dcsimg

Description

provided by AmphibiaWeb articles
A small species of Ambystoma, dark gray to black with a yellow, tan or olive green dorsal stripe often broken up into blotches (Stebbins 1951). The sides have some white speckling. The ventral side is gray or black (Petranka 1998). Ambystoma macrodactylum columbianum A. m. croceum, A. m. krausei, A. m. macrodactylum, A. m. sigillatum are subspecies.See other subspecies accounts at www.californiaherps.com: A. m. croceum (http://www.californiaherps.com/salamanders/pages/a.m.croceum.html) and A. m. sigillatum (http://www.californiaherps.com/salamanders/pages/a.m.sigillatum.html).

References

  • Beneski, J. T. Jr., Zalisko, E. J., and Larsen, J. H. (1986). ''Demography and migratory patterns of the Eastern Long-toed Salamander Ambystoma macrodactylum columbianum.'' Copeia, 1986, 398-408.
  • Blaustein, A. R., Kiesecker, J. M., Chivers, D. P., and Anthony, R. G. (1997). "Ambient UV-B radiation causes deformities in amphibian embryos." Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13735-13737.
  • Sessions, S. K., and Ruth, S. B. (1990). ''Explanation for naturally occurring supernumerary limbs in amphibians.'' Journal of Experimental Zoology, 254, 38-47.

license
cc-by-3.0
author
Lauren M. Chan
original
visit source
partner site
AmphibiaWeb articles

Distribution and Habitat

provided by AmphibiaWeb articles
Their range extends from south-eastern Alaska south to northern California, and from the Pacific coast east to north-central Idaho and western Montana (Petranka 1998). Found in a variety of habitats from coniferous forests to sagebrush plains to alpine meadows. Found on the ground under bark, rocks, and rotting wood piles. Also found in the quiet water of streams, ponds and lakes (Stebbins 1951).
license
cc-by-3.0
author
Lauren M. Chan
original
visit source
partner site
AmphibiaWeb articles

Life History, Abundance, Activity, and Special Behaviors

provided by AmphibiaWeb articles
Eggs exposed to ambient levels of UV-B radiation have been shown to have increased mortality and incidence of deformities than those shielded from UV-B (Blaustein et al 1997). A trematode has been found that disrupts both limb development and regeneration and has been proposed as an explanation of why individuals with supernumerary limbs are found (Sessions and Ruth 1990). Environmental contaminants as well as the introduction of non-native fish predators may also threaten this species. The destruction of wetland habitats may prove to be the greatest threat. The subspecies, A. m. croceum, persists in only a few scattered populations and is threatened with extinction (Petranka 1998).
license
cc-by-3.0
author
Lauren M. Chan
original
visit source
partner site
AmphibiaWeb articles

Life History, Abundance, Activity, and Special Behaviors

provided by AmphibiaWeb articles
Life history varies greatly with elevation and climate. Each season individuals migrate to breeding ponds with males arriving earlier and staying longer than females (Beneski et al 1986). At low elevations this migration may be in October or November, but at higher elevations it does not occur until snowmelt in late spring (Petranka 1998). Males deposit spermatophores (packets of sperm) which females pick up after courtship. Single eggs or loose egg clumps are attached to vegetation or detritus. Larvae hatch 2-5 weeks later and metamorphose in about 3 months (Petranka 1998).
license
cc-by-3.0
author
Lauren M. Chan
original
visit source
partner site
AmphibiaWeb articles

Lifespan, longevity, and ageing

provided by AnAge articles
Maximum longevity: 10 years (wild) Observations: Their life history depends greatly on temperature. In the wild, they live up to 10 years (http://www.fs.fed.us/database/feis/).
license
cc-by-3.0
copyright
Joao Pedro de Magalhaes
editor
de Magalhaes, J. P.
partner site
AnAge articles

Conservation Status

provided by Animal Diversity Web

Since being placed on the first Endangered Species List on March 11, 1967, significant steps have been taken in order to ensure their survival, including the reservation of a 139 acre Ellicott Slough National Wildlife Refuge, in San Francisco Bay, California.(U.S. Fish and Wildlife Service 1986, Westphal 1996) Since the loss of habitat is one major source of impending danger to these salamanders' population, the established refuge has been a large step towards saving this rare species.

US Federal List: no special status

CITES: no special status

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hilt, M. 1999. "Ambystoma macrodactylum croceum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_macrodactylum_croceum.html
author
Megan Hilt, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Life Cycle

provided by Animal Diversity Web

Development - Life Cycle: metamorphosis

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hilt, M. 1999. "Ambystoma macrodactylum croceum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_macrodactylum_croceum.html
author
Megan Hilt, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Much of the 139 acres set aside for the species is of high economic value, which is lost if left undeveloped.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hilt, M. 1999. "Ambystoma macrodactylum croceum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_macrodactylum_croceum.html
author
Megan Hilt, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Both aquatic larvae and terrestrial adults are carnivorous. The larvae primarily eat small aquatic insects and arthropods. The adults also prey upon tree frog tadpoles, earthworms, slugs and various terrestrial insects.(Ferguson 1961)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hilt, M. 1999. "Ambystoma macrodactylum croceum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_macrodactylum_croceum.html
author
Megan Hilt, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

The Santa Cruz long-toed salamander is a relict species, previously widespread throughout California after the Pleistocene era, and is now concentrated in the area of Santa Cruz, California.(Hukill 1997) Upon time of its discovery in 1954 until the present, this species has inhabited four locations around Santa Cruz County. They include the cities of Ellicott, Valencia, Seascape, and Bennett.(U.S. Fish and Wildlife Service 1986)

Biogeographic Regions: nearctic (Native )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hilt, M. 1999. "Ambystoma macrodactylum croceum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_macrodactylum_croceum.html
author
Megan Hilt, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

These salamanders live in ponds, streams or lagoons in the larval stage. As terrestrial adults, the salamanders live in isolated populations in upland and mixed forests and estivate in aquatic habitats. They favor living conditions that allow their skin to stay moist and cool, and residing under forest litter does just this.(Larson 1997)

Terrestrial Biomes: forest

Aquatic Biomes: lakes and ponds; rivers and streams

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hilt, M. 1999. "Ambystoma macrodactylum croceum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_macrodactylum_croceum.html
author
Megan Hilt, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Ambystoma macrodactylum croceum is a small salamander, reaching a full-grown adult length of approximately 127 mm, (5 inches). The body of an adult is a glossy black-charcoal color, with brilliant yellow and orange spots covering its back, decreasing in abundance at the top of the head, and virtually disappearing at the small black eyes. Their head is broad, blunt, and torpedo-shaped.(Duellman and Trueb 1986, Westphal 1996) Two pairs of limbs of approximately equal size are set at right angles from the rib cage.(Ferguson 1961) The four toes on the front legs and five on the back are extremely long. The adult tail is laterally flattened, metamorphosed from the larval stage of a fin. True teeth form a row across the roof of the mouth. In the larval stage, salamanders resemble the adults except that they have caudal fins, four external gill slits on either side of the head, and are a mottled, greenish color.(Duellman and Trueb 1986 Westphal 1996)

Other Physical Features: ectothermic ; bilateral symmetry

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hilt, M. 1999. "Ambystoma macrodactylum croceum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_macrodactylum_croceum.html
author
Megan Hilt, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

The reproductive behavior of Ambystoma macrodactylum croceum is highly unique. After a period of estivation, the salamanders travel great distances to their original breeding site. The males stay for approximately one month, while the females stay for only two weeks. The males spend this time competing with each other for resources in order to increase their fitness, (strength and virility). This increases the brightness of the yellow-orange markings, ultimately augmenting mate sexual preference. In the final courtship ritual, the male nudges the female, and if she is receptive, the male then places his chin on the female's head, rubbing his chin gland in a display of preference. The male then moves away, and the female follows snout-to-tail. The male deposits a mushroom-shaped spermatophore (gelatinous blob of sperm) at the bottom of the lake (pond, or slow-moving stream) for the female. She later takes the spermatophore into her "vent" to fertilize the eggs internally. Approximately 200-400 eggs are laid on a submerged vegetative stalk, and hatch 2-3 weeks later.(Hukill 1997) These jelly-encased eggs are the largest eggs of all salamanders in the area.(Westphal 1996) Larvae live in the pond until about March, when their tails will lose their fin, toes lengthen, and the gills disappear. Sexual maturity is reached at 3-4 years.(U.S. Fish and Wildlife Service 1986)

Key Reproductive Features: gonochoric/gonochoristic/dioecious (sexes separate)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hilt, M. 1999. "Ambystoma macrodactylum croceum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_macrodactylum_croceum.html
author
Megan Hilt, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Overview

provided by EOL authors

Ambystoma macrodactylum, or long-toed salamander, is a common amphibian in the family Ambystomatidae, or mole salamanders. Its native range extends from southeastern Alaska through British Columbia, Washington, and much of Oregon to northern California and from the Pacific coast eastward to northern Idaho, western Montana, and southwestern Alberta (Bull 2005).Long-toed salamanders are extremely adaptable amphibians, but they prefer to live in moist environments near ponds or lakes. They are most identifiable by a long greenish-yellow dorsal stripe, with the rest of their backs being black and their undersides dark brown with white flecks. Adults are about three to four inches long and quite slender. Their name comes from the slightly longer fourth toe on their hind feet (Rockney and Wu 2015).

Long-toed salamanders are the earliest breeding amphibians in their range. The timing differs depending on elevation, with those at lower elevations beginning in late fall and winter and those in alpine habitats waiting until summer (Pilliod and Fronzuto 2016). They are considered opportunistic breeders, meaning that they will lay eggs in all sorts of places, in the hope of at least some surviving. Once the eggs hatch, the aquatic larval stage begins, which can last from 1 to 3 years. The larvae feed on aquatic insects and crustaceans. They eventually lose their gills, produce digits, and metamorphose into terrestrial juveniles. The juvenile and adult salamanders stay within a small range of the pond or body of water where they were born, which will become their breeding grounds when they mature. Adult long-toed salamanders feed on arthropods, mollusks and annelids. They can live up to 7 years (Pilliod and Fronzuto 2016).

Ambystoma macrodactylum probably hibernate during winter, particularly at higher elevations, although adults can remain active all year long in lowland areas (Stebbins 2003). Adults hibernate underground, whereas the larvae can hide under logs and on the underside of leaves or sticks in a pond until it becomes warm enough for them to emerge. If and when they hibernate, they usually do so in groups and survive off of stored protein in their bodies, for months if needed. In general, they lead a very secretive life to avoid encountering predators (Pilliod and Fronzuto 2016). When they are threatened by predators, they coil their bodies or lash their tails, produce secretions from their skin, and can vocalize to either scare away the predator or warn other salamanders of danger. Because they absorb water and oxygen through their skin, they are very sensitive to the conditions of their habitats. This makes them good indicators of the health of the environment. They aren’t considered to be endangered, although they are threatened in certain regions.

References

  • Stebbins, Robert C. 2003. A Field Guide to Western Reptiles and Amphibians, 3d ed. Boston: Houghton Mifflin.
  • Bull, Evelyn L. 2005. “Long-Toed Salamander.” In Amphibians of the Pacific Northwest, edited by Lawrence L.C. Jones, William P. Leonard, and Deanna H. Olsen, 34-37. Seattle: Seattle Audubon Society.
  • Pilliod, David S., and Julie A. Fronzuto. 2016. “Ambystoma macrodactylum.” AmphibiaWeb: Information on amphibian biology and conservation. Berkeley, California. http://amphibiaweb.org. Accessed June 1, 2016.
  • Rockney, Heidi, and Karen Wu. 2015. Long-Toed Salamander. Burke Museum of Natural History and Culture. U of Washington. http://www.burkemuseum.org/blog/long-toed-salamander. Accessed May 31, 2016.

license
cc-by-3.0
copyright
Authors:Natasha Rosenbach,Hadley Reeder,Hadley Reede,Martha Rubardt,Rose Thompson; Editor: Gordon Miller, Seattle University EVST 2100 - Natural History: Theory and Practice
original
visit source
partner site
EOL authors

Associated Plant Communities

provided by Fire Effects Information System Animals
More info for the terms: forest, grassland, woodland

The long-toed salamander occupies a wide variety of habitats including grassland, sagebrush (Artemisia spp.)-grassland, pinyon-juniper (Pinus-Juniperus spp.) woodland, coniferous forest, and coast live oak (Quercus agrifolia) woodland communities [1,5,6,7,30].
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Common Names

provided by Fire Effects Information System Animals
long-toed salamander
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Conservation Status

provided by Fire Effects Information System Animals
Information on state- and province-level protection status of animals in the United States and Canada is available at NatureServe, although recent changes in status may not be included.
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Cover Requirements

provided by Fire Effects Information System Animals
More info for the term: cover

Since they are highly susceptible to desiccation, adult and subadult long-toed salamanders spend most of their lives underground or beneath objects. Larvae use submerged objects and aquatic vegetation for cover [2].

Southern long-toed salamander larvae generally remain hidden under bark, logs, or other submerged objects. They overwinter beneath such objects, in water more than 12 inches (30 cm) deep. In mid-summer in Calaveras County, California, subadults sought cover beneath objects in dried temporary ponds; they were never found outside pond perimeters. In late summer, subadults were still beneath objects in the dried ponds but had formed ball-shaped aggregations of 15 to 43 individuals. Adults used large, rotting logs for cover most of the year [2].

Santa Cruz long-toed salamander larvae in Santa Cruz County use dense aquatic vegetation and turbid water for cover. Subadults cannot disperse to coast live oak woodlands immediately after transformation due to arid summer climate. After summer metamorphosis, they retreat to willow thickets at shore edges or beneath matted vegetation or other debris at the bottoms of drying ponds. When these substrates dry, subadults seek the same substrates used by adults in summer: rodent burrows, buried logs, dense tule (Scirpus acutus) mats, or other microhabitats where moisture is retained throughout the dry season. Subadults often aggregate at these sites, tightly entwined in groups of three to nine individuals. With onset of autumn rains, subadults move into coast live oak woodlands [2]. Adult Santa Cruz salamanders in Monterey County have been found in willow thickets and beneath wooden boxes and other urban debris during the dry season [26].
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Direct Effects of Fire

provided by Fire Effects Information System Animals
There are no data available on fire effects on salamanders. It is likely that fire has little direct effect on long-toed salamanders. Adults are rarely active above ground; when they are active, it is usually under cool, moist weather conditions [13] that occur outside the fire season. During the dry season, adult long-toed salamanders are generally either in burrows, where they are relatively safe from fire, or under moist rotten logs or moist vegetation mats that are not likely to burn except except under extreme fire weather conditions.

If caught in the open during a fire, long-toed salamanders would probably be killed. They are very slow-moving [2], and probably cannot escape even slow-moving fire. Even if missed by fire, they probably could not survive the heat. High temperatures are lethal to long-toed salamanders. In the laboratory, adults from northeastern Oregon and western Idaho were killed by water temperatures that ranged from above 91 to 96 degrees Fahrenheit (33-36 oC) [13].
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Distribution

provided by Fire Effects Information System Animals
The long-toed salamander is distributed from southeastern Alaska and northwestern British Columbia south through Washington and Oregon to northeastern California and east to extreme western Alberta, the Idaho panhandle, and western Montana [2,27]. Distribution of subspecies is as follows[27]:

western long-toed salamander: Vancouver Island, British Columbia; Coastal Ranges of Washington and Oregon

eastern long-toed salamander: southeastern Alaska and northern British Columbia; central and eastern Washington; north-central and northeastern Oregon; western half of the Idaho panhandle

northern long-toed salamander: eastern British Columbia; extreme western Alberta; western Montana; eastern half of the Idaho panhandle

southern long-toed salamander: southwestern Oregon; northeastern California

Santa Cruz long-toed salamander: a disjunct population known from only 3 locations in California - Ellicott Pond State Wildlife Reserve, Santa Cruz Co.; Valencia Lagoon, Santa Cruz Co.; Elkhorn Slough, Monterey Co.
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Food Habits

provided by Fire Effects Information System Animals
More info for the term: density

Adult long-toed salamanders hunt terrestrial and aquatic arthropods. They also scavenge dead arthropods [19,30]. The diet of larvae is similar: larvae consume aquatic arthropods and terrestrial arthropods that fall into the water, and scavenge arthropod remains. In addition, some long-toed salamander larvae are cannibalistic. Cannibal larvae are morphologically different from "normal" larvae, having larger heads and jaws, reduced gills, and a more slender body. Larvae may become cannibalistic in response to either high larval population density or a scarcity of other food sources [31].

In summer, proteins and fats are stored in the tails of long-toed salamanders. These nutrients are metabolized during long periods of dormancy [32].

Eastern long-toed salamander larvae in Oregon have been observed feeding on hatchling Pacific treefrog (Hyla regilla) larvae. Cascades frog (Rana cascadae) larvae and fairy shrimp (Anostraca) were other potential prey in the breeding pond [31].
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Habitat-related Fire Effects

provided by Fire Effects Information System Animals
More info for the term: cover

Adult and subadult long-toed salamanders use logs and large branches for cover, and larvae use floating and submerged downed woody debris of all size classes for cover [2]. Fire that increases downed woody debris while retaining some overhead shade probably improves habitat structure of long-toed salamanders.
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Habitat: Cover Types

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

205 Mountain hemlock

206 Engelmann spruce-subalpine fir

207 Red fir

208 Whitebark pine

210 Interior Douglas-fir

211 White fir

212 Western larch

213 Grand fir

215 Western white pine

217 Aspen

218 Lodgepole pine

221 Red alder

222 Black cottonwood-willow

223 Sitka spruce

224 Western hemlock

225 Western hemlock-Sitka spruce

226 Coastal true fir-hemlock

227 Western redcedar-western hemlock

228 Western redcedar

229 Pacific Douglas-fir

230 Douglas-fir-western hemlock

233 Oregon white oak

234 Douglas-fir-tanoak-Pacific madrone

235 Cottonwood-willow

237 Interior ponderosa pine

243 Sierra Nevada mixed conifer

244 Pacific ponderosa pine-Douglas-fir

245 Pacific ponderosa pine

246 California black oak

247 Jeffrey pine

255 California coast live oak

256 California mixed subalpine
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Habitat: Ecosystem

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

FRES20 Douglas-fir

FRES21 Ponderosa pine

FRES22 Western white pine

FRES23 Fir-spruce

FRES24 Hemlock-Sitka spruce

FRES25 Larch

FRES26 Lodgepole pine

FRES28 Western hardwoods

FRES29 Sagebrush

FRES36 Mountain grasslands

FRES37 Mountain meadows

FRES41 Wet grasslands

FRES44 Alpine
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Habitat: Plant Associations

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

More info for the terms: forest, shrub

K001 Spruce-cedar-hemlock forest

K002 Cedar-hemlock-Douglas-fir forest

K003 Silver fir-Douglas-fir forest

K004 Fir-hemlock forest

K005 Mixed conifer forest

K007 Red fir forest

K008 Lodgepole pine-subalpine forest

K009 Pine-cypress forest

K010 Ponderosa shrub forest

K011 Western ponderosa forest

K012 Douglas-fir forest

K013 Cedar-hemlock-pine forest

K014 Grand fir-Douglas-fir forest

K015 Western spruce-fir forest

K018 Pine-Douglas-fir forest

K025 Alder-ash forest

K026 Oregon oakwoods

K028 Mosaic of K002 and K026

K029 California mixed evergreen forest

K030 California oakwoods

K049 Tule marshes

K052 Alpine meadows and barren

K055 Sagebrush steppe
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Habitat: Rangeland Cover Types

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):

More info for the terms: forb, forest, grassland, shrubland, woodland

109 Ponderosa pine shrubland

110 Ponderosa pine-grassland

202 Coast live oak woodland

203 Riparian woodland

213 Alpine grassland

216 Montane meadows

217 Wetlands

401 Basin big sagebrush

409 Tall forb

411 Aspen woodland

422 Riparian

906 Broadleaf forest

921 Willow
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Occurrence in North America

provided by Fire Effects Information System Animals


AK
CA
ID
MT
OR
WA







AB
BC

license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Predators

provided by Fire Effects Information System Animals
More info for the terms: cover, forest

Adult long-toed salamanders are probably not highly vulnerable to predation. Except during migration, they are secretive in habit. Even then, they migrate to and from breeding ponds at night, in winter or during spring snowmelt, when most predators that would potentially prey on long-toed salamander are relatively inactive [5]. Additionally, long-toed salamanders secrete a toxin from glands in their tails when captured; the toxin often prompts predators to drop and abandon the long-toed salamanders [32].

Near Moscow, Idaho, a common garter snake (Thamnophis sirtalis) was observed in the process of swallowing an eastern long-toed salamander. Other potential predators captured near breeding ponds were western terrestrial garter snakes (T. elgans) and shrews (Sorex spp.). However, these predators were not active until late April, when all but a few male long-toed salamanders had already departed from breeding ponds and returned to forest cover [5].

Long-toed salamander larvae prey upon each other [2,5].
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Preferred Habitat

provided by Fire Effects Information System Animals
More info for the terms: forest, marsh, woodland

General: Long-toed salamanders occur in diverse habitats including coniferous forest, oak (Quercus spp.) woodland, alpine, sagebrush (Artemisia spp.), and marshland communities [2,26]. They use springs, ponds, small lakes, slow-moving streams, and marshlands for breeding and larval development [2,5].

Habitat of Subspecies:

Eastern long-toed salamanders occur in ponderosa pine, lodgepole pine, and subalpine fir-Engelmann spruce (Abies lasiocarpa-Picea engelmannii) zones. A population near Moscow, Idaho, used artificial ponds within ponderosa pine-grand fir (A. grandis) forest for breeding [22]. Eastern long-toed salamanders have also been documented in wheatfields (Triticum aestivus) with irrigation ponds, ponderosa pine-big sagebrush (Artemisia tridentata) woodlands with temporary ponds, and sparsely vegetated whitebark pine-mountain heather (Pinus albicaulis-Phyllodoce empetriformis) communities with permanent lakes [12,13]. Long-toed salamander larvae, presumably eastern long-toed salamanders, were found in a spring within a cottonwood-quaking aspen (Populus spp.-P. tremuloides) riparian community on the Bruneau Resource Area of southern Idaho [18].

The southern long-toed salamander occurs in mixed Sierra Nevada coniferous forest and alpine communities. It has been noted at 8,075 feet (2,750 m) elevation in Alpine County, California. A population at 6,534 feet (1980 m) elevation in Calaveras County, California, occurred in and near a temporary pond formed from snowmelt. The pond was shaded by large trees, including white fir (Abies concolor), ponderosa pine (Pinus ponderosa), lodgepole pine (P. contorta), and quaking aspen, that provided shade for most of the day. The pond was clear and moderately acidic (pH 5.9). It lacked aquatic vegetation and was littered with needles and small woody debris. Further east, a population occurring at 8,085 feet (2,450 m) in Alpine County, California, occupied permanent ponds fed by snowmelt and springs. Lodgepole pine, western white pine (Pinus monticola), and mountain hemlock (Tsuga mertensiana) were sparse to numerous around pond margins but always provided at least some shade. The pond waters were very clear, lacking live vegetation but with considerable downed woody debris including floating and submerged logs [2].

