130] More modern-looking forms proliferate during the later Jurassic and Cretaceous.[128] This trend continues into the Cenozoic, albeit with some loss of diversity.[128][124]

Molecular phylogenetics show that dinoflagellates are grouped with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians, and Oxyrrhis.[131] Molecular phylogenies are similar to phylogenies based on morphology.[132][133]

The earliest stages of dinoflagellate evolution appear to be dominated by parasitic lineages, such as perkinsids and syndinians (e.g. Amoebophrya and Hematodinium).[134][135][136][137]

All dinoflagellates contain red algal plastids or remnant (nonphotosynthetic) organelles of red algal origin.[138] The parasitic dinoflagellate Hematodinium however lacks a plastid entirely.[139] Some groups that have lost the photosynthetic properties of their original red algae plastids has obtained new photosynthetic plastids (chloroplasts) through so-called serial endosymbiosis, both secondary and tertiary. Like their original plastids, the new chloroplasts in these groups can be traced back to red algae, except from those in the members of the genus Lepidodinium, which possess plastids derived from green algae, possibly Trebouxiophyceae or Ulvophyceae.[140][141] Lineages with tertiary endosymbiosis are Dinophysis, with plastids from a cryptomonad,[142] the Karenia, Karlodinium, and Takayama, which possess plastids of haptophyte origin, and the Kryptoperidiniaceae, Durinskia and Kryptoperidinium, which have plastids derived from diatoms[143][144] Some species also perform kleptoplasty.[145]

Dinoflagellate evolution has been summarized into five principal organizational types: prorocentroid, dinophysoid, gonyaulacoid, peridinioid, and gymnodinoid.[146] The transitions of marine species into fresh water have been frequent events during the diversification of dinoflagellates and have occurred recently.[147]

Many dinoflagellates also have a symbiotic relationship with cyanobacteria, called cyanobionts, which have a reduced genome and has not been found outside their hosts. The Dinophysoid dinoflagellates have two genera, Amphisolenia and Triposolenia, that contain intracellular cyanobionts, and four genera; Citharistes, Histioneis, Parahistioneis, and Ornithocercus, that contain extracellular cyanobionts.[148] Most of the cyanobionts are used for nitrogen fixation, not for photosynthesis, but some don't have the ability to fix nitrogen. The dinoflagellate Ornithocercus magnificus is host for symbionts which resides in an extracellular chamber. While it is not fully known how the dinoflagellate benefit from it, it has been suggested it is farming the cyanobacteria in specialized chambers and regularly digest some of them.[149]

Recently, the living fossil Dapsilidinium pastielsii was found inhabiting the Indo-Pacific Warm Pool, which served as a refugium for thermophilic dinoflagellates,[150] and others such as Calciodinellum operosum and Posoniella tricarinelloides were also described from fossils before later being found alive.[151][152]

