dcsimg

Phaeocystis ( германски )

добавил wikipedia DE
 src=
Illustration Phaecocystis
 src=
Schaum von Phaeocystis globosa
 src=
Phaeocystis-Algenschaum am Strand

Phaeocystis ist eine Gattung von Algen, die zur Klasse der Prymnesiophyten (Prymnesiophyceae) und damit zum großen Phylum (Abteilung) der Haptophyten (Haptophyta) gehört.[1] Phaeocystis-Arten sind im marinen Phytoplankton weit verbreitet und können in einem weiten Temperaturbereich („eurythermal“) und Salzgehaltsbereich („euryhalin“) vorkommen.[2] Mitglieder dieser Gattung leben sowohl im offenen Ozean als auch im Meereis.[3]

Phaeocystis-Arten haben einen vielgestaltigen (polymorphen) Lebenszyklus, der von freilebenden Zellen bis zu großen Kolonien reicht.[2] Auf diese Weise sind einige Arten von Phaecocystis in der Lage, schädliche Algenblüten (en. harmful algal blooms, HABs) zu bilden.

Arten

 src=
Kolonien von Phaeocystis globosa in Kultur, Balken 500 μm.
 src=
Kolonien von Phaeocystis antarctica, wichtiger Bestandteil des Phytoplanktons im Rossmeer, nach dem Rückzug des Meereises die Algenblüten der frühen Saison dominierend.[4]

Gattung Phaeocystis[5][6][7][8]

  • P. amoeboidea Büttner, 1910 (Kieler Bucht, Holtenauer Ufer)
  • P. antarctica Karsten, 1905 (Atlantischer Sektor der antarktischen zirkumpolaren Konvergenz)
  • P. brucei Mangin, 1922 (saisonale Eiszone – seasonal ice zone, SIZ – des Südlichen Ozeans)
  • P. cordata A. Zingone & M. J. Chrétiennot-Dinet, 2000 (Mittelmeer)
  • P. globosa Scherffel, 1899 (Helgoland)
  • P. jahnii A. Zingone, 2000 (Mittelmeer)
  • P. pouchetii (Hariot) Lagerheim, 1896 (Typus / Holotyp Spezies, Nordatlantik: entlang der Küste Norwegens von den Lofoten bis zum Varangerfjord)
  • P. rex Andersen, Bailey, Decelle & Probert, 2015 (Arabisches Meer, nicht gelistet bei WoRMS)[9]
  • P. scrobiculata Ø. Moestrup, 1979 (nicht in Kultur, Neuseeland)
  • P. sphaeroides Büttner, 1910 (Kieler Bucht, Möltenorter Ufer)
  • P. sp. AC618“ (nicht-klassifizierter Kandidat nach NCBI)
  • P. sp. Hongkong2“ (nicht-klassifizierter Kandidat nach NCBI)
  • P. sp. PLY559“ (nicht-klassifizierter Kandidat nach NCBI)
  • P. sp. Hongkong2“ (nicht-klassifizierter Kandidat nach NCBI)
  • P. sp. Santou“ (nicht-klassifizierter Kandidat nach NCBI)
  • P. sp. SIC.41345“ (nicht-klassifizierter Kandidat nach NCBI)
  • P. sp. JD-2012“ (nicht-klassifizierter Kandidat nach NCBI)[10] – die bei Brisbin et al. (2018) in Fig. 2 angegebenen Zugriffsnummern für die Klade „Phaeo2“ endosymbiotischer Phaeocystis fallen in diese NCBI-Kandidaten-Spezies.[11]

Anmerkungen:

  • Throndsen (1997) ordnet diese Gattung abweichend in die Ordnung Prymnesiales ein.[7]
  • Die Spezies Phaeocystis giraudii (Derbès & Solier) De Toni, 1895 wurde in die Gattung Chrysoreinhardia verschoben als Synonym von Chrysoreinhardia giraudii (Derbès & Solier) C. Billard, 2000[7]
  • Die Spezies Phaeocystis fuscescens (A. Braun} ex Kützing) De Toni 1895 wurde in die Gattung Tetrasporopsis verschoben als Synonym von Tetrasporopsis fuscescens (A. Braun ex Kützing) Lemmermann 1899[7]
  • Weitere nicht-klassifizierte Kandidaten sind bei NCBI zu finden.[12]
  • Zu den beiden endsymbiotischen Phaeocystis-Kladen „Phaeo1“ und „Phaeo2“ siehe unten.

Genom

Ein Genomvergleich hat gezeigt, dass die RuBisCO-Spacer-Region (im Plastom, d. h. der Plastiden-DNA, zwischen zwei Untereinheiten des Enzyms Ribulose-1,5-bisphosphat-Carboxylase) unter eng verwandten kolonialen Phaeocystis-Arten hoch konserviert ist. Sie ist in P. antarctica, P. pouchetii und zwei warm-temperierten Stämmen von P. globosa identisch, es gibt lediglich eine einzige Basensubstitution in zwei kalt-temperierten Stämmen von P. globosa.[13]

Verbreitung und Lebenszyklus

Phaeocystis kann entweder in der Form freilebender Zellen oder als Kolonie existieren. Ein Sonderfall ist die endosymbiotische Lebensweise.

Fortpflanzung

Ein haploid-diploider Lebenszyklus wurde bisher nur bei P. globosa beobachtet, wird aber auch bei anderen Arten wie P. pouchetii und P. antarctica vermutet. In diesem Zyklus ist die sexuelle Fortpflanzung bei der Bildung und dem Absterben der Kolonieblüte dominant. Abgesehen davon wurden zwei unterschiedliche Arten der vegetativen Fortpflanzung beobachtet.[14]

Freilebende Formen

Freilebende Formen von Phaeocystis sind weltweit verbreitet und kommen in einer Vielzahl von marinen Lebensräumen vor, darunter Küstenmeere, offene Ozeane, Polarmeere und im Meereis.[15]

Freilebende Zellen können je nach Art eine Vielzahl von Morphologien aufweisen. Alle Arten können als geschuppte Flagellaten (Geißeltierchen) existieren; bei P. scrobiculata und P. cordata ist dies sogar die einzige beobachtete Form.

Koloniebildende Formen und Algenblüten

Die Bildung schwimmender Kolonien ist eine besondere und kennzeichnende Eigenschaft der Gattung Phaeocystis. In einer solchen Kolonie sind Hunderte von Zellen in eine Matrix aus Polysaccharid-Gel eingebettet, die bei Algenblüten massiv an Größe zunehmen kann.[3]

Bei drei Arten wurden Kolonienbildung beobachtet (P. globosa, P. pouchetii und P. antarctica), diese können auch als ohne Schuppen und Filamente existieren.[14] Bei Kolonien von Phaeocystis kann eine Koloniehaut (en. colony skin) Schutz vor kleineren Zooplanktonfressern und Viren bieten.[16]

Die Allgegenwart und die Bildung großer Algenblüten machen die Gattung Phaeocystis zu einem wichtigen Bestandteil des Kohlenstoffkreislaufs im Ozean.[17][18] Außerdem produziert Phaeocystis Dimethylsulfid (DMS), einen Schlüsselakteur im Schwefelkreislauf.[19][20]

Die Bildung von Algenblüten in nährstoffreichen Gebieten wird durch die drei koloniebildenden Arten (P. globosa, P. pouchetii und P. antarctica) verursacht.[21] Diese können natürliche Ursache haben (z. B. im Rossmeer, in der Grönlandsee oder in der Barentssee)[22] oder durch anthropogene (menschenverursachte) Einträge hervorgerufen werden (z. B. in der Southern Bight in der südlichen Nordsee oder im Persischen Golf).