Santa Cruz long-toed salamanders in the two Santa Cruz County populations occur in and near temporary ponds in coast live oak (Quercus agrifolia) woodlands [2,21]. Pond waters are often turbid and aquatic plant growth is extensive. In summer, adults seek moist areas such as seeps and willow (Salix spp.) thickets near pond shores [2]. The Monterey County population occurs in a cattail-bulrush (Typha-Scirpus spp.) marsh [26].
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Regional Distribution in the Western United States

provided by Fire Effects Information System Animals
More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):

1 Northern Pacific Border

2 Cascade Mountains

3 Southern Pacific Border

4 Sierra Mountains

5 Columbia Plateau

8 Northern Rocky Mountains
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Timing of Major Life History Events

provided by Fire Effects Information System Animals
More info for the term: forest

Migration to breeding waters begins in winter for southerly subspecies and during spring snowmelt for northerly subspecies. Sustained temperatures above freezing and abundant, free soil water apparently trigger migration. Migration almost always occurs at night. Long-toed salamanders in cold climates crawl on top of and beneath snow to reach breeding ponds; the ponds are often still partially frozen during mating [2,5,12]. Mating behaviors are described in Anderson [1]. In all locales, males arrive at ponds before females and generally stay for longer periods of time. Females leave soon after depositing their eggs [2,5,12]. They attach eggs to vegetation, submerged wood, or rocks. Santa Cruz long-toed salamanders lay single eggs; southern long-toed salamanders lay eggs in small clusters. Other subspecies tend to lay eggs in masses [2]. The breeding period lasts about a month [2,5,12]; high-elevation populations generally have longer breeding periods than low-elevation populations [12].

Life span: A sampling of adults and subadults (individuals that have metamorphosed but not yet reached sexual maturity) in a northern long-toed salamander population in Alberta showed an age distribution from 1 year to 10 years of age, with most individuals in the 2- to 3-year-old age bracket [20].

Life History - General: Life histories of long-toed salamanders vary with temperature and moisture conditions. Several life history patterns are evident: a one-season larval period (in warm climates); either a short facultative one-season larval period or a two-season larval period (moderate climates); and a three- to four-season larval period (cold climates). In warm climates, period of development is limited by precipitation. Breeding cannot take place until temporary ponds fill. Variation in rainfall determines the length of time water remains and, therefore, period of larval development. Metamorphosis occurs when ponds begin to shrink [2]. In cold climates, development time extends to several years due to short growing season. Regardless of subspecies, long-toed salamander larvae do not transform until attaining a snout-to-vent length of at least 33 mm. In cold climates, it may take 4 years to reach that size [12].

Life History of Subspecies:

Eastern long-toed salamanders - In ponderosa pine forest near Moscow, Idaho, migration to breeding ponds began in late February. By late April, most adults had left the ponds [22]. Howard and Wallace [13] reported that low-elevation (1,390 feet (420 m)) populations in Nez Perce County, Idaho, bred in early February; mid-elevation (3,760 feet (1140 m)) populations in Baker County, Oregon, bred in April; and high-elevation (8,150 feet (2470 m)) populations in Wallowa County, Oregon, bred in June and July. Females at high-elevation sites laid fewer, larger eggs than females at lower-elevation sites. Number of eggs per female averaged 166 (SD +/- 60) at the 1,390-foot site and 90 (SD +/-49) at the 8,150-foot site. Larvae from populations below 6,930 feet (2100 m) metamorphosed in their first summer, while larvae from higher elevations metamorphosed in late summer of their third or fourth year.

Northern long-toed salamanders - A sample of wild individuals in Alberta reached sexual maturity at 47 mm in length, a length attained at about 3 years of age. Well-fed, captive individuals, raised in aquaria from eggs, exceeded 47 mm in length by their first year but did not reach sexual maturity until their second year [20].

Southern long-toed salamanders - Populations in the Sierra Nevada have facultative one-season and two-season larval periods. In Calaveras County, California, at 6,530 feet (1980 m) elevation, time from egg deposition to metamorphosis was 80 to 90 days in temporary ponds. Larval period is probably longer at that elevation in large, permanent ponds. At higher elevations, southern long-toed salamanders do not reach the critical size for metamorphosis in a single season. In Alpine County, California, (elevation 8,085 feet (2450 m)), mating and egg deposition occurs from late May to late June, as soon as ponds partially thaw. Larvae develop in summer and spend the winter beneath ice, transforming in August or September of their second year. Adults first reproduce at age 2 or 3 [2].

Santa Cruz long-toed salamanders - Living in a mediterranean climate, Santa Cruz long-toed salamanders experience one of the driest environments of the species. Larval development is completed within one season. In drought years, rainfall is sometimes insufficient to allow normal breeding and larval development to occur. In wetter years, migration to breeding ponds begins with late fall and winter rains. Santa Cruz long-toed salamanders only migrate on rainy nights. Subadults move to ponds after light rains, but adults migrate only after heavy, ground-soaking rains. Breeding occurs from January to mid-February and eggs hatch from late February to mid-March. Time from breeding to larval transformation and pond shrinkage varies from about 90 to 140 days. Santa Cruz long-toed salamanders are sexually mature at age 2 [2].
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

U.S. Federal Legal Status

provided by Fire Effects Information System Animals
The Santa Cruz long-toed salamander is federally listed as Endangered [29].
license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Use of Fire in Population Management

provided by Fire Effects Information System Animals
More info for the term: fire regime

No entry

FIRE REGIMES : Find fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find FIRE REGIMES".

license
cc-publicdomain
bibliographic citation
Howard, Janet L. 1997. Ambystoma macrodactylum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/amphibian/amma/all.html

Long-toed salamander

provided by wikipedia EN

The long-toed salamander (Ambystoma macrodactylum) is a mole salamander in the family Ambystomatidae.[2] This species, typically 4.1–8.9 cm (1.6–3.5 in) long when mature, is characterized by its mottled black, brown, and yellow pigmentation, and its long outer fourth toe on the hind limbs. Analysis of fossil records, genetics, and biogeography suggest A. macrodactylum and A. laterale are descended from a common ancestor that gained access to the western Cordillera with the loss of the mid-continental seaway toward the Paleocene.

The distribution of the long-toed salamander is primarily in the Pacific Northwest, with an altitudinal range of up to 2,800 m (9,200 ft). It lives in a variety of habitats, including temperate rainforests, coniferous forests, montane riparian zones, sagebrush plains, red fir forests, semiarid sagebrush, cheatgrass plains, and alpine meadows along the rocky shores of mountain lakes. It lives in slow-moving streams, ponds, and lakes during its aquatic breeding phase. The long-toed salamander hibernates during the cold winter months, surviving on energy reserves stored in the skin and tail.

The five subspecies have different genetic and ecological histories, phenotypically expressed in a range of color and skin patterns. Although the long-toed salamander is classified as a species of Least Concern by the IUCN, many forms of land development threaten and negatively affect the salamander's habitat.

Taxonomy

Ambystoma macrodactylum is a member of the Ambystomatidae, also known as the mole salamanders. The Ambystomatidae originated approximately 81 million years ago (late Cretaceous) from its sister taxon Dicamptodontidae.[3][4][5] The Ambystomatidae are also members of suborder Salamandroidea, which includes all the salamanders capable of internal fertilization.[6] The sister species to A. macrodactylum is A. laterale, distributed in eastern North America. However, the species-level phylogeny for Ambystomatidae is tentative and in need of further testing.[7]

Systematics and biogeography

Evolutionary origins

The ancestral origins for this species stem from eastern North America, where species richness of ambystomatids are highest.[8][9] The following biogeographic interpretation on the origins of A. macrodactylum into western North America is based on a descriptive account of fossils, genetics, and biogeography.[10][11] The long-toed salamander's closest living sister species is A. laterale, a native to northeastern North America.[4][9] Ambystomatidae was isolated to the southeast of the mid-Continental or Western Interior Seaway during the Cretaceous (~145.5–66 Ma).[9][12] While three other species of the Ambystomatidae (A. tigrinum, A. californiense, and A. gracile) have overlapping ranges in western North America, the long-toed salamander's closest living sister species is A. laterale, a native to northeastern North America.[4][9] It has been suggested that A. macrodactylum speciated from A. laterale after the Paleocene (~66–55.8 Ma) with the loss of the Western Interior Seaway opening an access route for a common ancestor into the Western Cordillera.[11] Once situated in the montane regions of western North America, species had to contend with a dynamic spatial and compositional ecology responding to the changes in altitude, as mountains grew and the climate changed. For example, the Pacific Northwest became cooler in the Paleocene, paving the way for temperate forest to replace the warmer tropical forest of the Cretaceous.[13] A scenario for the splitting of A. macrodacylum and other western temperate species from their eastern counterparts involves Rocky Mountain uplift in the late Oligocene into the Miocene. The orogeny created a climatic barrier by removing moisture from the westerly air stream and dried the midcontinental area, from southern Alberta to the Gulf of Mexico.[10][14]

Ancestors of contemporary salamanders were likely able to disperse and migrate into habitats of the Rocky Mountains and surrounding areas by the Eocene. Mesic forests were established in western North America by the mid Eocene and attained their contemporary range distributions by the early Pliocene. The temperate forest valleys and montane environments of these time periods (Paleogene to Neogene) would have provided the physiographic and ecological features supporting analogs of contemporary Ambystoma macrodactylum habitats.[10][11][15][16] The Cascade Range rose during the mid Pliocene and created a rain shadow effect causing the xerification of the Columbia Basin and also altered ranges of temperate mesic ecosystems at higher elevations. The rise of the Cascades causing the xerification of the Columbia Basin is a major biogeographic feature of western North America that divided many species, including A. macrodactylum, into coastal and inland lineages.[11][14][16][17]

Subspecies

There are five subspecies of long-toed salamander.[18] The subspecies are discerned by their geographic location and patterns in their dorsal stripe;[19] Denzel Ferguson gives a biogeographic account of skin patterns, morphology; based on this analysis, he introduced two new subspecies: A. macrodactylum columbianum and A. m. sigillatum.[18] The ranges of subspecies are illustrated in Robert Stebbin's amphibian field guides.[19]

Range of A. macrodactylum[10] and ranges of sub-species distributions.[18]
Left: On the dorsal underside under its snout are chin glands that release hormones when males rub against females. These are located under the white flecks. Right: The male vent (excretory and reproductive opening) area has an enlarged anatomy and papillae (pictured). The female vent is not so large and often smoother without papillae folds.[20]

Physical appearance (phenotypes)

Summary of distinguishing skin patterns and morphological features for the subspecies include:[18][21]

A. m. croceum
Orange dorsal color on tail breaking into patches along black body and into tiny dots on head, often absent anterior to eyes. Sides have whitish flecks. Number of costal grooves equals 13.
A. m. columbianum
Yellow to tan dorsal stripe on black body, continuous blotches to spots along body ending in narrowed blotches with spot patterns distributed on the head. White flecks along the sides and underside remaining as separate small flecks. Number of vomerine teeth greater than 35.
A. m. krausei
Yellow to tan dorsal stripe, continuous blotches to spots along body ending in widened blotches with spot patterns distributed on the head. White flecks along the sides and underside remaining as separate small flecks. Number of vomerine teeth equaling 32. Number of costal grooves equals 12.
A. m. sigillatum
Wax yellow to tan dorsal stripe forming spotty to irregular shaped blotches along body ending in dots or specks of dorsal color on head. Number of vomerine teeth equals 44. Number of costal grooves equals 13.
A. m. macrodactylum
Citrine, dull citrine, to tan dorsal stripe that is diffuse and continuous along grayish body. Pattern ending in diffuse specks of stripe color or absent on head and snout. White flecks on sides sometimes coming together to form larger flecks. Number of vomerine teeth equaling 33, forming a distinguished transverse arc. Number of costal grooves equals 13.

Biogeography and genetics

Mitochondrial DNA analysis[11] identifies somewhat different ranges for the subspecies lineages.[11] The genetic analysis, for example, identifies an additional pattern of deep divergence in the eastern part of the range. The spatial distribution of populations and genetics of this species links spatially and historically through the interconnecting mountain and temperate valley systems of western North America.[11][22] The breeding fidelity of long-toed salamanders (philopatry) and other migratory behaviours reduce rates of dispersal among regions, such as within mountain basins. This aspect of their behavior restricts gene flow and increases the degree and rates of genetic differentiation. Genetic differentiation among regions is higher in the long-toed salamander than measured in most other vertebrate groups.[23] Natural breaks in the range of dispersal and migration occur where ecosystems grade into drier xeric low-lands (such as prairie climates) and at frozen or harsher terrain at high elevation extremes (2,200 meters (7,200 ft)).[24]

A. m. columbianum
Genetic evidence for the 'central' subspecies (A. m. columbianum) suggests that it does not extend north into British Columbia, but is restricted to the Blue and Wallowa Mountains of central to northeastern sections of Oregon. Populations are restricted to these areas by the Snake River Canyon (Idaho) to the east and low dry or xeric lands in the Madras basin to the west.[11]
A. m. macrodactylum
The 'coastal' or 'western' subspecies (A. m. macrodactylum) lineage extends north from northeastern California, across the Klamath Siskiyou Range, through the Willamette Valley, along the coastal mountain ranges, including the Cascade Mountains, and continuing north through British Columbia and up into Alaska.[11]
A. m. croceum
The Santa Cruz long-toed salamander (A. m. croceum) is most closely related to the 'coastal' or 'western' subspecies. This conclusion is the most parsimonious biogeographic explanation with nearest populations of A. m. macrodactylum separated by approximately 300 km across the Sacramento-San Joaquin River Delta, California.[10] The isolated endemic populations are listed as an endangered subspecies.[20] Based on the biogeography and molecular clock calibrations, this subspecies may have been separated from the remainder of the distribution since the Miocene, molecular clock calibrations estimating 13.9 million years of separation.[10]
A. m. krausei
The 'eastern' subspecies (A. m. krausei) range is distributed throughout the interior mountains, with the western extent of its range encroaching into the low-land areas of the central interior plateau of Washington and British Columbia and the eastern extent of its range pushing through Rocky Mountain valleys into the lowland foothills and prairies of Montana and Alberta.[25][11]
A. m. sigillatum
The traditional 'southern' subspecies (A. m. sigillatum) does not register a mitochondrial genetic identity.[11] This subspecies was identified by Ferguson as forming an intergrade with A. m. columbianum in south central Oregon.[18]

Thompson and Russell found another evolutionary lineage that originates in a glacially restricted area of the Salmon River Mountains, Idaho.[11] With the arrival of the Holocene interglacial, approximately 10,000 years ago, the Pleistocene glaciers receded and opened a migratory path linking these southern populations to northern areas where they currently overlap with A. m. krausei and co-migrated north into the Peace River (Canada) Valley.[11] Ferguson also noted an intergradation in the same geographic area, but between the morphological subspecies A. m. columbianum and A. m. krausei that run parallel to the Bitterroot and Selkirk ranges.[18] Thompson and Russell suggest that this contact zone is between two different subspecies lineages because the A. m. columbianum lineage is geographically isolated and restricted to the central Oregon Mountains.[11]

Description

The body of the long-toed salamander is dusky black with a dorsal stripe of tan, yellow, or olive-green. This stripe can also be broken up into a series of spots. The sides of the body can have fine white or pale blue flecks. The belly is dark-brown or sooty in color with white flecks. Root tubercles are present, but they are not quite as developed as other species, such as the tiger salamander.[19]

The eggs of this species look similar to those of the related northwestern salamander (A. gracile) and tiger salamander (A. tigrinum).[26] Like many amphibians, the eggs of the long-toed salamander are surrounded by a gelatinous capsule. This capsule is transparent, making the embryo visible during development.[19] Unlike A. gracile eggs, there are no visible signs of green algae, which makes egg jellies green in color. When in its egg, the long-toed salamander embryo is darker on top and whiter below compared to a tiger salamander embryo that is light brown to grey above and cream-colored on the bottom. The eggs are about 2 mm (0.08 in) or greater in diameter with a wide outer jelly layer.[26][27] Prior to hatching—both in the egg and as newborn larvae—they have balancers, which are thin skin protrusions sticking out the sides and supporting the head. The balancers eventually fall off and their external gills grow larger.[28] Once the balancers are lost the larvae are distinguished by the sharply pointed flaring of the gills. As the larvae mature and metamorphose, their limbs with digits become visible and the gills are resorbed.[26][28]

The skin of a larva is mottled with black, brown, and yellow pigmentation. Skin color changes as the larvae develop and pigment cells migrate and concentrate in different regions of the body. The pigment cells, called chromatophores, are derived from the neural crest. The three types of pigment chromatophores in salamanders include yellow xanthophores, black melanophores, and silvery iridiophores (or guanophores).[29][30] As the larvae mature, the melanophores concentrate along the body and provide the darker background. The yellow xanthophores arrange along the spine and on top of the limbs. The rest of the body is flecked with reflective iridiophores along the sides and underneath.[29][18]

As larvae metamorphose, they develop digits from their limb bud protrusions. A fully metamorphosed long-toed salamander has four digits on the front limbs and five digits on the rear limbs.[31] Its head is longer than it is wide, and the long outer fourth toe on the hind limb of mature larvae and adults distinguishes this species from others and is also the etymological origin of its specific epithet: macrodactylum (Greek makros = long and daktylos = toe).[32] The adult skin has a dark brown, dark grey, to black background with a yellow, green, or dull red blotchy stripe with dots and spots along the sides. Underneath the limbs, head, and body the salamander is white, pinkish, to brown with larger flecks of white and smaller flecks of yellow. Adults are typically 3.8–7.6 cm (1.5–3.0 in) long.[26][20]

Habitat and distribution

The long-toed salamander is an ecologically versatile species living in a variety of habitats, ranging from temperate rainforests, coniferous forests, montane riparian, sagebrush plains, red fir forest, semiarid sagebrush, cheatgrass plains, to alpine meadows along the rocky shores of mountain lakes.[19][18][25] Adults can be located in forested understory, hiding under coarse woody debris, rocks, and in small mammal burrows. During the spring breeding season, adults can be found under debris or in the shoreline shallows of rivers, streams, lakes, and ponds. Ephemeral waters are often frequented.[19]

This species is one of the most widely distributed salamanders in North America, second only to the tiger salamander. Its altitudinal range runs from sea level up to 2,800 meters (9,200 ft), spanning a wide variety of vegetational zones.[19][18][33][34][35] The range includes isolated endemic populations in Monterey Bay and Santa Cruz, California.[36] The distribution reconnects in northeastern Sierra Nevada running continuously along the Pacific Coast to Juneau, Alaska, with populations dotted along the Taku and Stikine River valleys. From the Pacific coast, the range extends longitudinally to the eastern foothills of the Rocky Mountains in Montana and Alberta.[37][21][38]

Ecology and life cycle

Long-toed salamander egg mass showing outer jelly layer connecting the mass and two inner capsules separating each egg.

Eggs

Like all amphibians, the life of a long-toed salamander begins as an egg. In the northern extent of its range, the eggs are laid in lumpy masses along grass, sticks, rocks, or the mucky substrate of a calm pond.[39] The number of eggs in a single mass ranges in size, possibly up to 110 eggs per cluster.[40] Females invest a significant amount of resources into egg production, with the ovaries accounting for over 50% of the body mass in the pre-breeding season. A maximum of 264 eggs have been found in a single female—a large number considering each egg is approximately 0.5 millimeters (0.02 in) in diameter.[41] The egg mass is held together by a gelatinous outer layer protecting the outer capsule of individual eggs.[42] The eggs are sometimes laid singly, especially in warmer climates south of the Canada and US border. The egg jellies contribute a yearly supply of biological material that supports the chemistry and nutrient dynamics of shallow-water aquatic ecosystems and adjacent forest ecosystems.[43] The eggs also provide habitat for water molds, also known as oomycetes.[44]

A. m. macrodactylum larva with its eponymous long fourth toes on the rear feet

Larvae

Larvae hatch from their egg casing in two to six weeks.[39] They are born carnivores, feeding instinctively on small invertebrates that move in their field of vision. Food items include small aquatic crustaceans (cladocerans, copepods and ostracods), aquatic dipterans and tadpoles.[45] As they develop, they naturally feed upon larger prey. To increase their chances for survival, some individuals grow bigger heads and become cannibals, and feed upon their own brood mates.[46]

Metamorphosis and juveniles

After the larvae grow and mature, for at least one season (the larval period lasts about four months on the Pacific coast),[37] they absorb their gills and metamorphose into terrestrial juveniles that roam the forest undergrowth. Metamorphosis has been reported as early as July at sea level,[47] for A. m. croceum in October to November and even January.[20] At higher elevations the larvae may overwinter, develop, and grow for an extra season before metamorphosing.[48] In lakes at higher elevations, the larvae can reach sizes of 47 millimeters (1.9 in) snout to vent length (SVL) at metamorphosis, but at lower elevations they develop faster and metamorphose when they reach 35–40 millimeters (1.4–1.6 in) SVL.[23]

Adults

As adults, long-toed salamanders often go unnoticed because they live a subterranean lifestyle digging, migrating, and feeding on the invertebrates in forest soils, decaying logs, small rodent burrows or rock fissures. The adult diet consists of insects, tadpoles, worms, beetles and small fish. Salamanders are preyed upon by garter snakes, small mammals, birds, and fish.[49] An adult may live 6–10 years, with the largest individuals weighing approximately 7.5 grams (0.26 oz), snout to vent lengths reaching 8 cm (3.1 in), and total lengths reaching 14 cm (5.5 in).[50][51]

Behaviour

Seasonal

The life history of the long-toed salamander varies greatly with elevation and climate. Seasonal dates of migration to and from the breeding ponds can be correlated with bouts of sustained rainfall, ice thaw, or snow melt sufficient to replenish the (often) seasonal ponds. Eggs may be spawned at low elevations as early as mid-February in southern Oregon,[52] from early January to July in northwestern Washington,[53] from January to March in southeastern Washington,[54] and from mid-April to early May in Waterton Lakes National Park, Alberta.[55] The timing of breeding can be highly variable; of notable mention, several egg masses in early stages of development were found on July 8, 1999 along the British Columbia provincial border outside Jasper, Alberta.[10] Adults migrate seasonally to return to their natal breeding ponds, with males arriving earlier and staying longer than females, and some individuals have been seen migrating along snow banks on warm spring days.[56] Gender differences (or sexual dimorphism) in this species are only apparent during the breeding season, when mature males display an enlarged or bulbous vent area.

Breeding

Long-toed salamanders gather during the breeding season under a log immediately near the shore of a pond. Notice the range of drab to bright skin colors.