Examples

See also

References

  1. ^ Parfrey LW, Lahr DJ, Knoll AH, Katz LA (August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13624–9. Bibcode:2011PNAS..10813624P. doi:10.1073/pnas.1110633108. PMC 3158185. PMID 21810989.
  2. ^ a b c Gómez F (2012). "A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata)". CICIMAR Oceánides. 27 (1): 65–140. doi:10.37543/oceanides.v27i1.111.
  3. ^ Ruggiero; et al. (2015), "Higher Level Classification of All Living Organisms", PLOS ONE, 10 (4): e0119248, Bibcode:2015PLoSO..1019248R, doi:10.1371/journal.pone.0119248, PMC 4418965, PMID 25923521
  4. ^ Silar, Philippe (2016), "Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes", HAL Archives-ouvertes: 1–462, ISBN 9782955584101, OCLC 1019558675, archived from the original on 2016-05-13, retrieved 2016-09-04
  5. ^ a b c Fensome RA, Taylor RJ, Norris G, Sarjeant WA, Wharton DI, Williams GL (1993). A classification of living and fossil dinoflagellates. Micropaleontology Special Publication. Vol. 7. Hanover PA: Sheridan Press. OCLC 263894965.
  6. ^ Stoecker DK (1999). "Mixotrophy among Dinoflagellates". The Journal of Eukaryotic Microbiology. 46 (4): 397–401. doi:10.1111/j.1550-7408.1999.tb04619.x. S2CID 83885629.
  7. ^ Esser K, Lüttge U, Beyschlag W, Murata J (2012-12-06). Progress in Botany: Genetics Physiology Systematics Ecology. ISBN 978-3-6421-8819-0. Archived from the original on 2022-01-28. Retrieved 2020-10-22.
  8. ^ Guiry MD (October 2012). "How many species of algae are there?". Journal of Phycology. 48 (5): 1057–63. doi:10.1111/j.1529-8817.2012.01222.x. PMID 27011267. S2CID 30911529.
  9. ^ Mertens KN, Rengefors K, Moestrup Ø, Ellegaard M (2012). "A review of recent freshwater dinoflagellate cysts: Taxonomy, phylogeny, ecology and palaeocology". Phycologia. 51 (6): 612–619. doi:10.2216/11-89.1. S2CID 86845462.
  10. ^ Bravo I, Figueroa RI (January 2014). "Towards an Ecological Understanding of Dinoflagellate Cyst Functions". Microorganisms. 2 (1): 11–32. doi:10.3390/microorganisms2010011. PMC 5029505. PMID 27694774.
  11. ^ Gómez, F. (2005). "A list of free-living dinoflagellate species in the world's oceans". Acta Botanica Croatica. 64 (1): 129–212.
  12. ^ Taylor FR, Hoppenrath M, Saldarriaga JF (February 2008). "Dinoflagellate diversity and distribution". Biodivers. Conserv. 17 (2): 407–418. doi:10.1007/s10531-007-9258-3. S2CID 9810504.
  13. ^ Carty, Susan; Parrow, Matthew W. (2015). "Dinoflagellates". Freshwater Algae of North America. Academic Press. pp. 773–807. doi:10.1016/B978-0-12-385876-4.00017-7. ISBN 978-0-12-385876-4.
  14. ^ Baker, M. (1753). Employment for the microscope. London: Dodsley. doi:10.5962/bhl.title.45920. OCLC 722119426.
  15. ^ Müller, O.F. 1773. Vermium terrestrium et fluviatilium, seu Animalium Infusoriorum, Helmithicorum et Testaceorum, non marinorum, succincta historia, vol. 1. Pars prima. p. 34, 135. Faber, Havniae, et Lipsiae 1773.
  16. ^ Ehrenberg C.G. (1832) Beiträge zur Kenntnis der Organisation der Infusorien und ihrer geographischer Verbreitung, besonders in Sibirien. — Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin. Aus dem Jahre 1830. Physikalische Abhandlungen 1830: 1–88, Pls 1–8.
  17. ^ Bütschli O. (1885) 3. Unterabtheilung (Ordnung) Dinoflagellata. – In: Dr. H.G. Bronn's Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. Erster Band Protozoa. – C.F. Winter'sche Verlagshandlung, Leipzig und Heidelberg. Pp. 906–1029; Pl.
  18. ^ Taylor FJR (March 1975). "Non-helical transverse flagella in dinoflagellates". Phycologia. 14: 45–7. doi:10.2216/i0031-8884-14-1-45.1.
  19. ^ Leblond PH, Taylor FJ (April 1976). "The propulsive mechanism of the dinoflagellate transverse flagellum reconsidered". Bio Systems. 8 (1): 33–9. doi:10.1016/0303-2647(76)90005-8. PMID 986199.
  20. ^ Gaines G, Taylor FJ (May 1985). "Form and function of the dinoflagellate transverse flagellum". J. Protozool. 32 (2): 290–6. doi:10.1111/j.1550-7408.1985.tb03053.x.
  21. ^ Morrill LC, Loeblich AR (1983). Ultrastructure of the dinoflagellate amphiesma. International Review of Cytology. Vol. 82. pp. 151–80. doi:10.1016/s0074-7696(08)60825-6. ISBN 978-0-1236-4482-4. PMID 6684652.
  22. ^ a b Netzel H, Dürr G (2012-12-02). Ch. 3: Dinoflagellate cell cortex. pp. 43–106. ISBN 978-0-3231-3813-0. Archived from the original on 2014-07-07. Retrieved 2016-03-05. In Spector 1984
  23. ^ a b Cavalier-Smith T (1991). "Cell diversification in heterotrophic flagellates". In Patterson D, Larsen J (eds.). The biology of free-living heterotrophic flagellates. Systematics Association Publications. Vol. 45. Clarendon Press. pp. 113–131. ISBN 978-0-1985-7747-8.
  24. ^ a b Freudenthal, Hugo D. (1962). "Symbiodinium gen. Nov. And Symbiodinium microadriaticum sp. nov., a Zooxanthella: Taxonomy, Life Cycle, and Morphology". The Journal of Protozoology. 9 (1): 45–52. doi:10.1111/j.1550-7408.1962.tb02579.x.
  25. ^ Trench, Robert K.; Blank, Rudolf J. (1987). "Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov. And S. pilosum sp. nov.: Gymnodinioid Dinoflagellate Symbionts of Marine Invertebrates". Journal of Phycology. 23 (3): 469–81. doi:10.1111/j.1529-8817.1987.tb02534.x. S2CID 83712799.
  26. ^ Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307.
  27. ^ Schwab IR (September 2004). "You are what you eat". The British Journal of Ophthalmology. 88 (9): 1113. doi:10.1136/bjo.2004.049510. PMC 1772300. PMID 15352316.
  28. ^ Tappan H (1980). The Paleobiology of Plant Protists. Geology. W.H. Freeman. ISBN 978-0-7167-1109-4.
  29. ^ Gornik SG, Ford KL, Mulhern TD, Bacic A, McFadden GI, Waller RF (December 2012). "Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates". Current Biology. 22 (24): 2303–12. doi:10.1016/j.cub.2012.10.036. PMID 23159597.
  30. ^ a b Spector D (2012-12-02). Dinoflagellate nuclei. pp. 107–147. ISBN 978-0-3231-3813-0. Archived from the original on 2014-07-07. Retrieved 2016-03-05. In Spector 1984
  31. ^ Strassert JF, Karnkowska A, Hehenberger E, Del Campo J, Kolisko M, Okamoto N, Burki F, Janouškovec J, Poirier C, Leonard G, Hallam SJ, Richards TA, Worden AZ, Santoro AE, Keeling PJ (January 2018). "Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates". The ISME Journal (Submitted manuscript). 12 (1): 304–308. doi:10.1038/ismej.2017.167. PMC 5739020. PMID 28994824. Archived from the original on 2018-12-14. Retrieved 2018-10-23.
  32. ^ Gabrielsen, T. M.; Minge, M. A.; Espelund, M.; Tooming-Klunderud, A.; Patil, V.; Nederbragt, A. J.; Otis, C.; Turmel, M.; Shalchian-Tabrizi, K.; Lemieux, C.; Jakobsen, K. S. (2011). "Genome Evolution of a Tertiary Dinoflagellate Plastid – PLOS". PLOS ONE. 6 (4): e19132. doi:10.1371/journal.pone.0019132. PMC 3082547. PMID 21541332.
  33. ^ Bodył, Andrzej; Moszczyński, Krzysztof (2006). "Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis". European Journal of Phycology. 41 (4): 435–448. doi:10.1080/09670260600961080.
  34. ^ Dodge (1966). Cited but unreferenced in Steidinger KA, Jangen K (1997). "Dinoflagellates". In Tomas C (ed.). Identifying Marine Phytoplankton. Academic Press. pp. 387–584. ISBN 978-0-0805-3442-8. Archived from the original on 2014-07-07. Retrieved 2016-03-05.
  35. ^ Steidinger KA, Jangen K (1997). "Dinoflagellates". In Tomas CR (ed.). Identifying Marine Phytoplankton. Academic Press. pp. 387–584. ISBN 978-0-0805-3442-8. Archived from the original on 2014-07-07. Retrieved 2016-03-05.
  36. ^ Schiller, J., 1931–1937: Dinoflagellatae (Peridinineae) in monographischer Behandlung. In: RABENHORST, L. (ed.), Kryptogamen-Flora von Deutschland, Österreichs und der Schweiz. Akad. Verlag., Leipzig. Vol. 10 (3): Teil 1 (1–3) (1931–1933): Teil 2 (1–4)(1935–1937).
  37. ^ Sournia A (1973). "Catalogue des espèces et taxons infraspécifiques de dinoflagellés marins actuels publiés depuis la révision de J. Schiller. I. Dinoflagellés libres". Beih. Nova Hedwigia. 48: 1–92.
  38. ^ Sournia A (1978). "Catalogue des espèces et taxons infraspécifiques de dinoflagellésmarins actuels publiés depuis la révision de J. Schiller. III (Complément)". Rev. Algol. 13: 3–40 +erratum 13, 186. ISSN 0035-0702.
  39. ^ Sournia A (1982). "Catalogue des espèces et taxons infraspécifiques de dinoflagellésmarins actuels publiés depuis la révision de J. Schiller. IV. (Complément)". Arch. Protistenkd. 126 (2): 151–168. doi:10.1016/S0003-9365(82)80046-8.
  40. ^ Sournia A (1990). "Catalogue des espèces et taxons infraspécifiques de dinoflagellésmarins actuels publiés depuis la révision de J. Schiller. V. (Complément)". Acta Protozool. 29: 321–346. ISSN 0065-1583.
  41. ^ Sournia A (1993). "Catalogue des espèces et taxons infraspécifiques de dinoflagellésmarins actuels publiés depuis la révision de J. Schiller. VI. (Complément)". Cryptog. Algol. 14: 133–144. ISSN 0181-1568.
  42. ^ SOURNIA, A., 1986: Atlas du Phytoplancton Marin. Vol. I: Introduction, Cyanophycées,Dictyochophycées, Dinophycées et Raphidophycées. Editions du CNRS, Paris.
  43. ^ Steidinger KA, Williams J (1970). Dinoflagellates. Memoirs of the Hourglass Cruises. Vol. 2. Florida: Marine Research Laboratory. OCLC 6206528.
  44. ^ Taylor F (1976). Dinoflagellates from the International Indian Ocean Expedition: A Report on Material Collected by the R.V. "Anton Bruun" 1963–1964. Biblioteca Botanica. Vol. 132. E. Schweizerbart. ISBN 978-3-5104-8003-6. OCLC 3026853.
  45. ^ Dodge, J.D.; Hart-Jones, B. (1982). Marine Dinoflagellates of the British Isles. London: Her Majesty's Stationery Office. ISBN 9780112411963. OCLC 681855348.
  46. ^ Gómez F (April 2003). "Checklist of Mediterranean free-living dinoflagellates". Botanica Marina. 46 (3): 215–242. doi:10.1515/BOT.2003.021. S2CID 84744638.
  47. ^ Hoppenrath M, Elbrächter M, Drebes G (2009). Marine phytoplankton: selected microphytoplankton species from the North Sea around Helgoland and Sylt. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung (Nägele und Obermiller). ISBN 978-3-5106-1392-2.
  48. ^ Popovský J, Pfiester LA (1990). Dinophyceae (Dinoflagellida). Süßwasserflora von Mitteleuropa. Vol. 6. Fischer. ISBN 978-3-3340-0247-6.
  49. ^ Fritz L, Triemer R (December 1985). "A rapid simple technique utilizing calcofluor white M2R for the visualization of dinoflagellate thecal plates". J. Phycol. 21 (4): 662–4. doi:10.1111/j.0022-3646.1985.00662.x. S2CID 85004940.
  50. ^ Freudenthal et al. 2007
  51. ^ Trench R (1997). "Diversity of symbiotic dinoflagellates and the evolution of microalgal-invertebrate symbioses". In Lessios H, MacIntyre I (eds.). Proceedings of the eighth International Coral Reef Symposium, Panama, June 24–29, 1996. Vol. 2. Balboa, Panama: Smithsonian Tropical Research Institute. pp. 1275–86. OCLC 833272061.
  52. ^ Schnepf E, Elbrächter M (February 1992). "Nutritional strategies in dinoflagellates: A review with emphasis on cell biological aspects". European Journal of Protistology. 28 (1): 3–24. doi:10.1016/S0932-4739(11)80315-9. PMID 23194978.
  53. ^ Kofoid CA, Swezy O (1921). "The free-living unarmoured dinoflagellata". Mere. Univ. Calif. 5: 1–538. doi:10.5962/bhl.title.24995. Archived (PDF) from the original on 2022-05-15. Retrieved 2019-09-24.
  54. ^ a b Barker HA (1935). "The culture and physiology of the marine dinoflagellates". Arch. Mikrobiol. 6 (1–5): 157–181. doi:10.1007/BF00407285. S2CID 44657010.
  55. ^ Biecheler B (1952). "Recherches sur les Peridiniens". Bull. Biol. Fr. Belg. 36 (Suppl): 1–149. ISSN 0994-575X.
  56. ^ a b Bursa AS (1961). "The annual oceanographic cycle at Igloolik in the Canadian Arctic. II. The phytoplankton". J. Fish. Res. Board Can. 18 (4): 563–615. doi:10.1139/f61-046.
  57. ^ Norris DR (1969). "Possible phagotrophic feeding in Ceratium lunula Schimper". Limnol. Oceanogr. 14 (3): 448–9. Bibcode:1969LimOc..14..448N. doi:10.4319/lo.1969.14.3.0448.
  58. ^ a b Dodge JD, Crawford RM (June 1970). "The morphology and fine structure of Ceratium hirundinella (Dinophyceae)". J. Phycol. 6 (2): 137–149. doi:10.1111/j.1529-8817.1970.tb02372.x. S2CID 84034844.
  59. ^ Elbrachter M (1979). "On the taxonomy of unarmored dinophytes (Dinophyta) from the Northwest African upwelling region". Meteor Forschungsergebnisse. 30: 1–22.
  60. ^ Frey LC, Stoermer EF (1980). "Dinoflagellate phagotrophy in the upper Great Lakes". Trans. Am. Microsc. Soc. 99 (4): 439–444. doi:10.2307/3225654. JSTOR 3225654.
  61. ^ Cachon PJ, Cachon M. "Le systeme stomatopharyngien de Kofoidinium Pavillard. Comparisons avec celui divers Peridiniens fibres et parasites". Protistologica. 10: 217–222.
  62. ^ Gaines G, Taylor FJ (1984). "Extracellular digestion in marine dinoflagellates". J. Plankton Res. 6 (6): 1057–61. doi:10.1093/plankt/6.6.1057.
  63. ^ a b Jacobson DM, Anderson DM (September 1986). "Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms". J. Phycol. 22 (3): 249–258. doi:10.1111/j.1529-8817.1986.tb00021.x. S2CID 84321400.
  64. ^ Strom SL, Buskey EJ (1993). "Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda". Limnol. Oceanogr. 38 (5): 965–977. Bibcode:1993LimOc..38..965S. doi:10.4319/lo.1993.38.5.0965.
  65. ^ Naustvoll LJ (January 1998). "Growth and grazing by the thecate heterotrophic dinoflagellates Diplopsalis lenticula (Diplopsalidaceae, Dinophyceae)". Phycologia. 37 (1): 1–9. doi:10.2216/i0031-8884-37-1-1.1.
  66. ^ Spero HJ (September 1982). "Phagotrophy in Gymnodinium fungiforme (Pyrrophyta): the peduncle as an organelle of ingestion". J. Phycol. 18 (3): 356–360. doi:10.1111/j.1529-8817.1982.tb03196.x. S2CID 85988790.
  67. ^ "Researchers capture dinoflagellate on video shooting harpoons at prey". Archived from the original on 2019-12-28. Retrieved 2019-05-19.
  68. ^ Adolf, Jason E; Krupatkina, Danara; Bachvaroff, Tsvetan; Place, Allen R. (2007). "Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum". Harmful Algae. 6 (3): 400–412. doi:10.1016/j.hal.2006.12.003.
  69. ^ Berge, Terje; Poulsen, Louise K.; Moldrup, Morten; Daugbjerg, Niels; Juel Hansen, Per (2012). "Marine microalgae attack and feed on metazoans". ISME J. 6 (10): 1926–36. doi:10.1038/ismej.2012.29. PMC 3446796. PMID 22513533.
  70. ^ Schütt F (1895). "2. Teil, Studien über die Zellen der Peridineen". Die Peridineen der Plankton-Expedition. Ergebnisse der Plankton-Expedition der Humboldt-Stiftung. Allgemeiner Theil. pp. 1–170. OCLC 69377189.
  71. ^ Smayda, Theodore J. (2002). "Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates". Journal of Oceanography. 58 (2): 281–294. doi:10.1023/A:1015861725470. ISSN 0916-8370. S2CID 55024118.
  72. ^ Huntley M, Sykes P, Rohan S, Marin V (1986). "Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance". Marine Ecology Progress Series. 28: 105–120. Bibcode:1986MEPS...28..105H. doi:10.3354/meps028105.
  73. ^ Faust M, Gulledge, R.A. (2002). Identifying Harmful Marine Dinoflagellates. Contributions from the United States National Herbarium. Vol. 42. Washington, D.C.: Department of Systematic Biology, Botany, National Museum of Natural History. ISSN 0097-1618. Archived from the original on 2007-04-30. Retrieved 2007-05-18.
  74. ^ a b Lin, S.; Litaker, R.W.; Sunda, W. (2016). "Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton". Journal of Phycology. 52 (1): 10–36. doi:10.1111/jpy.12365. PMID 26987085. S2CID 206147416.
  75. ^ a b Zhang, C.; Luo, H.; Huang, L.; Lin, S. (2017). "Molecular mechanism of glucose-6-phosphate utilization in the dinoflagellate Karenia mikimotoi". Harmful Algae. 67: 74–84. doi:10.1016/j.hal.2017.06.006. PMID 28755722.
  76. ^ a b Luo, H.; Lin, X.; Li, L.; Zhang, C.; Lin, L.; Lin, S. (2017). "Transcriptomic and physiological analyses of the dinoflagellate Karenia mikimotoi reveal non-alkaline phosphatase-based molecular machinery of ATP utilization". Environmental Microbiology. 19 (11): 4506–18. doi:10.1111/1462-2920.13899. PMID 28856827. S2CID 3598741.
  77. ^ Granéli E, Turner JT (2007). Ecology of Harmful Algae. Ecological Studies: Analysis and Synthesis. Ecological Studies. Vol. 189. Springer. ISBN 978-3-5407-4009-4. ISSN 0070-8356. Archived from the original on 2014-07-07. Retrieved 2016-03-05.
  78. ^ Castro P, Huber ME (2010). Marine Biology (8th ed.). McGraw Hill. p. 95. ISBN 978-0-0711-1302-1.
  79. ^ Hastings JW (1996). "Chemistries and colors of bioluminescent reactions: a review". Gene. 173 (1 Spec No): 5–11. doi:10.1016/0378-1119(95)00676-1. PMID 8707056.
  80. ^ Poupin, J., A.-S. Cussatlegras, and P. Geistdoerfer. 1999. Plancton marin bioluminescent. Rapport scientifique du Laboratoire d'Océanographie de l'École Navale LOEN, Brest, France, 83 pp.
  81. ^ Sweeney, B. Bioluminescence and circadian rhythms. In: Taylor 1987, pp. 269–281
  82. ^ a b c d Haddock SH, Moline MA, Case JF (1 October 2009). "Bioluminescence in the sea". Annual Review of Marine Science. 2: 443–93. Bibcode:2010ARMS....2..443H. doi:10.1146/annurev-marine-120308-081028. PMID 21141672. S2CID 3872860.
  83. ^ Knaust R, Urbig T, Li L, Taylor W, Hastings JW (February 1998). "The circadian rhythm of bioluminescence in Pyrocystis is not due to differences in the amount of luciferase: a comparative study of three bioluminescent marine dinoflagellates". J. Phycol. 34 (1): 167–172. doi:10.1046/j.1529-8817.1998.340167.x. S2CID 84990824.
  84. ^ Fritz L, Morse D, Hastings JW (February 1990). "The circadian bioluminescence rhythm of Gonyaulax is related to daily variations in the number of light-emitting organelles". Journal of Cell Science. 95 (Pt 2): 321–8. doi:10.1242/jcs.95.2.321. PMID 2196272.
  85. ^ Dybas CL (May 2012). "Bright Microbes—Scientists uncover new clues to bioluminescence". Scientific American. 360 (5): 19. Bibcode:2012SciAm.306e..19D. doi:10.1038/scientificamerican0512-19.
  86. ^ Castine Kayak (2015). "Castine Kayak Bioluminescent Bay Night Kayak Excursion". visitmaine.com. Archived from the original on 2 July 2015. Retrieved 1 July 2015.
  87. ^ Kennedy Duckett, Maryellen (2015-02-10). "Florida by Water: Experience Bioluminescence". National Geographic Society. Archived from the original on 2018-07-31. Retrieved 31 July 2018.
  88. ^ Withers, N. Dinoflagellate sterols. In: Taylor 1987, pp. 316–359
  89. ^ Alldredge AL, Passow U, Haddock SH (1998). "The characteristics and transparent exopolymer particle (TEP) content of marine snow formed from thecate dinoflagellates". J. Plankton Res. 20 (3): 393–406. doi:10.1093/plankt/20.3.393.
  90. ^ a b c von Stosch HA (1973). "Observations on vegetative reproduction and sexual life cycles of two freshwater dinoflagellates, Gymnodinium pseudopalustre Schiller and Woloszynskia apiculata sp. nov". British Phycological Journal. 8 (2): 105–34. doi:10.1080/00071617300650141. Archived from the original on 2019-02-13. Retrieved 2014-05-13.
  91. ^ Pfiester, Anderson (1987). "Ch. 14". In Taylor F (ed.). The Biology of dinoflagellates. Botanical monographs. Vol. 21. Blackwell Scientific. ISBN 978-0-6320-0915-2.
  92. ^ Li C, Wong JT (July 2019). "DNA Damage Response Pathways in Dinoflagellates". Microorganisms. 7 (7): 191. doi:10.3390/microorganisms7070191. PMC 6680887. PMID 31284474.
  93. ^ a b c d e f g h Bravo, Isabel; Figueroa, Rosa (2014). "Towards an Ecological Understanding of Dinoflagellate Cyst Functions". Microorganisms. 2 (1): 11–32. doi:10.3390/microorganisms2010011. PMC 5029505. PMID 27694774. CC BY icon.svg Material was copied from this source, which is available under a Creative Commons Attribution 3.0 International License Archived 2011-02-23 at the Wayback Machine.
  94. ^ a b Cavalier-Smith, T. (2002). "Origins of the machinery of recombination and sex". Heredity. 88 (2): 125–141. doi:10.1038/sj.hdy.6800034. PMID 11932771. S2CID 13213957.
  95. ^ Wagmann, Kristen; Hautekèete, Nina-Coralie; Piquot, Yves; Meunier, Cécile; Schmitt, S. Eric; Van Dijk, Henk (2012). "Seed dormancy distribution: Explanatory ecological factors". Annals of Botany. 110 (6): 1205–1219. doi:10.1093/aob/mcs194. PMC 3478053. PMID 22952378.
  96. ^ Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; De Meaux, Juliette (2013). "Co-Variation between Seed Dormancy, Growth Rate and Flowering Time Changes with Latitude in Arabidopsis thaliana". PLOS ONE. 8 (5): e61075. Bibcode:2013PLoSO...861075D. doi:10.1371/journal.pone.0061075. PMC 3662791. PMID 23717385.
  97. ^ Reinsch, P.F. (1905) "Die palinosphärien, ein mikroskopischer vegetabile organismus in der mukronatenkreide". ..Cent. Miner. Geol. Palaeontol..., 402–407.
  98. ^ Loeblich, A.R.; Loeblich, L.A. (2012) [1984]. "Dinoflagellate cysts". In Spector, D.L. (ed.). Dinoflagellates. Academic Press. pp. 444–474. ISBN 978-0-323-13813-0.
  99. ^ Lenormand, Thomas; Otto, Sarah P. (2000). "The Evolution of Recombination in a Heterogeneous Environment". Genetics. 156: 423–438. doi:10.1093/genetics/156.1.423. PMC 1461255. PMID 10978305.
  100. ^ Lee, Soo Chan; Ni, Min; Li, Wenjun; Shertz, Cecelia; Heitman, Joseph (2010). "The Evolution of Sex: A Perspective from the Fungal Kingdom". Microbiology and Molecular Biology Reviews. 74 (2): 298–340. doi:10.1128/MMBR.00005-10. PMC 2884414. PMID 20508251.
  101. ^ Anderson, Donald Mark; Wall, David (1978). "Potential Importance of Benthic Cysts of Gonyaulax Tamarensis and G. Excavata in Initiating Toxic Dinoflagellate Blooms1, 2, 3". Journal of Phycology. 14 (2): 224–234. doi:10.1111/j.1529-8817.1978.tb02452.x. S2CID 85372383.
  102. ^ Uchida, Takuji; Yoshikawa, Koji; Arai, Akemi; Arai, Shogo (1991). "Life-Cycle and Its Control of Sargassum muticum (Phaeophyta) in Batch Cultures". Nippon Suisan Gakkaishi. 57 (12): 2249–2253. doi:10.2331/suisan.57.2249.
  103. ^ Uchida, Takuji; Matsuyama, Yukihiko; Yamaguchi, Mineo; Honjo, Tsuneo (1996). "The life cycle of Gyrodinium instriatum (Dinophyceae) in culture". Phycological Research. 44 (3): 119–123. doi:10.1111/j.1440-1835.1996.tb00040.x. S2CID 84051080.
  104. ^ Figueroa, Rosa Isabel; Bravo, Isabel (2005). "Sexual Reproduction and Two Different Encystment Strategies of Lingulodinium Polyedrum (Dinophyceae) in Culture1". Journal of Phycology. 41 (2): 370–379. doi:10.1111/j.1529-8817.2005.04150.x. S2CID 85652450.
  105. ^ Figueroa, Rosa Isabel; Bravo, Isabel; Garcés, Esther (2006). "Multiple Routes of Sexuality in Alexandrium Taylori (Dinophyceae) in Culture". Journal of Phycology. 42 (5): 1028–1039. doi:10.1111/j.1529-8817.2006.00262.x. S2CID 85188678.
  106. ^ Kremp, Anke; Parrow, Matthew W. (2006). "Evidence for Asexual Resting Cysts in the Life Cycle of the Marine Peridinoid Dinoflagellate, Scrippsiella Hangoei1". Journal of Phycology. 42 (2): 400–409. doi:10.1111/j.1529-8817.2006.00205.x. S2CID 84228384.
  107. ^ Parrow, Matthew W.; Burkholder, Joann M. (2004). "The Sexual Life Cycles of Pfiesteria Piscicida and Cryptoperidiniopsoids (Dinophyceae)1". Journal of Phycology. 40 (4): 664–673. doi:10.1111/j.1529-8817.2004.03202.x. S2CID 83695348.
  108. ^ Beam CA, Himes M (2012-12-02). Ch. 8: Dinoflagellate genetics. pp. 263–298. ISBN 978-0-3231-3813-0. Archived from the original on 2014-07-07. Retrieved 2016-03-05. In Spector 1984
  109. ^ Lin S, Cheng S, Song B, et al. (2015). "The genome of Symbiodinium kawagutii illuminates dinoflagellate gene expression and coral symbiosis". Science. 350 (6261): 691–694. doi:10.1126/science.aad0408. PMID 26542574.
  110. ^ Song B, Morse D, Song Y, et al. (2017). "Comparative genomics reveals two major bouts of gene retroposition coinciding with crucial periods of Symbiodinium evolution". Genome Biology and Evolution. 9 (8): 2037–2047. doi:10.1093/gbe/evx144. PMC 5585692. PMID 28903461.
  111. ^ Hou Y, Ji N, Zhang H, et al. (2018). "Genome size-dependent PCNA gene copy number in dinoflagellates and molecular evidence of retroposition as a major evolutionary mechanism". Journal of Phycology. 55 (1): 37–46. doi:10.1111/jpy.12815. PMID 30468510.
  112. ^ "Understanding relationship break-ups to protect the reef". ScienceDaily. Archived from the original on 13 May 2019. Retrieved 16 May 2019.
  113. ^ Jackson CJ, Gornik SG, Waller RF (2012). "The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates". Genome Biology and Evolution. 4 (1): 59–72. doi:10.1093/gbe/evr122. PMC 3268668. PMID 22113794.
  114. ^ John, Uwe; Lu, Yameng; Wohlrab, Sylke; Groth, Marco; Janouškovec, Jan; Kohli, Gurjeet S.; Mark, Felix C.; Bickmeyer, Ulf; Farhat, Sarah (April 2019). "An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome". Science Advances. 5 (4): eaav1110. Bibcode:2019SciA....5.1110J. doi:10.1126/sciadv.aav1110. ISSN 2375-2548. PMC 6482013. PMID 31032404.
  115. ^ Lin S, Zhang H, Spencer D, Norman J, Gray M (2002). "Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates". Journal of Molecular Biology. 320 (4): 727–739. doi:10.1016/S0022-2836(02)00468-0. PMID 12095251.
  116. ^ Lin S, Zhang H, Gray MW (2008). "RNA editing in dinoflagellates and its implications for the evolutionary history of the editing machinery". In Smith H (ed.). RNA and DNA editing: Molecular Mechanisms and Their Integration into Biological Systems. Wiley. pp. 280–309. ISBN 978-0-470-26225-2.
  117. ^ Imanian, B.; Pombert, J. F.; Dorrell, R. G.; Burki, F.; Keeling, P. J. (2012). "The endosymbiotic origin, diversification and fate of plastids". PLOS ONE. 7 (8): e43763. Bibcode:2012PLoSO...743763I. doi:10.1371/journal.pone.0043763. PMC 3423374. PMID 22916303.
  118. ^ Das, Biplab (2019). "Marine parasite survives without key genes". Nature Middle East. doi:10.1038/nmiddleeast.2019.63. S2CID 149458671.
  119. ^ Laatsch T, Zauner S, Stoebe-Maier B, Kowallik KV, Maier UG (July 2004). "Plastid-derived single gene minicircles of the dinoflagellate Ceratium horridum are localized in the nucleus". Molecular Biology and Evolution. 21 (7): 1318–22. doi:10.1093/molbev/msh127. PMID 15034134.
  120. ^ Stern RF, Andersen RA, Jameson I, Küpper FC, Coffroth MA, Vaulot D, Le Gall F, Véron B, Brand JJ, Skelton H, Kasai F, Lilly EL, Keeling PJ (2012). "Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker". PLOS ONE. 7 (8): e42780. Bibcode:2012PLoSO...742780S. doi:10.1371/journal.pone.0042780. PMC 3420951. PMID 22916158.
  121. ^ Litaker RW, Vandersea MW, Kibler SR, Reece KS, Stokes NA, Lutzoni FM, Yonish BA, West MA, Black MN, Tester PA (April 2007). "Recognizing dinoflagellate species using ITS rDNA sequences". J. Phycol. 43 (2): 344–355. doi:10.1111/j.1529-8817.2007.00320.x. S2CID 85929661.
  122. ^ Wang, Lu; Zhuang, Yunyun; Zhang, Huan; Lin, Xin; Lin, Senjie (2014). "DNA barcoding species in Alexandrium tamarense complex using ITS and proposing designation of five species". Harmful Algae. 31: 100–113. doi:10.1016/j.hal.2013.10.013. PMID 28040099.
  123. ^ Stephens, Timothy G.; Ragan, MA; Bhattacharya, D; Chan, CX (Nov 21, 2018). "Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions". Scientific Reports. 8 (1): 17175. Bibcode:2018NatSR...817175S. doi:10.1038/s41598-018-35620-z. PMC 6249206. PMID 30464192.
  124. ^ a b MacRae RA, Fensome RA, Williams GL (1996). "Fossil dinoflagellate diversity, originations, and extinctions and their significance". Can. J. Bot. 74 (11): 1687–94. doi:10.1139/b96-205. ISSN 0008-4026.
  125. ^ Moldowan JM, Talyzina NM (August 1998). "Biogeochemical evidence for dinoflagellate ancestors in the early cambrian". Science. 281 (5380): 1168–70. Bibcode:1998Sci...281.1168M. doi:10.1126/science.281.5380.1168. PMID 9712575.
  126. ^ Moldowan JM, Dahl JE, Jacobson SR, Huizinga BJ, Fago FJ, Shetty R, Watt DS, Peters KE (February 1996). "Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with Pre-Triassic ancestors". Geology. 24 (2): 159–162. Bibcode:1996Geo....24..159M. doi:10.1130/0091-7613(1996)024<0159:CROBME>2.3.CO;2.
  127. ^ Talyzina NM, Moldowan JM, Johannisson A, Fago FJ (January 2000). "Affinities of early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers". Rev. Palaeobot. Palynol. 108 (1–2): 37–53. doi:10.1016/S0034-6667(99)00032-9.
  128. ^ a b c Fensome, Robert (8 June 2022). "Dinoflagellates". AASP-The Palynological Society.
  129. ^ Fensome, R. A.; MacRae, R. A.; Moldowan, J. M.; Taylor, F. J. R.; Williams, G. L. (1996). "The Early Mesozoic Radiation of Dinoflagellates". Paleobiology. 22 (3): 329–338. doi:10.1017/S0094837300016316. ISSN 0094-8373. JSTOR 2401092. S2CID 133043109.
  130. ^ Chacón, J.; Gottschling, M. (2020). "Dawn of the dinophytes: A first attempt to date origin and diversification of harmful algae". Harmful Algae. 97: 101871.
  131. ^ Saldarriaga J; Taylor MFJR; Cavalier-Smith T; Menden-Deuer S; Keeling PJ (2004). "Molecular data and the evolutionary history of dinoflagellates". Eur J Protistol. 40 (1): 85–111. doi:10.1016/j.ejop.2003.11.003. hdl:2429/16056.
  132. ^ Fensome RA, Saldarriaga JF, Taylor FJ (1999). "Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies". Grana. 38 (2–3): 66–80. doi:10.1080/00173139908559216.
  133. ^ Gottschling M, Chacón J, Žerdoner Čalasan A, Neuhaus S, Kretschmann J, Stibor H, John U (2020). "Phylogenetic placement of environmental sequences using taxonomically reliable databases helps to rigorously assess dinophyte biodiversity in Bavarian lakes (Germany)". Freshwater Biology. 65: 193–208. doi:10.1111/fwb.13413.
  134. ^ Gunderson JH, Goss SH, Coats DW (1999). "The phylogenetic position of Amoebophrya sp. infecting Gymnodinium sanguineum". The Journal of Eukaryotic Microbiology. 46 (2): 194–7. doi:10.1111/j.1550-7408.1999.tb04603.x. PMID 10361739. S2CID 7836479.
    Gunderson JH, John SA, Boman WC, Coats DW (2002). "Multiple strains of the parasitic dinoflagellate Amoebophrya exist in Chesapeake Bay". The Journal of Eukaryotic Microbiology. 49 (6): 469–74. doi:10.1111/j.1550-7408.2002.tb00230.x. PMID 12503682. S2CID 30051291.
  135. ^ López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (February 2001). "Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton". Nature. 409 (6820): 603–7. Bibcode:2001Natur.409..603L. doi:10.1038/35054537. PMID 11214316. S2CID 11550698.
  136. ^ Moon-van der Staay SY, De Wachter R, Vaulot D (February 2001). "Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity". Nature. 409 (6820): 607–10. Bibcode:2001Natur.409..607M. doi:10.1038/35054541. PMID 11214317. S2CID 4362835.
  137. ^ Saldarriaga JF, Taylor FJ, Keeling PJ, Cavalier-Smith T (September 2001). "Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements". Journal of Molecular Evolution. 53 (3): 204–13. Bibcode:2001JMolE..53..204S. doi:10.1007/s002390010210. PMID 11523007. S2CID 28522930.
  138. ^ Janouskovec J, Horák A, Oborník M, Lukes J, Keeling PJ (June 2010). "A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids". Proceedings of the National Academy of Sciences of the United States of America. 107 (24): 10949–54. Bibcode:2010PNAS..10710949J. doi:10.1073/pnas.1003335107. PMC 2890776. PMID 20534454.
  139. ^ Gornik SG, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, Waller RF (May 2015). "Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate". Proceedings of the National Academy of Sciences of the United States of America. 112 (18): 5767–72. Bibcode:2015PNAS..112.5767G. doi:10.1073/pnas.1423400112. PMC 4426444. PMID 25902514.
  140. ^ Dorrell, R. G.; Howe, C. J. (2015). "Integration of plastids with their hosts: Lessons learned from dinoflagellates". Proceedings of the National Academy of Sciences of the United States of America. 112 (33): 10247–10254. Bibcode:2015PNAS..11210247D. doi:10.1073/pnas.1421380112. PMC 4547248. PMID 25995366.
  141. ^ Tørresen, Ole Kristian (2010). Investigating the plastid replacement in the green dinoflagellate Lepidodinium chlorophorum (Master's thesis). University of Oslo. hdl:10852/11559.
  142. ^ Garcia-Cuetos, L.; Moestrup, Ø.; Hansen, P.J.; Daugbjerg, N. (2010). "The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts". Harmful Algae. 9 (1): 25–38. doi:10.1016/j.hal.2009.07.002.
  143. ^ Kretschmann, J.; Žerdoner Čalasan, A.; Gottschling, M. (2018). "Molecular phylogenetics of dinophytes harboring diatoms as endosymbionts (Kryptoperidiniaceae, Peridiniales), with evolutionary interpretations and a focus on the identity of Durinskia oculata from Prague". Molecular Phylogenetics and Evolution. 118: 392–402.
  144. ^ Imanian, B.; Keeling, P. J. (2007). "The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages". BMC Evolutionary Biology. 7: 172. doi:10.1186/1471-2148-7-172. PMC 2096628. PMID 17892581..
  145. ^ Gast, R. J.; Moran, D. M.; Dennett, M. R.; Caron, D. A. (2007). "Kleptoplasty in an Antarctic dinoflagellate: Caught in evolutionary transition?". Environmental Microbiology. 9 (1): 39–45. doi:10.1111/j.1462-2920.2006.01109.x. PMID 17227410.
  146. ^ Taylor FJ (1980). "On dinoflagellate evolution". Bio Systems. 13 (1–2): 65–108. doi:10.1016/0303-2647(80)90006-4. PMID 7002229.
  147. ^ Žerdoner Čalasan A, Kretschmann J, Gottschling M. "They are young, and they are many: Dating freshwater lineages in unicellular dinophytes". Environmental Microbiology. 21: 4125–4135. doi:10.1111/1462-2920.14766.
  148. ^ Kim, M.; Choi, D. H.; Park, M. G. (2021). "Cyanobiont genetic diversity and host specificity of cyanobiont-bearing dinoflagellate Ornithocercus in temperate coastal waters". Scientific Reports. 11 (1): 9458. Bibcode:2021NatSR..11.9458K. doi:10.1038/s41598-021-89072-z. PMC 8097063. PMID 33947914.
  149. ^ Nakayama, Takuro; Nomura, Mami; Takano, Yoshihito; Tanifuji, Goro; Shiba, Kogiku; Inaba, Kazuo; Inagaki, Yuji; Kawata, Masakado (2019). "Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host". Proceedings of the National Academy of Sciences. 116 (32): 15973–15978. Bibcode:2019PNAS..11615973N. doi:10.1073/pnas.1902538116. PMC 6689939. PMID 31235587.
  150. ^ Mertens KN, Takano Y, Head MJ, Matsuoka K (2014). "Living fossils in the Indo-Pacific warm pool: A refuge for thermophilic dinoflagellates during glaciations". Geology. 42 (6): 531–534. Bibcode:2014Geo....42..531M. doi:10.1130/G35456.1.
  151. ^ Montresor, M.; Janofske, D.; Willems, H. (1997). "The cyst-theca relationship in Calciodinellum operosum emend. (Peridiniales, Dinophyceae) and a new approach for the study of calcareous cysts". Journal of Phycology. 33 (1): 122–131. doi:10.1111/j.0022-3646.1997.00122.x. S2CID 84169394.
  152. ^ Gu, H.; Kirsch, M.; Zinßmeister, C.; Söhner, S.; Meier, K.J.S.; Liu, T.; Gottschling, M. (2013). "Waking the dead: Morphological and molecular characterization of extant †Posoniella tricarinelloides (Thoracosphaeraceae, Dinophyceae)". Protist. 164 (5): 583–597. doi:10.1016/j.protis.2013.06.001. PMID 23850812.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Dinoflagellate: Brief Summary