Im Allgemeinen blüht P. globosa in gemäßigten und tropischen Gewässern, während P. pouchetii und P. antarctica besser an die kalten Temperaturen angepasst sind, die in arktischen bzw. antarktischen Gewässern herrschen. P. pouchetii toleriert jedoch auch wärmere Temperaturen[23] und wurde tatsächlich schon in gemäßigten Gewässern gesehen.[24]

Die größten Phaeocystis-Blüten bilden sich in den Polarmeeren: P. pouchetii im Norden und P. antarctica im Süden.[1] Diese intensive Phaeocystis-Produktivität hält im Allgemeinen etwa drei Monate lang an und überspannt den größten Teil des Sommers auf der Südhalbkugel. Phaeocystis-reiche Ökosysteme stehen in der Regel mit kommerziell wichtigen Beständen von Krebstieren, Mollusken, Fischen und auch Säugetieren in Verbindung. Phaeocystis kann negative Auswirkungen auf höhere trophische Ebenen im marinen Ökosystem und damit auch auf menschliche Aktivitäten (z. B. Fischzucht und Küstentourismus) haben, indem sie während des Abklingens einer Blüte geruchsintensive Schäume an den Stränden bildet.[25]

Symbiose

 src=
Fluoreszenzmikroskopie von photosymbiotischen Acantharien, die Phaeocystis-Symbionten beherbergen. Rote Fluoreszenz ist Chlorophyll-Autofluoreszenz und ermöglicht die Beobachtung der veränderten Morphologie der Phaeocystis-Chloroplasten. Die grüne Fluoreszenz entspricht einem Farbstoff, der Verdauungskompartimente färbt. Die Symbionten werden nicht verdaut.

Phaeocystis-Arten treten als Endosymbionten von Acantharien (Acantharea, informelle Gruppe der Strahlentierchen alias Radiolarien, wohl zu unterscheiden von der Pilzgattung Acantharia) auf.[26][11] Ob diese Symbiose einen echten Mutualismus darstellt, bei dem beide Partner profitieren, ist umstritten.[27] Aus verschiedenen Ozeanbecken gesammelte Acantharien beherbergen unterschiedliche Arten von Phaeocystis als dominante Symbionten:[26]

  • P. antarctica wird als primärer Symbiont in Acanthariern im Südlichen Ozean (dem Antarktischen Ozean) gefunden.
  • P. cordata und P. jahnii gehören zu den dominanten Symbionten in Akanthariern der warmen oligotrophen Regionen des Indischen und Pazifischen Ozeans.

Zusätzlich zu den beschriebenen Phaeocystis-Arten machen Sequenzen aus einer mit „Phaeo2“ bezeichneten molekularen Klade oft einen Großteil der aus Acanthariern in warmen Wasserregionen gewonnenen symbiotischen Sequenzen aus (neben denen der sog. Klade „Phaeo1“[26][11][28], wohl zu unterscheiden von den gleichnamigen Kladen der Spezies Phaeodactylum tricornutum)[29][30]

Bei symbiotischen Phaeocystis-Arten wird ein extremer Zellumbau beobachtet, einschließlich einer drastischen Zunahme der Chloroplastenzahl und einer vergrößerten zentralen Vakuole.[26][11] Diese phänotypische Veränderung wird wahrscheinlich vom Wirt induziert, um die photosynthetische Leistung der Symbionten zu erhöhen. Die Endosymbiose wird jedoch zur Sackgasse für Phaeocystis, wenn sie die symbiotischen Zellen unfähig für weitere Zellteilungen macht.[27] Die Symbiose ist ökologisch relevant, weil sie Brennpunkte der Primärproduktion in nährstoffarmen Regionen schafft.[31] Es bleibt aber noch zu klären, inwieweit die Symbiose die Evolution von Phaeocystis beeinflusst hat.

Viren

Von den Arten P. globosa und P. pouchetii sind eine Reihe von Virusspezies mit Kandidatenstatus bekannt.[32] Diese wurden zunächst vorgeschlagen als Mitglieder der Virusgattung Prymnesiovirus, Familie Phycodnaviridae im Phylum Nucleocytoviricota (NCLDV). Nach neueren Untersuchungen sind einige der Kandidaten jedoch mit Gruppe der sog. „OLPG“ eher der Familie Mimiviridae (oder einer Schwesterfamilie Mesomimiviridae derselben) zuzuordnen.

Anmerkung: In der Prymnesiovirus-Schwestergattung Phaeovirus sind (trotz der Namensähnlichkeit) keine Phaeocystis-infizierende oder -assoziierte Viren bekannt.

  • Familie Phycodnaviridae, Gattung Prymnesiovirus:[33]
  • Spezies „Phaeocystis globosa virus“ (PgV)
  • Spezies „Phaeocystis globosa virus 1“ (PgV-01T, T steht im Akronym für Texel, Niederlande)[34]
  • Spezies „Phaeocystis globosa virus 2“ bis „11“ (PgV-02T bis PgV-11T)
  • Spezies „Phaeocystis globosa virus 13“ (PgV-13T)
  • Spezies „Phaeocystis globosa virus 15“ (PgV-15T)
  • Spezies „Phaeocystis globosa virus 17“ (PgV-17T)
  • Spezies „Phaeocystis globosa virus 18“ (PgV-18T)
  • Spezies „Phaeocystis globosa virus 102“ (PgV-102P, P steht für Plymouth, Südwestengland)[35]
  • Verschiebe-Option Richtung Familie Mimiviridae:
  • Spezies „Phaeocystis globosa virus 12“ (PgV-12T)[36][32]
  • Spezies „Phaeocystis globosa virus 14“ (PgV-14T)[36]
  • Spezies „Phaeocystis globosa virus 16“ (PgV-16T)[34][36][37][38][39]
  • Spezies „Phaeocystis pouchetii virus“ (PpV)[40][41][39][32]
  • Phaeocystis globosa Virus Virophage“ (PgVV), parasitiert „Phaeocystis globosa virus“ (PgV)[42][43][44]

Man vermutet, dass die Algenblühen verursachende Mikroorganismen durch sie parasitierende Viren kontrolliert werden und diese sogar in der Lage sind, eine Blüte zusammenbrechen zu lassen.

Globale Auswirkungen

Die Gattung Phaeocystis ist ein wichtiger Produzent von 3-Dimethylsulphoniopropionat (DMSP). DMSP wird von weiteren marinen Mikroben in flüchtige Schwefelverbindungen zersetzt, insbesondere Methanthiol (CH3SH) und Dimethylsulfid (DMS, (CH3)2S).[1] Ein Großteil des DMS im Meerwasser wird zu Dimethylsulfoxid (DMSO, (CH3)2S=O) oxidiert.[45] Biogenes DMS trägt jährlich etwa 1.5×1010 kg Schwefel zur Atmosphäre bei und spielt daher eine wichtige Rolle im globalen Schwefelkreislauf, der die Wolkenbildung und möglicherweise die Klimaregulierung beeinflussen kann.[1]