The time of breeding depends on the elevation and latitude of the salamander's habitat. Generally, the lower-elevation salamanders breed in the fall, winter, and early spring. Higher-elevation salamanders breed in spring and early summer. In the higher climates especially, salamanders will enter ponds and lakes that still have ice floating.[19]

Adults aggregate in large numbers (>20 individuals) under rocks and logs along the immediate edge of the breeding sites and breed explosively over a few days.[20] Suitable breeding sites include small fish-free ponds, marshes, shallow lakes and other still-water wetlands.[57] Like other ambystomatid salamanders, they have evolved a characteristic courtship dance where they rub bodies and release pheromones from their chin gland prior to assuming a copulatory mating position. Once in position, the male deposits a spermatophore, which is a gooey stalk tipped with a packet of sperm, and walks the female forward to be inseminated. Males may mate more than once and may deposit as many as 15 spermatophores over the course of a five-hour period.[20][39] The courtship dance for the long-toed salamander is similar to other species of Ambystoma and very similar to A. jeffersonianum.[58][59] In the long-toed salamander, there is no rubbing or head-butting; the males directly approach females and grab on, while the females try to rapidly swim away.[59] The males clasp the female from behind the forelimbs and shake, a behavior called amplexus. Males sometimes clasp other amphibian species during breeding and shake them as well.[53] The male only grabs with the front limbs and never uses his hind limbs during the courtship dance as he rubs his chin side to side pressing down on the female's head. The female struggles but later becomes subdued. Males increase the tempo and motions, rubbing over the female's nostrils, sides, and sometimes the vent. When the female becomes quite docile the male moves forward with his tail positioned over her head, raised, and waving at the tip. If the female accepts the males courtship, the male directs her snout toward his vent region while both move forward stiffly with pelvic undulations. As the female follows, the male stops and deposits a spermatophore, and the female will move forward with the male to raise her tail and receive the sperm packet. The full courtship dance is rarely accomplished in the first attempt.[59] Females deposit their eggs a few days after mating.[20]

Energy storage and defense mechanisms

Long-toed salamander showing an autotomized tail stub
Long-toed salamander showing markings for tail regrowth after loss

In some lowland areas the adult salamanders will remain active all winter long, excluding cold spells. However, during the cold winter months in the northern parts of its range, the long-toed salamander burrows below the frost-line in a coarse substrate to hibernate in clusters of 8–14 individuals.[40][60] While hibernating, it survives on protein energy reserves that are stored in its skin and along its tail.[61] These proteins serve a secondary function as part of a mixture or concoction of skin secretions that is used for defense.[62] When threatened, the long-toed salamander will wave its tail and secrete an adhesive white milky substance that is noxious and likely poisonous.[55][63] The color of its skin can serve as a warning to predators (aposematism) that it will taste bad.[62] Its skin colors and patterns are diverse, ranging from a dark black to reddish brown background that is spotted or blotched by a pale-reddish-brown, pale-green, to a bright yellow stripe.[37][39] An adult may also drop part of its tail and slink away while the tail bit acts as a squirmy decoy; this is called autotomy.[64] The regeneration and regrowth of the tail is one example of the developmental physiology of amphibians that is of great interest to the medical profession.[65]

Conservation status

While the long-toed salamander is classified as least concern by the IUCN,[1] many forms of land development negatively affect the salamander's habitat and have put new perspectives and priorities into its conservation biology. Conservation priorities focus at the population level of diversity, which is declining at rates ten times that of species extinction.[66][67][68][69] Population level diversity is what provides ecosystem services,[70] such as the keystone role that salamanders play in the soil ecosystems, including the nutrient cycling that supports wetland and forested ecosystems.[71]

Two life-history features of amphibians are often cited as a reason why amphibians are good indicators of environmental health or 'canaries in the coal mine'. Like all amphibians, the long-toed salamander has both an aquatic and terrestrial life transition and semipermeable skin. Since they serve different ecological functions in the water than they do in land, the loss of one amphibian species is equivalent to the loss of two ecological species.[72] The second notion is that amphibians, such as long-toed salamanders,[73] are more susceptible to the absorption of pollutants because they naturally absorb water and oxygen through their skin. The validity of this special sensitivity to environmental pollutants, however, has been called into question.[74] The problem is more complex, because not all amphibians are equally susceptible to environmental damage because there is such a diverse array of life histories among species.[75]

Long-toed salamander populations are threatened by fragmentation, introduced species, and UV radiation. Forestry, roads, and other land developments have altered the environments that amphibians migrate to, and have increased mortality.[76] Places such as Waterton Lakes National Park have installed a road tunnel underpass to allow safe passage and to sustain the migration ecology of the species.[2] The distribution of the long-toed salamander overlaps extensively with the forestry industry, a dominant resource supporting the economy of British Columbia and the western United States. Long-toed salamanders will alter migration behaviour and are affected negatively by forestry practices not offering sizable management buffers and protections for the smaller wetlands where salamanders breed.[77][78] Populations near the Peace River Valley, Alberta, have been lost to the clearing and draining of wetlands for agriculture.[79] Trout introduced for the sport fisheries into once fishless lakes are also destroying long-toed salamander populations.[80] Introduced goldfish prey on the eggs and larvae of long-toed salamanders.[81] Increased exposure to UVB radiation is another factor being implicated in the global decline of amphibians and the long-toed salamander is also susceptible to this threat, which increases the incidence of deformities and reduces their survival and growth rates.[82][83][84]

The subspecies Ambystoma macrodactylum croceum (Santa Cruz Long-toed Salamander) is of particular concern and it was afforded protections in 1967 under the US Endangered Species Act.[85] This subspecies lives in a narrow range of habitat in Santa Cruz County and Monterey County, California. Prior to receiving protections, some few remaining populations were threatened by development. The subspecies is ecologically unique, having unique and irregular skin patterns on its back, a unique moisture tolerance, and it is also an endemic that is geographically isolated from the rest of the species range.[18][86][87][88] Other subspecies include A. m. columbianum, A. m. krausei, A. m. macrodactylum and A. m. sigillatum.[21]

See also

References

  1. ^ a b IUCN SSC Amphibian Specialist Group (2015). "Ambystoma macrodactylum". IUCN Red List of Threatened Species. 2015: e.T59063A56539990. doi:10.2305/IUCN.UK.2015-4.RLTS.T59063A56539990.en. Retrieved 19 November 2021.
  2. ^ a b Frost, Darrel R. (2018). "Ambystoma macrodactylum Baird, 1850". Amphibian Species of the World: an Online Reference. Version 6.0. American Museum of Natural History. Retrieved 23 March 2018.
  3. ^ Tihen J (1958). "Comments on the osteology and phylogeny of ambystomatid salamanders". Bulletin Florida State Museum. 3 (1): 1–50. Retrieved 2010-01-11.
  4. ^ a b c Jones TR, Kluge AG, Wolf AJ (1993). "When theories and methodologies clash: A phylogenetic reanalysis of the north American ambystomatid salamanders (Caudata: Amybstomatidae)". Systematic Biology. 42 (1): 92–102. doi:10.1093/sysbio/42.1.92.
  5. ^ Wiens JJ (2007). "Global patterns of diversification and species richness in amphibians" (PDF). American Naturalist. 170 (S2): S86–S106. doi:10.1086/519396. PMID 17874387. S2CID 36017698. Archived from the original (PDF) on 2010-12-07. Retrieved 2011-02-09.
  6. ^ Zhang P, Wake DB (2009). "Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes" (PDF). Molecular Phylogenetics and Evolution. 53 (2): 492–508. doi:10.1016/j.ympev.2009.07.010. PMID 19595776.
  7. ^ Larson A (1996). "Ambystomatidae". Tree of Life Web Project. Archived from the original on 2021-03-03. Retrieved 2010-01-14.
  8. ^ Milner AR (1983). "The biogeography of salamanders in the mesozoic and early caenozoic: A cladistic-vicariance model.". In Sims RW, Price JH, Whalley PE (eds.). Evolution, Time and Space: The Emergence of the Biosphere. The Systematics Association special volume. Vol. 23. London: Academic Press. pp. 431–468. ISBN 978-0-12-644550-3.
  9. ^ a b c d Duellman EW (1999). Patterns of Distribution of Amphibians: A Global Perspective. JHU Press. p. 633. ISBN 978-0-8018-6115-4. Retrieved 2010-01-12.
  10. ^ a b c d e f g Thompson, Mark D (2003). Phylogeography of the long-toed salamander, Ambystoma macrodactylum (MSc thesis). University of Calgary. ISBN 978-0-612-87451-0. OCLC 150649401.
  11. ^ a b c d e f g h i j k l m n Thompson MD, Russell AP (2005). "Glacial Retreat and its Influence on Migration of Mitochondrial Genes in the Long-toed Salamander (Ambystoma macrodactylum) in Western North America". In Elewa AMT (ed.). Climatology, Geography, Ecology: Causes of Migration in Organisms. Heidelberg, Germany: Springer-Verlag Publishers. pp. 205–246. ISBN 978-3-540-26603-7.
  12. ^ Milner AR. (1983). The biogeography of salamanders in the mesozoic and early Caenozoic: A cladistic-vicariance model. In Sims, RW, Price JH, Whalley PES. (Eds.), Evolution, Time and Space: The Emergence of the Biosphere. (pp. 431–468) Vol. 23 of The Systematics Association, Special Volume. Academic Press, London.
  13. ^ Nussbaum RA. (1974). Geographic Variation and Systematics of Salamanders of the Genus Dicamptodon Strauch (Ambystomatidae). 94 pp. Miscellaneous Publications of the Museum of Zoology, University of Michigan, No. 149.
  14. ^ a b Daubenmire R (March 1975). "Floristic Plant Geography of Eastern Washington and Northern Idaho". Journal of Biogeography. 2 (1): 1–18. doi:10.2307/3038197. JSTOR 3038197.
  15. ^ For the original source describing the paleoenvironmental analogs that was cited by Thompson (2003), see: Heusser C, Minneapolis (1983). Vegetational history of the Northwestern United States including Alaska: The late Pleistocene. In: Wright H, Porter S. (Eds.). Late-Quaternary Environments of the United States. (pp. 239–258) University of Minnesota Press.
  16. ^ a b Brunsfeld S, Sullivan J, Soltis D, Soltis P. (2001). Comparative phylogeography of northwestern North America: A synthesis. In: Silverton, J., Antonovics, J. (Eds.), Integrating Ecology and Evolution in a Spatial Context. The 14th Special Symposium of the British Ecological Society. British Ecological Society, Blackwell Science Ltd., Ch. 15, pp. 319–339.
  17. ^ Steele, C. A; Carstens, B. C.; Storfer, A.; Sullivan, J. (2005). "Testing hypotheses of speciation timing in Dicamptodon copei and Dicamptodon aterrimus (Caudata: Dicamptodontidae)" (PDF). Molecular Phylogenetics and Evolution. 36 (1): 90–100. doi:10.1016/j.ympev.2004.12.001. PMID 15904859. Archived from the original (PDF) on 2010-08-14.
  18. ^ a b c d e f g h i j Ferguson DE (1961). "The geographic variation of Ambystoma macrodactylum Baird, with the description of two new subspecies". The American Midland Naturalist. 65 (2): 311–338. doi:10.2307/2422958. JSTOR 2422958.
  19. ^ a b c d e f g h Stebbins RA (2003). A Field Guide to Western Reptiles and Amphibians (Peterson Field Guide Series) (3rd ed.). Boston: Houghton Mifflin. ISBN 978-0-395-98272-3.
  20. ^ a b c d e f g Petranka JW (1998). Salamanders of the United States and Canada. Washington, D.C.: Smithsonian Books. ISBN 978-1-56098-828-1.
  21. ^ a b c Nussbaum RA; Brodie ED Jr.; Storm RM. (1983). Amphibians and reptiles of the Pacific northwest. Moscow, Idaho: University Press of Idaho. ISBN 978-0-89301-086-7.
  22. ^ Tallmon DA, Funk WC, Dunlap WW, Allendorf FW (2000). McEachran JD (ed.). "Genetic differentiation among long-toed salamander (Ambystoma macrodactylum) populations". Copeia. 2000 (1): 27–35. doi:10.1643/0045-8511(2000)2000[0027:GDALTS]2.0.CO;2. JSTOR 1448236. S2CID 37951483.
  23. ^ a b Howard JH, Wallace RL (1981). "Microgeographic variation of electrophoretic loci in populations of Ambystoma macrodactylum columbianum (Caudata: Ambystomatidae)". Copeia. 1981 (2): 466–471. doi:10.2307/1444241. JSTOR 1444241.
  24. ^ The height of elevation extremes varies with climate, but>2,200 metres (7,200 ft) is likely to be an impediment to dispersal across most of this species range north of Oregon. See also: Giordano AR, Ridenhour BJ, Storfer A. (2008). The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Molecular Ecology 16(8): 1625–1637. PDF
  25. ^ a b Graham KL, Powell GL (1999). Status of the Long-toed Salamander (Ambystoma macrodactylum) in Alberta. Alberta Environmental Protection, Fisheries and Wildlife Management Division, and Alberta Conservation Association, Wildlife Status Report No. 22 (PDF). Edmonton, Alberta, Canada: Alberta Environmental Protection, Fisheries and Wildlife Management Division, and Alberta Conservation Association. p. 1. Archived from the original (PDF) on 2011-07-06. Retrieved 2010-01-15.
  26. ^ a b c d Thoms C, Corkran CC (2006). Amphibians of Oregon, Washington And British Columbia: A Field Identification Guide (Lone Pine Field Guides). Edmonton, Alberta, Canada: Lone Pine Publishing. ISBN 978-1-55105-566-4.
  27. ^ Salthe SN (1963). "The egg capsules in the amphibia". Journal of Morphology. 113 (2): 161–171. doi:10.1002/jmor.1051130204. PMID 14065317. S2CID 22749214.
  28. ^ a b Watson S, Russell AP (2000). "A posthatching developmental staging table for the Long-toed salamander, Ambystoma macrodactylum krausei" (PDF). Amphibia-Reptilia. 21 (2): 143–154. doi:10.1163/156853800507336. Retrieved 2010-01-14.
  29. ^ a b Parichy DM (1996). "Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms". Developmental Biology. 175 (2): 265–282. doi:10.1006/dbio.1996.0114. PMID 8626032.
  30. ^ Pederzoli A, Gambarelli A, Restani C (2003). "Xanthophore migration from the dermis to the epidermis and dermal remodeling during Salamandra salamandra salamandra (L.) larval development". Pigment Cell Research. 16 (1): 50–58. doi:10.1034/j.1600-0749.2003.00013.x. PMID 12519125.
  31. ^ Watson, Sheri M (1997). Food level effects on metamorphic timing in the long-toed salamander, Ambystoma macrodactylum krausei (MSc thesis). University of Calgary. ISBN 978-0-612-20859-9. OCLC 150699685.
  32. ^ Baird SF (1849). "Revision of the North American Tailed-Batrachia, with descriptions of new genera and species—Description of four new species of North America Salamanders, and one new species of Scink". Journal of the Academy of Natural Sciences of Philadelphia. 1 (4): 281–292.
  33. ^ Howard JH, Wallace RL (1985). "Life history characteristics of populations of the longtoed salamander (Ambystoma macrodactylum) from different altitudes". American Midland Naturalist. 133 (2): 361–373. doi:10.2307/2425582. JSTOR 2425582.
  34. ^ Funk WC, Dunlap WW (1999). "Colonization of high-elevation lakes by long-toed salamanders (Ambystoma macrodactylum) after the extinction of introduced trout populations". Canadian Journal of Zoology. 77 (11): 1759–1767. doi:10.1139/cjz-77-11-1759.
  35. ^ Giordano AR, Ridenhour BJ, Storfer A (April 2007). "The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym)" (PDF). Molecular Ecology. 16 (8): 1625–1637. doi:10.1111/j.1365-294X.2006.03223.x. PMID 17402978. S2CID 32775223. Retrieved 2010-01-14.
  36. ^ Russell RW, Anderson JD (1956). "A disjunct population of the long-toed salamander from the coast of California". Herpetologica. 12: 137–140.
  37. ^ a b c Carl GC (1950). The Amphibians of British Columbia. 3rd Ed. Handbook No. 2. Victoria, British Columbia: British Columbia Provincial Museum, Department of Education.
  38. ^ For Alaskan distributions, see MacDonald SO. Amphibians and Reptiles of Alaska. See also: Norman, BR (1999). "Geographic distribution: Ambystoma macrodactylum". Herpetological Review. 30: 171.
  39. ^ a b c d Green DM, Campbell RW. (1992). The Amphibians of British Columbia. Royal British Columbia Museum Handbook No. 45. Province of British Columbia, Ministry of Tourism and Ministry Responsible for Culture.
  40. ^ a b Thompson, MD (2001). "An unusually adept Ambystomatid, the long-toed salamander, coping at northern extremes" (PDF). The Boreal Dip Net. 5 (2): 8–10.
  41. ^ Verrell P (2007). "The female reproductive cycle of the North American salamander Ambystoma macrodactylum columbianum". Amphibia-Reptilia. 27 (2): 274–277. doi:10.1163/156853806777239887.
  42. ^ Trueb L, Duellman WE (1994). Biology of Amphibians. Baltimore: Johns Hopkins University Press. p. 112. ISBN 978-0-8018-4780-6. Retrieved 2010-03-06.
  43. ^ Regester KJ, Whiles MR (2006). Taylor CM (ed.). "Decomposition rates of salamander (Ambystoma maculatum) life stages and associated energy and nutrient fluxes in ponds and adjacent forest in southern Illinois". Copeia. 2006 (4): 640–649. doi:10.1643/0045-8511(2006)6[640:DROSAM]2.0.CO;2. JSTOR 4126531. S2CID 85753900.
  44. ^ Petrisko JE, Pearl CA, Pilliod DS, Sheridan PP, Williams CF, Peterson CR, Bury BR (2008). "Saprolegniaceae identified on amphibian eggs throughout the Pacific Northwest, USA, by internal transcribed spacer sequences and phylogenetic analysis" (PDF). Mycologia. 100 (2): 171–180. doi:10.3852/mycologia.100.2.171. PMID 18592894. Retrieved 2010-03-07.
  45. ^ Anderson JD (1968). "A Comparison of the Food Habits of Ambystoma macrodactylum sigillatum, Ambystoma macrodactylum croceum and Ambystoma tigrinum californiense". Herpetologica. 24 (4): 273–284. JSTOR 3891365.
  46. ^ Walls SC, Belanger SS, Blaustein AR (1993). "Morphological variation in a larval salamander: dietary induction of plasticity in head shape". Oecologia. 96 (2): 162–168. Bibcode:1993Oecol..96..162W. doi:10.1007/BF00317728. PMID 28313411. S2CID 24146096.
  47. ^ Kezer J, Farner DS (1955). "Life History Patterns of the Salamander Ambystoma macrodactylum in the High Cascade Mountains of Southern Oregon". Copeia. 1955 (2): 127–131. doi:10.2307/1439318. JSTOR 1439318.
  48. ^ Marnell LF (1997). "Herpetofauna of Glacier National Park". Northwestern Naturalist. 78 (1): 17–33. doi:10.2307/3536855. JSTOR 3536855.
  49. ^ Gregory PT, Matsuda BM, Green D (2006). Amphibians and Reptiles of British Columbia. Victoria: Royal BC Museum. ISBN 978-0-7726-5448-9.
  50. ^ Russell AP, Powell GL, Hall DR (1996). "Growth and age of Alberta long-toed salamanders (Ambystoma macrodactylum krausei): a comparison of two methods of estimation" (PDF). Canadian Journal of Zoology. 74 (3): 397–412. doi:10.1139/z96-047. Retrieved 2010-03-07.
  51. ^ Adding to the range of weight and sizes come from the NAMOS BC amphibian database [1] Archived 2017-04-27 at the Wayback Machine.
  52. ^ Kezer J, Farner DS (1955). "Life history patterns of the salamander Ambystoma macrodactylum in the high Cascade Mountains of southern Oregon". Copeia. 1955 (2): 127–131. doi:10.2307/1439318. JSTOR 1439318.
  53. ^ a b Slater JR (1936). "Notes on Ambystoma gracile Baird and Ambystoma macrodactylum Baird". Copeia. 1936 (4): 234–236. doi:10.2307/1436330. JSTOR 1436330.
  54. ^ Verrell P, Pelton J (1996). "The sexual strategy of the central long-toed salamander, Ambystoma macrodactylum columbianum, in southeastern Washington". Journal of Zoology. 240: 37–50. doi:10.1111/j.1469-7998.1996.tb05484.x.
  55. ^ a b Fukumoto JM. (1995). Long-toed salamander (Ambystoma macrodactylum) ecology and management in Waterton Lakes National Park (ME thesis). University of Calgary. ISBN 978-0-612-04397-8. OCLC 70487881.
  56. ^ Beneski J Jr; Zalisko EJ; Larsen J Jr (1986). "Demography and migratory patterns of the eastern long-toed salamander, Ambystoma macrodactylum columbianum". Copeia. 2 (2): 398–408. doi:10.2307/1444998. JSTOR 1444998.
  57. ^ Stebbins RC, Cohen NW. (1995). A Natural History of Amphibians. Princeton University Press ISBN 0-691-10251-1.
  58. ^ Knudsen JW (1960). "The courtship and egg mass of Ambystoma gracile and Ambystoma macrodactylum". Copeia. 1 (1): 44–46. doi:10.2307/1439844. JSTOR 1439844.
  59. ^ a b c Anderson JD (1961). "The Courtship Behavior of Ambystoma macrodactylum croceum". Copeia. 1961 (2): 132–139. doi:10.2307/1439987. JSTOR 1439987.
  60. ^ Sheppard, Robert Frank (1997). The ecology and home range movements of Ambystoma macrodactylum krausei (Amphibia:Urodela) (M. Sc thesis). University of Calgary. OCLC 15847219.
  61. ^ Williams, Thomas A; Larsen, John H (1986). "New function for the granular skin glands of the eastern long-toed salamander, Ambystoma macrodactylum columbianum". Journal of Experimental Zoology. 239 (3): 329–333. doi:10.1002/jez.1402390304.
  62. ^ a b Grant JB, Evans JA (2007). "A technique to collect and assay adhesive-free skin secretions from Ambystomatid salamanders". Herpetological Review. 38 (3): 301–5.
  63. ^ Toledo, R (1995). "Cutaneous granular glands and amphibian venoms". Comparative Biochemistry and Physiology A. 111: 1–29. doi:10.1016/0300-9629(95)98515-I.
  64. ^ "NAMOS BC (Northern Amphibian Monitoring Outpost Society)". Archived from the original on 2016-03-03. Retrieved 2009-06-24.
  65. ^ Odelberg SJ (2005). "Cellular plasticity in vertebrate regeneration". The Anatomical Record Part B: The New Anatomist. 287 (1): 25–35. doi:10.1002/ar.b.20080. PMID 16308861.
  66. ^ Blaustein, AR; Kiesecker, JM (2002). "Complexity in conservation: lessons from the global decline of amphibian populations" (PDF). Ecology Letters. 5 (4): 597–608. doi:10.1046/j.1461-0248.2002.00352.x.
  67. ^ Luck, GW; Daily, GC; Ehrlich, PR (2003). "Population diversity and ecosystem services" (PDF). Trends in Ecology and Evolution. 18 (7): 331–336. doi:10.1016/s0169-5347(03)00100-9. Archived from the original (PDF) on 2009-02-05. Retrieved 2009-01-15.
  68. ^ Gascon C, Collins JP, Moore RD, Church DR, McKay JE, Mendelson JR III. (eds). (2007). Amphibian Conservation Action Plan. IUCN/SSC Amphibian Specialist Group. Gland, Switzerland and Cambridge, UK. 64 pp. PDF Archived 2007-07-04 at the Wayback Machine
  69. ^ Wood, CW; Gross, MR (2008). "Elemental Conservation Units: Communicating Extinction Risk without Dictating Targets for Protection" (PDF). Conservation Biology. 22 (1): 36–47. doi:10.1111/j.1523-1739.2007.00856.x. PMID 18254851. S2CID 23211536. Archived from the original (PDF) on 2018-10-01. Retrieved 2009-01-15.
  70. ^ Kareiva, P; Marvier, M (2003). "Conserving biodiversity coldspots" (PDF). American Scientist. 91 (4): 344–351. doi:10.1511/2003.26.869. S2CID 120910582. Archived from the original (PDF) on 2009-02-25. Retrieved 2009-01-16.
  71. ^ Davic, RD; Welsh, HH Jr (2004). "On the ecological role of salamanders" (PDF). Annual Review of Ecology and Systematics. 35: 405–434. CiteSeerX 10.1.1.521.9086. doi:10.1146/annurev.ecolsys.35.112202.130116.
  72. ^ Whiles, M.R.; Lips, K.R.; Pringle, C.M.; Kilham, S.S.; Bixby, R.J.; Brenes, R.; Connelly, S.; et al. (2006). "The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems" (PDF). Frontiers in Ecology and the Environment. 4 (1): 27–34. doi:10.1890/1540-9295(2006)004[0027:teoapd]2.0.co;2.
  73. ^ John, Fraley (October 2009). Long-toed Salamander. Montana Outdoors. ISBN 978-0-7785-2002-3.
  74. ^ Collins, J.P.; Crump, M. (2008). Extinction in our times: Global amphibian decline. New York: Oxford University Press. ISBN 978-0-19-531694-0.
  75. ^ Beebee, T.J.C.; Griffiths, R (2005). "The amphibian decline crisis: A watershed for conservation biology?". Biological Conservation. 125 (3): 271–285. doi:10.1016/j.biocon.2005.04.009.
  76. ^ Becker, CG; Fonseca, CR; Haddad, CFB; Batista, RF; Prado, PI (2007). "Habitat Split and the Global Decline of Amphibians". Science. 318 (5857): 1775–1777. Bibcode:2007Sci...318.1775B. doi:10.1126/science.1149374. PMID 18079402. S2CID 22055213.
  77. ^ Ferguson C. (1999). Impacts of forest harvesting on the long-toed salamander (Ambystoma macrodactylum) at Opax Mountain. Pp. 221–229 In C. Hollstedt, A. Vyse, and D. Huggard, eds. New information for the management of dry Douglas-fir forests: Proc. dry Douglas-fir workshop. B.C. Minist. for., Victoria, BC. PDF
  78. ^ Naughton, GP; Henderson, CB; Foresman, KR; McGraw, RL II (2000). "Long-toed salamanders in harvested and intact Douglas-fir forests of western Montana". Ecological Applications. 10 (6): 1681–1689. doi:10.1890/1051-0761(2000)010[1681:ltsiha]2.0.co;2.
  79. ^ Walsh, R (1998). "An extension of the known range of the long-toed salamander, Ambystoma macrodactylum, in Alberta". Canadian Field-Naturalist. 112: 331–333.
  80. ^ Funk, WC; Dunlap, WW (1999). "Colonization of high-elevation lakes by long-toed salamanders (Ambystoma macrodactylum) after the extinction of introduced trout populations". Canadian Journal of Zoology. 77 (11): 1759–1767. doi:10.1139/z99-160. Archived from the original on 2012-07-07.
  81. ^ Monello, RJ; Wright, RG (2001). "Predation by goldfish (Carassius auratus) on eggs and larvae of the eastern Long-Toed Salamander (Ambystoma macrodactylum columbianum)". Journal of Herpetology. 35 (2): 350–353. doi:10.2307/1566132. JSTOR 1566132.
  82. ^ Blaustein, AR; Kiesecker, JM; Chivers, DP; Anthony, RG (1997). "Ambient UV-B radiation causes deformities in amphibian embryos". Proceedings of the National Academy of Sciences of the United States of America. 94 (25): 13735–13737. Bibcode:1997PNAS...9413735B. doi:10.1073/pnas.94.25.13735. PMC 28375. PMID 9391095.
  83. ^ Belden, LK; Wildy, EL; Blaustein, AR (2000). "Growth, survival, and behaviour of larval long-toed salamanders (Ambystoma macrodactylum) exposed to ambient levels of UV-B radiation". Journal of Zoology (London). 251 (4): 473–479. doi:10.1111/j.1469-7998.2000.tb00803.x.
  84. ^ Croteau, MC; Davidson, MA; Lean, DR; Trudeau, VL (2008). "Global increases in ultraviolet B radiation: potential impacts on amphibian development and metamorphosis". Physiological and Biochemical Zoology. 81 (6): 743–761. doi:10.1086/591949. PMID 18954263. S2CID 31675246.
  85. ^ "DFG - Nongame Wildlife Program - Threatened and Endangered Amphibians". Retrieved 2009-06-23.
  86. ^ Anderson, JD (1972). "Behavior of three subspecies of Ambystoma macrodactylum in a soil moisture gradient". Journal of Herpetology. 6 (3–4): 191–194. doi:10.2307/1562770. JSTOR 1562770.
  87. ^ Reed RJ. (1978). Population study of the Santa Cruz long-toed salamander (Ambystoma macrodactylum croceum) at Valencia Lagoon 1977–1978, with notes on habitat and occurrence in Santa Cruz and Monterey counties. Calif. Dept. Fish & Game, contract S-1180.
  88. ^ Fisher, RN; Shaffer, HB (2002). "The Decline of Amphibians in California's Great Central Valley". Conservation Biology. 10 (5): 1387–1397. doi:10.1046/j.1523-1739.1996.10051387.x.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Long-toed salamander: Brief Summary