provided by wikipedia EN

The dinoflagellates (Greek δῖνος dinos "whirling" and Latin flagellum "whip, scourge") are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered algae. Dinoflagellates are mostly marine plankton, but they also are common in freshwater habitats. Their populations vary with sea surface temperature, salinity, and depth. Many dinoflagellates are photosynthetic, but a large fraction of these are in fact mixotrophic, combining photosynthesis with ingestion of prey (phagotrophy and myzocytosis).

In terms of number of species, dinoflagellates are one of the largest groups of marine eukaryotes, although substantially smaller than diatoms. Some species are endosymbionts of marine animals and play an important part in the biology of coral reefs. Other dinoflagellates are unpigmented predators on other protozoa, and a few forms are parasitic (for example, Oodinium and Pfiesteria). Some dinoflagellates produce resting stages, called dinoflagellate cysts or dinocysts, as part of their lifecycles, and are known from 84 of the 350 described freshwater species, and form a little more than 10% of the known marine species. Dinoflagellates are alveolates possessing two flagella, the ancestral condition of bikonts.

About 1,555 species of free-living marine dinoflagellates are currently described. Another estimate suggests about 2,000 living species, of which more than 1,700 are marine (free-living, as well as benthic) and about 220 are from fresh water. The latest estimates suggest a total of 2,294 living dinoflagellate species, which includes marine, freshwater, and parasitic dinoflagellates.

A rapid accumulation of certain dinoflagellates can result in a visible coloration of the water, colloquially known as red tide (a harmful algal bloom), which can cause shellfish poisoning if humans eat contaminated shellfish. Some dinoflagellates also exhibit bioluminescence—primarily emitting blue-green light. Thus, some parts of the ocean light up at night giving blue-green light.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Dinoflagellata ( Spanish; Castilian )

provided by wikipedia ES

Los dinoflagelados (Dinoflagellata, Dinophyta o Pyrrhophyta) son un extenso grupo de protistas flagelados, con unas 2400 especies conocidas.[2][3][4]​ El nombre proviene del griego dinos, girar y del latín, flagellum, látigo, describiendo el movimiento rotatorio propio de estos organismos.[5]​ Estos microorganismos son unicelulares (aunque pueden formar colonias) y forman parte del fitoplancton de agua dulce (unas 220 especies) y marino (el resto).[6]​ Aproximadamente la mitad son fotosintéticos y poseen pigmentos con clorofila a y c2 y carotenoides. Al ser su nutrición principalmente autótrofa son productores primarios por lo que, junto a las diatomeas y otros grupos de fitoplancton, constituyen el nivel trófico primario en la cadena alimentaria acuática. Ciertas especies fotosintéticas como las zooxantelas son endosimbiontes de animales invertebrados como los corales, anémonas y almejas y protozoos marinos desarrollando una relación mutualista con los arrecifes coralinos. Otros son heterótrofos o mixótrofos y se alimentan de otros dinoflagelados, protozoos y diatomeas, además, algunas formas son parásitas (véase por ejemplo, Oodinium y Pfiesteria).[7]​ Sus poblaciones se distribuyen en función de la temperatura, salinidad y profundidad del agua. Algunos dinoflagelados pueden emitir luz a través de la bioluminiscencia, otros son responsables de las mareas rojas y floraciones algales nocivas (FAN o bloom de algas).

Características

 src=
Estructura de un dinoflagelado: 1-placa de la teca, 2-cíngulo con el flagelo transversal, 3-sulcus con el flagelo longitudinal.
 src=
Representación esquemática de tres especies de dinoflagelado.