Einzelnachweise

  1. a b c d Phaeocystis Research.
  2. a b Véronique Schoemann, Sylvie Becquevort, Jacqueline Stefels, Véronique Rousseau, Christiane Lancelot: Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. In: Journal of Sea Research, Serie: Iron Resources and Oceanic Nutrients - Advancement of Global Environmental Simulations. 53, Nr. 1–2, 1. Januar 2005, S. 43–66. bibcode:2005JSR....53...43S. doi:10.1016/j.seares.2004.01.008.
  3. a b Welcome to the Phaeocystis antarctica genome sequencing project homepage.
  4. Sara J. Bender, Dawn M. Moran, Matthew R. McIlvin, Hong Zheng, John P. McCrow, Jonathan Badger, Giacomo R. DiTullio, Andrew E. Allen, and Mak A. Saito: Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry, in: Biogeosciences, Band 15, Nr. 16, 21. August 2018, S. 4923–4942, doi:10.5194/bg-15-4923-2018
  5. Robert A. Andersen, J. Craig Bailey, Johan Decelle, Ian Probert: Phaeocystis rex sp. nov. (Phaeocystales, Prymnesiophyceae): a new solitary species that produces a multilayered scale cell covering. In: European Journal of Phycology. 50, Nr. 2, 3. April 2015, , S. 207–222. doi:10.1080/09670262.2015.1024287.
  6. WoRMS: Phaeocystis Lagerheim, 1893
  7. a b c d AlgaeBase: Phaeocystis Lagerheim, 1893
  8. NCBI: Phaeocystis (genus); graphisch: Phaeocystis, auf: Lifemap, NCBI Version.
  9. Robert A. Andersen, J. Craig Bailey, Johan Decelle, Ian Probert: Phaeocystis rex sp. nov. (Phaeocystales, Prymnesiophyceae): a new solitary species that produces a multilayered scale cell covering, in: European Journal of Phycology, Band 50, Nr. 2, April 2015, doi:10.1080/09670262.2015.1024287
  10. NCBI: Phaeocystis sp. JD-2012 (species)
  11. a b c d Margaret Mars Brisbin, Mary M. Grossmann, Lisa Y. Mesrop, Satoshi Mitarai: Intra-host Symbiont Diversity and Extended Symbiont Maintenance in Photosymbiotic Acantharea (Clade F). In: Frontiers in Microbiology. 9, 27. August 2018, , S. 1998. doi:10.3389/fmicb.2018.01998. PMID 30210473. PMC 6120437 (freier Volltext). „Phaeo2“ siehe Fig. 2
  12. NCBI: unclassified Phaeocystis (list)
  13. Martin Lange, Yue-Qin Chen, Linda K. Medlin: Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. In: European Journal of Phycology. 37, Nr. 1, 1. Februar 2002, , S. 77–92. doi:10.1017/S0967026201003481.
  14. a b Véronique Rousseau, Marie-Josèphe Chrétiennot-Dinet, Anita Jacobsen, Peter Verity, Stuart Whipple: The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology. In: Biogeochemistry. 83, Nr. 1–3, 13. April 2007, , S. 29–47. doi:10.1007/s10533-007-9085-3.
  15. Helge Abildhauge Thomsen, Kurt. R. Buck, F. P. Chavez: Haptophytes as components of marine phytoplankton, in: J. C. Green, B. S. C. (Hrsg.): The Haptophyte Algae, Clarendon Press, Oxford, UK, Januar 1994, S. 187–208, ResearchGate
  16. Peter G. Verity, Corina P. Brussaard, Jens C. Nejstgaard, Maria A. van Leeuwe, Christiane Lancelot, Linda K. Medlin: Current understanding of Phaeocystis ecology and biogeochemistry, and perspectives for future research. In: Biogeochemistry. 83, Nr. 1–3, 16. März 2007, , S. 311–330. doi:10.1007/s10533-007-9090-6.
  17. Walker O. Smith, Louis A. Codispoti, David M. Nelson, Thomas Manley, Edward J. Buskey, H. Joseph Niebauer, Glenn F. Cota: Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. In: Nature. 352, Nr. 6335, 8. August 1991, S. 514–516. bibcode:1991Natur.352..514S. doi:10.1038/352514a0.
  18. G. R. DiTullio, J. M. Grebmeier, K. R. Arrigo, M. P. Lizotte, D. H. Robinson, A. Leventer, J. P. Barry, M. L. VanWoert, R. B. Dunbar: Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. In: Nature. 404, Nr. 6778, 6. April 2000, S. 595–598. doi:10.1038/35007061. PMID 10766240.
  19. J. Stefels, W. H. M. Van Boekel: Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp., in: Mar. Ecol. Prog. Ser., Band 97, 8. Juli 1993, S. 11–18.
  20. J. Stefels, L. Dijkhuizen, W. W. C. Gieskes: DMSP-lyase activity in a spring phytoplankton bloom off the Dutch coast, related to Phaeocystis sp. abundance. In: Marine Ecology Progress Series. 123, 20. Juli 1995, S. 235–243. bibcode:1995MEPS..123..235S. doi:10.3354/meps123235.
  21. Christiane Lancelot, M. D. Keller, Véronique Rousseau, Walker O. Smith Jr, Sylvie Mathot: Autecology of the marine haptophyte Phaeocystis sp. (sic!), in: David M. Anderson, Allan D. Cembella, Gustaaf M. Hallegraeff (Hrsg.): Physiological ecology of harmful algal blooms, NATO ASI Series G: Ecological Sciences, Band 41, Springer-Verlag, Berlin, 2. Juni 1998, S. 209–224, ISBN 978-3540641179 (Buch: freier Volltext) – Der Titel des Artikels wird oft als ‚Autoecology‘ verschrieben.
  22. A. Orkney, T. Platt, B. E. Narayanaswamy, I. Kostakis, H. A. Bouman: Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea, in: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 31. August 2020, doi:10.1098/rsta.2019.0357
  23. M. E. M. Baumann, C. Lancelot, F. P. Brandini, E. Sakshaug, D. M. John: The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach. In: Journal of Marine Systems. 5, Nr. 1, 1994, S. 5–22. bibcode:1994JMS.....5....5B. doi:10.1016/0924-7963(94)90013-2.
  24. Catharina J. M. Philippart, Gerhard C. Cadée, Wim van Raaphorst, Roel Riegman: Long-term phytoplankton-nutrient interactions in a shallow coastal sea: Algal community structure, nutrient budgets, and denitrification potential. In: Limnology and Oceanography. 45, Nr. 1, 1. Januar 2000, , S. 131–144. bibcode:2000LimOc..45..131P. doi:10.4319/lo.2000.45.1.0131.
  25. C. Lancelot, S. Mathot: Dynamics of a Phaeocystis-dominated spring bloom in Belgian coastal waters. I. Phytoplanktonic activities and related parameters. In: Marine Ecology Progress Series. 37, 1987, S. 239–248. bibcode:1987MEPS...37..239L. doi:10.3354/meps037239.
  26. a b c d M. Johan Decelle, Rafel Simó, Martí Galí, Colomban de Vargas, Sébastien Colin, Yves Desdevises, Lucie Bittner, Ian Probert, Fabrice Not: An original mode of symbiosis in open ocean plankton. In: Proceedings of the National Academy of Sciences. 109, Nr. 44, 30. Oktober 2012, , S. 18000–18005. bibcode:2012PNAS..10918000D. doi:10.1073/pnas.1212303109. PMID 23071304. PMC 3497740 (freier Volltext). Zu „Phaeo1“ und „Phaeo2“ siehe Fig. 1, zu „Phaeo2“ auch Fig. 3.
  27. a b Johan Decelle: New perspectives on the functioning and evolution of photosymbiosis in plankton. In: Communicative & Integrative Biology. 6, Nr. 4, 30. Juli 2013, S. e24560. doi:10.4161/cib.24560. PMID 23986805. PMC 3742057 (freier Volltext).
  28. M. Johan Decelle: Ecologie et évolution de la photosymbiose chez les acanthaires (radiolaires), Dissertation an der Universität Pierre und Marie Curie (UPMC), Paris, 11. Januar 2018 (französisch)
  29. A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae, National Renewable Energy Laboratory (NREL/TP-580-24190) – Gegenbeispiel
  30. NCBI: Phaeodactylum (genus, Bacillariophyceae)
  31. David A. Caron, Neil R. Swanberg, Anthony F. Michaels, Frances A. Howse: Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda. In: Journal of Plankton Research. 17, Nr. 1, 1. Januar 1995, , S. 103–129. doi:10.1093/plankt/17.1.103.
  32. a b c Romain Blanc-Mathieu, Håkon Dahle, Antje Hofgaard, David Brandt, Hiroki Ban, Jörn Kalinowski, Hiroyuki Ogata, Ruth-Anne Sandaa: A Persistent Giant Algal Virus, with a Unique Morphology, Encodes an Unprecedented Number of Genes Involved in Energy Metabolism, in: ASM Journals: Journal of Virology, Band 95, Nr. 8, 25. März 2021, doi:10.1128/JVI.02446-20 .
    PrePrint: bioRxiv, doi:10.1101/2020.07.30.228163, CSH, 13. Januar 2021
  33. NCBI: Prymnesiovirus (Genus)
  34. a b Jean-Michel Claverie, Chantal Abergel: Mimiviridae: An Expanding Family of Highly Diverse Large dsDNA Viruses Infecting a Wide Phylogenetic Range of Aquatic Eukaryotes]. In: Viruses. 2018 Sep; 10(9), 18. September 2018, S. 506, doi:10.3390/v10090506, PMC 6163669 (freier Volltext), PMID 30231528, Tab. 2
  35. Willie Wilson, Declan C. Schroeder, Jenna Ho, Martin Canty: Phylogenetic analysis of PgV-102P, a new virus from the English Channel that infects Phaeocystis globosa, in: J Mar Biol Ass UK 86, Juni 2006, S. 485–490, doi:10.1017/S0025315406013385
  36. a b c Jônatas Abrahão, Lorena Silva, Ludmila Santos Silva, Jacques Yaacoub Bou Khalil, Rodrigo Rodrigues, Thalita Arantes, Felipe Assis, Paulo Boratto, Miguel Andrade, Erna Geessien Kroon, Bergmann Ribeiro, Ivan Bergier, Herve Seligmann, Eric Ghigo, Philippe Colson, Anthony Levasseur, Guido Kroemer, Didier Raoult, Bernard La Scola: Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. In: Nature Communications. 9, Nr. 1, 27. Februar 2018. doi:10.1038/s41467-018-03168-1.
  37. Sebastien Santini, Sandra Jeudy, Julia Bartoli, Olivier Poirot, Magali Lescot, Chantal Abergel, Valérie Barbe, K. Eric Wommack, Anna A. M. Noordeloos, Corina P. D. Brussaard, Jean-Michel Claverie: Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes, in: Proc Natl Acad Sci USA 110(26), 25. Juni 2013, S. 10800–10805, Epub 10. Juni 2013, doi:10.1073/pnas.1303251110, PMC 3696832 (freier Volltext), PMID 23754393
  38. Yanze Li, Hisashi Endo, Yasuhiro Gotoh, Hiroyasu Watai, Nana Ogawa, Romain Blanc-Mathieu, Takashi Yoshida, Hiroyuki Ogata: The Earth Is Small for “Leviathans”: Long Distance Dispersal of Giant Viruses across Aquatic Environments, in: Microbes Environ. 34(3), September 2019, S. 334–339, Epub 3. August 2019, doi:10.1264/jsme2.ME19037, PMC 6759346 (freier Volltext), PMID 31378760; insbes. Fig. 4; wegen der Platzierung im Stammbaum und DORTIGER Referenz auf Santini (2013) meint Phaeocystis_globosa_virus hier PgV-16T.
  39. a b Andrew M. Q. King, Michael J. Adams et al.: [1], 9th Report of the ICTV, 2011/2012, ScienceDirect
  40. NCBI: Phaeocystis pouchetii virus (species)
  41. Lucie Gallot-Lavallee, Guillaume Blanc, Jean-Michel Claverie: Comparative genomics of Chrysochromulina Ericina Virus (CeV) and other microalgae-infecting large DNA viruses highlight their intricate evolutionary relationship with the established Mimiviridae family, in: J. Virol., 26 April 2017, doi:10.1128/JVI.00230-17
  42. Said Mougari, Dehia Sahmi-Bounsiar, Anthony Levasseur, Philippe Colson, Bernard La Scola: Virophages of Giant Viruses: An Update at Eleven. In: Viruses. Band 11, Nr. 8, 2019, ISSN 1999-4915, S. 733, doi:10.3390/v11080733, PMID 31398856, PMC 6723459 (freier Volltext).
  43. Meriem Bekliz, Philippe Colson, Bernard La Scola: The Expanding Family of Virophages. In: MDPI Viruses. Band 8, Nr. 11 (Special Issue Viruses of Protozoa), 23. November 2016, S. 317, doi:10.3390/v8110317.
  44. NCBI: Phaeocystis globosa virus virophage. (species) Auf: ncbi.nlm.nih.gov; zuletzt abgerufen am 22. März 2021.
  45. Martí Galí, Rafel Simó: Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer receding of the ice edge (PDF), in: Marine Chemistry, Band 122, Ausgabe 1–4, Oktober 2010, S. 105–117, doi:10.1016/j.marchem.2010.07.003, Epub 24. Juli 2010.
 title=
лиценца
cc-by-sa-3.0
авторски права
Autoren und Herausgeber von Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia DE