provided by wikipedia EN

The long-toed salamander (Ambystoma macrodactylum) is a mole salamander in the family Ambystomatidae. This species, typically 4.1–8.9 cm (1.6–3.5 in) long when mature, is characterized by its mottled black, brown, and yellow pigmentation, and its long outer fourth toe on the hind limbs. Analysis of fossil records, genetics, and biogeography suggest A. macrodactylum and A. laterale are descended from a common ancestor that gained access to the western Cordillera with the loss of the mid-continental seaway toward the Paleocene.

The distribution of the long-toed salamander is primarily in the Pacific Northwest, with an altitudinal range of up to 2,800 m (9,200 ft). It lives in a variety of habitats, including temperate rainforests, coniferous forests, montane riparian zones, sagebrush plains, red fir forests, semiarid sagebrush, cheatgrass plains, and alpine meadows along the rocky shores of mountain lakes. It lives in slow-moving streams, ponds, and lakes during its aquatic breeding phase. The long-toed salamander hibernates during the cold winter months, surviving on energy reserves stored in the skin and tail.

The five subspecies have different genetic and ecological histories, phenotypically expressed in a range of color and skin patterns. Although the long-toed salamander is classified as a species of Least Concern by the IUCN, many forms of land development threaten and negatively affect the salamander's habitat.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Ambystoma macrodactylum ( Spanish; Castilian )

provided by wikipedia ES

Ambystoma macrodactylum es una especie de salamandra con dedos largos de la familia Ambystomatidae.[2]​ Esta especie, mide entre 4 y 9 cm de largo de adulta, se caracteriza por su pigmentación moteada de color negro, marrón y amarillo, y su cuarto dedo largo y externo en las extremidades posteriores. El análisis de los registros fósiles, la genética y la biogeografía sugieren que A. macrodactylum y A. laterale descienden de un antepasado común que obtuvo acceso a la Cordillera occidental con la pérdida de la vía marítima medio continental hacia el Paleoceno.

La salamandra de dedos largos se encuentra principalmente en el noroeste del Pacífico, con un rango altitudinal de hasta 2800 m. Vive en una variedad de hábitats, incluyendo bosques templados lluviosos, bosques de coníferas, zonas ribereñas montanas, llanuras de artemisa, bosques de abetos rojos, artemisa semiárida, llanuras de hierba de pasto y prados alpinos a lo largo de las costas rocosas de los lagos de montaña. Vive en arroyos, estanques y lagos de movimiento lento durante su fase de reproducción acuática. La salamandra de dedos largos hiberna durante los fríos meses de invierno, sobreviviendo en las reservas de energía almacenadas en la piel y la cola.

Las cinco subespecies tienen historias genéticas y ecológicas diferentes, expresadas fenotípicamente en una gama de colores y patrones de piel. Aunque la salamandra de dedos largos está clasificada como una especie de preocupación menor por la UICN, muchas formas de desarrollo de la Tierra amenazan y afectan negativamente el hábitat de la salamandra.

Descripción

El cuerpo de la salamandra de dedos largos es de color negro oscuro con una franja dorsal de color tostado, amarillo o verde oliva. Esta tira también se puede dividir en una serie de puntos. Los costados del cuerpo pueden tener finas manchas blancas o azul pálido. El vientre es de color marrón oscuro o hollín con manchas blancas. Los tubérculos de raíz están presentes, pero no están tan desarrollados como otras especies, como la salamandra tigre. [3]

Los huevos de esta especie se parecen a los de su parientes la salamandra del noroeste (A. gracile) y la salamandra tigre (A. tigrinum).[4]​ Al igual que en muchos anfibios, los huevos de la salamandra de dedos largos están rodeados por una cápsula gelatinosa. Esta cápsula es transparente, lo que hace que el embrión sea visible durante el desarrollo.[3]​ A diferencia de los huevos de A. gracile, no hay signos visibles de algas verdes, lo que hace que las gelatinas sean de color verde. Cuando está en su huevo, el embrión de salamandra de dedos largos es más oscuro en la parte superior y más blanco en la parte inferior en comparación con un embrión de salamandra tigre que es de color marrón claro a gris en la parte superior y de color crema en la parte inferior. Los huevos miden aproximadamente 2 mm o más de diámetro con una gruesa capa exterior de gelatina. [4][5]​ Antes de la eclosión, tanto en el huevo como en las larvas del recién nacido, tienen equilibradores, que son protuberancias finas de la piel que sobresalen por los lados y sostienen la cabeza. Los equilibradores eventualmente se caen y sus branquias externas se hacen más grandes.[6]​ Una vez que se pierden los equilibradores, las larvas se distinguen por la forma puntiaguda de las branquias. A medida que las larvas maduran y se metamorfosean, sus miembros con dígitos se vuelven visibles y las branquias se reabsorben.[4][6]

La piel de la larva está moteada con pigmentación negra, marrón y amarilla. El color de la piel cambia a medida que se desarrollan las larvas y las células pigmentarias migran y se concentran en diferentes partes del cuerpo. Las células pigmentarias, llamadas cromatóforos, se derivan de la cresta neural. Los tres tipos de cromatóforos pigmentarios en las salamandras incluyen xantóforos amarillos, melanóforos negros e iridióforos (o guanóforos) plateados.[7][8]​ A medida que las larvas maduran, los melanóforos se concentran a lo largo del cuerpo y proporcionan el fondo más oscuro. Los xantóforos amarillos se disponen a lo largo de la columna vertebral y en la parte superior de las extremidades. El resto del cuerpo está salpicado de iridióforos reflectantes a lo largo de los lados y debajo.[7][9]

A medida que las larvas se metamorfosean, desarrollan dígitos a partir de las protuberancias de las yemas de sus extremidades. Una salamandra de dedos largos completamente metamorfoseada tiene cuatro dígitos en las extremidades delanteras y cinco dígitos en las extremidades posteriores.[10]​ Su cabeza es más larga que ancha, y el cuarto dedo largo exterior de la extremidad posterior de las larvas maduras y los adultos distingue a esta especie de otras y también es el origen etimológico de su epíteto específico: macrodactylum (en griego macros = 'largos' y daktylos = 'dedo de la pata' ).[11]​ La piel adulta tiene un fondo marrón oscuro, gris oscuro a negro con una franja manchada amarilla, verde o roja opaca con puntos y manchas a lo largo de los lados. Debajo de las extremidades, la cabeza y el cuerpo, la salamandra es blanca, rosada a marrón con manchas más grandes de color blanco y manchas más pequeñas de color amarillo. [4][12]​ Los adultos miden de 4 a 8 cm de largo.

Referencias

  1. IUCN SSC Amphibian Specialist Group, Ambystoma macrodactylum, volume= 2015, pag e.T59063A56539990, ( 2015), doi = 10.2305/IUCN.UK.2015-4.RLTS.T59063A56539990.en
  2. Frost, Darrel R. (2018). «Ambystoma macrodactylum Baird, 1850». Amphibian Species of the World: an Online Reference. Version 6.0. American Museum of Natural History. Consultado el 23 de marzo de 2018.
  3. a b Stebbins RA (2003). A Field Guide to Western Reptiles and Amphibians (Peterson Field Guide Series) (3rd edición). Boston: Houghton Mifflin. ISBN 978-0-395-98272-3.
  4. a b c d Thoms C, Corkran CC (2006). Amphibians of Oregon, Washington And British Columbia: A Field Identification Guide (Lone Pine Field Guides). Edmonton, Alberta, Canada: Lone Pine Publishing. ISBN 978-1-55105-566-4.
  5. Salthe SN (1963). «The egg capsules in the amphibia». Journal of Morphology 113 (2): 161-171. PMID 14065317. doi:10.1002/jmor.1051130204.
  6. a b Watson S, Russell AP (2000). «A posthatching developmental staging table for the Long-toed salamander, Ambystoma macrodactylum krausei». Amphibia-Reptilia 21 (2): 143-154. doi:10.1163/156853800507336. Consultado el 14 de enero de 2010.
  7. a b Parichy DM (1996). «Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms». Developmental Biology 175 (2): 265-282. PMID 8626032. doi:10.1006/dbio.1996.0114. Archivado desde el original el 20 de agosto de 2008. Consultado el 2 de mayo de 2020.
  8. Pederzoli A, Gambarelli A, Restani C (2003). «Xanthophore migration from the dermis to the epidermis and dermal remodeling during Salamandra salamandra salamandra (L.) larval development». Pigment Cell Research 16 (1): 50-58. PMID 12519125. doi:10.1034/j.1600-0749.2003.00013.x.
  9. Ferguson DE (1961). "The geographic variation of Ambystoma macrodactylum Baird, with the description of two new subspecies". The American Midland Naturalist. 65 (2): 311–338. doi:10.2307/242295
  10. Watson, Sheri M (1997). Food level effects on metamorphic timing in the long-toed salamander, Ambystoma macrodactylum krausei (MSc thesis). University of Calgary. ISBN 978-0-612-20859-9. OCLC 150699685.
  11. Baird SF (1849). «Revision of the North American Tailed-Batrachia, with descriptions of new genera and species—Description of four new species of North America Salamanders, and one new species of Scink». Journal of the Academy of Natural Sciences of Philadelphia 1 (4): 281-292.
  12. Petranka JW (1998). Salamanders of the United States and Canada. Washington, D.C.: Smithsonian Books. ISBN 978-1-56098-828-1.

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Ambystoma macrodactylum: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Ambystoma macrodactylum es una especie de salamandra con dedos largos de la familia Ambystomatidae.​ Esta especie, mide entre 4 y 9 cm de largo de adulta, se caracteriza por su pigmentación moteada de color negro, marrón y amarillo, y su cuarto dedo largo y externo en las extremidades posteriores. El análisis de los registros fósiles, la genética y la biogeografía sugieren que A. macrodactylum y A. laterale descienden de un antepasado común que obtuvo acceso a la Cordillera occidental con la pérdida de la vía marítima medio continental hacia el Paleoceno.

La salamandra de dedos largos se encuentra principalmente en el noroeste del Pacífico, con un rango altitudinal de hasta 2800 m. Vive en una variedad de hábitats, incluyendo bosques templados lluviosos, bosques de coníferas, zonas ribereñas montanas, llanuras de artemisa, bosques de abetos rojos, artemisa semiárida, llanuras de hierba de pasto y prados alpinos a lo largo de las costas rocosas de los lagos de montaña. Vive en arroyos, estanques y lagos de movimiento lento durante su fase de reproducción acuática. La salamandra de dedos largos hiberna durante los fríos meses de invierno, sobreviviendo en las reservas de energía almacenadas en la piel y la cola.

Las cinco subespecies tienen historias genéticas y ecológicas diferentes, expresadas fenotípicamente en una gama de colores y patrones de piel. Aunque la salamandra de dedos largos está clasificada como una especie de preocupación menor por la UICN, muchas formas de desarrollo de la Tierra amenazan y afectan negativamente el hábitat de la salamandra.

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Ambystoma macrodactylum ( Basque )

provided by wikipedia EU

Ambystoma macrodactylum Ambystoma generoko animalia da. Anfibioen barruko Ambystomatidae familian sailkatuta dago, Caudata ordenan.

Erreferentziak

Ikus, gainera

(RLQ=window.RLQ||[]).push(function(){mw.log.warn("Gadget "ErrefAurrebista" was not loaded. Please migrate it to use ResourceLoader. See u003Chttps://eu.wikipedia.org/wiki/Berezi:Gadgetaku003E.");});
license
cc-by-sa-3.0
copyright
Wikipediako egileak eta editoreak
original
visit source
partner site
wikipedia EU

Ambystoma macrodactylum: Brief Summary ( Basque )

provided by wikipedia EU

Ambystoma macrodactylum Ambystoma generoko animalia da. Anfibioen barruko Ambystomatidae familian sailkatuta dago, Caudata ordenan.

license
cc-by-sa-3.0
copyright
Wikipediako egileak eta editoreak
original
visit source
partner site
wikipedia EU

Pitkävarvassalamanteri ( Finnish )

provided by wikipedia FI

Pitkävarvassalamanteri (Ambystoma macrodactylum) on Ambystoma-sukuun kuuluva pyrstösammakkolaji. Alalaji santacruzinpitkävarvassalamanteri (A. m. croceum) on uhanalainen. Muita alalajeja ovat lännenpitkävarvassalamanteri (A. m. macrodactylum), idänpitkävarvassalamanteri (A. m. columbianum), pohjoinenpitkävarvassalamanteri (A. m. krausei) ja etelänpitkävarvassalamanteri (A. m. sigillatum).

Ulkonäkö ja koko

Pitkävarvassalamanteri on pieni, 10–17 senttiä pitkä. Nimensä mukaisesti sillä on pitkät varpaat. Väriltään se on tummanharmaa tai musta. Sillä on selässä juova, joka on keltainen, vihreä tai ruskea. Kyljissä sillä on valkoisia laikkuja.

Levinneisyys ja elinympäristö

Pitkävarvassalamanteria tavataan Yhdysvaltain koillisosissa ja Kanadassa. Sitä esiintyy metsissä ja niityillä, erityisesti paikoissa, missä on marunakasveja.

Lisääntyminen

Pitkävarvassalamanteri tulee sukukypsäksi 1–3-vuotiaana.[3] Muniminen tapahtuu keväällä kasvillisuuden sekaan. Lisääntymispaikkoja ovat järvet, lammet ja joet.[4]

Lähteet

  1. IUCN SSC Amphibian Specialist Group: Ambystoma macrodactylum IUCN Red List of Threatened Species. Version 2017.3. 2015. International Union for Conservation of Nature, IUCN, Iucnredlist.org. Viitattu 13.6.2018. (englanniksi)
  2. Roy W. McDiarmid: Ambystoma macrodactylum Itis Report. 12.1.2014. Viitattu 12.1.2014. (englanniksi)
  3. Ambystoma macrodactylum AmphibiaWeb. Viitattu 12.1.2014. (englanniksi)
  4. Mark O'Shea, Tim Halliday: ”Pitkävarvassalamanteri”, Matelijat ja sammakkoeläimet, s. 205. Suomentanut Sari Welling-Hirvonen. Readme.fi, 2009. ISBN 978-952-220-174-4.

Aiheesta muualla

license
cc-by-sa-3.0
copyright
Wikipedian tekijät ja toimittajat
original
visit source
partner site
wikipedia FI

Pitkävarvassalamanteri: Brief Summary ( Finnish )

provided by wikipedia FI

Pitkävarvassalamanteri (Ambystoma macrodactylum) on Ambystoma-sukuun kuuluva pyrstösammakkolaji. Alalaji santacruzinpitkävarvassalamanteri (A. m. croceum) on uhanalainen. Muita alalajeja ovat lännenpitkävarvassalamanteri (A. m. macrodactylum), idänpitkävarvassalamanteri (A. m. columbianum), pohjoinenpitkävarvassalamanteri (A. m. krausei) ja etelänpitkävarvassalamanteri (A. m. sigillatum).

license
cc-by-sa-3.0
copyright
Wikipedian tekijät ja toimittajat
original
visit source
partner site
wikipedia FI

Ambystoma macrodactylum ( French )

provided by wikipedia FR

Ambystoma macrodactylum, la Salamandre à longs doigts, est une espèce d'urodèles de la famille des Ambystomatidae[1].

L'analyse des fossiles, la génétique et la biogéographie suggèrent que Ambystoma macrodactylum et Ambystoma laterale descendent d'un ancêtre commun qui se sont séparées au Paléocène. Bien que la salamandre à longs doigts est classé comme une espèce de Préoccupation mineure par l'IUCN, de nombreuses formes d'aménagement du territoire et menacent d'affecter l'habitat de la salamandre.

Répartition

 src=
Distribution

Cette espèce se rencontre jusqu'à 3 050 m d'altitude[1] :

Habitat

La salamandre à longs doigts est une espèce écologiquement polyvalentes qui vive dans des habitats variés, allant des forêts pluviales tempérées, les forêts de conifères, les zones ripariennes de montagne, les plaines d'armoise, les forêts de sapin rouge, les zones semi-arides, des plaines de Brome des toits, aux prairies alpines le long des côtes rocheuses des lacs de montagne[2].

Les adultes peuvent être observés dans le sous-étage forestier, se cachant sous des débris grossiers, les roches et dans les terriers de petits mammifères. Durant la reproduction de printemps, Ils se trouvent sous les débris ou les eaux peu profondes du littoral des rivières, des ruisseaux, des lacs et des étangs. Les mares éphémères sont souvent fréquentées[2].

Description

 src=
Ambystoma macrodactylum
 src=
larve, aux branchies externes visibles

Ambystoma macrodactylum mesure de 41 à 89 mm. Le corps est noir foncé avec une rayure dorsale beige, jaune ou vert olive. Cette bande peut également être décomposé en une série de taches. Le côté du corps peut avoir de fines mouchetures blanches ou jaune pâle bleu. Le ventre est brun foncé ou noir de suie en couleur avec des taches blanches. Des tubercules racinaires sont présents, mais ils ne sont pas aussi développées que d'autres espèces telles que la salamandre tigrée[2].

Elle se distingue par la longueur de son quatrième doigt des membres postérieurs.

Les salamandres à longs doigts hibernent pendant les mois froids de l'hiver, survivant sur les réserves énergétiques de protéines stockée dans la peau et la queue.

Jusqu'à cinq sous-espèces sont définies génétiquement et écologiquement selon une gamme de couleurs et de dessin sur la peau.

Alimentation

Elles mangent une grande variété d'invertébrés, y compris les limaces, les vers et les insectes. Les petites larves se nourrissent de crustacés minuscules d'eau du zooplancton, mais à mesure qu'elles grandissent, elles se nourrissent d'invertébrés, de têtards de grenouilles et souvent d'autres larves de salamandre.

Reproduction

Le moment de la reproduction dépend de l'altitude et la latitude. Les adultes se rassemblent en masse, plus de 20 individus, sous les rochers et aux abords immédiat des sites de reproduction[3]. Les sites de reproduction appropriés sont les petits étangs sans poissons, les marais, les lacs peu profonds et d'autres eaux des zones humides[4]. Comme les autres salamandres, ils ont développé une danse de séduction caractéristique où ils se frottent et libèrent des phéromones avant de prendre une position d'accouplement.

Les œufs de cette espèce ressemblent à ceux de la salamandre foncée (Ambystoma gracile) et la salamandre tigrée (Ambystoma tigrinum)[5]. À l'instar de nombreux amphibiens, les œufs de la salamandre à longs doigts sont entourés d'une capsule gélatineuse . Cette capsule est transparente, ce qui rend visible l'embryon au cours du développement[2]. À la différence des œufs de Ambystoma gracile, il n'y a pas de signes visibles d'algues vertes, ce qui rend œufs de couleur verte. Ils mesurent environ 2 mm ou plus de diamètre avec une couche de gelée de gamme extra-atmosphérique[6]. Avant l'éclosion, ils ont des saillies cutanées minces collés sur les côtés et supportant la tête. Le équilibreurs finissent par tomber et leurs branchies externes grandir[7]. Une fois que les équilibreurs sont perdus, les larves se distinguent par le brûlage à la torche pointue des branchies. Quand les larves matures se métamorphosent, leurs membres deviennent visibles et les branchies sont absorbées.

Publication originale

  • Baird, 1850 "1849" : Revision of the North American tailed-batrachia, with descriptions of new genera and species. Journal of the Academy of Natural Sciences of Philadelphia, sér. 2, vol. 1, p. 281-294 (texte intégral).

Notes et références

  1. a et b Amphibian Species of the World, consulté lors d'une mise à jour du lien externe
  2. a b c et d Stebbins, 2003 : A Field Guide to Western Reptiles and Amphibians. Peterson Field Guide Series, 3rd ed. Boston, Houghton Mifflin.
  3. Petranka 1998 : Salamanders of the United States and Canada. Washington, D.C, Smithsonian Books
  4. Stebbins & Cohen, 1995 : A Natural History of Amphibians. Princeton University Press
  5. Thoms & Corkran, 2006 : Amphibians of Oregon, Washington And British Columbia: A Field Identification Guide. Lone Pine Field Guides, Edmonton, Alberta, Canada, Lone Pine Publishing
  6. Salthe, 1963 : The egg capsules in the amphibia. Journal of Morphology, vol. 113, no 2, p. 161–171.
  7. Watson & Russell, 2000 : A posthatching developmental staging table for the Long-toed salamander, Ambystoma macrodactylum krausei Amphibia-Reptilia, vol. 21, no 2, p. 143–154.
license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Ambystoma macrodactylum: Brief Summary ( French )

provided by wikipedia FR

Ambystoma macrodactylum, la Salamandre à longs doigts, est une espèce d'urodèles de la famille des Ambystomatidae.