Morfología

La mayoría de los dinoflagelados tienen un tamaño entre 50 y 500 µm, por lo que se los considera parte del fitoplancton, si bien Noctiluca puede llegar hasta los 2 mm de diámetro. Son unicelulares, aunque como excepción, algunas especies pueden formar colonias o seudocolonias. El rasgo más característico de los dinoflagelados es la presencia de dos flagelos disimilares que les proporcionan movimientos característicos. Uno de ellos es ondulado y rodea la célula transversalmente, se denomina flagelo transversal y le permite un movimiento giratorio distintivo del cual proviene el nombre dinoflagelado (del griego dinos, girando). El otro está localizado en el lado posterior de forma longitudinal, funciona como timón y es responsable de su movimiento vertical, este se denomina flagelo longitudinal.

En las especies dinocontas los flagelos se alojan en dos ranuras, denominadas cíngulo, la transversal, y sulcus, la longitudinal. Los flagelos emergen de la intersección de los dos surcos. Los dinoflagelados basales tienen células desmocontas, no presentan cíngulo ni sulcos y los flagelos emergen de un poro localizado en la parte apical. En este caso, uno de los flagelos es anterior y recuerda al flagelo transversal ondulado de los dinoflagelados típicos.

Los dinoflagelados tienen una cubierta celular compleja llamada anfiesma, integrada por vesículas planas denominadas alvéolos corticales. Morfológicamente, se distinguen dos tipos de dinoflagelados: tecados y desnudos. En las formas tecadas, los alvéolos se apoyan en placas de celulosa entrelazadas que componen una especie de armadura llamada teca. La teca o cobertura de la pared celular exhibe diversas formas en la morfología externa dependiendo de la especie y a veces de la etapa del dinoflagelado. Las formas sin armadura, "atecadas" o "desnudas" tienden a ser frágiles y a deformarse fácilmente, mientras que la pared celular de los dinoflagelados armados es más rígida e inflexible. En muchas especies también se encuentran extrusomas fibrosas.

Cloroplastos

Aproximadamente la mitad de los dinoflagelados presentan cloroplastos y los demás son heterótrofos (fagotrofos o parásitos osmotrofos). Aunque algunas especies con cloroplastos son totalmente autótrofas, la mayoría son mixótrofas, combinando la nutrición autótrofa y heterótrofa. El grupo de los dinoflagelados incluye cloroplastos procedentes de al menos de seis fuentes diferentes. Los cloroplastos de los dinoflagelados ancestrales derivan probablemente de la endosimbiosis secundaria de un alga roja. Posteriormente algunos grupos de dinoflagelados los reemplazaron por cloroplastos procedentes de otros grupos de algas mediante endosimbiosis secundarias o terciarias posteriores, incluyendo cloroplastos procedentes de Chlorophyta, Heterokontophyta, Cryptophyta y Haptophyta.

Los dinoflagelados fotosintéticos típicos (del tipo peridiniales) presentan cloroplastos en forma de discos o varillas, tilacoides usualmente en grupos de tres, varios tipos de pirenoides y algunas xantofilas específicas. Los pigmentos incluyen clorofilas a y c2, peridinina (un tipo de pirenoide exclusivo de los dinoflagelados), β-caroteno y pequeñas cantidades de dinoxantina y diadinoxantina. Las distintas combinaciones de pigmentos les proporcionan una coloración amarilla, pardo amarillenta, parda, verde azul, etc. Los pirenoides se encuentran junto al cloroplasto y como productos de reserva utilizan almidón, producido en el exterior del plasto, y aceites. Los cloroplastos están rodeados por tres membranas (en algunos casos de dos), lo que sugiere que proceden probablemente de la endosimbiosis secundaria de algún alga, que por los tipos de clorofila que contienen, se supone un alga roja.

Sin embargo, algunas especies presentan cloroplastos con diferente pigmentación y estructura, algunos de los cuales conservan un nucleomorfo. Ello sugiere que estos cloroplastos fueron incorporados por varios acontecimientos endosimbióticos que implicaban formas ya coloreadas o secundariamente descoloridas. Es decir, estos dinoflagelados reemplazaron sus cloroplastos procedentes de la endosimbiosis secundaria de un alga roja por otros procedentes de endosimbiosis secundarias o terciarias de otros tipos de algas. Estos cloroplastos presentan cuatro membranas y clorofilas a y b cuando proceden de endosimbiosis secundarias de algas verdes, y clorofilas a y c cuando proceden de endosimbiosis terciarias de otros tipos de algas. En concreto, existen cloroplastos de procedencia de los siguientes grupos:[8][9]

  • Algas verdes. Los dinoflagelados Lepidodinium presentan cloroplastos que se supone procedentes de algas verdes, pues contienen clorofilas a y b. Estos cloroplastos están permanentemente integrados en la célula, aunque se desconoce si algún material genético ha sido transferido desde el cloroplasto al núcleo celular.
  • Diatomeas. Algunas especies de dinoflagelados, por ejemplo, Durinskia baltica, Kryptoperidinium foliaceum (Dinotrichales) y Peridinium quinquecorne, albergan diatomeas endosimbiontes casi completas, pues contienen tanto el cloroplasto como su núcleo. Esto es, son células binucleadas que contienen los núcleos del dinoflagelado y del alga verde. Esto, junto con el hecho de que existen en la naturaleza "versiones" sin cloroplasto de estas especies, sugiere que la endosimbiosis es reciente.
  • Silicoflagelados. De forma similar al caso anterior, una especie de dinoflagelado, Podolampas bipes, alberga un silicoflagelado casi completo, pues contiene tanto su cloroplasto como su núcleo.

El descubrimiento de apicoplastos en los apicomplejos sugiere que los plastos de estos dos grupos se originaron de un antepasado común que realizó una endosimbiosis secundaria con un alga roja.

Dinocarión y orgánulos celulares

Los dinoflagelados típicos presentan un núcleo de características únicas denominado dinocarión. En este tipo de núcleo, los cromosomas se fijan a la envoltura nuclear, contienen una enorme cantidad de ADN, están muy organizados, carecen de histonas al contrario que los demás eucariotas y no presentan una verdadera interfase. Esta clase de núcleo fue una vez considerado una forma intermedia entre el nucleoide de los procariontes y los núcleos verdaderos de los eucariontes y fue llamado mesocarión, pero ahora se considera una forma avanzada más que primitiva. Los dinoflagelados basales, sin embargo, presentan núcleos similares al resto de los eucariotas, mientras que en Noctilucales el dicarión está presente solo en las etapas juveniles.

La célula de los dinoflagelados contiene los orgánulos más comunes tales como el retículo endoplasmático, aparato de Golgi, mitocondrias, gránulos de lípidos y almidón y vacuolas endoplasmáticas. Además, algunos dinoflagelados, la mayoría de agua dulce, presentan una mancha ocular, un orgánulo sensible a la luz que les permiten determinan la dirección e intensidad de la luz. Dependiendo de la especie, la mancha ocular presenta diferentes tipos de organización, que va desde la más sencilla de un glóbulo libre en el citoplasma hasta un orgánulo complejo u ocelo compuesto de una lente con retinoide. Muchos dinoflagelados disponen de tricocistos que disparan filamentos mucilaginosos.

Algunas de estas características morfológicas y genéticas indican una relación cercana entre Dinoflagellata, Apicomplexa y Ciliophora, que son agrupados en Alveolata.

Ciclo vital

 src=
Ciclo vital de un dinoflagelado: 1-fisión binaria, 2-reproducción sexual, 3-planozigoto, 4-hipnozigoto, 5-planomeiocito.

La reproducción de los dinoflagelados es principalmente asexual, que en condiciones favorables puede ser muy rápida originando poblaciones que pueden a llegar a 60 millones de individuos por litro de agua. También se da reproducción sexual. En los dinoflagelados típicos el núcleo es dinocarión durante todo el ciclo vital y son generalmente haploides. La reproducción sexual tiene lugar por fusión de dos individuos para formar un zigoto, que puede seguir siendo móvil o formar un quiste inmóvil, que más adelante experimentará una meiosis para producir nuevas células haploides.

En un ciclo de vida típico, cuando las condiciones llegan a ser críticas, generalmente por falta de alimento o por inexistencia de luz, dos dinoflagelados se fusionarán formando un planozigoto. Este continúa su movilidad hasta que después de unos días pierde sus flagelos. A continuación tiene lugar una etapa no muy diferente de la hibernación llamada hipnozigoto. La membrana se expande abriendo la teca, el protoplasma se contrae y se forma una nueva teca más dura en el cual algunas veces se forman espinas. El quiste recién formado se deposita en el fondo marino. Cuando las condiciones vuelven a ser favorables, rompe su teca, pasa por una etapa temporal denominada planomeiocito y después retorna rápidamente a la forma dinoflagelada a principio del ciclo.

Ecología

 src=
Marea roja en California.

La proliferación de los dinoflagelados junto con otras bacterias y ciliados puede llegar a ser tóxica, fenómeno que se conoce como "floraciones algales nocivas" (FAN), o puede producir cambios de color en el agua tornándola roja por la biomasa y pigmentación de estos organismos; este otro fenómeno es conocido como mareas rojas y no es tóxico.[10][11][12]​ La causa de éstas puede ser natural, por factores como la salinidad, cantidad de luz, turbulencia y temperatura, pero de igual forma la actividad humana es un elemento importante en la proliferación de estos organismos en su hábitat. Uno de los procesos naturales en los que el ser humano ha intervenido y a la vez perjudicado ha sido el ciclo de nitrógeno. A causa de este se afecta la acidificación, eutrofización y proliferación de algas nocivas dentro de distintos cuerpos de agua.

Algunas fuentes principales de nitrógeno inorgánico lo son aguas residuales sin tratamiento, infiltración en basureros, campos de cultivo, bosques quemados, emisiones a la atmósfera de combustibles fósiles y residuos de granjas de animales, estos desechos provienen de diferentes fuentes pero terminan en un mismo lugar, en lagos, ríos y océanos. La acidificación se presenta cuando hay desbalances en el valor del pH del agua de los ríos y lagos. Entre sus efectos negativos se encuentra la disminución de la diversidad, fotosíntesis y productividad del fitoplancton, disminución en la actividad alimentaria y diversidad en animales acuáticos. Al ser afectados estos productores primarios y consumidores de la cadena alimentaria en el ecosistema acuático se afectan los eslabones, se desequilibran los niveles tróficos de esta cadena y se pone en riesgo todo el ecosistema acuático.

Una gran acumulación de fósforo y nitrógeno en los cuerpos de agua, los cambios climáticos, el aumento en la radiación ultravioleta son otros factores por los que se producen estas floraciones, ya que estos elementos promueven su desarrollo y mantenimiento. Las toxinas de los dinoflagelados podrían ser producidas a través de simbiosis con bacterias, selección natural, reservas de nitrógeno, metabolitos secundarios, como mecanismos de defensa o competencia. Las FAN tienen una gran importancia ecológica ya que los animales que se alimentan de estos microorganismos tóxicos, se intoxican, enferman, mueren y transmiten el tóxico a través de la cadena alimentaria que a su vez afecta a los humanos que ingieran estos organismos contaminados, reducen el oxígeno disuelto en el agua y causan la muerte de cientos de peces y corales. De igual manera, tienen una gran importancia social ya que constituyen una amenaza a la salud de las personas, la economía, el turismo, la pesca y la acuicultura.

En términos de salud las personas pueden sufrir diferentes intoxicaciones como la intoxicación paralizante por moluscos, intoxicación diarreica por moluscos, intoxicación neurotóxica por moluscos y intoxicación amnésica por moluscos o ciguatera o veneno ciguatérico de pescado, y a consecuencia de éstos, algunos efectos y síntomas que pueden presentar son cuadros neuróticos, parestesia bucal, dolor abdominal, cefalea, alteración del pulso, insuficiencia respiratoria, paros cardiorrespiratorios y hasta la muerte. La pesca se ve afectada ya que los peces y otros animales están contaminados, el turismo disminuye ya que las facilidades recreacionales no están en condiciones saludables y la economía se ve afectada por ambos elementos y muchos más. Debido a la intensidad de ocurrencias de las floraciones algales nocivas mundialmente, se han creado distintas organizaciones nacionales e internacionales dedicadas a la investigación, manejo y prevención de dicho fenómeno. Su estudio es de gran importancia y aportación al conocimiento científico, al desarrollo de métodos, herramientas, modelos, pronósticos y tecnologías en los programas de investigación.

Debe tenerse en cuenta que no todas las floraciones de dinoflagelados son peligrosas. Los parpadeos azulados visibles en el agua del océano por la noche son producidos a menudo por las floraciones de dinoflagelados bioluminescentes, que emiten ráfagas cortas de luz como mecanismo de defensa.

Fósiles

 src=
Fósiles de Polykrikos (Dinoflagelado, izquierda) y Strombidium (Ciliado, derecha).

Los fósiles más antiguos de dinoflagelados corresponde a acritarcos que datan del Mesoproterozoico y se conocen como Shuiyousphaeridium y Dictyosphaera.[13]​ Posteriormente aparecen quistes de dinoflagelados que se encuentran como microfósiles a partir del período Triásico hace 245 a 208 millones de años, aumentando su número y diversidad y formando una parte importante de la microflora marina del Jurásico medio, aunque se encuentran restos químicos de dinosporina (sustancia que compone a los dinoflagelados) en rocas del Silúrico. La presencia de dinosteranes, un esterol mayormente asociado con los dinoflagelados, sustenta una radiación Mesozoica de estos microorganismos, lo cual muestra que hubo un aumento dramático entre el Periodo Pérmico y el Cretáceo (Hackett et al., 2004) hasta el día de hoy. Puesto que ciertas especies se adaptan a distintas condiciones del agua superficial, estos fósiles se pueden utilizar para reconstruir las condiciones superficiales oceánicas.[14]

Clasificación

La clasificación de los dinoflagelados es difícil y comprende cinco clases, de las cuales, las tres primeras son basales o constituyen linajes altamente divergentes y a veces se clasifican aparte.[1]​ Los grupos basales presentan un núcleo celular similar al resto de los eucariotas. Los dinoflagelados típicos con dinocarión pertenecen a la clase Dinophyceae y en menor medida a Noctiluciphyceae.