Phaeocystis: Brief Summary ( германски )

добавил wikipedia DE
 src= Illustration Phaecocystis  src= Schaum von Phaeocystis globosa  src= Phaeocystis-Algenschaum am Strand

Phaeocystis ist eine Gattung von Algen, die zur Klasse der Prymnesiophyten (Prymnesiophyceae) und damit zum großen Phylum (Abteilung) der Haptophyten (Haptophyta) gehört. Phaeocystis-Arten sind im marinen Phytoplankton weit verbreitet und können in einem weiten Temperaturbereich („eurythermal“) und Salzgehaltsbereich („euryhalin“) vorkommen. Mitglieder dieser Gattung leben sowohl im offenen Ozean als auch im Meereis.

Phaeocystis-Arten haben einen vielgestaltigen (polymorphen) Lebenszyklus, der von freilebenden Zellen bis zu großen Kolonien reicht. Auf diese Weise sind einige Arten von Phaecocystis in der Lage, schädliche Algenblüten (en. harmful algal blooms, HABs) zu bilden.

лиценца
cc-by-sa-3.0
авторски права
Autoren und Herausgeber von Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia DE

Phaeocystis ( англиски )

добавил wikipedia EN

Phaeocystis is a genus of algae belonging to the Prymnesiophyte class and to the larger division of Haptophyta.[1] It is a widespread marine phytoplankton and can function at a wide range of temperatures (eurythermal) and salinities (euryhaline).[2] Members of this genus live in the open ocean, as well as in sea ice.[3] It has a polymorphic life cycle, ranging from free-living cells to large colonies.[2]

The ability to form a floating colony is one of the unique attributes of Phaeocystis – hundreds of cells are embedded in a polysaccharide gel matrix, which can increase massively in size during blooms.[3] The largest Phaeocystis blooms form in the polar seas: P. pouchetii in the north and P. antarctica in the south.[1] This intense Phaeocystis productivity generally persists for about a three-month period, spanning most of the summer in the Southern Hemisphere. Phaeocystis-abundant ecosystems are generally associated with commercially important stocks of crustaceans, molluscs, fish and mammals. Phaeocystis may have negative effects on higher trophic levels in the marine ecosystem, and consequent impacts on human activities (such as fish farming and coastal tourism), by forming odorous foams on beaches during the wane of a bloom.[4]

The ability to form large blooms and its ubiquity make Phaeocystis an important contributor to the ocean carbon cycle.[5][6] In addition, Phaeocystis produces dimethyl sulfide (DMS), a key player in the sulfur cycle.[7][8]

Distribution and life cycle

Phaeocystis globosa colonies.
Phaeocystis globosa colonies in culture. Scale bar is 500 μm.
Phaeocystis antarctica colonies, important phytoplankters of the Ross Sea that dominate early season blooms after the sea ice retreats and export significant carbon.[9]
Phaeocystis symbionts within an acantharian host
Fluorescent microscopy of photosymbiotic acantharian hosting Phaeocystis symbionts. Red fluorescence is chlorophyll autofluorescence and allows observation of the altered morphology of Phaeocystis chloroplasts. Green fluorescence corresponds to LysoTracker dye, which stains digestive compartments. Symbionts are not being digested.