L'analyse des fossiles, la génétique et la biogéographie suggèrent que Ambystoma macrodactylum et Ambystoma laterale descendent d'un ancêtre commun qui se sont séparées au Paléocène. Bien que la salamandre à longs doigts est classé comme une espèce de Préoccupation mineure par l'IUCN, de nombreuses formes d'aménagement du territoire et menacent d'affecter l'habitat de la salamandre.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Langteensalamander ( Dutch; Flemish )

provided by wikipedia NL

Herpetologie

De langteensalamander[2] (Ambystoma macrodactylum) is een salamander uit de familie molsalamanders (Ambystomatidae). De soort werd voor het eerst wetenschappelijk beschreven door Spencer Fullerton Baird in 1849. Later werd de wetenschappelijke naam Amblystoma macrodactylum gebruikt.[3]

Uiterlijke kenmerken

De Nederlandstalige naam komt ook terug in de wetenschappelijke soortnaam; macro betekent groot en dactylum betekent teen.[bron?] Alle tenen zijn wat langer dan bij verwante soorten, echter vooral de vierde teen van de achterpoten is sterk verlengd. De kleur is zwart, meestal zonder flanktekening en duidelijk zichtbare gifklieren (parotoïden) en ribben (costale groeven). Kenmerkend is de heldergroene tot -gele brede rugstreep op het midden van de rug die soms bestaat uit een vlekkenrij. De lichaamslengte varieert van 10 tot 17 centimeter. Op het lichaam zijn 12 toit 13 costale groeven aanwezig.

Verspreiding en habitat

De langteensalamander komt voor van zuidoostelijk Canada tot Californië in de Verenigde Staten.[4] De habitat bestaat uit zowel drogere graslanden als hoger gelegen bergmeertjes en de soort kan in vele biotopen leven, maar blijft bij water in de buurt. Zelfs tot 3000 meter boven zeeniveau kan de salamander worden aangetroffen, waar het voor veel andere soorten te koel en te droog is. Overdag zit het dier meestal verstopt onder stenen of bladeren en komt pas tijdens de schemering tevoorschijn om te jagen op insecten en andere kleine ongewervelden.

Voortplanting

 src=
Larve

De paartijd begint vroeg in het jaar en er worden zelfs al eitjes afgezet als het water nog half bevroren is. De salamanders komen naar de afzetplaats toe als het regent en meestal 's nachts en het aantal eitjes varieert sterk; van 80 tot wel 400. De eitjes worden zowel aan waterplanten vastgemaakt als op de bodem afgezet, en de larven eten kleine micro-organismen, algen en ook elkaar.

Referenties
  1. (en) Langteensalamander op de IUCN Red List of Threatened Species.
  2. Grzimek, Bernhard, Het leven der dieren deel V: Vissen (II) en amfibieën, Kindler Verlag AG, 1971, Pagina 368. ISBN 90 274 8625 5.
  3. Darrel R. Frost - Amphibian Species of the World: an online reference - Version 6.0 - American Museum of Natural History, Ambystoma macrodactylum.
  4. University of California - AmphibiaWeb, Ambystoma macrodactylum.
Bronnen
  • (en) - Darrel R. Frost - Amphibian Species of the World: an online reference - Version 6.0 - American Museum of Natural History - Ambystoma macrodactylum - Website Geconsulteerd 27 februari 2017
  • (en) - University of California - AmphibiaWeb - Ambystoma macrodactylum - Website
license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Langteensalamander: Brief Summary ( Dutch; Flemish )

provided by wikipedia NL

De langteensalamander (Ambystoma macrodactylum) is een salamander uit de familie molsalamanders (Ambystomatidae). De soort werd voor het eerst wetenschappelijk beschreven door Spencer Fullerton Baird in 1849. Later werd de wetenschappelijke naam Amblystoma macrodactylum gebruikt.

license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Ambystoma długopalca ( Polish )

provided by wikipedia POL
Commons Multimedia w Wikimedia Commons

Ambystoma długopalca (Ambystoma macrodactylum) – gatunek płaza ogoniastego z rodziny Ambystomatidae. Osobnik dorosły mierzy od 3,8 do 7,6 cm. Cechuje się cętkowaną, czarną, brązową i żółtą pigmentacją. Analizy paleontologiczne, genetyczne i biogeograficzne sugerują, że powstała około 81 milionów lat temu we wschodniej Ameryce Północnej.

Pierwotny zasięg występowania zwierzęcia obejmuje północny zachód kontynentu, nie wychodząc poza wysokość 2800 metrów nad poziomem morza. Zamieszkuje ono różnorodne środowiska, jak lasy deszczowe klimatu umiarkowanego, lasy iglaste, wybrzeża górskich zbiorników wodnych, równiny porośnięte bylicami, lasy jodłowe (z Abies magnifica), równiny porośnięte trawą Bromus tectorum oraz górskie łąki na skalistych brzegach górskich jezior. W czasie sezonu rozrodczego żyje w strumieniach o wolnym nurcie, stawach i jeziorach. Hibernuje przez zimne miesiące, które przeżywa dzięki zapasom białkowym i energetycznym zmagazynowanym w skórze i ogonie.

Wyróżnia się pięć podgatunków posiadających odrębności genetyczne i ekologiczne, a także fenotypowe (inny zakres barwy i odmienne wzory na skórze). Choć IUCN nadaje zwierzęciu status najmniejszej troski (LC), występuje wiele czynników negatywnie wpływających na środowisko jego życia.

Taksonomia i ewolucja

Ambystoma macrodactylum należy do rodziny ambystomowatych, które pojawiły się około 80 milionów lat temu (kreda późna). Wymienia się je nieraz jako takson siostrzany w stosunku do rodziny Dicamptodontidae[3][4][5], zwykle nieuznawanej. Przodkowie tych grup pochodzili ze wschodniej Ameryki Północnej, gdzie występuje największe bogactwo gatunkowe ambystomowatych[6][7] Następująca interpretacja biogeograficzna traktująca o pochodzeniu ambystomy długopalcej z zachodu kontynentu północnoamerykańskiego bazuje na opisach skamieniałości, badaniach genetycznych i biogeograficznych[8].

Istniejące w kredzie Morze Środkowego Zachodu przyczyniło się do izolacji ambystomowatych na południowym wschodzie kontynentu[7][9]. O ile trzy gatunki (ambystoma tygrysiaAmbystoma tigrinum, Ambystoma californiense, Ambystoma gracile) posiadały nakładające się na siebie zasięgi na zachodzie Ameryki Północnej, najbliższy takson siostrzany opisywanego tu gatunku (Ambystoma laterale), zamieszkiwał północny wschód kontynentu[4][7]. Zasugerowano, że ambystoma długopalca wyodrębniła się z niego po paleocenie, kiedy to zaniknięcie Morza Środkowego Zachodu otworzyło drogę do północnoamerykańskiej Kordyliery Zachodniej[8]. Klimat Wybrzeża Północno-Zachodniego ochłodził się w pierwszej epoce kenozoiku, otwierając drogę lasom klimatu umiarkowanego, które wyparły ciepłolubne lasy tropikalne okresu kredowego[10]. Ogoniaste prawdopodobnie bardzo łatwo migrowały i rozprzestrzeniały się w obrębie dolin Gór Skalistych, które w eocenie osiągnęły znaczną wysokość[8][11]. Inne gatunki także przemieszczały się wtedy wzdłuż linii brzegowej. W tym czasie wypiętrzały się Góry Kaskadowe, powodując powstanie cienia opadowego, który rozdrobnił las tropikalny, zmieniając go w typowy dla klimatu umiarkowanego[12]. Porośnięte nim doliny i wyższe piętra zapewniły siedliska analogiczne do współcześnie zajmowanych przez ambystomę długopalcą[8][13].

Morfologia

Ciemne ciało tego płaza posiada na grzbiecie prążek barwy opalonej, żółtej lub oliwkowozielonej. Czasem może się on przerywać, tworząc serię plamek. Boki mogą zdobić białe lub bladoniebieskie plamki. Brzuch jest ciemnobrązowy lub koloru sadzy. Na stopach widnieją guzki rozwinięte znacznie słabiej niż u innych gatunków, jak ambystoma tygrysia[14].

Należące do tego gatunku jajo przypomina spotykane u bliskich krewnych: Ambystoma gracile i ambystomy tygrysiej[15]. Jednakże w przeciwieństwie do A. gracile u ambystomy długopalcej nie zauważa się oznak zielenic, co czyni jajo żelowato zielonym. W obrębie jaja wierzch zarodka jest ciemniejszy niż spód. Dla porównania embrion ambystomy tygrysiej posiada na grzbiecie zabarwienie jasnobrązowe do szarego, kremowe zaś na spodzie. Jajo osiąga średnicę 2 mm lub większą z szeroką żelowatą warstwą zewnętrzną[15][16]. Zarówno w jaju przed wykluciem, jak i nowo narodzona larwa posiadają stabilizatory będące wypustkami sterczącymi po bokach i wspierającymi głowę. W końcu odpadają, a wtedy ma miejsce wzrost skrzeli zewnętrznych[17]. Utrata stabilizatorów uwidacznia się w płomiennych ostrych spiczastych zakończeniach na skrzelach. Gdy kijanki dojrzewają i stają się zdolne do przeobrażenia, ich kończyny wraz z palcami stają się zauważalne, skrzela natomiast ulegają resorpcji. Długie palce tylnych łap dojrzałej larwy odróżniają ten gatunek od innych[15][17].

Nakrapianą skórę kijanki zdobi czarna, brązowa i żółta pigmentacja. Kolor skóry zmienia się w trakcie rozwoju larwalnego, komórki barwnikowe, zwane chromatoforami, migrują i koncentrują się w różnych rejonach ciała. Pochodzą one z grzebieni nerwowych. U ogoniastych występują trzy typy chromatoforów: żółte ksantofory, czarne melanofory i srebrzyste iridiofory (lub guanofory)[18][19]. Gdy larwa dojrzewa, melanofory zbierają się wzdłuż ciała, zapewniając ciemne tło. Ksantofory grupują się wzdłuż kręgosłupa i szczytu kończyn. Resztę ciała pokrywa cętkowanie tworzone przez refleksyjne iridiofory po bokach ciała i na spodzie ciała[18][20].

Podczas metamorfozy palce rozwijają się z pączków na kończynach. W pełni przeobrażona ambystoma długopalca posiada cztery palce na przednich łapach, a na tylnych o jeden więcej[21]. Długość głowy przekracza jej szerokość. Zwraca uwagę długi drugi palec tylnych kończyn, od którego pochodzi nazwa naukowa (gr. makros = długi; gr. daktylos = palec)[22]. Na skórze dorosłego płaza na ciemnobrązowym, ciemnoszarym do czarnego tle widnieje żółty, zielony do matowo czerwonego plamkowany pasek z kropkami lub plamkami po bokach. Poniżej kończyn i głowy ciało ambystomy jest białe, różowawe do brązowego z większymi białymi plamkami i mniejszymi żółtymi[15][23]. Dorosłe osobniki osiągają zwykle 3,8-7,6 cm długości.

Występowanie i siedlisko

Opisywany tu gatunek należy do posiadających najszerszy zasięg występowania w Ameryce Północnej, w czym ustępuje jedynie ambystomie tygrysiej. Bytuje na wysokościach od poziomu morza do 2800 metrów. Zajmuje zróżnicowane strefy roślinne[20][24][25][26][27]. Obszar ten zawiera izolowane endemiczne populacje w Monterey Bay i Santa Cruz w Kalifornii[28]. Obejmuje tereny od północno-wschodniej Sierra Nevada w Kalifornii nieprzerwanie poprzez wybrzeże pacyficzne aż do Juneau na Alasce. Rozsiane populacje zamieszkują doliny rzek Taku i Stikine. Od wybrzeża Oceanu Spokojnego zasięg występowania przebiega południkowo do wschodnich podnóży Gór Skalistych w Montanie i Albercie[29][30][31].

Ambystoma długopalca zajmuje różnorodne środowiska: wilgotne lasy strefy umiarkowanej, lasy iglaste, obrzeża górskich zbiorników wodnych, równiny porośnięte byliną, lasy jodłowe (z Abies magnifica), równiny porośnięte trawą Bromus tectorum oraz górskie łąki na brzegach jezior[20][26][32]. Osobniki dorosłe, gdy żyją na lądzie, bytują w podszycie leśnym, ukrywając się wśród zwalonych pni, kamieni i w norach.

Ekologia i cykl życiowy

 src=
Jaja ambystoma długopalcej. Widoczna żelowata warstwa zewnętrzna łącząca się z innymi jajami i z dwiema warstwami wewnętrznymi otaczającymi jajo

Jaja

Ambystoma długopalca, jak i inne płazy, rozpoczyna swe życie jako jajo. W północnej części zasięgu występowania jaja składane są w grudkowatych masach wśród traw, patyków, kamieni lub na błotniste podłoże spokojnych stawów[33]. Liczba pojedynczo składanych jaj zmienia się, prawdopodobnie jeden klaster zawiera ich do 110[34]. Samice zużywają na ich produkcję znaczną ilość energii, a ich jajniki przed sezonem rozrodczym osiągnąć mogą ponad połowę masy ciała zwierzęcia. W obrębie pojedynczej ambystomy znaleziono rekordowo 264 jaja, przy czym pojedyncze osiąga 0,5 mm średnicy[35]. Skrzek trzyma razem żelatynowa warstwa zewnętrzna ochraniająca zewnętrzną osłonkę każdego z jaj[36]. Zdarza się, że jaja składane są pojedynczo. Ma to miejsce zwłaszcza w cieplejszym klimacie południa Kanady i amerykańskiej granicy. Pojedyncze jajo zawiera zapas materiału energetycznego wystarczającego na jeden rok. Stanowi on źródło pożywienia w ekosystemach płytkiej wody i przyległego lasu[37]. Skrzek zapewnia też odpowiednie środowisko dla lęgniowców[38], drobnych protistów zaliczanych niegdyś do grzybów.

 src=
Larwa podgatunku A. m. macrodactylum, widoczny duży czwarty tylny palec, od którego pochodzi nazwa

Larwy

Larwy zwane kijankami wykluwają się z jaja po upływie od dwóch do sześciu tygodni[33]. Od początku zaliczają się do mięsożerców, polując instynktownie na niewielkie bezkręgowce, które znajdą się w ich polu widzenia. Wymienia się tutaj niewielkie wodne skorupiaki (wioślarki, widłonogi i małżoraczki), wodne muchówki, ale też kijanki[39]. W miarę rozwoju spontanicznie przerzucają się na coraz większą zdobycz. By zwiększyć swe szanse przetrwania, niektóre osobniki rozwijają większe głowy i zostają kanibalami, spożywając osobniki z tego samego lęgu[40].

Przeobrażenie

Wzrost i dojrzewanie kijanek trwa co najmniej jeden sezon (na wybrzeżu pacyficznym okres larwalny zabiera około czterech miesięcy)[41]. Ma wtedy miejsce absorpcja skrzeli i przeobrażenie w lądowe osobniki młodociane, które wędrują do podszytu lasu. Na poziomie morza metamorfozę obserwowano już w lipcu[42], z kolei podgatunek A. m. croceum przechodzi ją od października do listopada, a nawet i w styczniu[23]. Na większych wysokościach larwy mogą zimować, a dojrzewać i przeobrażać się dopiero w kolejnym sezonie[43]. W wysoko położonych jeziorach mogą one osiągać 47 mm długości od pyska do odbytu (SVL), podczas gdy na niższych wysokościach 35-40 mm[44].

Osobniki dorosłe

Osobniki dorosłe ambystomy długopalcej nie rzucają się specjalnie w oczy z powodu swego podziemnego stylu życia obejmującego kopanie, migracje i pożywianie się bezkręgowcami na dnie lasu, w gnijących kłodach, jamach niewielkich gryzoni i szczelinach skalnych. Ich dieta składa się z owadów, kijanek, pierścienic, chrząszczy i małych ryb. Same z kolei padają ofiarami węży z rodzaju Thamnophis, niewielkich ssków i ryb[45]. Dorosłe dożyć mogą 6–10 lat, największe osiągają masę ciała 7,5 g i odległość od pyska do odbytu 8 cm, całkowitą 14 cm[46][47].

Behawior

Sezonowość

Życie tego gatunku zmienia się w dużym stopniu w zależności od wysokości i klimatu. Sezonowe daty migracji z i do zbiorników rozrodczych korelują z wybuchem opadów deszczu, roztopami lodu i śniegu, wystarczającymi dla powstania sezonowych zbiorników wodnych. Jaja na niskich wysokościach mogą zostać złożone już w połowie lutego w południowym Oregonie[48], od wczesnego stycznia do lipca na północnym zachodzie Waszyngtonu[49], od stycznia do marca na południowym wschodzie tego stanu[50], od środkowego do wczesnego maja w Parku Narodowym Waterton Lake w Albercie[51]. Czas rozrodu podlega znacznym zmianom. Kilka pęków jaj we wczesnym stadium rozwoju znaleziono 8 lipca 1999 na granicy Kolumbii Brytyjskiej na zewnątrz Jasper w Albercie[8]. Osobniki dorosłe sezonowo migrują, by wrócić do zbiorników, w których przyszły na świat, niektóre przemieszczają się w otoczeniu zasp śnieżnych lub w ciepłe wiosenne dni[52]. Dymorfizm płciowy zaznacza się w tym gatunku jedynie w sezonie rozrodczym, gdy dojrzałe płciowo samce demonstrują powiększoną, opuszkowatą okolicę odbytu.

Rozród

 src=
Ambystomy długopalce zebrane w czasie sezonu rozrodczego pod kłodą nieopodal brzegu zbiornika wodnego. Należy zwrócić uwagę na rozmieszczenie burych i jaskrawych barw

Przed rozrodem dojrzałe ambystomy gromadzą się w dużej liczbie (przekracającej 20 osobników) pod kamieniami i kłodami nieopodal granic swych zbiorników rozrodczych. Intensywny rozród trwa kilka dni[23]. Odpowiednie dlań miejsce to niewielkie niezamieszkały przez ryby stawy, bagniska, płytkie jeziora i tereny podmokłe o wodzie stojącej[53]. U ambystomowatych wykształcił się charakterystyczny taniec godowy, do którego zazwyczaj zalicza się pocieranie się, wydzielanie feromonów przez gruczoły zlokalizowane w okolicy żuchwy, a także przyjmowanie specjalnej pozycji, w której następuje kopulacja. Przyjąwszy ją, samiec składa spermatofor, lepką szypułę połączoną z pakietem zawierającym spermę, po czym kroczy przy samicy z przodu, by dokonać inseminacji. Samiec może parzyć się więcej, niż raz. W przeciągu pięciu godzin zdolny jest do pozostawienia aż 15 spermatoforów[23][33]. Taniec godowy ambystomy długopalcej przypomina ten spotykany u innych gatunków ambystom, szczególnie zaś A. jeffersonianum[54][55], jednakże tutaj nie zauważa się pocierania ani trącania. Za to samiec zmierza wprost w kierunku swej wybranki i łapie ją, kiedy ta próbuje pośpiesznie odpłynąć[55]. Samiec ściska samicę za przednimi łapami i potrząsa. Nazywa się to ampleksusem. Czasami obejmuje on i dokonuje tej czynności z osobnikami należącymi do innych gatunków[49]. Zawsze jednak do chwytania używa przednich kończyn. Nigdy zaś nie używa tylnych podczas tańca godowego, gdy pociera z boku na bok okolice podbródka nad głową samicy. Ta z kolei opiera się mu, później jednak poddaje się adoratorowi. Samiec zwiększa tempo i dynamikę, ocierając się o nozdrza, boki i czasami okolicę odbytu samicy. Gdy ta w końcu stanie się dlań łaskawa, umieszcza swój ogon nad jej głową, podniesioną i falującą na koniuszku. Jeśli wybranka zaakceptuje zaloty, samiec kieruje jej pysk w kierunku rejonu swej kloaki. Oboje poruszają się sztywno w przód, falując miednicami. Stwierdzając wtórowanie mu przez wybrankę, zalotnik zaprzestaje tego i składa swój spermatofor. Samica musi wtedy skierować się w przód razem z samcem. Po podniesieniu ogona samica otrzymuje pakiet spermy. Rzadko kiedy udaje się w pełni zrealizować taniec godowy już za pierwszym podejściem[55]. Kilka dni po parowaniu się samica składa jaja[23].

Magazynowanie energii i mechanizmy obronne

 src=
Ambystoma długopalca z kikutem ogona po autotomii
 src=
Ambystoma długopalca z ogonem odrosłym po autotomii

Podczas zimowych miesięcy w północnej części swego zasięgu występowania ambystoma długoplaca kryje się pod poziomem mrozu w norze wykopanej w twardym podłożu. Razem zimuje od 8 do 14 osobników[34][56]. Podczas hibernacji korzysta z rezerw białkowych i energetycznych zmagazynowanych w skórze i wzdłuż ogona[57]. Białka grają jeszcze drugą rolę: stanowią część mieszanki wydzielanej przez gruczoły skórne, używanej w celach obronnych[58]. Zaniepokojona ambystoma faluje swym ogonem i wydziela kleistą, przypominającą mleko białą substancję o działaniu szkodliwym i lekko trującym[51][59]. Kolor skóry stanowi z kolei ostrzeżenie dla drapieżników (ubarwienie ostrzegawcze), że zwierzę będzie niesmaczne[58]. Wzory i barwy jego skóry różnią się od siebie, od ciemnych, czarnych do czerwonawobrązowych w przypadku tła, na którym widnieją plamki i ciapki od bladoczerwonobrązowych przez bladozielone do jasnożółtych pasków[29][33]. Osobnik dorosły może także odrzucić cześć swego ogona i uciekać, podczas gdy porzucony fragment skręca się, odwracając uwagę drapieżnika. Zjawisko to nazywamy autotomią[60]. Regeneracja i odrośnięcie ogona stanowi przedmiot wielkiego zainteresowania profesji medycznej[61].

Status

Populacjom ambystomy długopalcej zagrażają fragmentacja środowiska, introdukowane gatunki i promieniowanie UV. Leśnictwo, drogi i rozwój zmieniły środowiska lądowe, gdzie płazy migrowały, zwiększył także śmiertelność[62]. Siedlisko ambystomy długopalcej zazębia się z obszarami przemysłu leśnego, dominującego w gospodarce Kolumbii Brytyjskiej i zachodnich Stanów Zjednoczonych. Ambystomy będą musiały zmienić swe migracyjne zwyczaje. Działania leśników przeszkadzają im, nie oferując odpowiednich pasów ochronnych nad brzegami, brakuje też ochrony mniejszych terenów podmokłych, gdzie płazy te dokonują rozrodu[63][64]. Populacje okolicy rzeki Peace w kanadyjskiej Albercie wyginęły z powodu oczyszczenia i drenowania terenów podmokłych na potrzeby rolnictwa[65]. Introdukowanie pstrągów dla celów rybołówstwa sportowego w wielu bezrybnych wcześniej jeziorach także zniszczyło populacje ambystomy długopalcej[66]. Wprowadzone do środowiska złote rybki pożerają jaja i larwy tego gatunku[67]. Zwiększona ekspozycja na promieniowanie UVB stanowi kolejny czynnik przyczyniający się do globalnego spadku liczebności płazów. Wrażliwe nań jest także A. macrodactylum. Zwiększa się przez to liczba osobników zdeformowanych, a spada przeżywalność i tempo wzrostu[68][69][70].