  • Ellobiopsea. Comprende organismos marinos o de agua dulce, principalmente ectoparásitos de crustáceos, que constituyen un linaje divergente separado de los grupos principales de los dinoflagelados. Son multinucleados y presentan una raíz absorbente que penetra en el interior del huésped y estructuras reproductivas que sobresalen o se pegan al caparazón del huésped.[15]
  • Oxyrrhea. Comprende únicamente Oxyrrhis, una forma marina predadora y fagotrofa con un plasto vestigial, que no presenta cíngulo ni sulcus, pero presenta dos flagelos, uno de los cuales está insertado lateralmente. Constituye un linaje independiente, separado tempranamente del resto de los dinoflagelados.[16]
  • Syndiniophyceae. Incluye a los denominados provisionalmente grupos I y II de alveolados marinos.[17]​ Son organismos exclusivamente parásitos intracelulares o endosimbióticos de animales marinos y protozoos. Se caracterizan por presentar un núcleo que nunca es dinocarión, por la ausencia de teca y un flagelo insertado lateralmente.
  • Dinophyceae. Es la línea principal que incluye todos los dinoflagelados fotosintéticos típicos, además de otros más inusuales, tales como coloniales, ameboides o parásitos extracelulares que afectan a una gran variedad de organismos: protozoos, algas, invertebrados y peces. Se caracterizan por presentar un núcleo dinocarión durante todo el ciclo vital, dominado por la fase haploide.
  • Noctiluciphyceae. Son marinos, de gran tamaño (hasta 2 mm), altamente vacuolados y carecen de cloroplastos. Algunos pueden contener algas verdes simbientes y otros se alimentan de plancton. Este grupo difiere de la mayor parte de los demás en que la célula madura es diploide y en que el núcleo es dinocarión solo durante parte de su ciclo vital.[18]

Filogenia

Las relaciones son las siguientes:[15][19]

Dinoflagellata

Ellobiopsea

       

Oxyrrhea

   

Syndiniales

       

Noctiluciphyceae

   

Dinophyceae

       

Galería

Referencias

  1. a b Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M.D. y Kirk, P. M. (2015). A Higher Level Classification of All Living Organisms.
  2. Gómez, F., Moreira, D., & López-García, P. (2011). Avances en el estudio de los dinoflagelados (Dinophyceae) con la filogenia molecular. Hidrobiológica, 21(3), 343-364.
  3. Gómez, F. A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata). (2012): 65-140.
  4. Adl, S. M. et al. 2012. «The revised classification of eukaryotes.» Journal of Eukaryotic Microbiology, 59(5), 429-514
  5. Hoek, C. van den, Mann, D. G. y Jahns, H. M. (1995). Algae : An introduction to phycology, Cambridge University Press, UK.
  6. Faust, M. A. y Gulledge, R. A. 2002. Identifying Harmful Marine Dinoflagellates Archivado el 2 de octubre de 2015 en Wayback Machine.. Contributions from the United States National Herbarium 42: 1-144.
  7. Hackett, J. D., Anderson, D. M., Erdner, D. L. & Bhattacharya, D. (2004). «Dinoflagellates: A Remarkable Evolutionary Experiment.» Archivado el 21 de noviembre de 2015 en Wayback Machine. American Journal of Botany, 91(10), 1523-1534.
  8. M. Hoppenrath y J.F. Saldarriaga (2012). Dinoflagellates, The Tree of Life Web Project. Consultado el 26 de noviembre de 2015.
  9. Biocyclopedia 2012, Endosymbiosis and Origin of Eukaryotic Algae. Consultado el 26 de noviembre de 2015.
  10. Anderson, D. M., Reguera, B., Pitcher, G. C., Enevoldsen, H. O. (2010). «The IOC International Harmful Algal Bloom Program.» Oceanography, 23(3), 72-85.
  11. Freer, E., Vargas- Montero, M. (2003). Floraciones algales nocivas en la costa pacífica de Costa Rica: Toxicología y sus efectos en el ecosistema y salud pública. Acta Médica Costarricense, 45(004), 158-164.
  12. Camargo, J. A., Alonso, A. (2007). Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos: Problemas medioambientales, criterios de calidad del agua e implicaciones del cambio climático. Ecosistemas, 16(2), 1-13.
  13. Meng F.W, Zhou C.M, Yin L.M, Chen Z.L, Yuan X.L. The oldest known dinoflagellates: morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chinese Sci. Bull. 2005;50:1230–1234. 10.1360/982004-543
  14. Sluijs, A., Pross, J., Brinkhuis, H. (2005). From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth-Science Reviews 68, 281-315.
  15. a b Gómez, F., López-García, P., Nowaczyk, A., & Moreira, D. (2009). The crustacean parasites Ellobiopsis Caullery, 1910 and Thalassomyces Niezabitowski, 1913 form a monophyletic divergent clade within the Alveolata. Systematic parasitology, 74(1), 65-74.
  16. Saldarriaga, J. F., et al. (2003). Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. International journal of Systematic and Evolutionary Microbiology 53 (Pt 1): 355–365. doi:10.1099/ijs.0.02328-0. PMID 12656195.
  17. Guillou, L., Viprey, M., Chambouvet, A., Welsh, R. M., Kirkham, A. R., Massana, R., ... & Worden, A. Z. (2008). Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environmental Microbiology, 10(12), 3349-3365.
  18. Gómez, F., Moreira, D., & López-García, P. (2010). Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae). Protist, 161(3), 466-478.
  19. Orr RJS, Murray SA, Stu¨ken A, Rhodes L, Jakobsen KS (2012) When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates. PLoS ONE 7(11): e50004. doi:10.1371/journal.pone.005000

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Dinoflagellata: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Los dinoflagelados (Dinoflagellata, Dinophyta o Pyrrhophyta) son un extenso grupo de protistas flagelados, con unas 2400 especies conocidas.​​​ El nombre proviene del griego dinos, girar y del latín, flagellum, látigo, describiendo el movimiento rotatorio propio de estos organismos.​ Estos microorganismos son unicelulares (aunque pueden formar colonias) y forman parte del fitoplancton de agua dulce (unas 220 especies) y marino (el resto).​ Aproximadamente la mitad son fotosintéticos y poseen pigmentos con clorofila a y c2 y carotenoides. Al ser su nutrición principalmente autótrofa son productores primarios por lo que, junto a las diatomeas y otros grupos de fitoplancton, constituyen el nivel trófico primario en la cadena alimentaria acuática. Ciertas especies fotosintéticas como las zooxantelas son endosimbiontes de animales invertebrados como los corales, anémonas y almejas y protozoos marinos desarrollando una relación mutualista con los arrecifes coralinos. Otros son heterótrofos o mixótrofos y se alimentan de otros dinoflagelados, protozoos y diatomeas, además, algunas formas son parásitas (véase por ejemplo, Oodinium y Pfiesteria).​ Sus poblaciones se distribuyen en función de la temperatura, salinidad y profundidad del agua. Algunos dinoflagelados pueden emitir luz a través de la bioluminiscencia, otros son responsables de las mareas rojas y floraciones algales nocivas (FAN o bloom de algas).

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Dinophyta ( French )

provided by wikipedia FR

DinoflagellataDinophytes, Dinoflagellés, Péridiniens

Les Dinophytes (Dinophyta), encore appelées Dinoflagellés ou Péridiniens, sont un embranchement d'organismes eucaryotes unicellulaires. Ce sont des microorganismes aquatiques (marins ou dulçaquicoles). Ils sont très diversifiés, en particulier par leurs comportements alimentaires. Certains sont hétérotrophes, d'autres sont mixotrophes et d'autres encore sont des organismes photosynthétiques qui sont donc assimilés à des algues unicellulaires, en majorité biflagellées. Environ 50 % des dinoflagellés sont hétérotrophes. Ils sont comme leur nom l'indique dotés de flagelles, mais certains sont « benthiques » et vivent en épiphytes sur des macroalgues ou encore dans les interstices des substrats sableux (tout en pouvant migrer verticalement pour se reproduire).

Ces microorganismes jouent un rôle trophique majeur, en particulier les protistes hétérotrophes herbivores qui régulent les populations de microalgues, et qui en mangeant ce phytoplancton en transfèrent les nutriments (mais aussi certains polluants qu'ils peuvent éventuellement bioconcentrer) vers les niveaux trophiques supérieurs (métazoaires, puis poissons, mammifères marins..).

Les études moléculaires montrent que les dinoflagellés ont un ancêtre commun dont on tente encore de savoir s'il était photosynthétique ou non[1]. Pour cela on étudie les gènes plastidiaux importés dans le génome nucléaire à la suite d'endosymbioses. On sait aussi grâce à ces études génétiques que plusieurs lignées hétérotrophes sont apparues très tôt au cours de l’évolution [1].

Ce groupe est encore assez mal connu. On a récemment encore en Bretagne — lors d'une étude des dinophyta du sédiment — trouvé plusieurs espèces jusqu'alors non décrites de Prorocentrum, Sinophysis ou Cabra[2].

Étymologie

Le mot Dinoflagellata, viendrait du grec ancien δεινός / deinόs « qui inspire la crainte » ou δῖνος / dinos, « tournoiement », et du latin flagellum, « fouet », littéralement « flagelle tournoyant ».

Présentation du taxon

 src=
Ocelloïde chez un dinophyte (indiqué par la flèche la plus épaisse).
 src=
Dinophyta de l'Amour (fleuve) vu avec un microscope électronique. Mars 2020.

Chez beaucoup d'espèces, la cellule est protégée par une thèque constituée de plaques rigides de cellulose incrustée de silice.

Les flagelles reposent dans deux sillons superficiels : le transversal ou équatorial, appelé « cingulum », le longitudinal, appelé « sulcus » (du latin cingulum, ceinture, et sulcus, sillon) .

Le sillon équatorial sépare la cellule en une partie supérieure (l’épicone) et une partie inférieure (l’hypocone). postérieur (hyposome), et, si une thèque est présente, ces deux parties sont appelées respectivement « épithèque » et « hypothèque ».

Certaines espèces ont un « appareil photosensible », et d’autres un véritable ocelle, qui servirait vraisemblablement à détecter les proies.

Nombreuses sont les espèces photosynthétiques. Mais la grande variété de chloroplastes témoigne de plusieurs endosymbioses secondaires. Il y a eu en effet, chez un ancêtre du groupe, une endosymbiose secondaire avec un eucaryote de la lignée rouge. Certains Dinoflagellés ont perdu cet endosymbiote, et parmi ceux-ci beaucoup sont restés hétérotrophes. Mais d’autres ont effectué une endosymbiose dite tertiaire avec des Straménopiles, des Cryptophytes ou d’autres Dinoflagellés.

Caractères propres au groupe

  • À l’origine la cellule présente « deux flagelles » orientés perpendiculairement l’un par rapport à l’autre.
  • Les « alvéoles sous-corticaux » propres aux alvéolates contiennent des plaques de cellulose, constituant la thèque.
    • Le noyau (biologie) des Dinoflagellés est original. Il est appelé « dinocaryon ». Lors de l’interphase, l’ADN n'est pas associé à des histones comme c’est le cas chez les autres eucaryotes, mais complexés à une protéine basique particulière: Les DPVN (Dinoflagellate viral nucleoproteins) qui sont probablement issue d'un transfert horizontal de virus.[3] Néanmoins, les séquences des histones sont encore présentes et transcrites bien que très divergentes [4]. Pour finir, les dinoflagellés ont un génome particulièrement grand, allant jusqu'à 200 pg (200 Gb environ) par noyau haploïde contre 3 pg (3 Gb environ) pour l'humain[4].
  • Les membres de ce taxon effectuent ce que Guillaume Lecointre et Hervé Le Guyader nomment une mitose fermée, c'est-à-dire qu'il n'y a pas de rupture de l'enveloppe nucléaire durant la mitose.
  • La cellule présente des trichocystes caractéristiques du groupe.

Écologie

 src=
Efflorescence algale de Dinoflagellés à La Jolla (Californie)

Les Dinoflagellés font partie du plancton d’eaux douces et surtout des eaux marines. Certaines espèces sont aussi retrouvées dans la neige. D’autres espèces, les Zooxanthelles, vivent en symbiose avec des protistes ou des Invertébrés marins (éponges, Coraux, Vers plats, Mollusques, Crustacés). Les espèces chlorophylliennes effectuent la photosynthèse grâce à des plastes. Les espèces non pigmentées se nourrissent de plancton. Il existe des formes bioluminescentes comme Noctiluca qui utilise une enzyme, la luciférase, et un substrat, la luciférine. L’accumulation de Noctiluca miliaris et Noctiluca scintillans entraîne des efflorescences et des phénomènes de marées rouges dans certaines conditions.

Dinoflagellés et phycotoxines

Certaines espèces d'algues planctoniques, essentiellement des Dinoflagellés et des Diatomées, peuvent sécréter des phycotoxines (des toxines algales) dans certaines circonstances mal connues, en particulier à l'occasion des multiplications soudaines (on parle alors d'efflorescences localisées, bloom en anglais). Ces toxines seraient un moyen de protection et de limitation de la prédation par les phytophages (zooplancton, coquillages filtreurs).

Ces toxines provoquent différents troubles, base de la classification :

  • toxines diarrhéiques (en anglais DSP, Diarrheic Shellfish Poison), produites par les Dinoflagellés des genres Dinophysis et Prorocentrum, dont le type est l'acide okadaïque. Elles provoquent plus ou moins rapidement diarrhée et vomissements (en 30 minutes à 12 heures après l'ingestion de coquillages contaminés[5]), rétrocédant spontanément en 2 à 3 jours, sans séquelles. On y associe les pectenotoxines hépatotoxiques, les yessotoxines sans toxicité avérée et les azaspiracides diarrhéiques. Les normes retenues sont de 160 µg/kg pour l'acide okadaïque et les azaspiracides, et 1 mg/kg pour les pectenotoxines. On utilise préférentiellement un test biologique sur souris. Ces intoxications alimentaires sont relativement communes, sur toutes les côtes, souvent aux changements de saison (printemps, automne).
  • toxines paralysantes (en anglais PSP, Paralytic Shellfish Poison), produites par les Dinoflagellés des genres Alexandrium, Gonyaulax, Gymnodinium et Pyrodinium, dont le type est la saxitoxine. Elles provoquent rapidement après l'ingestion de coquillages contaminés une paresthésie brutale (en 5 à 30 min) des lèvres, du visage, des bras puis des jambes. Des cas graves sont signalés avec une incoordination motrice, de l'incohérence et un risque de décès par paralysie respiratoire. Les normes retenues sont de 80 µg/kg pour la saxitoxine. Il s'agit de la première phycointoxication connue (rétrospectivement) en Colombie-Britannique (Canada) en 1798. Des efflorescences d'Alexandrium sont repérées de temps à autre l'été le long des côtes françaises, mais aucune intoxication n'a encore été déclarée en France.
  • toxines amnésiantes (en anglais ASP, Amnesic Shellfish Poison), produites par les diatomées du genre Pseudo-nitzschia, dont le type est l'acide domoïque. Elles provoquent rapidement après l'ingestion de coquillages contaminés une gastroentérite (diarrhée et vomissements en 2 à 24 h) puis des symptômes neurologiques, avec céphalées, confusion, désorientation, et dans les cas graves, amnésie, puis coma mortel. Les enfants et les personnes âgées sont les plus sensibles. Les normes retenues sont de 20 mg/kg pour l'acide domoïque. Des efflorescences de Pseudo-nitzschia sont repérées régulièrement l'été le long des côtes françaises, mais aucune intoxication n'a encore été déclarée en France. Tous les coquillages peuvent être contaminés (huîtres, moules, Pecten), mais aussi certains poissons (anchois), qui intoxiquent alors les oiseaux piscivores.
  • toxines cutanées, produites par le Dinoflagellé Ostreopsis ovata, dont le type est la palytoxine. Il s'agit d'une neurotoxine susceptible de provoquer des irritations cutanées, de la fièvre et une gêne respiratoire, la contamination se faisant par contact ou inhalation des embruns (aérosols marins, chargés en phycotoxines), et consommation des produits de la pêche contaminés. L'espèce est benthique (dans les sédiments marins), mais remonte en surface pour la floraison, et la toxine peut alors se concentrer dans la chaîne alimentaire. Il y a eu quelques épisodes toxiques en Italie (1998), et une alerte à Marseille en 2006.
  • ciguatera, produite par le Dinoflagellé Gambierdiscus toxicus, dont les types sont les cigatoxines et les maïtotoxines. Il s'agit d'une intoxication alimentaire par consommation de chair de poissons contaminés (ichtyosarcotoxisme). L'algue se multiplie sur le squelette du corail mort, et est broutée par les poissons perroquets. Ces poissons peuvent à leur tour contaminer leurs prédateurs. Le symptôme principal est la "gratte", démangeaison cutanée intense, avec une gastroentérite et une paresthésie du visage. La guérison spontanée est plus ou moins rapide, avec quelquefois des séquelles neurologiques. Souvent associé à d'autres phycotoxines (palytoxine). C'est l'intoxication type et bien connue des mers tropicales, mais des cas ont toutefois été déclaré récemment dans l’est de la Méditerranée.
  • Pfiesteria piscicida libère aussi des neurotoxines. Cette maladie devient préoccupante surtout en Caroline du Nord avec des intoxications induites par la consommation de poisson.

La production et la pêche des coquillages comestibles sont, dans la plupart des pays, placées sous le contrôle d'une autorité chargée de la surveillance des eaux marines et des coquillages produits[6], afin de garantir l'innocuité des denrées.

Cependant, la plupart des espèces de Dinoflagellés ne sont pas toxiques et sont à la base de la nutrition de nombreuses espèces : zooplancton, poissons.

Génomique

Les études génétiques ont essentiellement concerné des dinoflagellés photosynthétiques. Crypthecodinium cohnii est le premier dinoflagellé hétérotrophe ayant fait l'objet d'une étude génomique[7]

Étant donné la taille de leur génome le séquençage s'avère particulièrement coûteux. Seul les génomes de Symbiodinium microadriaticum, Symbiodinium minutum et Symbiodinium kawagutii, des symbiotes des coraux, ont été séquencés en 2016 et leur taille est entre 1 et 5 Gb [8].

Paléontologie

Les plus anciens restes fossiles incontestables de Dinoflagellés datent du Trias(~250 Ma). Une forme présumée, datée du Silurien (420 Ma), Arpylorus sp., serait plutôt une structure de stockage produite par un arthropode[9]. Certaines thèques fossiles pouvant avoir appartenu à des Dinoflagellés primitifs existent dans le Cambrien inférieur (-540 Ma).