Free-living forms of Phaeocystis are globally distributed and occur in a variety of marine habitats, including coastal oceans, open oceans, polar seas and sea ice.[10] Seven species are currently assigned to the genus: P. antarctica, P. jahnii, P. globosa, P. pouchetti, P. scrobiculata (not in culture), P. cordata, and P. rex.[11] Three species (P. globosa, P. pouchetii, and P. antarctica) are associated with bloom formation in nutrient-rich areas,[12] which can occur either naturally (e.g. in the Ross Sea, Greenland Sea or the Barents Sea) or due to anthropogenic inputs (e.g. in the Southern Bight of the North Sea or the Persian Gulf). Generally, P. globosa blooms in temperate and tropical waters, whereas P. pouchetii and P. antarctica are better adjusted to the cold temperatures prevailing in Arctic and Antarctic waters, respectively. However, P. pouchetii also tolerates warmer temperatures[13] and has been seen in temperate waters.[14]

Genome comparison has shown that the RUBISCO spacer region (located in the plastid DNA, between two subunits of the enzyme 1,5 -bisphosphate carboxylase) is highly conserved among closely related colonial Phaeocystis species and identical in P. antarctica, P. pouchetii and two warm-temperate strains of P. globosa, with a single base substitution in two cold-temperate strains of P. globosa.[15]

Phaeocystis can exist as either free-living cells or colonies. Free-living cells can show a variety of morphologies, depending on the species. All species can exist as scaled flagellates, and this is the only form that has been observed for P. scrobiculata and P. cordata. Three species have been observed as colonies (P. globosa, P. pouchetii and P. antarctica) and these can also exist as a flagellate devoid of scales and filaments.[16] In colonies of Phaeocystis, the colony skin may provide protection against smaller zooplankton grazers and viruses.[17]

While suspected in other species (P. pouchetii and P. antarctica), a haploid-diploid life cycle has only been observed in P. globosa. In this cycle, sexual reproduction is dominant in colony bloom formation/termination, and two types of vegetative reproduction exist.[16]

Impacts on global ocean

The genus Phaeocystis is a major producer of 3-dimethylsulphoniopropionate (DMSP), the precursor of dimethyl sulfide (DMS). Biogenic DMS contributes approximately 1.5×1013 g sulfur to the atmosphere annually and plays a major part in the global sulfur cycle, which can affect cloud formation and, potentially, climate regulation.[1]

Symbiosis

Phaeocystis species are endosymbionts to acantharian radiolarians.[18][19] Acantharians collected in different ocean basins host different species of Phaeocystis has their dominant symbionts: P. antarctica is found as the primary symbiont to acantharians in the Southern Ocean and P. cordata and P. jahnii are among the dominant symbionts found in acantharians collected in warm oligotrophic regions of the Indian and Pacific oceans.[18] In addition to the described Phaeocystis species, sequences belonging to the molecular clade Phaeo02 often make up a majority of symbiotic sequences recovered from acantharians in warm-water regions.[18][19] Whether or not this symbiosis represents a true mutualism with both partners benefiting, is debated. [20] Extreme cellular remodeling is observed in symbiotic Phaeocystis, including a drastic increase in chloroplast number and an enlarged central vacuole.[18] [19] This phenotypic change is probably induced by the host to increase photosynthetic output by symbionts, but if it renders symbiotic cells incapable of future cell-division, the symbiosis is a dead end for Phaeocystis.[20] The symbiosis is ecologically relevant because it creates primary production hot spots in low-nutrient regions,[21] but it remains to be determined how the symbiosis has affected Phaeocystis evolution.