Podgatunek Ambystoma macrodactylum croceum (ambystoma długopalca z Santa Cruz) znajduje się pod szczególną opieką. Objęto go ochroną w 1967 poprzez Endangered Species Act[71]. Podgatunek posiada wąski zasięg występowania w kalifornijskich hrabstwach Santa Cruz i Monterey. Przed ustanowieniem ochrony prawnej kilku utrzymującym się jeszcze populacjom zagrażał rozwój gospodarczy. Tymczasem A. m. croceum jest ekologicznie wyjątkowe. Posiada unikatowy wzór skórny na plecach, niespotykaną tolerancję na wilgoć, stanowi także endemit, którego zasięg występowania nie łączy się z obszarem zamieszkanych przez inne podgatunki[20][72][73][74], do których zaliczamy A. m. columbianum, A. m. krausei, A. m. macrodactylum oraz A. m. sigillatum[75].

Podgatunki

W obrębie gatunku wyróżnia się pięć podgatunków[20], rozróżnianych na podstawie ich miejsca życia i wzorów na grzbiecie, szczególnie pręg[26]. Denzel Ferguson opisał biogeograficzny zsięg wzorów skórnych, morfologii, a bazując na tych analizach wprowadzono dwa nowe podgatunki: A. macrodactylum columbianumi A. m. sigillatum[20]. Zasięgi występowania poszczególnych podgatunków zilustrowano w przewodniku o płazach autortwa Roberta Stebbina[26].

 src=
Zasięg A. macrodactylum[8] i jego podgatunków[20]
 src=
Po lewej: Na brzusznej stronie ciała poniżej pyska znajdują się gruczoły wydzielające hormony, które samce mają w zwyczaju wcierać w swe wybranki. Gruczoły te znajdują się pod białymi plamkami. Po prawej: Otoczenie kloaki samca, otworu ciała służącego zarówno wypróżnianiu się, jak i reprodukcji, bogate w brodawki. Kloaka samicy jest mniejsza i często bardziej gładka niż osobnika męskiego. Fałdy brodawek mogą u niej nie występować[23]

Fenotypy

Podgatunki cechują się następującymi wzorami skórnymi i innymi cechami morfologicznymi[20][30]:

A. m. croceum
Na grzbietowej stronie ogona pomarańczowe zabarwienie przechodzące w cętki na ciemnym ciele i niewielkie kropki na głowie, nieobecne przed oczami. Boki w białawe kropki. Występuje 13 bruzd międzyżebrowych.
Zwana po angielsku salamandrą z Santa Cruz spokrewniona jest najbliżej z A. m. macrodactylum, co tłumaczy w najprostszy sposób ich zbliżone zasięgi występowania, rozdzielone na odległość 300 km przez deltę San Joaquin i Sacramento[8]. Zalicza się ją do endemitów Kalifornii i podgatunków zagrożonych wyginięciem[23]. Badania biogeograficzne i przeprowadzone z użyciem zegara molekularnego ujawniły, że od jej linia oddzieliła się od wspomnianego krewnego w miocenie, około 13,9 miliona lat temu[8].
A. m. columbianum
Żółty do opalonego prążek grzbietowy na ciemnym tle przechodzi w plamki i cętki, zbliżając się do końca ciała, na głowie w zwężające się plamki. Głowa cętkowana. Boki w białe kropki. Spód ciała z niewielkimi oddzielnymi cętkami. Występuje ponad 35 zębów lemieszowych.
Wedle badań genetycznych nie występuje na północ od Kolumbii Brytyjskiej, do Gór Błękitnych i Wallowa Mountains jego zasięg ograniczają kanion Snake River w Idaho oraz suchy klimat okolic Madras na zachodzie[76].
A. m. krausei
Analinowo żółty do opalonego prążek grzbietowy przechodzący w plamki i cętki w miarę zbliżania się do końca ciała, gdzie plamki poszerzają się. Głowa w ciapki. Boki w białe kropki, na brzuchu pojedyncze ciapki. Występują 32 zęby lemieszowe i 12 bruzd międzyżebrowych.
Podgatunek wschodni występujący w środkowych górach, na zachód jego zasięg rozpościera się do nizinnych terenów centralnych płaskowyży Waszyngtonu i Kolumbii Brytyjskiej, na wschodzie zaś przebiega przez doliny Gór Skalistych i osiąga nisko położone pogórza i prerie Montany i Alberty[32][76].
A. m. sigillatum
Woskowo żółty do opalonego prążek grzbietowy tworzący ciapkowate do nieregularnych plamki na końcu ciała, ciapki na głowie. Występują 44 zęby lemieszowe i 13 bruzd międzyżebrowych.
Podgatunek południowy, w przypadku którego nie zarejestrowano tożsamości DNA mitochondrialnego[76]. Wedle Fergusona w południowym środkowym Oregonie spotyka się z A. m. columbianum, tamtejsza populacja wykazuje cechy pośrednie pomiędzy podgatunkami[20].
A. m. macrodactylum
Cytrynowy, matowo cytrynowy do opalonego prążek grzbietowy rozdzielający się na szarawym tle. Wzór dzieli się na plamki i prążki obecne lub nie na głowie i pysku. Boki z białym w białe kropki. Występują 33 zęby lemieszowe tworzące poprzecznie ułożony łuk, a także 13 bruzd międzyżebrowych
Ten zachodni, przybrzeżny podgatunek zajmuje tereny od północnego wschodu Kalifornii poprzez ekoregion Klamath Mountains i Willamette Valley wzdłuż przybrzeżnych łańcuchów górskich (jak Góry Kaskadowe) aż do Kolumbii Brytyjskiej i Alaski[76].

Biogeografia i genetyka

Badania DNA mitochondrialnego[76] wykazały nieco odmienne zasięgi poszczególnych podgatunków[76]. Analizy genetyczne zidentyfikowały dla przykładu dodatkowy wzór o znacznej dywergencji we wschodniej części zasięgu występowania. Ambystomy powracają na czas rozrodu na miejsce swego przyjścia na świat, co ogranicza ich rozprzestrzenienie. Ogranicza to przepływ genów, a zwiększa stopień różnorodności genetycznej, która, biorąc pod uwagę różne regiony jej występowania, przewyższa poziom mierzony u większości innych grup kręgowców[44]. Naturalne bariery dzielące ten obszar i migracje powstają, gdy ekosystem osusza się, zbliżając się warunkami np. do preriowych. Podobnie rzecz ma się na wyższych wysokościach (ponad 2200 metrów nad poziomem morza), gdzie klimat jest wiele cięższy i chłodniejszy. Warunki zmienaiją się wraz z wysokością, ale powyżej wspomniane 2200 metrów stanowią barierę dla ambystom na większości zasięgu ich występowania na północ od Oregonu[77].

Przypisy

  1. Ambystoma macrodactylum, w: Integrated Taxonomic Information System (ang.).
  2. Ambystoma macrodactylum. Czerwona księga gatunków zagrożonych (IUCN Red List of Threatened Species) (ang.).
  3. Tihen, J. (1958). Comments on the osteology and phylogeny of ambystomatid salamanders. Bulletin Florida State Museum 3: 1–50.
  4. a b Jones TR, Kluge AG, Wolf AJ. (1993). When theories and methodologies clash: A phylogenetic reanalysis of the north American ambystomatid salamanders (Caudata: Amybstomatidae). Systematic Biology 42(1): 92–102.
  5. J. J. Wiens. (2007). Global Patterns of Diversification and Species Richness in Amphibians. (2007). American Naturalist 170:S86-S106. PDF.
  6. A. R. Milner. (1983). The biogeography of salamanders in the mesozoic and early caenozoic: A cladistic-vicariance model. In R. W. Sims, J. H. Price, and P. E. S. Whalley P. E. S. (Eds.) Evolution, Time and Space: The Emergence of the Biosphere. (pp. 431–468) Vol. 23 of The Systematics Association, Special Volume. Academic Press, London.
  7. a b c Edward W. Duellman: Patterns of Distribution of Amphibians: A Global Perspective. JHU Press, 1999, s. 633. ​ISBN 0-8018-6115-2​, ​ISBN 978-0-8018-6115-4​.
  8. a b c d e f g h Thompson MD. (2003). Phylogeography of the Long-toed salamander. MSc Thesis, The University of Calgary.
  9. Milner AR. (1983). The biogeography of salamanders in the mesozoic and early Caenozoic: A cladistic-vicariance model. In Sims, RW, Price JH, Whalley PES. (Eds.), Evolution, Time and Space: The Emergence of the Biosphere. (pp. 431–468) Vol. 23 of The Systematics Association, Special Volume. Academic Press, London.
  10. Nussbaum RA. (1974). Geographic Variation and Systematics of Salamanders of the Genus Dicamptodon Strauch (Ambystomatidae). 94 pp. Miscellaneous Publications of the Museum of Zoology, University of Michigan, No. 149.
  11. Brunsfeld S, Sullivan J, Soltis D, Soltis P. (2001). Comparative phylogeography of northwestern North America: A synthesis. In: Silverton, J., Antonovics, J. (Eds.), Integrating Ecology and Evolution in a Spatial Context. The 14th Special Symposium of the British Ecological Society. British Ecological Society, Blackwell Science Ltd., Ch. 15, s. 319–339.
  12. Daubenmire R. (1975). Floristic plant geography of eastern Washington and northern Idaho. Journal of Biogeography 2: 1–18.
  13. For the original source describing the paleoenvironmental analogs that was cited by Thompson (2003), see: Heusser C, Minneapolis (1983). Vegetational history of the Northwestern United States including Alaska: The late Pleistocene. In: Wright H, Porter S. (Eds.). Late-Quaternary Environments of the United States. (pp. 239–258) University of Minnesota Press.
  14. Stebbins, Robert. Peterson Field Guides Western Reptiles and Amphibians. 3rd. New York, NY: Houghton Mifflin Company, 2003. Print.
  15. a b c d Corkran CC, Thoms C. (2006). Amphibians of Oregon, Washington, and British Columbia. 2nd ed. Lone Pine Publishers.
  16. Salthe SN. (1963). The egg capsules in the amphibia. 113(2): 161–171.
  17. a b Watson S, Russell AP. (2000b). A posthatching developmental staging table for the Long-toed salamander, Ambystoma macrodactylum krausei. Amphibia-Reptilia 21: 143–154.PDF.
  18. a b Parichy DM. (1996). Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms. Developmental Biology 175:265–282.PDF.
  19. Pederzoli A, Gambarelli A, Restani C. (2003). Xanthophore Migration from the Dermis to the Epidermis and Dermal Remodeling During Salamandra salamandra salamandra (L.) Larval Development. Pigment Cell Research 16(1): 50–58.
  20. a b c d e f g h i Ferguson DE. (1961). The geographic variation of Ambystoma macrodactylum Baird, with the description of two new subspecies. The American Midland Naturalist 65(2): 311–338.
  21. Watson SM. (1997). Food level effects on metamorphic timing in the long-toed salamander, Ambystoma macrodactylum krausei. MSc Thesis, The University of Calgary.
  22. Baird SF. (1849). Revision of the North American Tailed-Batrachia, with descriptions of new genera and species-Description of four new species of North America Salamanders, and one new species of Scink. Journal of the Acadademy of Natural Sciences of Philadelphia 1(4):281–292.
  23. a b c d e f g Petranka JW. (1998). Salamanders of the United States and Canada. 587 pp. Smithsonian Institution Press, ​ISBN 1-56098-828-2​, 9781560988281.
  24. Howard JH, Wallace RL. (1985). Life history characteristics of populations of the longtoed salamander (Ambystoma macrodactylum) from different altitudes. American Midland Naturalist 113(2): 361–373.
  25. Funk WC, Dunlap WW. (1999). Colonization of high-elevation lakes by long-toed salamanders (Ambystoma macrodactylum) after the extinction of introduced trout populations. Canadian Journal of Zoology 77: 1759–1767. PDF.
  26. a b c d Stebbins RC. (2003). A Field Guide to Western Reptiles and Amphibians. Third Edition. HMCo Field Guides. 533 pp.
  27. Giordano AR, Ridenhour BJ, Storfer A. (2007). The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactylum). Molecular Ecology 16:1625–1637. PDF.
  28. Russell RW, Anderson JD. (1956). A disjunct population of the long-toed salamander from the coast of California. Herpetologica 12:137–140.
  29. a b Carl GC. (1943). The Amphibians of British Columbia. 3rd Ed. Handbook No. 2. British Columbia Provincial Museum, Department of Education.
  30. a b Nussbaum RA, Brodie ED Jr., Storm RM. (1983). Amphibians & Reptiles of the Pacific Northwest. University of Idaho Press, Moscow, Idaho.
  31. For Alaskan distributions: [1], see also: Norman BR. (1999). Geographic distribution: Ambystoma macrodactylum. Herpetological Review 30:171.
  32. a b Graham KL, Powell GL. (1999). Status of the Long-toed Salamander (Ambystoma macrodactylum) in Alberta. Alberta Environmental Protection, Fisheries and Wildlife Management Division, and Alberta Conservation Association, Wildlife Status Report No. 22, Edmonton, AB. 19 pp. [2].
  33. a b c d Green DM, Campbell RW. (1992). The Amphibians of British Columbia. Royal British Columbia Museum Handbook No. 45. Province of British Columbia, Ministry of Tourism and Ministry Responsible for Culture.
  34. a b Thompson MD. (2001). An unusually adept Ambystomatid, the long-toed salamander, coping at northern extremes. The Boreal Dip Net 5(2): 8–10. PDF.
  35. Verrell P. (2007). The female reproductive cycle of the North American salamander Ambystoma macrodactylum columbianum. Amphibia-Reptilia 27: 274–277.
  36. Biology of Amphibians. Baltimore: Johns Hopkins University Press, 1994, s. 112. ISBN 0-8018-4780-X.
  37. Regester KJ, Whiles MR. (2006). Decomposition rates of salamander (Ambystoma maculatum) life stages and associated energy and nutrient fluxes in ponds and adjacent forest in southern Illinois. Copeia 2006(4): 640–649.
  38. Petrisko JE, Pearl CA, Pilliod DS, Sheridan PP, Williams CF, Peterson CR, Bury BR. (2008). Saprolegniaceae identified on amphibian eggs throughout the Pacific Northwest, USA, by internal transcribed spacer sequences and phylogenetic analysis. Mycologia 100(2): 171–180. PDF.
  39. Anderson JD. (1968). A Comparison of the Food Habits of Ambystoma macrodactylum sigillatum, Ambystoma macrodactylum croceum and Ambystoma tigrinum californiense. Herpetologica 24: 273–284.
  40. Walls SC, Belanger SS, Blaustein AR. (1993). Morphological variation in a larval salamander: dietary induction of plasticity in head shape. Oecologia 96: 162–168.
  41. Carl GC. (). The Amphibians of British Columbia. 3rd Ed. Handbook No. 2, British Columbia Provincial Museum, Department of Education.
  42. Kezer J, Farner DS. (1955). Life History Patterns of the Salamander Ambystoma macrodactylum in the High Cascade Mountains of Southern Oregon. Copeia 1955(2): 127–131.
  43. Marnell LF. (1997). Herpetofauna of Glacier National Park. Northwestern Naturalist 78(1): 17–33.
  44. a b Howard JH, Wallace RL. (1981). Microgeographic variation of electrophoretic loci in populations of Ambystoma macrodactylum columbianum (Caudata: Ambystomatidae). Copeia 1981:466–471.
  45. Matsuda B, Green D, Gregory P. (2006). Amphibians and Reptiles of British Columbia. Royal BC Museum. Press ​ISBN 978-0-7726-5448-9​.
  46. Russell AP, Powell GL, Hall DR. (1996). Growth and age of Alberta long-toed salamanders (Ambystoma macrodactylum krausei): a comparison of two methods of estimation. Canadian Journal of Zoology 74: 397–412. PDF.
  47. Adding to the range of weight and sizes come from the NAMOS BC amphibian database [3].
  48. Kezer J, Farner DS. (1955). Life History Patterns of the Salamander Ambystoma macrodactylum in the High Cascade Mountains of southern Oregon. Copeia 1955(2): 127–131.
  49. a b Slater JR. (1936). Notes on Ambystoma gracile Baird and Ambystoma macrodactylum Baird. Copeia 1936(4): 234–236.
  50. Verrell P, Pelton J. (1996). The sexual strategy of the central long-toed salamander, Ambystoma macrodactylum columbianum, in southeastern Washington. Journal of Zoology. London 240: 37–50.
  51. a b Fukomoto J. (1995). Long-toed salamander (Ambystoma macrodactylum) ecology and management in Waterton Lakes National Park. The University of Calgary, Thesis or Dissertation, M.E.Des.
  52. Beneski J Jr, Zalisko EJ, Larsen J Jr. (1986). Demography and migratory patterns of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. Copeia 1986:398–408.
  53. Stebbins RC, Cohen NW. (1995). A Natural History of Amphibians. Princeton University Press ISBN 0-691-10251-1.
  54. Knudsen JW. (1960). The courtship and egg mass of Ambystoma gracile and Ambystoma macrodactylum. Copeia 1: 44–46.
  55. a b c Anderson JD. (1961). The Courtship Behavior of Ambystoma macrodactylum croceum. Copeia 1961(2):132–139.
  56. Sheppard RF. (1977). The ecology and home range movements of Ambystoma macrodactylum krausei (Amphibia: Urodela). Masters Thesis, University of Calgary. 138 pp.
  57. Williams TA, Larsen JH Jr. (2005). New function for the granular skin glands of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. Journal of Experimental Zoology 239(3): 329–333.
  58. a b Grant JB, Evans JA. (2007). A technique to collect and assay adhesive-free skin secretions from Ambystomatid salamanders. Herpetological Review 38(3):301–305.
  59. Toledo RC, Jared C. (1995). Cutaneous granular glands and amphibian venoms. Comparative Biochemistry and Physiology Part A: Physiology 111(1):1–29. Abstract.
  60. NAMOS BC (Northern Amphibian Monitoring Outpost Society). [dostęp 2009-06-24].
  61. Odelberg SJ.. Cellular plasticity in vertebrate regeneration. „Anatomical Record. Part B, New Anatomist”. 287 (1), s. 25–35, 2005. DOI: 10.1002/ar.b.20080. PMID: 16308861. [dostęp 2009-06-23].
  62. Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI. (2007). Habitat Split and the Global Decline of Amphibians. Science 318(5857): 1775–1777.
  63. Ferguson C. (1999). Impacts of forest harvesting on the long-toed salamander (Ambystoma macrodactylum) at Opax Mountain. Pp. 221–229 In C. Hollstedt, A. Vyse, and D. Huggard, eds. New information for the management of dry Douglas-fir forests: Proc. dry Douglas-fir workshop. B.C. Minist. for., Victoria, BC. PDF.
  64. Naughton GP, Henderson CB, Foresman KR, McGraw RL II. (2000). Long-toed salamanders in harvested and intact Douglas-fir forests of western Montana. Ecological Applications 10(6): 1681–1689.
  65. Walsh R. (1998). An extension of the known range of the long-toed salamander, Ambystoma macrodactylum, in Alberta. Canadian Field Naturalist 112: 331–333.
  66. Funk WC, Dunlap WW. (1999). Colonization of high-elevation lakes by long-toed salamanders (Ambystoma macrodactylum) after the extinction of introduced trout populations. Canadian Journal of Zoology 77: 1759–1767.PDF.
  67. Monello RJ, Wright RG. (2001). Predation by goldfish (Carassius auratus) on eggs and larvae of the eastern Long-Toed Salamander (Ambystoma macrodactylum columbianum). Journal of Herpetology 35(2): 350–353.
  68. Blaustein AR, Kiesecker JM, Chivers DP, Anthony RG. (1997). Ambient UV-B radiation causes deformities in amphibian embryos. Proceedings of the National Academy of Sciences of the United States of America 94(25): 13735–13737.
  69. Belden LK, Wildy EL, Blaustein AR. (2000). Growth, survival, and behaviour of larval long-toed salamanders (Ambystoma macrodactylum) exposed to ambient levels of UV-B radiation. Journal of Zoology (London) 251: 473–479.
  70. Croteau MC, Davidson MA, Lean DR, Trudeau VL. (2008). Global increases in ultraviolet B radiation: potential impacts on amphibian development and metamorphosis. Physiological and Biochemical Zoology 81(6): 743–761. PDF.
  71. DFG – Nongame Wildlife Program – Threatened and Endangered Amphibians. [dostęp 2009-06-23].
  72. Anderson JD. (1972). Behavior of three subspecies of Ambystoma macrodactylum in a soil moisture gradient. Journal of Herpetology 6(3–4): 191–194.
  73. Reed RJ. (1978). Population study of the Santa Cruz long-toed salamander (Ambystoma macrodactylum croceum) at Valencia Lagoon 1977–1978, with notes on habitat and occurrence in Santa Cruz and Monterey counties. Calif. Dept. Fish & Game, contract S-1180.
  74. Fisher RN, Shaffer HB. (2002). The Decline of Amphibians in California’s Great Central Valley. Conservation Biology 10(5): 1387–1397.
  75. Nussbaum RA, Brodie ED Jr, Storm RM. (1983). Amphibians & Reptiles of the Pacific Northwest. University of Idaho Press, Moscow, Idaho.
  76. a b c d e f Thompson MD, Russell AP. (2005). Glacial Retreat and its Influence on Migration of Mitochondrial Genes in the Long-toed Salamander (Ambystoma macrodactylum) in Western North America. (pp. 205–246) In. In Ashraf Elewa (ed.), Climatology, Geography, Ecology: Causes of Migration in Organisms. Heidelberg, Germany: Springer-Verlag Publishers.
  77. Giordano AR, Ridenhour BJ, Storfer A. (2008). The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Molecular Ecology 16(8): 1625–1637. PDF.
license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Ambystoma długopalca: Brief Summary ( Polish )

provided by wikipedia POL

Ambystoma długopalca (Ambystoma macrodactylum) – gatunek płaza ogoniastego z rodziny Ambystomatidae. Osobnik dorosły mierzy od 3,8 do 7,6 cm. Cechuje się cętkowaną, czarną, brązową i żółtą pigmentacją. Analizy paleontologiczne, genetyczne i biogeograficzne sugerują, że powstała około 81 milionów lat temu we wschodniej Ameryce Północnej.

Pierwotny zasięg występowania zwierzęcia obejmuje północny zachód kontynentu, nie wychodząc poza wysokość 2800 metrów nad poziomem morza. Zamieszkuje ono różnorodne środowiska, jak lasy deszczowe klimatu umiarkowanego, lasy iglaste, wybrzeża górskich zbiorników wodnych, równiny porośnięte bylicami, lasy jodłowe (z Abies magnifica), równiny porośnięte trawą Bromus tectorum oraz górskie łąki na skalistych brzegach górskich jezior. W czasie sezonu rozrodczego żyje w strumieniach o wolnym nurcie, stawach i jeziorach. Hibernuje przez zimne miesiące, które przeżywa dzięki zapasom białkowym i energetycznym zmagazynowanym w skórze i ogonie.

Wyróżnia się pięć podgatunków posiadających odrębności genetyczne i ekologiczne, a także fenotypowe (inny zakres barwy i odmienne wzory na skórze). Choć IUCN nadaje zwierzęciu status najmniejszej troski (LC), występuje wiele czynników negatywnie wpływających na środowisko jego życia.

license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Ambystoma macrodactylum ( Portuguese )

provided by wikipedia PT

Ambystoma macrodactylum é uma espécie de anfíbio caudado pertencente à família Ambystomatidae. Pode ser encontrada nos Estados Unidos da América e Canadá.[3]

Referências

  1. IUCN SSC Amphibian Specialist Group (2015). «Ambystoma macrodactylum». Lista Vermelha de Espécies Ameaçadas. 2015: e.T59063A56539990. doi:. Consultado em 19 de novembro de 2021
  2. Frost, Darrel R. (2018). «Ambystoma macrodactylum Baird, 1850». Amphibian Species of the World: an Online Reference. Version 6.0. American Museum of Natural History. Consultado em 23 de março de 2018
  3. «Ambystoma macrodactylum» (em inglês). ITIS (www.itis.gov)
 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Ambystoma macrodactylum: Brief Summary ( Portuguese )

provided by wikipedia PT

Ambystoma macrodactylum é uma espécie de anfíbio caudado pertencente à família Ambystomatidae. Pode ser encontrada nos Estados Unidos da América e Canadá.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Långtåad mullvadssalamander ( Swedish )

provided by wikipedia SV

Långtåad mullvadssalamander (Ambystoma macrodactylum) är ett stjärtgroddjur i familjen mullvadssalamandrar som finns i västra USA och Kanada.