Phylogénie

Liste des ordres de Dinoflagellata selon World Register of Marine Species (5 janvier 2014)[10] : ...

Liste de Dinoflagellés communs (2 200 espèces connues) :

Notes et références

  1. a et b Sanchez-Puerta M. V., Lippmeier J. C., Apt K. E. and Delwiche C. F. (2007). Plastid Genes in a Non-Photosynthetic Dinoflagellate. Protist. 158, p. 105-117
  2. Inventaire des dinoflagellés benthiques marins en Sud Bretagne : première approche de la diversité CHOMERAT N. IFREMER Station de Concarneau, in Colloque Concarneau ; Biodiversité et environnement marin : connaissance, gestion et protection, 2009
  3. (en) Nicholas A. T. Irwin, Benjamin J. E. Martin, Barry P. Young et Martin J. G. Browne, « Viral proteins as a potential driver of histone depletion in dinoflagellates », Nature Communications, vol. 9, no 1,‎ décembre 2018 (ISSN , PMID , PMCID , DOI , lire en ligne, consulté le 9 mars 2019)
  4. a et b (en) Ross F. Waller, Geoffrey I. McFadden, Antony Bacic et Terrence D. Mulhern, « Loss of Nucleosomal DNA Condensation Coincides with Appearance of a Novel Nuclear Protein in Dinoflagellates », Current Biology, vol. 22, no 24,‎ 18 décembre 2012, p. 2303–2312 (ISSN , PMID , DOI , lire en ligne, consulté le 9 mars 2019)
  5. Guide d'information sur les phycotoxines: complexe des toxines lipophiles : diarrhéiques (DSP) et associées / Zouher Amzil, janvier 2006 - Document Pdf, 543 ko, section 1.4 « Activité toxique », page 5, disponible sur le site Environnement de l'Ifremer, dans la partie Publications (voir section Phytoplancton et Phycotoxines)
  6. Affaires Maritimes et Services Vétérinaires en France, avec l'appui technique de l'IFREMER, par exemple, ou encore la FDA (Food and Drug Administration) aux États-Unis d’Amérique.
  7. Article publié dans la revue Protist par l’équipe du Pr Sanchez-Puerta (Département de Biologie Cellulaire et Génétique Moléculaire, Université du Maryland, États-Unis)
  8. (en) M. Aranda, Y. Li, Y. J. Liew et S. Baumgarten, « Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle », Scientific Reports, vol. 6, no 1,‎ décembre 2016 (ISSN , PMID , PMCID , DOI , lire en ligne, consulté le 8 mai 2019)
  9. ALAIN LE HERISSE, EDWIGE MASURE, EMMANUELLE J JAVAUX, and CRAIG P MARSHALL
    THE END OF A MYTH: ARPYLORUS ANTIQUUS PALEOZOIC DINOFLAGELLATE CYST
    PALAIOS, June 2012, v. 27, p. 414-423, published online 29 June 2012, doi:10.2110/palo.2011.p. 11-110r
  10. World Register of Marine Species, consulté le 5 janvier 2014

Voir aussi

Références taxinomiques

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Dinophyta: Brief Summary ( French )

provided by wikipedia FR

Dinoflagellata • Dinophytes, Dinoflagellés, Péridiniens

Les Dinophytes (Dinophyta), encore appelées Dinoflagellés ou Péridiniens, sont un embranchement d'organismes eucaryotes unicellulaires. Ce sont des microorganismes aquatiques (marins ou dulçaquicoles). Ils sont très diversifiés, en particulier par leurs comportements alimentaires. Certains sont hétérotrophes, d'autres sont mixotrophes et d'autres encore sont des organismes photosynthétiques qui sont donc assimilés à des algues unicellulaires, en majorité biflagellées. Environ 50 % des dinoflagellés sont hétérotrophes. Ils sont comme leur nom l'indique dotés de flagelles, mais certains sont « benthiques » et vivent en épiphytes sur des macroalgues ou encore dans les interstices des substrats sableux (tout en pouvant migrer verticalement pour se reproduire).

Ces microorganismes jouent un rôle trophique majeur, en particulier les protistes hétérotrophes herbivores qui régulent les populations de microalgues, et qui en mangeant ce phytoplancton en transfèrent les nutriments (mais aussi certains polluants qu'ils peuvent éventuellement bioconcentrer) vers les niveaux trophiques supérieurs (métazoaires, puis poissons, mammifères marins..).

Les études moléculaires montrent que les dinoflagellés ont un ancêtre commun dont on tente encore de savoir s'il était photosynthétique ou non. Pour cela on étudie les gènes plastidiaux importés dans le génome nucléaire à la suite d'endosymbioses. On sait aussi grâce à ces études génétiques que plusieurs lignées hétérotrophes sont apparues très tôt au cours de l’évolution .

Ce groupe est encore assez mal connu. On a récemment encore en Bretagne — lors d'une étude des dinophyta du sédiment — trouvé plusieurs espèces jusqu'alors non décrites de Prorocentrum, Sinophysis ou Cabra.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Skoruþörungar ( Icelandic )

provided by wikipedia IS

Skoruþörungar (fræðiheiti: Dinophyceae) eru stærsti flokkur svipuþörunga. Þessir þörungar mynda þörungablóma við strendur þegar líður á sumar og sumar tegundir þeirra eru helsta ástæðan fyrir hættulegum eiturefnum í skelfiski eins og kræklingi.

Útlit

Einkenni í útliti þessara einfrumu þörunga eru tvær skorur sem liggja í kross þvert yfir frumuna. Önnur skoran, þverskoran, nær umhverfis alla frumuna, en hin, langskoran, er misjöfn eftir tegundum. Skoruþörungar hafa tvær mis langar svipur og liggja þær hvor í sinni skorunni. Svipan í langskorunni er að jafnaði meira áberandi. [1] Nokkurskonar brynja umlykur margar tegundir skoruþörunga. Hún getur verið hornótt og er samsett úr nokkuð þykkum plötum. Þeir þörungar sem hafa þetta útlit eru oft kallaðir hornþörungar eða brynþörungar (Dinophyceae). Aðrar tegundir eru nánast berar og getur lögun þeirra verið breytileg. [2] Í flestum tilvikum er kjarni skoruþörunga áberandi. Frumurnar sjálfar eru í ýmsum litum og sumar jafnvel rauðar. Í þörungablóma er oft talað um blóðsjó vegna litarins. Grænukornin í þeim eru yfirleitt gulbrún, en sumar tegundir hafa engin grænukorn (Dinoflagellata). Þær geta neytt fastrar fæðu og flokkast því oft með dýrum. Sumir skoruþörungar hafa rauðan augndíl.[3]

Flokkun

Skoruþörungar eru flokkaðir eftir sköpulagi en taldir vera af samsíða þróunarlínum. Þeir hópar sem eru með hulu eru flokkaðir í fjóra ættbálka eftir því hvernig brynplötur þeirra raðast.

Ættbálkar (auk ýmissa ættkvísla) skoruþörunga sem eru án hulu eru taldir vera fjölstofna (þ.e. tilheyra ólíkum þróunarlínum).

Heimkynni

Skourþörunga má finna bæði í sjó og vötnum, þó meira sé um þá í sjó. Þeir búa oft í samlífi eða jafnvel í samhjálp með öðrum sjávardýrum, þar á meðal kóraldýrum og svömpum.[4]

Þörungablómi

Skoruþörungar eru meðal þeirra svifþörunga sem mynda svokallaðan þörungablóma við strendur og í fjörðum á vorin, sumrin og svo aftur á haustin. [5] Mjög mikill þörungablómi getur litað vötn og sjó í rauðum eða brúnum lit. Þetta er oft kallað mor eða bljóstjór og skapast vegna gríðarlegs fjölda þörunga á viðkomandi svæði. [6]

Skelfiskeitrun

Vissar tegundir skoruþörunga geta valdið matareitrun í mönnum vegna neyslu á skelfiski. Meðal þeirra eitrana sem menn geta veikst af er svokölluð DSP (Diarrhetic shellfish poisoning) eitrun. Eitrunin á sér stað þegar menn neyta skelfiskt sem nærst hefur á þörungunum með þeim afleiðingum að eitur safnast upp í þeim. Þetta gerist aðeins ef mikið magn þörunga er í sjó á svæðinu. DSP eitrun veldur ógleði og uppköstum, niðurgangi og verkjum í kviði. Veikindin ganga yfirleitt yfir á þrem sólarhringum, en þó er talið að í um 15% tilvika valdi hún dauða. [7]


Heimildir

  1. Helgi Hallgrímsson. (2007). ÞÖRUNGATAL Skrá yfir vatna- og landþörunga á Íslandi samkvæmt heimildum.(Fjölrit náttúrufræðistofnunar nr. 90). Reykjavít: Samskipti ehf.
  2. Helgi Hallgrímsson. (2007). ÞÖRUNGATAL Skrá yfir vatna- og landþörunga á Íslandi samkvæmt heimildum.(Fjölrit náttúrufræðistofnunar nr. 90). Reykjavít: Samskipti ehf.
  3. Helgi Hallgrímsson. (2007). ÞÖRUNGATAL Skrá yfir vatna- og landþörunga á Íslandi samkvæmt heimildum.(Fjölrit náttúrufræðistofnunar nr. 90). Reykjavít: Samskipti ehf.
  4. Helgi Hallgrímsson. (2007). ÞÖRUNGATAL Skrá yfir vatna- og landþörunga á Íslandi samkvæmt heimildum.(Fjölrit náttúrufræðistofnunar nr. 90). Reykjavít: Samskipti ehf.
  5. Gísli Jónsson. (2011, ágúst). Skaðlegir þörungar og mögulegar varnir. Fyrirlestur fluttur á þorskeldisfundi, Ísafirði.
  6. Helgi Hallgrímsson. (2007). ÞÖRUNGATAL Skrá yfir vatna- og landþörunga á Íslandi samkvæmt heimildum.(Fjölrit náttúrufræðistofnunar nr. 90). Reykjavít: Samskipti ehf.
  7. Hafrannsóknarstofnun (e.d.), Þörungaeitranir. Sótt 20.okt.2013 af http://www.hafro.is/voktun/eitranir.htm
license
cc-by-sa-3.0
copyright
Höfundar og ritstjórar Wikipedia
original
visit source
partner site
wikipedia IS

Skoruþörungar: Brief Summary ( Icelandic )

provided by wikipedia IS

Skoruþörungar (fræðiheiti: Dinophyceae) eru stærsti flokkur svipuþörunga. Þessir þörungar mynda þörungablóma við strendur þegar líður á sumar og sumar tegundir þeirra eru helsta ástæðan fyrir hættulegum eiturefnum í skelfiski eins og kræklingi.

license
cc-by-sa-3.0
copyright
Höfundar og ritstjórar Wikipedia
original
visit source
partner site
wikipedia IS

Dinoflagellata ( Italian )

provided by wikipedia IT

Le dinoflagellate (dal greco δῖνος dînos, "vortice", e il latino flagellum, "flagello", "frusta"), conosciute anche come pirrofite, peridinee o dinoficee, sono alghe microscopiche per lo più unicellulari e flagellate, che rappresentano uno dei più importanti gruppi del fitoplancton sia marino che d'acqua dolce con oltre 2000 specie viventi.

Le dinoflagellate, assieme ai Ciliati e agli Apicomplexa, appartengono al supergruppo degli Alveolata ovvero quegli organismi unicellulari che possiedono un sistema di alveoli corticali al di sotto del plasmalemma.

Struttura cellulare

 src=
Dinoflagellata al SEM del MUSE.

La cellula è dotata di una struttura peculiare, l'anfiesma e consiste di un periplasto, nella regione sottostante a questo può essere presente un velo di cellulosa. L'anfiesma è formato da delle vescicole, gli alveoli, che possono essere vuote o contenere glucani, in questo caso formano delle placche che rivestono la cellula, si parla in questo caso di teca.

Sono presenti due flagelli, entrambi provvisti di peli laterali, differenti l'uno dall'altro per struttura e orientamento.

Esistono due principali morfotipi: le Dinoconte e le Desmoconte. Nelle Dinoconte la cellula presenta due scanalature, una equatoriale (cingolo) e una longitudinale (solco). Quest'ultimo divide la cellula in due parti, dette epicono (o epiteca) e ipocono (o ipoteca). I due flagelli emergono in posizione ventrale all'intersezione tra il cingolo e il solco. Nelle Desmoconte le placche tecali sono organizzate a formare due valve distinte e i due flagelli fuoriescono in posizione apicale.

Il cloroplasto nelle dinoflagellate è stato originariamente acquisito mediante un evento di endosimbiosi secondaria con un'alga rossa. Nella maggior parte delle specie i cloroplasti sono circondati da tre membrane, i tilacoidi sono in gruppi di tre e contengono clorofilla di tipo a e c2, caroteni, e xantofille tra cui la peridinina. In alcuni casi questo cloroplasto è stato perso e talvolta un altro è stato acquisito mediante altri eventi di endosimbiosi (secondaria o terziaria) con altre alghe eucariote (diatomea, criptoficea, haptofita, alga verde) presentando pertanto un corredo pigmentario differente. Molte dinoflagellate (circa la metà delle specie) sono prive di cloroplasti e sono pertanto eterotrofe obbligate.

Le sostanze di riserva sono granuli di amido che si accumulano all'esterno del cloroplasto e sostanze lipidiche.

Hanno un nucleo voluminoso e primitivo, che viene detto dinocarion: il DNA non è associato a istoni, e durante la mitosi i cromosomi rimangono attaccati alla membrana nucleare, persistente, e non al fuso.

Sulla superficie sono presenti le tricocisti, organuli bastoncellari che sono sparati all'esterno attraverso i pori presenti sulla parete e che hanno funzione di difesa.

Riproduzione e ciclo vitale

Si riproducono abitualmente per via vegetativa: la cellula si divide longitudinalmente, trasversalmente od obliquamente. A parte poche eccezioni, le dinoflagellate sono aploidi e presentano un ciclo vitale aplonte, con meiosi zigotica. La riproduzione sessuata avviene per produzione di gameti che non sono distinguibili dalle cellule vegetative. Dopo la fusione si origina un planozigote che poi perde i flagelli, sviluppa una spessa parete, e spesso diviene una cellula di resistenza (cisti) che resta dormiente nei sedimenti per periodi anche molto lunghi. Alla germinazione si riforma il planozigote che compie la meiosi riformando le cellule vegetative aploidi.

Le cisti sono caratterizzate da una teca molto resistente agli agenti chimici. Possono avere un aspetto simile o molto diverso da quello della cellula madre e presentano un'apertura detta archeopilo, attraverso cui avverrà la germinazione. Si distinguono cisti di resistenza e cisti temporanee, prodotte come strategia di sopravvivenza a lungo e a breve termine. Entrambe possono essere prodotte sia per via sessuata che per via vegetativa. La produzione di cisti ha un ampio significato ecologico, in quanto consente la sopravvivenza delle specie in condizioni avverse, ed ha un importante ruolo nella dispersione delle specie.

Distribuzione ed ecologia

Le dinoflagellate sono molto abbondanti in tutti gli oceani, particolarmente nelle regioni tropicali. Nelle aree temperate hanno il loro massimo sviluppo tipicamente in estate, in condizioni di stabilità della colonna d'acqua. In alcuni casi proliferano intensamente raggiungendo abbondanze molto elevate, dell'ordine di milioni di cellule per litro, dando origine al fenomeno delle "maree rosse".

Alcune specie producono biotossine, composti che hanno attività tossica per l'uomo e per altri vertebrati. Comunemente le biotossine vengono trasferite tramite la catena alimentare e vengono accumulate in organismi vettori (per lo più molluschi bivalvi, ma anche pesci). Il consumo di molluschi o pesci contaminati causa biointossicazioni, tra cui le più importanti sono la PSP (Paralytic Shellfish Poisoning), la DSP (Diarrhetic Shellfish Poisoning), NSP (Neurotoxic Shellfish Poisoning) e la ciguatera.