References

  1. ^ a b c "phaeocystis research".
  2. ^ a b Schoemann, Véronique; Becquevort, Sylvie; Stefels, Jacqueline; Rousseau, Véronique; Lancelot, Christiane (2005-01-01). "Phaeocystis blooms in the global ocean and their controlling mechanisms: a review". Journal of Sea Research. Iron Resources and Oceanic Nutrients - Advancement of Global Environmental Simulations. 53 (1–2): 43–66. Bibcode:2005JSR....53...43S. CiteSeerX 10.1.1.319.9563. doi:10.1016/j.seares.2004.01.008.
  3. ^ a b "Welcome to the Phaeocystis antarctica genome sequencing project homepage".
  4. ^ Lancelot, C; Mathot, S (1987). "Dynamics of a Phaeocystis-dominated spring bloom in Belgian coastal waters. I. Phytoplanktonic activities and related parameters". Marine Ecology Progress Series. 37: 239–248. Bibcode:1987MEPS...37..239L. doi:10.3354/meps037239.
  5. ^ Smith, Walker O.; Codispoti, Louis A.; Nelson, David M.; Manley, Thomas; Buskey, Edward J.; Niebauer, H. Joseph; Cota, Glenn F. (1991-08-08). "Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle". Nature. 352 (6335): 514–516. Bibcode:1991Natur.352..514S. doi:10.1038/352514a0. S2CID 4369806.
  6. ^ DiTullio, G. R.; Grebmeier, J. M.; Arrigo, K. R.; Lizotte, M. P.; Robinson, D. H.; Leventer, A.; Barry, J. P.; VanWoert, M. L.; Dunbar, R. B. (2000). "Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica". Nature. 404 (6778): 595–598. Bibcode:2000Natur.404..595D. doi:10.1038/35007061. PMID 10766240. S2CID 4409009.
  7. ^ Stefels, J., Van Boekel, W.H.M., 1993. Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp., Mar. Ecol. Prog. Ser. 97, 11 –18.
  8. ^ J, Stefels; L, Dijkhuizen; WWC, Gieskes (1995-07-20). "DMSP-lyase activity in a spring phytoplankton bloom off the Dutch coast, related to Phaeocystis sp. abundance" (PDF). Marine Ecology Progress Series. 123: 235–243. Bibcode:1995MEPS..123..235S. doi:10.3354/meps123235.
  9. ^ Bender, S.J., Moran, D.M., McIlvin, M.R., Zheng, H., McCrow, J.P., Badger, J., DiTullio, G.R., Allen, A.E. and Saito, M.A. (2018) "Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry". Biogeosciences, 15(16): 4923–4942. doi:10.5194/bg-15-4923-2018.
  10. ^ Thomsen, H.A., Buck, K.R., Chavez, F.P., 1994. Haptophytes as components of marine phytoplankton., In: Green, J.C., Leadbeater, B.S.C. (Eds.), The Haptophyte Algae. Clarendon Press, Oxford, UK, pp. 187– 208.
  11. ^ Andersen, Robert A.; Bailey, J. Craig; Decelle, Johan; Probert, Ian (2015-04-03). "Phaeocystis rex sp. nov. (Phaeocystales, Prymnesiophyceae): a new solitary species that produces a multilayered scale cell covering". European Journal of Phycology. 50 (2): 207–222. doi:10.1080/09670262.2015.1024287. ISSN 0967-0262.
  12. ^ Lancelot, C., Keller, M.D., Rousseau, V., Smith Jr., W.O., Mathot, S., 1998. Autecology of the marine haptophyte Phaeocystis sp., In: Anderson, D.M., Cembella, A.D., Hallagraeff, G.M. (Eds.), Physiological Ecology of Harmful Algal blooms, vol. 41. Springer-Verlag, Berlin, pp. 209–224.
  13. ^ Baumann, M.E.M.; Lancelot, C.; Brandini, F.P.; Sakshaug, E.; John, D.M. (1994). "The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach". Journal of Marine Systems. 5 (1): 5–22. Bibcode:1994JMS.....5....5B. doi:10.1016/0924-7963(94)90013-2.
  14. ^ Philippart, Catharina J. M.; Cadée, Gerhard C.; van Raaphorst, Wim; Riegman, Roel (2000-01-01). "Long-term phytoplankton-nutrient interactions in a shallow coastal sea: Algal community structure, nutrient budgets, and denitrification potential". Limnology and Oceanography. 45 (1): 131–144. Bibcode:2000LimOc..45..131P. doi:10.4319/lo.2000.45.1.0131. ISSN 1939-5590. S2CID 86169774.
  15. ^ Lange, Martin; Chen, Yue-Qin; Medlin, Linda K. (2002-02-01). "Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes" (PDF). European Journal of Phycology. 37 (1): 77–92. doi:10.1017/S0967026201003481. ISSN 1469-4433. S2CID 55951287.
  16. ^ a b Rousseau, Véronique; Chrétiennot-Dinet, Marie-Josèphe; Jacobsen, Anita; Verity, Peter; Whipple, Stuart (2007-04-13). "The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology". Biogeochemistry. 83 (1–3): 29–47. doi:10.1007/s10533-007-9085-3. ISSN 0168-2563. S2CID 54973619.
  17. ^ Verity, Peter G.; Brussaard, Corina P.; Nejstgaard, Jens C.; Leeuwe, Maria A. van; Lancelot, Christiane; Medlin, Linda K. (2007-03-16). "Current understanding of Phaeocystis ecology and biogeochemistry, and perspectives for future research" (PDF). Biogeochemistry. 83 (1–3): 311–330. doi:10.1007/s10533-007-9090-6. ISSN 0168-2563. S2CID 55210194.
  18. ^ a b c d Decelle, Johan; Simó, Rafel; Galí, Martí; Vargas, Colomban de; Colin, Sébastien; Desdevises, Yves; Bittner, Lucie; Probert, Ian; Not, Fabrice (2012-10-30). "An original mode of symbiosis in open ocean plankton". Proceedings of the National Academy of Sciences. 109 (44): 18000–18005. Bibcode:2012PNAS..10918000D. doi:10.1073/pnas.1212303109. ISSN 0027-8424. PMC 3497740. PMID 23071304.
  19. ^ a b c Mars Brisbin, Margaret; Grossmann, Mary M.; Mesrop, Lisa Y.; Mitarai, Satoshi (2018). "Intra-host Symbiont Diversity and Extended Symbiont Maintenance in Photosymbiotic Acantharea (Clade F)". Frontiers in Microbiology. 9: 1998. doi:10.3389/fmicb.2018.01998. ISSN 1664-302X. PMC 6120437. PMID 30210473.
  20. ^ a b Decelle, Johan (2013-07-30). "New perspectives on the functioning and evolution of photosymbiosis in plankton". Communicative & Integrative Biology. 6 (4): e24560. doi:10.4161/cib.24560. PMC 3742057. PMID 23986805.
  21. ^ Caron, David A.; Swanberg, Neil R.; Michaels, Anthony F.; Howse, Frances A. (1995-01-01). "Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda". Journal of Plankton Research. 17 (1): 103–129. doi:10.1093/plankt/17.1.103. ISSN 0142-7873.
лиценца
cc-by-sa-3.0
авторски права
Wikipedia authors and editors
изворно
посети извор
соработничко мреж. место
wikipedia EN

Phaeocystis: Brief Summary ( англиски )

добавил wikipedia EN

Phaeocystis is a genus of algae belonging to the Prymnesiophyte class and to the larger division of Haptophyta. It is a widespread marine phytoplankton and can function at a wide range of temperatures (eurythermal) and salinities (euryhaline). Members of this genus live in the open ocean, as well as in sea ice. It has a polymorphic life cycle, ranging from free-living cells to large colonies.

The ability to form a floating colony is one of the unique attributes of Phaeocystis – hundreds of cells are embedded in a polysaccharide gel matrix, which can increase massively in size during blooms. The largest Phaeocystis blooms form in the polar seas: P. pouchetii in the north and P. antarctica in the south. This intense Phaeocystis productivity generally persists for about a three-month period, spanning most of the summer in the Southern Hemisphere. Phaeocystis-abundant ecosystems are generally associated with commercially important stocks of crustaceans, molluscs, fish and mammals. Phaeocystis may have negative effects on higher trophic levels in the marine ecosystem, and consequent impacts on human activities (such as fish farming and coastal tourism), by forming odorous foams on beaches during the wane of a bloom.

The ability to form large blooms and its ubiquity make Phaeocystis an important contributor to the ocean carbon cycle. In addition, Phaeocystis produces dimethyl sulfide (DMS), a key player in the sulfur cycle.

лиценца
cc-by-sa-3.0
авторски права
Wikipedia authors and editors
изворно
посети извор
соработничко мреж. место
wikipedia EN

Phaeocystales ( шпански; кастиљски )

добавил wikipedia ES

Phaeocystales es un orden de protistas del subfilo Haptophyta[1][2]​ que comprende únicamente al género Phaeocystis.[3]​ Son algas unicelulares que presentan una alternancia de generaciones entre etapas móviles e inmóviles. La etapa móvil tiene un tamaño de 3-10 µm, presenta dos flagelos y un apéndice corto denominado haptonema. La etapa inmóvil es colonial, está embebida en una matriz gelatinosa y puede alcanzar un tamaño de varios mm y ser visible a simple vista. La superficie celular está cubierta por placas orgánicas de dos tamaños diferentes y presentan de uno a cuatro cloroplastos.[4]Phaeocystis produce regularmente floraciones en las que el material gelatinoso a menudo se acumula en las playas en forma de espuma.[5]

Referencias

  1. T. Cavalier-Smith, E. Chao & R. Lewis 2015, Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Molecular Phylogenetics and Evolution. Volume 93, December 2015, Pages 331–362
  2. Haptista taxonomy.. The Taxonomicon.
  3. http://www.marinespecies.org/aphia.php?p=taxdetails&id=115072
  4. Adl, S.M. et al. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59(5), 429-514
  5. Lancelot C., Billen G., Sournia A., Weisse T., Colijin F., Veldhuis M.J.W., Davies A. & P. Wassman, 1987. Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. AMBIO., 16 (1): 38-46.
 title=
лиценца
cc-by-sa-3.0
авторски права
Autores y editores de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia ES

Phaeocystales: Brief Summary ( шпански; кастиљски )

добавил wikipedia ES

Phaeocystales es un orden de protistas del subfilo Haptophyta​​ que comprende únicamente al género Phaeocystis.​ Son algas unicelulares que presentan una alternancia de generaciones entre etapas móviles e inmóviles. La etapa móvil tiene un tamaño de 3-10 µm, presenta dos flagelos y un apéndice corto denominado haptonema. La etapa inmóvil es colonial, está embebida en una matriz gelatinosa y puede alcanzar un tamaño de varios mm y ser visible a simple vista. La superficie celular está cubierta por placas orgánicas de dos tamaños diferentes y presentan de uno a cuatro cloroplastos.​ Phaeocystis produce regularmente floraciones en las que el material gelatinoso a menudo se acumula en las playas en forma de espuma.​