Utseende

Salamandern har en mörk ovansida med en längsgående strimma på ryggen och vanligtvis vitaktiga stänk på sidorna. Strimmans färg varierar hos de olika underarterna. Salamandern är slank med långa tår, och har en längd mellan 10 och 16 cm.[3]

Underarter[3] [4]

I gränsområdena mellan två underarter kan det finnas korsningar med avvikande utseende. För närvarande känner man till 5 underarter:

  • A. m. macrodactylum (Baird, 1850) - Ryggstrimman är ojämn, och färgad gul eller grön. Övergår till fläckar på huvudet. Underarten finns i sydvästligaste British Columbia, västra Washington och västra Oregon.
  • A. m. columbianum (Ferguson, 1961) - Ryggstrimman beige till gul och med vågiga kanter, likt sammansmälta fläckar som övergår till separata fläckar på huvudet. Underarten finns i sydvästligaste Alaska, större delen av British Columbia utom längst i norr och längst i öster, vidare i östra Washington, östra Oregon och västra Idaho.
  • A. m. croceum (Russell & Anderson, 1956) - Ryggstrimman består av gula till brandgula fläckar, som blir mindre på huvudet. Kroppen är mycket mörk, vanligtvis svart. Arten finns endast i countyna Santa Cruz och Monterey i Kalifornien[2].
  • A. m. krausei (Peters, 1882) - Ryggstrimman är smal, rak och gul. Underarten finns i östra British Columbia och västra Alberta utom de nordligaste delarna, i östra Idaho och västra Montana.
  • A. m. sigillatum (Ferguson, 1961) - Ryggstrimman består av gula fläckar, som blir mindre på huvudet. Underarten finns i södra Oregon och nordöstra Kalifornien.

Vanor

Arten finns i många biotoper, som torra buskmarker, skogar, bergsängar och klippstränder vid bergssjöar, och från havsytans nivå till över 3 000 m. De lever underjordiskt utom under parningstiden.[2] födan utgörs av ett flertal ryggradslösa djur, som maskar, iglar, blötdjur, spindlar, hoppstjärtar, skalbaggar, tvåvingar, fjärilar, myror och hopprätvingar. Salamandrarna blir könsmogna vid 1 till 3 års ålder, och livslängden är omkring 10 år.[5]

Fortplantning

Fortplantning och larvutveckling sker i grunda, lugna vatten som dammar eller åars och sjöars strandkanter.[2] Salamandern leker mycket tidigt, ofta före snösmältningen (vilken dock kan dröja länge uppe i bergen). I Oregon i den sydliga delen av utbredningsområdet kan salamandrarna vandra till lekvattnen redan i månadsskiftet oktober/november, medan de uppe i bergen inte leker förrän i juni till juli. Honan lägger från 90 till över 400 ägg som kläcks efter 5 till 35 dagar beroende på vattentemperaturen. Tiden för larvutvecklingen varierar mycket, från 50 dagar till nästan 3 år i bergssjöarna. Larven lever av bland annat kräftdjur, insekter och grodyngel. Kannibalism förekommer.[5]

Status

Den långtåade mullvadssalamandern betraktas som livskraftig ("LC") och populationen är stabil. Utsättning av ädelfisk i lekvattnen är dock ett hot.[2]

Referenser

  1. ^ ”Statens jordbruksverks allmänna råd (1999:2)...” (PDF). Statens jordbruksverks författningssamling. 20 oktober 1999. http://www.sjv.se/download/18.7502f61001ea08a0c7fff121743/allmannarad_1999-002.PDF. Läst 2 augusti 2009.
  2. ^ [a b c d e] Ambystoma macrodactylumIUCN:s rödlista (engelska). Auktor: Geoffrey Hammerson (2004), besökt 2009-08-03.
  3. ^ [a b] ”Long-toed Salamander, Ambystoma macrodactylum (på engelska). US Geological Survey. 3 augusti 2006. Arkiverad från originalet den 13 maj 2009. https://web.archive.org/web/20090513095731/http://www.npwrc.usgs.gov/resource/herps/amphibid/species/ambymac.htm. Läst 3 augusti 2009.
  4. ^ Ambystoma macrodactylum (på engelska). ITIS. http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=173601. Läst 3 augusti 2009.
  5. ^ [a b] David S. Pilliod, Julie A. Fronzuto (2009). ”Ambystoma macrodactylum” (på engelska). AmphibiaWeb, University of California. http://www.amphibiaweb.org/cgi-bin/amphib_query?where-genus=Ambystoma&where-species=macrodactylum. Läst 3 augusti 2009.
license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

Långtåad mullvadssalamander: Brief Summary ( Swedish )

provided by wikipedia SV

Långtåad mullvadssalamander (Ambystoma macrodactylum) är ett stjärtgroddjur i familjen mullvadssalamandrar som finns i västra USA och Kanada.

license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

Ambystoma macrodactylum ( Vietnamese )

provided by wikipedia VI

Ambystoma macrodactylum (mô tả bởi Bairdm 1849[1], tên tiếng Anhlong-toed salamander) là một loài kỳ giông trong họ Ambystomatidae. Loài này khi trưởng thành thường đạt chiều dài 4.1–8.9 cm (1.6 tới 3.5 in), chúng có các đốm (hoặc vằn) đen, nâu, và vàng. Phân tích hóa thạch, di truyền học, và địa sinh học cho thấy A. macrodactylumA. laterale tách ra từ một tổ tiên chung do Đường biển Western Interior vào thế Paleocen.

A. macrodactylum sống ở nơi có độ cao tới 2.800 m (9.200 ft) tại nhiều môi trường, gồm rừng mưa ôn đới, rừng quả nón, sông vùng núi, cây bụi đồng bằng, rừng lãnh sam đỏ, và đồng cỏ dọc xường đá của hồ núi.

Phân loại

A. macrodactylum là một thành viên của họ Ambystomatidae. Ambystomatidae tách ra từ nhóm chị em Dicamptodontidae cách nay 81 triệu năm (Creta muộn).[2][3][4] Ambystomatidae cũng là thành viên của phân bộ Salamandroidea, phân bộ này gồm tất cả lưỡng cư có đuôi thụ tinh trong.[5] Họ hàng gần nhất của A. macrodactylumA. laterale, phân bố tại miền đông Bắc Mỹ. Tuy nhiên, phát sinh loài cấp loài của Ambystomatidae chưa hoàn toàn rõ ràng và cần nhiên cứu thêm.[6]

Mô tả

Sinh thái và phân bổ

Chú thích

  1. ^ Ban đầu được mô tả dưới tên Ambystoma macrodactyla.
  2. ^ Tihen J (1958). “Comments on the osteology and phylogeny of ambystomatid salamanders”. Bulletin Florida State Museum 3 (1): 1–50. Truy cập ngày 11 tháng 1 năm 2010.
  3. ^ Jones TR, Kluge AG, Wolf AJ (1993). “When theories and methodologies clash: A phylogenetic reanalysis of the north American ambystomatid salamanders (Caudata: Amybstomatidae)”. Systematic Biology 42 (1): 92–102. doi:10.1093/sysbio/42.1.92.
  4. ^ Wiens JJ (2007). “Global patterns of diversification and species richness in amphibians” (PDF). American Naturalist 170 (S2): S86–S106. PMID 17874387. doi:10.1086/519396.
  5. ^ Zhang P, Wake DB (2009). “Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes” (PDF). Molecular Phylogenetics and Evolution 53 (2): 492–508. PMID 19595776. doi:10.1016/j.ympev.2009.07.010.
  6. ^ Larson A (1996). “Ambystomatidae”. Tree of Life Web Project. Truy cập ngày 14 tháng 1 năm 2010.

Liên kết ngoài

Hình tượng sơ khai Bài viết Bộ Có đuôi này vẫn còn sơ khai. Bạn có thể giúp Wikipedia bằng cách mở rộng nội dung để bài được hoàn chỉnh hơn.
license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

Ambystoma macrodactylum: Brief Summary ( Vietnamese )

provided by wikipedia VI

Ambystoma macrodactylum (mô tả bởi Bairdm 1849, tên tiếng Anh là long-toed salamander) là một loài kỳ giông trong họ Ambystomatidae. Loài này khi trưởng thành thường đạt chiều dài 4.1–8.9 cm (1.6 tới 3.5 in), chúng có các đốm (hoặc vằn) đen, nâu, và vàng. Phân tích hóa thạch, di truyền học, và địa sinh học cho thấy A. macrodactylum và A. laterale tách ra từ một tổ tiên chung do Đường biển Western Interior vào thế Paleocen.

A. macrodactylum sống ở nơi có độ cao tới 2.800 m (9.200 ft) tại nhiều môi trường, gồm rừng mưa ôn đới, rừng quả nón, sông vùng núi, cây bụi đồng bằng, rừng lãnh sam đỏ, và đồng cỏ dọc xường đá của hồ núi.

license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

长趾钝口螈 ( Chinese )

provided by wikipedia 中文维基百科
二名法 Ambystoma macrodactylum
Baird, 1849 长趾钝口螈在北美西北的分佈(用紅點表示)
长趾钝口螈在北美西北的分佈(用紅點表示)
亞種

A. m. columbianum
A. m. croceum英语Santa Cruz Long-toed Salamander
A. m. krausei
A. m. macrodactylum
A. m. sigillatum

长趾钝口螈Ambystoma macrodactylum,贝尔德 1849年)[1]钝口螈科中的一种摩尔蝾螈。成年长趾钝口螈通常身长4.1-8.9厘米(1.6-3.5英寸),其特征为周身夹杂的黑色、棕色、和黄色色素斑点,以及位于后肢突出生长的第四根脚趾。化石记录, 遗传学生物地理学的研究表明:长趾钝口螈和蓝点钝口螈均起源于同一祖先。由于古新世时期北美中大陆航道的流失,它们的祖先迁移至科迪勒拉山脉西部地区。

长趾钝口螈主要分布于海拔高度范围可至2800米(9200英尺)的太平洋西北部地区。它们的栖息地种类繁多,其中包括温带雨林针叶林山地河岸带山艾树灌木平原,紫果冷杉林,半干旱地区的山艾树林,绢雀麦平原,以及沿着山地湖区石岸边的高山草甸。在水中野生繁育阶段,长趾钝口螈生活于水流速度较慢的溪流、池塘、以及湖中。寒冬时节是长趾钝口螈的冬眠期,它们依靠先前储藏在皮肤以及尾部的能量储备来维持生命。

长趾钝口螈的五个亚种有着不同的遗传史和基因史,通过它们不同的颜色以及皮肤纹理进行表型区分。尽管国际自然保护联盟(IUCN)将长趾钝口螈划分为无危物种,各式的土地开发活动都对蝾螈的栖息地造成了不良影响甚至威胁到了它们的生存。

分类法

长趾钝口螈,又称摩尔蝾螈,是钝口螈科的一员。钝口螈科起源于它的近亲陆巨螈科,时间可追溯至大约8100万年前(白垩纪晚期)。[2][3][4] 此外,长趾钝口螈还属于包含所有具备体内受精能力的蝾螈亚目[5]长趾钝口螈的姊妹种是分布在北美洲东部地区的蓝点钝口螈。然而,目前关于长趾钝口螈的物种层面的系统发生学的解说只是初步假定,仍需进一步考证。[6]

描述

长趾钝口螈的身体呈暗黑色,背部点缀着棕褐色、黄色、或者橄榄绿的条纹。这些条纹有时会破裂形成一系列斑点。它们的身体两侧可能带有白色或者浅蓝色的细小斑点。腹部呈深棕色或炭黑色,带有白色的细小斑点。它们的身体常伴有根瘤,但这些根瘤并不会像如纹钝口螈那样的其他蝾螈那样生长。[7]

成年期

长趾钝口螈的棕纤钝口螈 (A. gracile) 还有虎纹钝口螈(A. tigrinum)的卵十分相像。[8] 如同其他两栖动物一样,长趾钝口螈的卵被一层胶状外膜包裹着。这层透明的囊状外膜可使它们的胚胎在形成过程中透过外界看到。[7] 与棕纤钝口螈的卵不同的是,长趾钝口螈的卵没有可见的绿藻来使卵胶呈现出绿色。与虎螈上部浅棕灰色下部乳白色的胚胎相比,在长趾钝口螈的卵内,胚胎的上部呈现出暗沉的颜色且下部颜色较白。这些卵约2毫米 (0.08英寸)大小,但当外围的胶状膜较宽时,它们的半径也会随之增大。[8][9]在卵被完全孵化之前—在卵内胚胎和新生幼体体表—都长有一种平衡器,这种平衡器是细小的皮肤突起,依附在胚胎或幼体身体和头部两侧起到支撑作用。这些平衡器最终将脱落,并且它们的外会逐渐长大。[10] 一旦这些平衡器脱落,幼体便会因它们尖锐的喇叭状的外腮而被立即识别。随着长趾钝口螈幼体的成熟和变形,它们的四肢以及手足趾将会显现,而外腮会逐渐消失。[8][10]

长趾钝口螈幼体的表皮夹杂着黑色、棕色、或者黄色的色素。随着幼体生长 色素细胞开始游离并在身体不同部位聚集,因此造成了肤色的变化。这些色素体又被称为色素细胞,源自于生物的神经嵴。蝾螈体内的三种色素细胞包括黄色素细胞、载黑素细胞、和银色闪光细胞 (或含鸟粪素细胞)[11][12] 随着幼体逐渐成熟, 载黑素细胞沿身体不断聚集并且使得整体肤色变暗。 黄色素细胞将沿脊椎和四肢上端排列。 身体的其余部分将沿躯体两侧和下方缀满细小的闪光细胞。[11][13]

在长趾钝口螈幼体变形过程中,它们肢芽的突起物会蜕变成手指和足趾。 一只变形完毕的长趾钝口螈的两个前肢各有四根脚趾,而两个后肢各有五根脚趾。[14] 它们的头的长度大于头的宽度,头部宽大,成熟幼体以及成年长趾钝口螈后肢第四根脚趾比其他指头更长,这是它们区别于其他同源物种的一大特征,并且也顺应了描述它这一特征的种加词语源macrodactylum (希腊语 makros = 长的, daktylos = 脚趾)。[15] 成年长趾钝口螈的皮肤从深棕色、暗灰色到黑色依次渐变,在表皮上通常会有一道黄色、绿色、或者暗红色的斑纹,斑纹两侧点缀着小斑点。 在它们的四肢、头部、以及躯干下面,覆盖着由白色和桃色渐变至棕色的皮肤,这部分皮肤通常带有大块的白色斑点和小块的黄色半点。[8][16] 成年长趾钝口螈通常身长3.8-7.6厘米 (1.5-3.0 英寸)。

栖息地与分布范围

长趾钝口螈的栖息地种类十分广泛,遍布温带雨林针叶林山地河岸带山艾树灌木平原,紫果冷杉林,半干旱地区的山艾树林,绢雀麦平原,以及沿着山地湖区石岸边的高山草甸[7][13][17] 成年长趾钝口螈有时栖息于草木丛生的森林次冠层叶簇,有时藏匿在粗木质残体中,或者在岩石缝隙以及小型哺乳动物洞穴中。在春季繁殖季节,成年长趾钝口螈主要活动场所在碎石残木以及河流池塘的河岸浅滩之中。季节性水域常常受到它们的造访.[7]

种类的蝾螈是北美洲分布最广的蝾螈之一,其分布广度仅次于虎螈。它们的栖息地位于海拔在2800米(9200英尺)之上的地方,覆盖了多种植被。[7][13][18][19][20] 这些区域包括蒙特利湾以及加利福尼亚州的圣克鲁兹地方种群[21] 这些栖息地在经由太平洋海岸绵延至阿拉斯加州首府朱诺内华达山脉东北部地区再次连接,从而与塔库斯蒂金河溪谷的种群融合。从太平洋海岸开始,其分布范围沿南北方向延伸至位于美国蒙大拿州和加拿大艾伯塔省交界处的落基山脉东部山麓。[22][23][24]

生态与生命周期

 src=
从长趾钝口螈卵块可以看出,胶质外膜将卵连接在一起形成卵块,并且在胶质外膜内部有两个内荚膜,它们将每颗卵隔离开来。

和所有两栖动物一样,长趾钝口螈的生命起始于一颗小小的卵。在长趾钝口螈活动区域的北端,它们将卵产在杂乱的草丛、树杈、石堆之间,或者在淤泥遍布的池塘底部[25] 每个卵块所包含的卵的数量依大小不同而不一,通常最多可达到每个卵块110颗卵。[26] 成年雌性长趾钝口螈消耗大量体力用于产卵。临近繁殖期,它们的卵巢大小甚至会占据身体总体积的一半。人们曾在一只成年雌性长趾钝口螈的卵巢内发现共计264颗卵。据估计,每颗卵的直径约为0.5毫米(0.02英寸)。[27] 卵块由一个胶质外膜包裹着,将一个个卵聚集在一起,并且这个胶质外膜保护着每颗卵的外膜。[28] 有时,这些卵会被单独产下,这种情况通常出现在加拿大及美国南部等气候温暖的地区。长趾钝口螈的卵胶每年都会被当作生物材料供给进行利用,这些生物材料是浅水水源生态系统和与其毗邻的森林生态系统中的化学成分与营养物动态的重要组成部分。[29] 此外,长趾钝口螈的卵还为水霉菌(又称卵菌)提供了必要的生长环境。[30]

 src=
长趾钝口螈幼体因其后肢第四根长趾而得其名祖

幼体

长趾钝口螈的幼体经历两到六周从卵中被孵化出来[25] 它们生来便是肉食动物,刚出生时,它们本能地依靠食用出现在视野范围内的小型无脊椎动物为生。食物种类包括小型水生甲壳动物(水蚤类动物,桡足类动物和介形亚纲动物),双翅类昆虫,和蝌蚪[31] 随着长趾钝口螈逐渐长大,它们自然而然地开始捕获体型更大些的猎物。为了提高它们的生存几率,部分长趾钝口螈的头部越长越大,它们会同类相食,不惜残杀自己的配偶。[32]

变形期与发育期

长趾钝口螈幼体长大至成熟需经历至少一个季度的时间(在太平洋海岸地区,幼体期通常持续四个月),[22] 它们的外腮会消失,发生生物变态,从幼体逐渐变为频繁活动于森林下层灌丛中的陆生生命体。报道称这一生物变态行为早在七月便在海平面地带开始进行,[33]而圣克鲁斯长趾钝口螈的变形发生在每年十月到十一月,甚至会延续到次年一月。[16] 高海拔地区的长趾钝口螈幼体可能会在越冬之后继续保持幼体形态生长一个季度,直到最终的变形。[34] 在海拔较高的湖区,处于变形期的长趾钝口螈幼体的吻肛长(SVL)可达47毫米(1.9英寸)。但在低海拔地区的幼体们生长速度较快,并且通常在体长达到35-40毫米(1.4-1.6英寸)时进行变形。[35]

成年期

成年后的长趾钝口螈往往不易暴露在人们的视野中,因为它们过着秘密的地下生活:挖洞,迁移,以及靠吃森林土壤、腐烂的树干、啮齿动物洞穴、和岩石裂隙中的无脊椎动物为生。成年钝口螈的食物来源主要有昆虫、蝌蚪、蠕虫、甲壳虫以及小鱼。蝾螈的天敌主要有乌梢蛇、小型哺乳动物、鸟类、还有鱼类。[36] 成年长趾钝口螈的寿命通常为6-10年,体重最重可达约7.5克(0.26盎司),吻肛长最长可达8厘米(3.1英寸),总体长可至14厘米(5.5英寸)。[37][38]

生活习性

季节性

长趾钝口螈的生命周期随海拔及气候改变而相应发生变化。季节性迁入或迁出繁殖池的日期会根据持续的降雨量或冰雪消融而变化,因为降雨或融化的积雪时常导致这些季节性池塘的水位再次上涨而无法进行繁殖。在俄勒冈州南部,早在二月中旬,长趾钝口螈将卵产在的低海拔地区,[39]华盛顿州西北部地区,它们在一月至七月期间进行产卵[40] 而在华盛顿州东南部地区,它们选择在一月至三月之间产卵,[41] 在加拿大艾伯塔省的沃特顿湖国家公园,产卵期则发生在四月中旬至五月初。[42] 长趾钝口螈的繁殖时机极其多变;值得注意的是,在1999年7月8日,处于生长初期的一些长趾钝口螈卵块在沿加拿大艾伯塔省贾斯珀英属哥伦比亚的交界地区被发现。[43] 成年长趾钝口螈会季节性地回到它们出生的繁殖池,通常雄性长趾钝口螈会比雌性长趾钝口螈提前到达繁殖池并且待的时间较长。据观察,个别长趾钝口螈在暖春时节沿着积雪进行迁移。[44] 性别差异(或两性异形)只有在繁殖季节才得以体现在长趾钝口螈身上,成年雄性长趾钝口螈会在繁殖季显现出增大的或者球根状的肛部。

繁殖

 src=
在繁殖季期间,长趾钝口螈聚集在岸边或者池塘边的原木下方。观察它们由土褐色变浅色的表皮颜色。

蝾螈的繁殖期取决于它们栖息地的海拔和纬度。总体上说,生活在低海拔地区的蝾螈选择在秋季、冬季、以及早春时节进行繁殖活动。而在高纬度地区,蝾螈的繁殖期集主要为春季和初夏。尤其是气候较温暖的地区,蝾螈会选择在水面浮冰尚未完全融化的池塘与湖泊里活动。[7]

大量的成年长趾钝口螈(>20只)聚集在沿岸靠近繁殖点的岩石或原木下方等待繁殖,并且繁殖活动会在短短几日内集中爆发。[16] 适宜的繁殖点包括小型鱼塘、沼泽湿地、浅水湖泊、和其他静水湿地。[45] 和其他钝口螈科生物一样,长趾钝口螈也逐渐衍生出独有的求偶舞蹈。在进行交配前,它们用搓挠身体,通过下巴处的腺体释放信息素。一旦交配开始,雄性长趾钝口螈预先排出精囊。这种精囊是一种粘性的茎状物,顶端储存着一堆精子,缓慢进入雌性长趾钝口螈体内使其受精。雄性长趾钝口螈通常交配多次,并且会在五小时的时间内排出15个精囊。[16][25] 长趾钝口螈的求偶舞蹈和其他钝口螈属生物有很多相像之处,尤其近似于杰斐逊钝口螈[46][47] 而在长趾钝口螈求偶时没有搓挠或者用头部撞击对方的动作,雄性长趾钝口螈趁雌性试图游走之前直接靠近并紧贴对方身体进行交配。[47] 雄性长趾钝口螈从雌性长趾钝口螈前肢的后方紧紧缠绕住雌性的身体并晃动,这种行为叫做抱合。在繁殖期,有时雄性长趾钝口螈也会对其他两栖动物发生此类行为。[40] 在求偶时,雄性长趾钝口螈只会使用前肢缠绕雌性配偶而不使用后肢,因为它们需使用后肢从两侧搓挠紧压着雌性头部的下颌。一开始,雌性长趾钝口螈试图挣扎,但慢慢会屈从。雄性趁机加快求偶动作的频率和速度,搓挠雌性配偶的鼻孔和身体两侧,有时搓挠雌性的肛部。当雌性长趾钝口螈逐渐屈从缓和,雄性长趾钝口螈则用尾部带动身体前移至雌性的头部位置,拱起身体,颤动尾部。一旦雌性长趾钝口螈接受了雄性的求偶,雄性长趾钝口螈会将雌性的口鼻部靠近自己的肛部,伴随着骨盆部位的起伏动作,双方都僵硬地向前移动身体。随着雌性长趾钝口螈渐渐配合,雄性会停止颤动骨盆并排出一个精囊。与此同时,雌性会随雄性向前移动,并拱起自己的尾部来接收精子。完整的求偶过程基本需多次尝试才可完成。[47] 雌性长趾钝口螈将在交配完成几天之后产下幼卵。[16]