Pfiesteria piscicida è una specie eterotrofa che produce una ittiotossina neurotossica ed è responsabile di morie di pesce lungo le coste Atlantiche degli USA.

Alcune (es. Symbiodinium spp.) sono simbionti di invertebrati marini, come i coralli, e prendono il nome di zooxantelle. Tali simbiosi sono molto importanti per la formazione e lo stato di salute delle barriere coralline tropicali.

Bibliografia

  • Graham J.E., Wilcox L.W., Graham L.E., 2009. Algae 2nd edition. Benjamin Cummings (Pearson) ed., San Francisco CA., 720 pp.
  • Lee R.E. 1999. Phycology. 3rd edition. Cambridge University Press, 614 pp.
  • Round F.E., Crawford R.M., Mann D.G., 1990. The diatoms. Biology & morphology of the genera. Cambridge University Press: 747 pp.
  • Sournia A., 1986. Atlas du phytoplancton marin. Vol. 1: Introdution, Cyanophycées, Dictyochophycées, Dinophycées et Raphidophycées. A. Sournia ed., Editions du CNRS: 219 pp.
  • Steidinger, K.A. & Tangen, K. 1997. Dinoflagellates. In: Tomas, C.R. (ed.), Identifying Marine Phytoplankton. Academic Press, San Diego, pp. 387–584.

 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Dinoflagellata: Brief Summary ( Italian )

provided by wikipedia IT

Le dinoflagellate (dal greco δῖνος dînos, "vortice", e il latino flagellum, "flagello", "frusta"), conosciute anche come pirrofite, peridinee o dinoficee, sono alghe microscopiche per lo più unicellulari e flagellate, che rappresentano uno dei più importanti gruppi del fitoplancton sia marino che d'acqua dolce con oltre 2000 specie viventi.

Le dinoflagellate, assieme ai Ciliati e agli Apicomplexa, appartengono al supergruppo degli Alveolata ovvero quegli organismi unicellulari che possiedono un sistema di alveoli corticali al di sotto del plasmalemma.

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Šarvadumbliai ( Lithuanian )

provided by wikipedia LT

Šarvadumbliai (lot. Pyrrophyta) – eukariotų (Eukaryota) domeno pirmuonių (Protista) karalystės skyriaus dumbliai.

Šarvadumbliams priklauso judrūs, rečiau nejudrūs, vienaląsčiai arba kolonijiniai žiuželiniai dumbliai. Ląstelės ovališkos, kiaušiniškos, elipsiškos arba pupelės formos su išgaubta nugarine ir plokščia arba įgaubta pilveline pusėmis. Spalva nuo gelsvai rudos ir rausvos.

Iš viso yra apie 1000 rūšių, gyvenančių daugiausia jūrose ir sudarančių didžiąją dalį fitoplanktono. Lietuvoje yra 2 klasės:

Vikiteka

license
cc-by-sa-3.0
copyright
Vikipedijos autoriai ir redaktoriai
original
visit source
partner site
wikipedia LT

Fureflagellater ( Norwegian )

provided by wikipedia NO
Question book-new.svg
Denne artikkelen mangler kildehenvisninger, og opplysningene i den kan dermed være vanskelige å verifisere. Kildeløst materiale kan bli fjernet. Helt uten kilder. (10. okt. 2015)

Fureflagellater (Dinophyceae) er en gruppe av mikroskopiske alger som lever i hav og innsjøer. Visse arter lever også i symbioseforhold f.eks. i koralldyr. Dinoflagellatene er en stor gruppe alger som fins i alle deler av verden, fra polene til tropiske farvann.

Kjennetegn for gruppen er at de har to flageller, den ene ligger i en fure som går rundt cellen den andre går bakover. Flagellene som ligger i furen får cellen til å snurre om sin egen akse mens flagellen som ligger bakover får den til å bevege seg framover. Cellene er asymmetriske og den karakteristiske måten å svømme på, at den skrur seg gjennom vannet, er gunstig pga det lave reynoldstallet (lav masse og hastighet).

Dinoflagellater vokser relativt sakte sammenlignet med mange andre algegrupper, men klarer å konkurrere under næringsfattige forhold. Derfor er denne gruppen vanligst om sommeren i norske farvann etter at termoklinen, dvs. den horisontale lagdelingen av vannmassen, har blitt bygget opp.

En rekke dinoflagellater er giftige, og gruppen står bak en rekke av de HAB (=harmful algal blooms) som blir rapportert rundt om i verden.

Eksterne lenker

Crystal Clear action configure.png
Taksonomisk opprydning: Denne artikkelen trenger en opprydning. Du kan hjelpe Wikipedia ved å forbedre og standardisere den, f.eks. ved å sette inn eller komplettere en taksoboks.
license
cc-by-sa-3.0
copyright
Wikipedia forfattere og redaktører
original
visit source
partner site
wikipedia NO

Fureflagellater: Brief Summary ( Norwegian )

provided by wikipedia NO

Fureflagellater (Dinophyceae) er en gruppe av mikroskopiske alger som lever i hav og innsjøer. Visse arter lever også i symbioseforhold f.eks. i koralldyr. Dinoflagellatene er en stor gruppe alger som fins i alle deler av verden, fra polene til tropiske farvann.

Kjennetegn for gruppen er at de har to flageller, den ene ligger i en fure som går rundt cellen den andre går bakover. Flagellene som ligger i furen får cellen til å snurre om sin egen akse mens flagellen som ligger bakover får den til å bevege seg framover. Cellene er asymmetriske og den karakteristiske måten å svømme på, at den skrur seg gjennom vannet, er gunstig pga det lave reynoldstallet (lav masse og hastighet).

Dinoflagellater vokser relativt sakte sammenlignet med mange andre algegrupper, men klarer å konkurrere under næringsfattige forhold. Derfor er denne gruppen vanligst om sommeren i norske farvann etter at termoklinen, dvs. den horisontale lagdelingen av vannmassen, har blitt bygget opp.

En rekke dinoflagellater er giftige, og gruppen står bak en rekke av de HAB (=harmful algal blooms) som blir rapportert rundt om i verden.

license
cc-by-sa-3.0
copyright
Wikipedia forfattere og redaktører
original
visit source
partner site
wikipedia NO

Dinoflagelado ( Portuguese )

provided by wikipedia PT

Os dinoflagelados (divisão Dinophyta, segundo os botânicos, ou filo Dinoflagellata (Dinoflagellata - do grego "dino", rodopiantes) para os protozoologistas são um grande grupo de protistas flagelados. A maior parte das espécies pertencem ao plâncton marinho (mais especificamente do fitoplâncton), mas são também comuns em água doce. Estão intimamente relacionados com os protozoários ciliados, tais como Paramecium e Vorticella, e com os Apicomplexa (o filo do qual o parasita da malária faz parte).

São organismos que em sua maioria apresentam formas unicelulares, ocorrendo algumas raras formas filamentosas; em sua grande maioria, são flageladas (dois flagelos eucarióticos diferentes), mas existem formas imóveis, amebóides, cocóides e coloniais palmelóides.

São conhecidas por volta de 2.000 a 4.000 espécies, incluindo formas protistas flagelados. A maior parte das espécies pertencem ao plâncton marinho (marinhas e de mais especificamente do fitoplâncton), mas são também comuns em água doce sendo que, metade delas é fóssil e estão distribuídas em 550 gêneros. Seu corpo possuem aspecto semelhante a uma medusa ou a um verme.

São, geralmente, divididos entre as classes Dinophyceae, Noctiluciphyceae e Syndiniophyceae.

Muitas destas espécies têm capacidade fotossintética e formam o maior componente do fitoplâncton depois das diatomáceas. Algumas, as zooxantelas são endosimbiontes de animais ou protistas marinhos e têm um importante papel na biologia dos corais. São heterotróficas (saprófitos, parasitas e holozóicas), bem como formas que vivem em simbiose com animais.

Todos os dinoflagelados são unicelulares com dois flagelos diferentes: um flagelo longitudinal, orientado segundo o eixo da célula, e um flagelo transversal que rodeia a célula. Em muitas espécies, estes flagelos encontram-se em sulcos: o longitudinal chamado sulcus e o transversal, cingulum. É o flagelo transversal que provoca a maior parte do movimento da célula, geralmente em forma de hélice, donde provém o nome destes seres (dinos, em grego, significa, rodar).

Têm sido encontrados com frequência quistos fossilizados de dinoflagelados desde o período Triássico (de há 200 milhões de anos), mas já se encontraram do Siluriano (400 milhões de anos) e pensa-se que alguns dos antigos acritarcas com uma idade de 1,8 biliões de anos, também representem dinoflagelados.Mas ainda não se comprovou se os cistos fósseis mais antigos sejam mesmo de Dinophyta.

Habitat

Existem espécies marinhas, espécies dulciaquícolas e planctônicas. Ainda ocorrem espécies que são: endozóoicas, simbióticas e parasitas.

Locomoção

A maioria são monadais isto é, se locomovem por meio de dois flagelos eucarióticos. Além disso, podem apresentar placas rígidas de celulose formando uma estrutura denominada teca. Esta estrutura em mares abertos se apresenta em tamanho grande, semelhantes a velas, e auxiliam na flutuação.

Há ainda formas imóveis, amebóides, cocóides e coloniais.

Alimentação

Em torno de 50% das espécies não possuem aparato fotossintetizante (plastídios) e são heterótrofas. Por isso, muitas vezes a nutrição ocorre por ingestão de partículas sólidas ou pela absorção de compostos orgânicos dissolvidos. A alimentação de alguns dinoflagelados ocorre por meio da projeção de uma estrutura tubular (conhecida como pedúnculo) que suga a matéria orgânica para dentro da célula. Ao termino da alimentação este pedúnculo é recolhido para dentro da célula.

Muitas das espécies fotossintéticas formam o maior componente do fitoplâncton depois das diatomáceas. Algumas, as zooxantelas são endosimbiontes de animais ou protistas marinhos e têm um importante papel na biologia dos corais. Algumas espécies não têm aquela capacidade e são predadores de outros protistas, havendo ainda espécies parasitas.

Em torno de 20% dos dinoflagelados produzem um ou mais compostos tóxicos. O Pfiesteria piscicida usa essa toxina como meio de capturar alimento. Com a presença de peixes, seus cistos bentônicos são estimulados a germinar o que darão origem às células natantes de Pfiesteria.

Essas células se produzem e liberam uma toxina que paralisa o sistema respiratório do peixe, causando sua morte por asfixia. Com a decomposição deste animal, os dinoflagelados estendem seus pedúnculos e se alimentam da musculatura do peixe. Após a alimentação eles rapidamente retornam ao estágio de cistos bentônicos.

Classificação

Devido à presença ou não de um núcleo diferenciado, denominado dinocarion (possui cromossomos sempre condensados, mesmo na interfase, e com pouca quantidade de histonas), essas algas foram divididas entre as classes:

 src=
Dinophyceae , Gyrodinium spirale

Dinophyceae: constituído por organismos fotossintéticos ou não, possuindo um dinocarion em todas as fases de seu ciclo de vida.

Blastodiniphyceae: formado pelos organismos parasitas não fotossintéticas de peixes e que apresentam um dinocarion em apenas uma parte da vida.

Noctiluciphyceae: composto por organismos flagelados fagotróficos não fotossintéticos que contam com a presença de um dinocarion em apenas um estagio de seu ciclo biológico.

Syndiniophyceae: formado pelos organismos que são caracterizados pela ausência de dinocarion.

São parasitas marinhos não fotossintéticos de outros dinoflagelados, invertebrados, ovos de peixes e mamiferos.

Estrutura celular

Os dinoflagelados possuem uma complexa parede celular chamada anfiesma, e situa-se sobre o plasmalema. A anfiesma é composta de vesículas achatadas, os alvéolos. Em algumas formas, estes alvéolos contêm placas sobrepostas de celulose que formam o que se chama a teca, que pode ter formas muito variadas.

Estas características, em conjunto com recentes estudos genéticos, levaram a juntar este filo com os Apicomplexa e ciliados num clado denominado Alveolata.

Os cloroplastos, nas espécies que os possuem, são rodeados por três membranas e podem ainda possuir um núcleo celular, sugerindo que eles possam ser derivados de uma "alga" endosimbionte. Os pigmentos são tipicamente as clorofilas a e c2 Já os pigmentos acessórios são principalmente β-caroteno, peridinina e outros carotenoides como a giroxantina diéster, que é característico de dinoflagelados que causam marés vermelhas. O carboidrato de reserva é constituído de amido, o qual é sintetizado fora do plastídio e presente no citoplasma na forma de grãos.

Os dinoflagelados têm uma forma peculiar de núcleo celular, denominado dinocarion, em que os cromossomos se encontram condensados, mesmo na interfase, e com pouca quantidade de histonas e mantêm se na fase condensada durante a interfase. Devido a essa escassez de histonas ocorre a presença de uma dupla hélice de DNA de 2,5 nm de diâmetro. Os dinoflagelados têm de 5 a 10 vezes mais DNA no se núcleo que quaisquer outros eucariontes.

A mitose que ocorre nesses organismos é muito particular: a membrana nuclear permanece intacta (mitose fechada) e, na prófase, feixes de microtúbulos penetram no núcleo e situam-se em canais citoplasmáticos. Na anáfase, os núcleos-filhos são formados por constrição da membrana nuclear, os cromossomos-filhos separam-se e migram-se ao longo do feixe em direção aos polos.

Muitos dinoflagelados são haploides, e se reproduzem principalmente por fissão binária, mas a reprodução sexuada também ocorre, através a fusão de dois indivíduos que formam um zigoto, que pode manter-se na sua forma típica, ou enquistar e, mais tarde, sofrer meiose e produzir novas células haploides.

Reprodução

Muitos dinoflagelados possuem células vegetativas haploides, (com exceção do Noctiluca, que parece ter células vegetativas diplóides) e se reproduzem principalmente por divisão celular longitudinal.

A Reprodução Assexuada cada célula receberá um dos flagelos e uma porção da teca. Em seguida cada célula filha reconstitui as partes que faltam em sua sequência intrincada.

Já a Reprodução Sexuada, ocorre através da fusão de duas células haploides que formará uma célula diploide, e a partir daí a célula com sua teca celulósica crescem. Na sequência, haverá a transformação das células diploides em cistos fossilizáveis (encistamento), que encerram o material celular e constituem a fase imóvel do ciclo. Após o encistamento, a parede celulósica se desagrega e o cisto é sedimentado. Em condições ambientais favoráveis, o protoplasma sai do cisto (excistamento) através de uma abertura chamada arqueopilo e reinicia-se o ciclo com a formação de novas células móveis.

Alguns aspectos ecológicos dos dinoflagelados

 src=
Ciclo de Vida de Dinoflagelados

Os dinoflagelados são um dos grupos mais abundantes no plâncton marinho e, como na sua maioria são autotróficos, têm um importante papel na produção primária do globo. No entanto, algumas espécies podem causar impacto econômico negativo ao contaminar os organismos aquáticos. O gênero Alexandrium, por exemplo, produz toxinas que tem forte poder paralisante e ao entrar em contato com organismos filtradores vem provocando mortes de pessoas que os consumirem. O dinoflagelado bentônico Gambierdiscus toxicus é responsável pela Ciguatera (envenenamento resultante do consumo da carne contaminada de determinados peixes tropicais marinhos).

Algumas espécies são responsáveis pelas marés vermelhas que em condições favoráveis de temperatura e nutrientes, elas podem reproduzir-se rapidamente em enormes quantidades e as toxinas que produzidas por elas em muitas vezes causam a morte em massa de outras espécies marinhas. Além disso, estas toxinas podem acumular-se no corpo de animais que se alimentam por filtração, como os bivalves, e podem prejudicar a saúde dos seres humanos que os consumirem.

Alguns dinoflagelados sem aquela pigmentação, como Pfiesteria, podem também produzir florescimentos tóxicos que provocam perdas neurológicas de percepção próximas do mal de Alzheimer.

No entanto, nem todos os florescimentos de dinoflagelados são desagradáveis: nos mares tropicais, podem por vezes apreciar-se, em noites escuras, lindas cenas de luzes à superfície da água e, por vezes, mesmo na rebentação, causadas por dinoflagelados bioluminescentes, de entre os quais o mais famoso é o Noctiluca, que se pode ver a olho nu.