лиценца
cc-by-sa-3.0
авторски права
Autores y editores de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia ES

Phaeocystis ( фински )

добавил wikipedia FI

Phaeocystis on yhteyttävistä ja yksisoluisista tarttumalevistä muodostuva suku. Sukuun kuuluvia leviä esiintyy maailman kaikilla merialueilla, myös merijäällä. Ne muodostavat kelluvia lauttoja, joiden koko voi kasvaa räjähdysmäisesti kukinnan aikana. Lautat muodostuvat sadoista soluista, jotka elävät geelimäisistä polysakkarideista muodostuvalla kasvualustalla.[2]

Pohjanmeren eteläosissa esiintyy joinakin kesinä massiivisia Phaeocystis-kukintoja, joiden hajotessa rannoille ajautuu näkö- ja hajuhaittoja aiheuttavaa paksua vaahtoa. Levien hajoamistuotteet saattavat edistää myös happosateiden syntymistä.[1]

Lajit

Sukuun luetaan seuraavat lajit:[3]

Lähteet

  1. a b Phaeocystis World Register of Marine Species. Viitattu 30.10.2010. (englanniksi)
  2. Phaeocystis.org phaeocystis.org. Viitattu 30.10.2010. (englanniksi)
  3. Guiry, Michael & Guiry, Caoilte: Phaeocystis AlgaeBase. 2010. Galway: National University of Ireland. Viitattu 30.10.2010. (englanniksi)
лиценца
cc-by-sa-3.0
авторски права
Wikipedian tekijät ja toimittajat
изворно
посети извор
соработничко мреж. место
wikipedia FI

Phaeocystis: Brief Summary ( фински )

добавил wikipedia FI

Phaeocystis on yhteyttävistä ja yksisoluisista tarttumalevistä muodostuva suku. Sukuun kuuluvia leviä esiintyy maailman kaikilla merialueilla, myös merijäällä. Ne muodostavat kelluvia lauttoja, joiden koko voi kasvaa räjähdysmäisesti kukinnan aikana. Lautat muodostuvat sadoista soluista, jotka elävät geelimäisistä polysakkarideista muodostuvalla kasvualustalla.

Pohjanmeren eteläosissa esiintyy joinakin kesinä massiivisia Phaeocystis-kukintoja, joiden hajotessa rannoille ajautuu näkö- ja hajuhaittoja aiheuttavaa paksua vaahtoa. Levien hajoamistuotteet saattavat edistää myös happosateiden syntymistä.

лиценца
cc-by-sa-3.0
авторски права
Wikipedian tekijät ja toimittajat
изворно
посети извор
соработничко мреж. место
wikipedia FI

Phaeocystis ( француски )

добавил wikipedia FR

Phaeocystis est un genre d'algues nanoplanctoniques marines de la classe des Prymnésiophycées.

Répartition

Ces algues unicellulaires photosynthétiques sont des eucaryotes présents dans les océans ouverts du monde, également trouvés sous et dans la banquise (Phaeocystis antarctica[1]).
Quand elles passent d'un mode de vie solitaire à une vie coloniale, elles peuvent être à l'origine de blooms planctoniques très importants qui se manifestent notamment en mer du Nord[2], en Manche/mer du Nord, particulièrement dans le pas de Calais et en Belgique[3], aux Pays-Bas [4],[5], mais également périodiquement jusqu'en zone paléarctique[1] ou en Australie comme à Mooloolaba le lundi 28 janvier 2013[6].
Ces blooms se traduisent par l'apparition de colonies flottantes formant un épais mucilage[7] dans l'eau [8]. Ce mucilage est constitué de micro-structures faites de centaines de cellules noyées dans une matrice de gel de polysaccharide[1]. Il peut gêner la pêche et forme parfois sur les plages et les laisses de mer une épaisse couche d'écume (de couleur blanc-gris à brunâtre ou blanc jaunâtre, de quelques millimètres à quelques dizaines de cm, voire à un mètre de hauteur)[9].

Les Phaeocystis jouent un rôle majeur dans les cycles mondiaux du carbone et de soufre et dans les cycles biogéochimiques planétaires en séquestrant efficacement de grandes quantités de CO2 sur de grandes zones géographiques[1]. Lors des proliférations elles sont aussi un gros émetteur de 3-diméthylsulphoniopropionate (DMSP), le précurseur du sulfure de diméthyle (DMS), émis biogéniquement dans l'atmosphère à raison d'environ 1,5 × 1013 grammes de soufre par an, ce qui lui donne un rôle majeur dans le cycle global du soufre, lequel permet la nucléation des gouttes d'eau et la formation d'une grande partie des nuages qui contribuent à la régulation climatique et aux pluies. Le cycle de vie et le régime de croissance des algues de ce genre sont encore mal compris[1].

Selon l'étude faite par l'IFREMER en 2004, bien que les pêcheurs s'y soient habitués et le considèrent comme d'origine naturelle, il s'agit d'un phénomène plus important qu'autrefois, mais qui a déjà été observé en Angleterre en 1923 sur l'estuaire de la Tamise. Il ne semble pas y avoir eu d'observations antérieures relatées par les naturalistes ou chroniqueurs des époques précédentes.
Les pêcheurs de la Manche occidentale française nomment ces blooms « vert de mai », « crasse » (synonyme d'écume) ou parlent du « gluant » ou du « limon ».
Côté anglais les pêcheurs parlent de tobacco juice ou de baccy juice ou de fisherman's signs ou encore de foul water ou de stinking water.

Description

 src=
Mousse formée sur une partie rocheuse du littoral, devant le Fort Mahon (Ambleteuse, région Nord-Pas-de-Calais, Manche/mer du Nord

Ce genre regroupe des espèces d'abord décrites par le biologiste Kornmann en 1955, caractérisées par un cycle de vie polymorphique et complexe.
Il est observé dans le milieu naturel sous diverses formes[10] dont :

  • cellules solitaires en suspension dans l'eau. Dans ce cas les cellules mesurent de 3 et 8 micromètres et on en trouve de deux formes : flagellées et mobiles ou non-flagellées et se laissant porter par le courant.
    Cette forme semble plus fréquente dans les zones marines oligotrophes (Atlantique, Pacifique et Méditerranée)
  • colonies de cellules non flagellées à l'aspect gélatineux car protégées par un mucus. Chaque élément colonial mesure de quelques micromètres à quelques millimètres.
    Cette forme semble caractéristique des zones eutrophes et rare dans les zones où la colonne d’eau est stratifiée en permanence[11]. In vitro, la forme coloniale s'avère aussi la plus compétitive dans les eaux riches en nutriments (eutrophes)[12].
 src=
Écume formée par Phaeocystis globosa

Le public connaît surtout ces espèces par l'écume de couleur blanc-crème couvrant l'eau ou déposée sur les plages et rochers du littoral par la marée descendante. Cette écume peut devenir nauséabonde quand elle est épaisse (elle a pu atteindre voire dépasser 2 mètres là où le vent et le courant l'accumule). Elle est formée à partir du mucus algal lors des blooms planctoniques qui sont modifiés par une mer très agitée. Ces blooms sont de plus en plus communs de mars à juin sur les littoraux eutrophisés (notamment en Manche-Est/mer du Nord). Dans ces cas, l'espèce en cause est généralement Phaeocystis pouchetii.

Écologie et physiologie

C'est le seul phytoplancton marin connu pour être capable de brutalement devenir l'espèce dominante de tout un écosystème[13],[14].