能量储存和防御机制

栖息地与分布范围

种类的蝾螈是北美洲分布最广的蝾螈之一,其分布广度仅次于虎螈。它们的栖息地位于海拔在2800米(9200英尺)之上的地方,覆盖了多种植被。[7][13][18][19][20] 这些区域包括蒙特利湾以及加利福尼亚州的圣克鲁兹地方种群[21] 这些栖息地在经由太平洋海岸绵延至阿拉斯加州首府朱诺内华达山脉东北部地区再次连接,从而与塔库斯蒂金河溪谷的种群融合。从太平洋海岸开始,其分布范围沿南北方向延伸至位于美国蒙大拿州和加拿大艾伯塔省交界处的落基山脉东部山麓。[22][23][48]

 src=
长趾钝口螈自断尾部
 src=
尾部自断之后,长趾钝口螈重新长出的新尾与截断点连接处有明显痕迹

除了春寒期,生活在低地的成年蝾螈在一整个漫长冬季都保持活跃。但在北部栖息地,每到寒冬时节,长趾钝口螈则成群结队地躲藏在冻结线以下粗糙的地底进行冬眠,通常每个越冬群成员数为8-14只。[26][49] 当冬眠的时候,长趾钝口螈依靠皮下以及尾部两侧所囤积的蛋白质存活。[50] 这些蛋白质还有另一功能:作为长趾钝口螈皮肤分泌物的混合成分之一,它们还起到防御作用。[51] 一旦受到威胁,长趾钝口螈会摆动尾部并同时分泌出一种乳白色的的粘性有毒物质。[42][52] 长趾钝口螈的肤色会向捕食者发出“请勿食用”警告(警戒作用[51] 它们皮肤的颜色和图案变化多端,有时整体肤色会从暗黑色变成泛红的棕色,表面点缀着的浅棕红色或浅绿色斑点时而会变成亮黄色的条纹。[22][25] 一只成年长趾钝口螈有时会截断自己的尾部的一小截并且迅速逃走,被截掉的尾巴则会像诱饵一样蠕动;这种现象叫做自截[53] 尾部再生现象是两栖动物发育生理学的一个范例,它对于医疗界有着重大研究意义。[54]

保护现状

国际自然保护联盟将长趾钝口螈分类为无危物种后,[55] 多种形式的土地开发都对长趾钝口螈产生了负面影响,并为其保护生物学拓展了新的前景展望与优先侧重点。优先保护强调物种多样性中的种群层次,而物种多样性正以物种灭绝速率十倍的速率递减。[56][57][58][59] 种群层次多样性是生态系统服务基石[60] 例如,蝾螈在土壤生态系统中所扮演的基本角色中有一个就是促进养分循环,这有效保护了森林湿地的生态体统。[61]

两栖动物的双重生命周期这一特征常常被用来解释它们为何被视为优良的环境健康指示器或者“煤矿里的金丝雀”。和其他所有的两栖动物一样,长趾钝口螈拥有水陆两个阶段的转型期,并且有着半透明的皮肤。由于两栖动物在水栖和陆栖两个阶段所承担的生态功能不同,失去一个两栖物种无异于失去两个生态物种。[62] 其次,所有两栖动物如长趾钝口螈,[63] 都对接触污染物更为敏感,因为它们通过皮肤直接吸收水和氧气。但是一直以来,它们这种对污染物的敏感反应的有效性都存在质疑。[64] 由于不同两栖动物物种间的生命周期呈现差异,不是所有的两栖动物都对环境污染和破坏都表现出同等的敏感度,因此问题也变得更加复杂化。[65]

栖息地零碎化外来物种以及紫外线辐射都对长趾钝口螈的数量构成威胁。林业和公路建设等土地开发活动都在使两栖动物的生存环境发生着巨变,并且悄然增加它们的死亡率[66] 沃特顿湖国家公园等地区都加设了公路隧道地下通道来保证安全通行以及物种迁移。林业是英属哥伦比亚以及美国西部地区的主要经济来源,但随着林业建设的发展,长趾钝口螈的分布广泛重合。林业建设意味着大规模的缓冲区以及适宜蝾螈繁育的小型湿地的面积会急剧减少,受此恶劣影响,长趾钝口螈将在很大程度上改变它们的迁移习性。[67][68] 位于加拿大艾伯塔省皮斯河谷周边的长趾钝口螈数量几乎为零,原因就是当地的湿地被清理和改造以便农用。[69] 为加强捕鱼活动而引进的鳟鱼使原先鱼苗很少的湖泊发生转变,长趾钝口螈的数量也因此急剧减少。[70] 被引进的金鱼则是以长趾钝口螈的卵和幼体为食。[71] 暴露在不断增强的紫外线辐射下是全球范围内长趾钝口螈等两栖动物数量减少的又一因素。这些辐射致使两栖动物畸形,并且大幅降低它们的存活率和生长速度。[72][73][74]

长趾蝾螈亚种中的圣克鲁斯长趾蝾螈(Ambystoma macrodactylum croceum)曾受到特殊关注。1967年颁布的的美国濒危物种法案也给予圣克鲁斯长趾蝾螈密切保护。[75] 圣克鲁斯长趾蝾螈的栖息地范围很小,它们主要分布在位于加利福尼亚州圣塔克鲁斯县蒙特雷县。在受到法律保护之前,一些仅存的圣克鲁斯长趾蝾螈曾一度受到人类资源开发活动的威胁。它们在生态系统中有着独一无二的地位,它们的背部皮肤有着特殊的不规则图案,具备得天独厚的耐湿性,并且它们是与其他同源物种隔离生存的特有种。[13][76][77][78] 它们的其他同源物种包括哥伦比亚长趾蝾螈、克劳斯长趾蝾螈、长趾钝口螈以及南部长趾蝾螈。[23]

系统学与生物地理学

进化起源

长趾钝口螈的祖先来自蝾螈物种丰富度最高的北美洲东部地区。[79][80] 对于长趾钝口螈后来进入北美洲西部地区的生物地理解释皆基于化石、遗传学以及生物地理学的描述。[43][81] 与长趾钝口螈亲缘关系最近的现存姊妹物种蓝点钝口螈,这是北美洲东北部的本土物种。[3][80]白垩纪时期(~145.5–66 Ma),北美中大陆航道和西部内陆海道东南方向地区还尚未出现钝口螈科生物的踪影。[80][82]然而其他三种钝口螈(虎纹钝口螈加州虎纹钝口螈棕纤钝口螈)都在北美洲西部地区有着共用的栖息地。相比之下。长趾钝口螈的近亲蓝点钝口螈则是地道的东北部物种。[3][80] 有研究表明,在古新世(~66–55.8 Ma)之后,北美洲西部内陆海道的消失致使蝾螈祖先通往科迪勒拉山脉西部的道路受阻,长趾钝口螈因此便由蓝点钝口螈演变而来的。[81] 到达北美洲西部的山区之后,所有物种必须尽快适应这个受海拔影响的动态空间的复合生态环境,因为山形与海拔在不断增高,并且气候也在不断变化。例如,太平洋西北地区在古新世时期气候变冷,这为之后温带雨林取代白垩纪时期的热带雨林创造了必要条件。[83]渐新世晚期到中新世期间,落基山脉的高度抬升,从而使得长趾钝口螈以及其它西部物种与生活在东部温带气候环境中的物种隔绝开来。造山运动阻挡了西风气流中的水汽,从而形成了一道天然的屏障,并且使从加拿大艾伯塔省南部至墨西哥湾之间的整个中部大陆保持气候干燥。[43][84]

直到始新世,当时蝾螈的先辈们都倾向于分散或迁移到落基山脉及其周边地区来寻找栖身之所。在始新世中期,湿度适中的森林在北美洲西部地区拔地而起,当到了上新世早期时,它们的分布已经形成了一定的规模。在此期间(古近纪新近纪)的温带森林溪谷和山地会对日后适宜长趾钝口螈生存的栖息地提供必要的地形地貌与生态要素。[43][81][85][86]喀斯喀特山脉形成于上新世中期并由此造成了雨影效应。雨影效应造就了哥伦比亚盆地干旱少雨的气候,同时也改变了位于高海拔地区的温带湿地生态环境状况。随着喀斯喀特山脉的形成与壮大,哥伦比亚盆地变得干旱少雨。这是北美洲西部地区的生物地理特征。得益于此,包括长趾钝口螈在内生活在这里的物种被明确划分为沿海类群与内陆类群。[81][84][86][87]

亚种

长趾钝口螈拥有五个亚种。[13] 这些亚种可以通过它们的地理分布情况以及背部图案来进行识别。[7] 丹泽尔·弗格森从生物地理学角度对它们各异的皮肤图案和形态给出了解释。基于现有的分析,弗格森还介绍了两个新的长趾钝口螈亚种:哥伦比亚长趾蝾螈和南部蝾螈。[13] 这些亚种的排布均显示在罗伯特·斯特宾的两栖动物分布地指南。[7]

 src=
长趾钝口螈及其亚种分布范围情况。
 src=
图左:在长趾钝口螈口鼻部下方的背部底端是它们的下颌腺体,当雄性长趾钝口螈接触雌性时,这些腺体会释放出荷尔蒙。这些腺体分布在长趾钝口螈皮肤表面的白色斑点下部。 图右:雄性的生殖口(用于排泄和生殖)部位有一小块增大的骨骼和乳头状突起(如图)。雌性长趾钝口螈的生殖口则没有那么大,并且通常为没有乳头状突起褶皱的平滑结构。

外观(表现型)

长趾钝口螈亚种的皮肤和形态特征的差异总结为以下几点:[13][23]

圣克鲁斯长趾蝾螈
尾部表皮呈桔黄色,由尾部沿背脊过程中桔色皮肤分裂成斑块,到达头部继续分裂成细小的斑点,并于眼部前方消失。身体两侧有泛白色小斑点。肋沟数目为13。
哥伦比亚长趾蝾螈
黑色的体表布有由黄色至棕褐色的条纹,斑块沿躯干逐渐变成斑点,并逐渐成为狭窄的斑块呈斑点状分布在头部。身体两侧及下部伴有稀疏的白色小斑点。犁骨齿数目大于35。
克劳斯长趾蝾螈
黑色的体表布有由黄色至棕褐色的条纹,斑块沿躯干逐渐变成斑点,并逐渐成为较宽的斑块呈斑点状分布在头部。身体两侧及下部伴有稀疏的白色小斑点。犁骨齿数目约为32。肋沟数目为12。
南部蝾螈
蜡黄色至棕褐色的斑纹沿身体逐渐变成形状不规则的斑块,在头部形成与背部皮肤同色的细小斑点。犁骨齿数目为44。肋沟数目为13。
长趾钝口螈
背脊有柠檬色,暗黄色,至棕褐色的斑纹沿灰色的身体呈分散状遍布全身。斑纹于头部形成同色斑点,有时会在头部和鼻部消失。身体两侧的白色小斑点有时会聚集在一起形成大的斑点。犁骨齿数目约为33,形成一个与众不同的 横向弧拱。肋沟数目为13。

生物地理学及遗传学

线粒体DNA分析法[81] 识别出了这些亚种不同的族系。[81] 例如基因分析法就识别出了位于东部栖息地的长趾钝口螈另外的一种深层差异。从空间分布与历史角度来说,这种长趾钝口螈种群数量以及遗传特征的空间分布通过北美洲西部地区那交织在一起的山地与温带山谷而连接在一起。[81][88] 长趾钝口螈定期的季节性繁殖(归家冲动)以及其他迁徙性行为降低了它们在诸如山间盆地等地区的扩散率。这种行为限制了长趾钝口螈的基因流动,并且增加了基因分化的比率。这些地区的长趾钝口螈基因分化率远远大于同地区其它绝大部分脊椎动物种群。[35]生态系统逐渐转化为气候较为干燥的耐旱低地(如大草原气候)以及较严寒和气候严峻的高海拔地带(2,200米(7,200英尺))时,生物扩散迁徙行为的自然间断则频频发生。[89]

哥伦比亚长趾蝾螈
有关‘中部’亚种(哥伦比亚长趾蝾螈)的基因证据显示,此亚种不会继续沿北部分布至英属哥伦比亚地区,它们的分布范围受限于位于俄勒冈州中部至东北部的蓝山山脉瓦洛厄山脉。北部的斯内克河峡谷(爱达荷州)以及西部马德拉盆地低洼干燥的低地将这些哥伦比亚长趾蝾螈包围起来,限制了它们的分布。[81]
长趾钝口螈
这种‘沿海岸’或者‘西部’亚种(长趾钝口螈)族群得分布范围从加利福尼亚东北部开始,穿过克拉马斯-西斯基尤山脉以及威拉梅特谷,沿包括喀斯喀特山脉在内的沿海山脉北上,继续穿过英属哥伦比亚地区并最终进入阿拉斯加地区。[81]
圣克鲁斯长趾蝾螈
圣克鲁兹长趾钝口螈(圣克鲁斯长趾蝾螈)是最接近长趾钝口螈的亚种。此结论是根据长趾钝口螈最近的种族分布而从生物地理学角度决定的,这个种群生活在距离加利福尼亚州的圣华金三角洲约300千米的地方。[43] 这个与世隔绝的地方性种群被列为濒危物种。[16] 基于生物地理学和分子钟刻度的研究,这个种群也许从第三纪中新世开始就一直与当时的剩余种群隔离,分子钟刻度显示此物种已经历约一千三百九十万年的隔绝期了。[43]
克劳斯长趾蝾螈
‘东部’亚种(克劳斯长趾蝾螈)的分布范围遍布内陆山区,西至华盛顿与英属哥伦比亚地区内陆高原的低地,向东穿过落基山脉溪谷并延伸至美国蒙大拿州和加拿大艾伯塔省交界处平原的低地山麓。[17][81]
南部蝾螈
这种传统的‘南部’亚种(南部蝾螈)并未在线粒体基因识别系统中备注。[81] 此亚种被弗格森命认为是俄勒冈州中南部的哥伦比亚长趾蝾螈的混种[13]

汤普森和罗素发现了另一种演化系谱,此系谱源自爱达荷州被冰川隔绝的鲑鱼河山区。[81] 大约在一万年以前,随着全新世間冰期的到来,更新世的冰川逐渐消融,打开了连接南北的迁徙通,如今南部物种已与通道以北地区的克劳斯长趾蝾螈共同生活,并共同向北迁徙至皮斯河(加拿大)河谷。[81] 弗格森还在同地区注意到了一个种族混种现象,那是发生在栖息于比特鲁特岭塞尔扣克山脉两侧的哥伦比亚长趾蝾螈和克劳斯长趾蝾螈两个形态亚种之间的现象。[13] 汤普森和罗素指出,结合区位于这两个不同的亚种之间的原因是哥伦比亚长趾蝾螈族群在地理上处于隔绝与受限的状态,它们无法进入俄勒冈山区的中部。[81]

参阅

注释

  1. ^ Originally described as Ambystoma macrodactyla.
  2. ^ Tihen J (1958).
  3. ^ 3.0 3.1 3.2 Jones TR, Kluge AG, Wolf AJ (1993).
  4. ^ Wiens JJ (2007).
  5. ^ Zhang P, Wake DB (2009).
  6. ^ Larson A (1996).
  7. ^ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Stebbins RA (2003).
  8. ^ 8.0 8.1 8.2 8.3 Thoms C, Corkran CC (2006).
  9. ^ Salthe SN (1963).
  10. ^ 10.0 10.1 Watson S, Russell AP (2000).
  11. ^ 11.0 11.1 Parichy DM (1996).
  12. ^ Pederzoli A, Gambarelli A, Restani C (2003).
  13. ^ 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Ferguson DE (1961).
  14. ^ Watson, Sheri M (1997).
  15. ^ Baird SF (1849).
  16. ^ 16.0 16.1 16.2 16.3 16.4 16.5 Petranka JW (1998).
  17. ^ 17.0 17.1 Graham KL, Powell GL (1999).
  18. ^ 18.0 18.1 Howard JH, Wallace RL (1985).
  19. ^ 19.0 19.1 Funk WC, Dunlap WW (1999).
  20. ^ 20.0 20.1 Giordano AR, Ridenhour BJ, Storfer A (April 2007).
  21. ^ 21.0 21.1 Russell RW, Anderson JD (1956).
  22. ^ 22.0 22.1 22.2 22.3 Carl GC (1950).
  23. ^ 23.0 23.1 23.2 23.3 Nussbaum RA; Brodie ED Jr.; Storm RM. (1983).
  24. ^ For Alaskan distributions, see MacDonald SO.
  25. ^ 25.0 25.1 25.2 25.3 Green DM, Campbell RW. (1992).
  26. ^ 26.0 26.1 Thompson, MD (2001).
  27. ^ Verrell P (2007).
  28. ^ Trueb L, Duellman WE (1994).
  29. ^ Regester KJ, Whiles MR (2006).
  30. ^ Petrisko JE, Pearl CA, Pilliod DS, Sheridan PP, Williams CF, Peterson CR, Bury BR (2008).
  31. ^ Anderson JD (1968).
  32. ^ Walls SC, Belanger SS, Blaustein AR (1993).
  33. ^ Kezer J, Farner DS (1955).
  34. ^ Marnell LF (1997).
  35. ^ 35.0 35.1 Howard JH, Wallace RL (1981).
  36. ^ Gregory PT, Matsuda BM, Green D (2006).
  37. ^ Russell AP, Powell GL, Hall DR (1996).
  38. ^ Adding to the range of weight and sizes come from the NAMOS BC amphibian database [1].
  39. ^ Kezer J, Farner DS (1955).
  40. ^ 40.0 40.1 Slater JR (1936).
  41. ^ Verrell P, Pelton J (1996).
  42. ^ 42.0 42.1 Fukumoto JM. (1995).
  43. ^ 43.0 43.1 43.2 43.3 43.4 43.5 Thompson, Mark D (2003).
  44. ^ Beneski J Jr; Zalisko EJ; Larsen J Jr (1986).
  45. ^ Stebbins RC, Cohen NW. (1995).
  46. ^ Knudsen JW (1960).
  47. ^ 47.0 47.1 47.2 Anderson JD (1961).
  48. ^ For Alaskan distributions, see MacDonald SO.
  49. ^ Sheppard, Robert Frank (1997).
  50. ^ Williams, Thomas A; Larsen, John H (1986).
  51. ^ 51.0 51.1 Grant JB, Evans JA (2007).
  52. ^ Toledo, R (1995).
  53. ^ "NAMOS BC (Northern Amphibian Monitoring Outpost Society)".
  54. ^ Odelberg SJ (2005).
  55. ^ Lannoo MJ. (2005).
  56. ^ Blaustein, AR; Kiesecker, JM (2002).
  57. ^ Luck, GW; Daily, GC; Ehrlich, PR (2003).
  58. ^ Gascon C, Collins JP, Moore RD, Church DR, McKay JE, Mendelson JR III. (eds). (2007).
  59. ^ Wood, CW; Gross, MR (2008).
  60. ^ Kareiva, P; Marvier, M (2003).
  61. ^ Davic, RD; Welsh, HH Jr (2004).
  62. ^ Whiles, M.R.; Lips, K.R.; Pringle, C.M.; Kilham, S.S.; Bixby, R.J.; Brenes, R.; Connelly, S.; et al.
  63. ^ John, Fraley (October 2009).
  64. ^ Collins, J.P.; Crump, M. (2008).
  65. ^ Beebee, T.J.C.; Griffiths, R (2005).
  66. ^ Becker, CG; Fonseca, CR; Haddad, CFB; Batista, RF; Prado, PI (2007).
  67. ^ Ferguson C. (1999).
  68. ^ Naughton, GP; Henderson, CB; Foresman, KR; McGraw, RL II (2000).
  69. ^ Walsh, R (1998).
  70. ^ Funk, WC; Dunlap, WW (1999).
  71. ^ Monello, RJ; Wright, RG (2001).
  72. ^ Blaustein, AR; Kiesecker, JM; Chivers, DP; Anthony, RG (1997).
  73. ^ Belden, LK; Wildy, EL; Blaustein, AR (2000).
  74. ^ Croteau, MC; Davidson, MA; Lean, DR; Trudeau, VL (2008).
  75. ^ "DFG - Nongame Wildlife Program - Threatened and Endangered Amphibians".
  76. ^ Anderson, JD (1972).
  77. ^ Reed RJ. (1978).
  78. ^ Fisher, RN; Shaffer, HB (2002).
  79. ^ Milner AR (1983).
  80. ^ 80.0 80.1 80.2 80.3 Duellman EW (1999).
  81. ^ 81.00 81.01 81.02 81.03 81.04 81.05 81.06 81.07 81.08 81.09 81.10 81.11 81.12 81.13 Thompson MD, Russell AP (2005).
  82. ^ Milner AR. (1983).
  83. ^ Nussbaum RA. (1974).
  84. ^ 84.0 84.1 Daubenmire R (March 1975).
  85. ^ For the original source describing the paleoenvironmental analogs that was cited by Thompson (2003), see: Heusser C, Minneapolis (1983).
  86. ^ 86.0 86.1 Brunsfeld S, Sullivan J, Soltis D, Soltis P. (2001).
  87. ^ Steele, C. A; Carstens, B. C.; Storfer, A.; Sullivan, J. (2005).
  88. ^ Tallmon DA, Funk WC, Dunlap WW, Allendorf FW (2000).
  89. ^ The height of elevation extremes varies with climate, but>2,200 metres (7,200 ft) is likely to be an impediment to dispersal across most of this species range north of Oregon.

链接

 src= 长趾钝口螈相关数据参见维基物种  src= 长趾钝口螈相关媒体参见维基共享资源

 title=
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

长趾钝口螈: Brief Summary ( Chinese )

provided by wikipedia 中文维基百科

长趾钝口螈(Ambystoma macrodactylum,贝尔德 1849年) 是钝口螈科中的一种摩尔蝾螈。成年长趾钝口螈通常身长4.1-8.9厘米(1.6-3.5英寸),其特征为周身夹杂的黑色、棕色、和黄色色素斑点,以及位于后肢突出生长的第四根脚趾。化石记录, 遗传学生物地理学的研究表明:长趾钝口螈和蓝点钝口螈均起源于同一祖先。由于古新世时期北美中大陆航道的流失,它们的祖先迁移至科迪勒拉山脉西部地区。

长趾钝口螈主要分布于海拔高度范围可至2800米(9200英尺)的太平洋西北部地区。它们的栖息地种类繁多,其中包括温带雨林针叶林山地河岸带山艾树灌木平原,紫果冷杉林,半干旱地区的山艾树林,绢雀麦平原,以及沿着山地湖区石岸边的高山草甸。在水中野生繁育阶段,长趾钝口螈生活于水流速度较慢的溪流、池塘、以及湖中。寒冬时节是长趾钝口螈的冬眠期,它们依靠先前储藏在皮肤以及尾部的能量储备来维持生命。

长趾钝口螈的五个亚种有着不同的遗传史和基因史,通过它们不同的颜色以及皮肤纹理进行表型区分。尽管国际自然保护联盟(IUCN)将长趾钝口螈划分为无危物种,各式的土地开发活动都对蝾螈的栖息地造成了不良影响甚至威胁到了它们的生存。

license
cc-by-sa-3.0
copyright
维基百科作者和编辑