Também servem como alimento para larvas de certos peixes (aquacultura) e com indicadores bioestratigráficos.

Taxonomia

Os dinoflagelados foram, pela primeira vez descritos por Otto Bütschli em 1885 como ordem Dinoflagellida, da classe dos flagelados. Os botânicos tratam-nos como uma divisão das algas, denominada Pyrrhophyta, por causa das formas bioluminescentes (do grego pyrrhos = fogo); também já foram classificados como Dinophyta ou Dinoflagellata. Vários outros protistas, como as criptomonadinas, ebriídeos e elobiopsídeos foram por vezes incluídos no grupo dos dinoflagelados, mas aparentemente não têm afinidade evolutiva com eles.

Devido à sua complexa parede celular, que serve para compostar de vesículas achatadas, os alvéolos, em conjunto com recentes estudos genéticos, levaram a juntar este filo com os Apicomplexa e ciliados num clade denominado Alveolata.

Bibliografia

 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Dinoflagelado: Brief Summary ( Portuguese )

provided by wikipedia PT

Os dinoflagelados (divisão Dinophyta, segundo os botânicos, ou filo Dinoflagellata (Dinoflagellata - do grego "dino", rodopiantes) para os protozoologistas são um grande grupo de protistas flagelados. A maior parte das espécies pertencem ao plâncton marinho (mais especificamente do fitoplâncton), mas são também comuns em água doce. Estão intimamente relacionados com os protozoários ciliados, tais como Paramecium e Vorticella, e com os Apicomplexa (o filo do qual o parasita da malária faz parte).

São organismos que em sua maioria apresentam formas unicelulares, ocorrendo algumas raras formas filamentosas; em sua grande maioria, são flageladas (dois flagelos eucarióticos diferentes), mas existem formas imóveis, amebóides, cocóides e coloniais palmelóides.

São conhecidas por volta de 2.000 a 4.000 espécies, incluindo formas protistas flagelados. A maior parte das espécies pertencem ao plâncton marinho (marinhas e de mais especificamente do fitoplâncton), mas são também comuns em água doce sendo que, metade delas é fóssil e estão distribuídas em 550 gêneros. Seu corpo possuem aspecto semelhante a uma medusa ou a um verme.

São, geralmente, divididos entre as classes Dinophyceae, Noctiluciphyceae e Syndiniophyceae.

Muitas destas espécies têm capacidade fotossintética e formam o maior componente do fitoplâncton depois das diatomáceas. Algumas, as zooxantelas são endosimbiontes de animais ou protistas marinhos e têm um importante papel na biologia dos corais. São heterotróficas (saprófitos, parasitas e holozóicas), bem como formas que vivem em simbiose com animais.

Todos os dinoflagelados são unicelulares com dois flagelos diferentes: um flagelo longitudinal, orientado segundo o eixo da célula, e um flagelo transversal que rodeia a célula. Em muitas espécies, estes flagelos encontram-se em sulcos: o longitudinal chamado sulcus e o transversal, cingulum. É o flagelo transversal que provoca a maior parte do movimento da célula, geralmente em forma de hélice, donde provém o nome destes seres (dinos, em grego, significa, rodar).

Têm sido encontrados com frequência quistos fossilizados de dinoflagelados desde o período Triássico (de há 200 milhões de anos), mas já se encontraram do Siluriano (400 milhões de anos) e pensa-se que alguns dos antigos acritarcas com uma idade de 1,8 biliões de anos, também representem dinoflagelados.Mas ainda não se comprovou se os cistos fósseis mais antigos sejam mesmo de Dinophyta.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Dinophyceae ( Ukrainian )

provided by wikipedia UK

Dinophyceae — клас джгутикових найпростіших типу Динофлагелляти (Dinoflagellata). Масове розмноження представників класу призводить до так званих червоних припливів.

Опис

Характерним для класу є присутність двох джгутиків: один в центрі в канавці, призначений для обертання навколо власної осі; інший на кінці тіла — для поступального руху вперед. Вони мають твердий корпус з целюлози.

Екологія

Більшість з них живуть вільно як прісноводний або морський планктон. Види роду зооксантелл мають симбіотичні відносини з губками, медузами, коралами, актиніями. Корали отримують гліцерин як побічний продукт фотосинтезу, який є важливим у формуванні коралових рифів.

Водорості цього класу характеризуються наявністю хлорофілу і бета-каротину, ці пігменти завжди знаходиться в хроматофорах, хоча деякі види сапрофітів можуть бути без пігментів. Деякі види є біолюмінесцентними, випромінюють світло, коли їх потривожать, ймовірно, щоб налякати хижаків.

Масове розмноження окремих видів може викликати загибель риби.

Question book-new.svg
Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні джерела. Матеріал без джерел може бути підданий сумніву та вилучений. (квітень 2013) Джгутикові Це незавершена стаття про найпростіших.
Ви можете допомогти проекту, виправивши або дописавши її.
license
cc-by-sa-3.0
copyright
Автори та редактори Вікіпедії
original
visit source
partner site
wikipedia UK

Dinophyceae: Brief Summary ( Ukrainian )

provided by wikipedia UK

Dinophyceae — клас джгутикових найпростіших типу Динофлагелляти (Dinoflagellata). Масове розмноження представників класу призводить до так званих червоних припливів.

license
cc-by-sa-3.0
copyright
Автори та редактори Вікіпедії
original
visit source
partner site
wikipedia UK

横裂甲藻纲 ( Chinese )

provided by wikipedia 中文维基百科

橫裂甲藻綱(Dinophyceae)藻類植物之一植物綱。該植物於植物分類表上,歸於甲藻門 (Pyrrophyta),該植物綱轄下有多甲藻目(Peridi-niales) 、變形甲藻目(Dinamoebidiales)等等植物目。

Algae Graphic.svg 横裂甲藻纲是一個與藻類相關的小作品。你可以通过編輯或修訂擴充其內容。
 title=
隐藏分类:
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

横裂甲藻纲: Brief Summary ( Chinese )

provided by wikipedia 中文维基百科

橫裂甲藻綱(Dinophyceae)為藻類植物之一植物綱。該植物於植物分類表上,歸於甲藻門 (Pyrrophyta),該植物綱轄下有多甲藻目(Peridi-niales) 、變形甲藻目(Dinamoebidiales)等等植物目。

Algae Graphic.svg 横裂甲藻纲是一個與藻類相關的小作品。你可以通过編輯或修訂擴充其內容。  title= 取自“https://zh.wikipedia.org/w/index.php?title=横裂甲藻纲&oldid=25412384分类藻類隐藏分类:藻類小作品
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

와편모충류 ( Korean )

provided by wikipedia 한국어 위키백과

와편모충류(渦鞭毛蟲類, dinoflagellates)는 대형 편모충류 원생생물 분류군의 하나이다. 대부분 해양 플랑크톤이지만, 담수 환경에서도 발견된다. 분포하는 개체수는 해수면 온도와 염도 또는 수심 등에 의존한다. 모든 와편모충류의 약 절반은 광합성을 하며, 이들은 규조류를 제외하고 해양 진핵생물 조류 중에서 가장 큰 분류군을 형성한다.

현재, 약 1,555종의 자유 생활하는 와편모충류를 기술하고 있다.[1] 또한 1,700종 이상의 해양 종과 220여 종의 담수 종을 포함하여 약 2,000여 종으로 추산하기도 한다.[2] 가장 크게 추산하는 경우는 현존하는 와편모충류를 2,294종으로 집계하며, 해수와 담수 그리고 기생하는 와편모충류를 포함하고 있다.[3]

하위 분류

어원학

"dinoflagellate"라는 용어는 그리스어 dinos와 라틴어 flagellum의 합성어이다. Dinos는 "소용돌이치는"을 의미하며 와편모충류가 헤엄치는 것이 관찰된 독특한 방식을 의미한다. Flagellum은 "whip"을 의미하며 이것은 편모를 나타낸다.

역사

1753년 Henry Baker는 최초의 현대 와편모충류를 "바다에서 반짝이는 빛을 일으키는 동물들"로 묘사했고, 1773년 Otto Friedrich Müller에 의해 명명되었다. 이 용어는 소용돌이를 의미하는 그리스어 δῖνος (dînos)와 채찍이나 채찍에 대한 작은 용어인 라틴어 편모에서 파생되었다.

1830년대에 독일의 현미경학자 Christian Gottfried Ehrenberg는 많은 물과 플랑크톤 표본을 조사했고 페리디늄, 프로로센트럼, 다이노피시스 등을 포함하여 오늘날에도 사용되고 있는 몇몇 와편모충류 속(dinoflagellate)을 제안했다

이 같은 와편모충류는 1885년 Otto Bütschli에 의해 Dinoflagellida으로 처음 정의되었다.식물학자들은 이들을 생물발광형 또는 Dinophyta의 이름을 따서 Pyrrophyta 또는 Pyrhophyta라고 명명했다. 여러 시기에 cryptomonads, ebriids, ellobiopsids가 여기에 포함되었지만, 현재는 마지막 종만이 근연종으로 간주되고 있다. 와편모충류는 비낭포에서 낭포 형성 전략으로 변형하는 것으로 알려져 있으며, 이는 진화 역사를 재현하는 것을 매우 어렵게 만든다.

형태학

와편모충류는 단세포이며 복부 세포 쪽에서 발생하는 2개의 서로 다른 편모를 가지고 있다. 그들은 세포 왼쪽에 박동하는 여러 파장을 가진 리본 모양의 가로 편모를 가지고 있고, 더 전통적인 편모인 세로 편모가 후방으로 박동한다. 가로 편모(transverse flagellum)는 바깥쪽 가장자리만 밑부분에서 끝부분으로 흔들리는 물결 모양의 리본이다. 축삭의 가장자리에 다양한 길이의 단순한 털이 있다. 편모 운동은 전방 추진력과 회전력을 생성한다. 종편모양의 외관은 비교적 일반적이며 털이 거의 없거나 아예 없다. 그것은 그것의 파동까지 단지 한 두 주기로 박동한다. 편모는 표면 홈에 위치한다. 즉, 원위부는 세포 뒤쪽으로 자유롭게 돌출되어 있지만, 원위부는 cingulum의 횡방향과 황골의 종방향 홈이다. desmokont 편모를 가진 와편모충류 종(예: Prorocentrum)에서는 두 편모가 dinokonts처럼 분화되지만, 홈과는 관련이 없다.

와편모충류는 일련의 막, 폐포라고 불리는 편평한 소포, 관련 구조들로 구성된 양피질 또는 피질이라고 불리는 복잡한 세포 덮개를 가지고 있다. thecate("기갑") 와편모충류에서, 이것들은 겹치는 셀룰로오스 판을 지지하여 theca 또는 lorica라고 불리는 일종의 갑옷을 만든다. 이들은 종에 따라 다양한 모양과 배열로 나타나며, 때로는 와편모충류의 단계에서 나타나기도 한다. 종래에는 이러한 칼 플레이트들의 배열을 지칭하기 위해 표라는 용어가 사용되어 왔다. 플레이트 구성은 플레이트 공식 또는 표 작성 공식으로 표시될 수 있다. 섬유성 압출물은 또한 많은 형태로 발견된다.

생태 및 생리학

서식지

와편모충류는 모든 수생 환경에서 발견되며 눈이나 얼음을 포함한 해양, 기수 및 담수. 저서 환경과 해빙에서도 흔히 볼 수 있다.

내생공생생물

모든 Zooxanthellae는 편모충류이며 대부분은 Symbiodiniaceae(예: Symbiodinium 속)에 속한다. Symbiodinium과 산호초 생성 산호 사이의 연관성은 널리 알려져 있다. 그러나 내생공생생물인 Zooxanthellae는 많은 말미잘, 해파리, 갯지렁이, 대왕조개 Tridacna, 여러 종의 방사충류 및 유공충과 같은 수많은 다른 무척추동물과 원생생물에 서식한다. 현존하는 많은 와편모조류는 기생충이다(여기서 내부에서 먹이를 먹는 유기체, 즉 내부 기생충으로 정의되거나 더 오랜 기간 동안 먹이에 붙어 있는 유기체, 즉 외부 기생충으로 정의됨). 그들은 동물이나 원생생물 숙주에 기생할 수 있다. Protoodinium, Crepidoodinium, Piscinoodinium 및 Blastodinium은 동물성 플랑크톤 또는 어류 숙주를 먹는 동안 색소체를 유지한다. 대부분의 기생 와편모조류에서 감염 단계는 전형적인 운동성 와편모세포와 유사하다.

영양 전략

와편모조류에는 세 가지 영양 전략이 있는 것처럼 보인다. : 광영양, 혼합영양, 종속영양 광영양생물은 광독립영양생물 또는 자가영양생물이가 될 수 있다. 혼합영양 와편모조류는 광합성 활성이 있지만 종속영양생물이기도 한다. 영양에 충분한 조건인 독립영양 또는 종속영양인 혼합 영양은 양영양성으로로 분류된다. 두 가지 형태가 모두 필요한 경우 유기체는 엄밀하게 혼합 영양 상태이다. 자유 생활을 하는 일부 와편모조류에는 엽록체가 없지만 광영양성 내공생체가 있다. 일부 와편모조류는 음식(kleptoplasty)에서 얻은 외래 엽록체(cleptochloroplasts)를 사용할 수 있다. 일부 와편모조류는 포식자나 기생충으로 다른 유기체를 먹을 수 있다. 먹이에는 박테리아, 남조류, 작은 편모조류, 규조류, 섬모류 및 기타 편모조류 등이 있다.

생활사

와편모충류는 야광충과 그 관련 종들을 제외하고는 단상 생활환을 가지고 있다. 수명주기는 일반적으로 데스모시시스(desmoschisis) 또는 백혈구 분열증(eleuteroschisis)을 통해 유사 분열을 하는 무성 생식을 포함한다. 보다 복잡한 생활 주기가 발생하며, 특히 기생 와편모충류의 경우 더욱 그렇다. 유성 생식도 발생하지만, 이 생식 방식은 소수의 와편모류에서만 알려져 있다. 이것은 두 개체가 융합하여 접합체를 형성함으로써 이루어지며, 접합체는 전형적인 와편모조류 방식으로 움직일 수 있으며 동접합자라고 불린다. 이 접합체는 나중에 휴식기 또는 휴면 접합체를 형성할 수 있으며, 이를 dinoflagellate 낭종 또는 dinocyst라고 한다. 낭종의 발아 후(또는 전), 해츨링은 감수 분열을 거쳐 새로운 반수체 세포를 생성한다. 와편모충류는 다양한 유형의 DNA 손상을 처리할 수 있는 여러 DNA 복구 과정을 수행할 수 있는 것으로 보인다.

계통 분류

다음은 피하낭류의 계통 분류이다.[5][6][7]

피하낭류

섬모충류

미오조아

콜포네마강

     

아카보모나스류

미조조아 디노조아  

와편모충류

   

페르킨수스류

    넓은 의미의
정단복합체충류  

좁은 의미의 정단복합체충류

     

크로메라류

   

콜포델라류

             

각주

  1. GÓMEZ, F. (2005). “A list of free-living dinoflagellate species in the world's oceans”. 《Acta Botanica Croatica》 64 (1): 129–212.
  2. Taylor, F. J. R.; Hoppenrath, M.; Saldarriaga, J. F. (2008). “Dinoflagellate diversity and distribution”. 《Biodiv. Cons.》 17: 407–418.
  3. Gómez, F. (2012). “A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata)”. 《CICIMAR Océanides》 27: 65–140.
  4. “Class: Dinophyceae”. AlgaeBase. 2017년 11월 5일에 확인함.
  5. Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015). “A higher level classification of all living organisms”. 《PLoS ONE》 10 (4): e0119248. doi:10.1371/journal.pone.0119248. PMC 4418965. PMID 25923521.
  6. Silar, Philippe (2016). “Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes”. 《HAL Archives-ouvertes》: 1–462.
  7. Cavalier-Smith, Thomas (2017년 9월 5일). “Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences”. 《Protoplasma》 255 (1): 297–357. doi:10.1007/s00709-017-1147-3. PMC 5756292. PMID 28875267.
license
cc-by-sa-3.0
copyright
Wikipedia 작가 및 편집자