Ces algues sont bien connues pour leur efflorescence algale spectaculaire (dite aussi le "bloom") à la surface de la mer au printemps, favorisée par un excès de nitrates et/ou phosphates dans l'eau[15].

Elle peut être responsable de changements brutaux et importants dans la structure[16] et le fonctionnement des réseaux trophiques (planctonique et benthique), avec des conséquences en matière de biogéochimie[17].
En Manche orientale, où cette espèce a des caractéristiques invasives, elle est – par ses pullulations printanières – susceptible de poser des problèmes écologiques mais aussi économiques (pour la pêche et la conchyliculture), ce qui a justifié le déclenchement par l'IFREMER et l'ULCO d'une étude spécifique de 2002 à 2006, dans le cadre du PNEC (Programme national d’environnement côtier) intitulé « Déterminisme du bloom de Phaeocystis et ses conséquences sur l’écosystème Manche orientale-Sud Mer du Nord », de la frontière franco-belge au littoral du Pays de Caux.

Répartition

Phaeocystis est un genre eurytherme et ubiquiste qui a colonisé une grande partie de la planète[18]. Diverses espèces de ce genre sont fréquemment observées (avec des blooms printaniers) sur les côtes de la mer du Nord[19] (Belgique[20], Pays-Bas[21],[22], Allemagne[23]).
Divers auteurs[24] en ont trouvé jusqu'aux mers polaires, en Arctique (mer de Barents, mer du Groenland, mer de Béring) comme au sud dans l'Antarctique(mer de Ross, mer de Weddell). On l'a également trouvé en plein Atlantique et dans le Pacifique, et sur les côtes de Floride et d'Australie, comme dans le golfe Arabo-Persique.

Ce sont des espèces qui sont aussi susceptibles d'être transportées à grande distance dans les ballasts de navires marchands.

En zone froide, les espèces dominantes sont :

En zone tempérée, les espèces dominantes seraient[25] :

Pullulations (blooms)

Des abondances importantes peuvent être mesurées lors des blooms (plus de 1 000 cellules/litre d'eau de mer, avec un record de plus de 37 106 cellules/litre en baie de Somme début avril, sur le littoral picard et du Nord-Pas-de-Calais [26]. Ifremer [27] a par exemple détecté des Phaeocystis abondants sur le littoral boulonnais et picard en mars et mai 2003, et du mois de mars à celui de juin 2003 dans le Dunkerquois.

Les causes des pullulations

Les pullulations printanières semblent multiples, mais surtout dépendre de la quantité et proportion de nutriments :

  • Lancelot et ses collègues – en 1987 – puis Riegman et son équipe[28] ont estimé que l'eutrophisation des littoraux (par apports de nitrates et phosphates terrigène, via rivières, fleuves et précipitations) étaient la cause probable de blooms de Phaeocystis .
  • Cinq ans plus tard, Riegman et al. – en 1992 – précisaient le mécanisme : ce sont des changements de proportions entre nutriments, et non seulement leur excès qui favoriserait ces blooms. Des conditions de température, salinité, et selon Peperzak en 1993 un apport important d’eau douce (pluies de printemps, fonte de neige) seraient également déterminantes pour qu'un bloom apparaissent, mais ce ne sont pas les facteurs principaux selon Lancelot et Verity, Lancelot estimant (1987, 1995) que certaines conditions météorologiques (vents/marées) favoriseraient l'agrégation de colonies enrobées de mucus. Ce mucus pouvant jouer le rôle de réservoir[29] énergétique et de phosphore la nuit (quand la photosynthèse ne peut être activée et le jour si le phosphore dissous dans l'eau est épuisé).
  • En 1998, aux Pays-Bas, une autre équipe identifie un lien avec une chute du taux de silice (silicates) en solution [30].
  • La redéposition des déchets du bloom après ce dernier a aussi des impacts sur l'écosystème[31], dont en matière de nitrification[32].

Fin des pullulations

Le bloom prend généralement fin aussi « brutalement » qu'il est apparu. Ce mécanisme semble avoir plusieurs explications :

  • les conditions nécessaires à la vie coloniale ont disparu (et/ou une ressource alimentaire a été épuisée) ;
  • les colonies sont consommées et/ou concurrencées par des microorganismes auto- et hétérotrophes (virus, mésozooplancton, diatomées, ciliés, dinoflagellés, nanoflagellés hétérotrophes et microbes divers qui ont eu le temps de se développer aux dépens du bloom)[33],[34] ;
  • une partie des organismes poussée par le vent s'est échouée à chaque marée ;
  • l'expansion des colonies est freinée par l'accumulation de débris inorganiques qui dégradent leur structure mucilagineuse[35].
  • l'agitation de l'eau a diminué et/ou la colonisation du mucus et des Phaeocystis par des microbes augmente le poids de certains éléments de la colonie, les entraînant vers le fond (sédimentation)[36].
  • cause « interne », liée à une déstructuration chimique du mucus par les microbes qui s'y développent et/ou par des déchets du métabolisme et catabolisme de la colonie hors période de photosynthèse[37].

Impacts des pullulations

Impacts sur les activités humaines

Les fortes pullulations gênent la pêche, surtout au filet fixe. Le fileyage est plus gêné que le chalutage, notamment à cause du colmatage des filets fixes et des filets à mailles fines (pour la pêche à la crevette en particulier) ; les filets sont colmatés ou alourdis par les mucilages algaux. Les crépines de prise d'eau de refroidissement des moteurs tendent à se boucher. Les pêcheurs signalent que le phénomène est de plus en plus précoce et long, et que le poisson pêché dans ces filets est anormalement gluant et malodorant et doit être lavé et relavé par les pêcheurs[38], etc.

Toxicologie, écotoxicologie

La question des impacts toxicologiques ou écotoxicologiques de ces blooms reste discutée et étudiée, comme en France dans le cadre du PNEC (programme national environnement côtier).

IFREMER cite dans son rapport[39]

  • des observations de poissons (harengs ou maquereaux par exemple) évitant les zones de blooms sont citées par Ifremer ;
  • des effets nuisibles sont observés sur la conchyliculture[40] ;
  • un cas documenté de mortalité de poissons associé à Phaeocystis (nombreux saumons d'élevage perdus en 1992 en Norvège à l'occasion d'un bloom de Phaeocystis.
  • un lien possible ou probable avec les problèmes d'eutrophisation littorale[41]
  • Des sédimentations importantes ont été observées sans pullulation majeure. Des études dans un fjord norvégien et au nord de la mer de Weddell n'ont pas observé de sédimentation significative, alors que des sédimentations massives ont été observées en mer de Barents et en mer de Ross, avec des conséquences locales et globales encore mal comprises et difficiles à prévoir. De nombreux facteurs biotiques et abiotiques semblent se conjuguer pour les expliquer (profondeur, température, salinité et composition de l'eau, nature et force des turbulences et courants, formation d'agrégats, attaques et dégradation microbienne de la nécromasse, broutage par le zooplancton, lyse des cellules des colonies...). De manière générale, selon les données disponibles, dans les écosystèmes dominés ou affectés par des Phaeocystis, en fin de bloom, la minéralisation de la nécromasse est plus souvent pélagique que benthique. Le devenir de la sédimentation des cellules mortes ou des excrétions des cellules vivantes fait l'objet d'études [42].

Rétroactions climatiques

Les colonies à l'origine de blooms produisent de grandes quantités de gaz libérés dans l'eau et l'air, dont le diméthylsulfide (DMS) qui est un acidifiant et pourrait jouer un rôle climatique (nucléation de l'eau de pluie, augmentation de la nébulosité et donc de l'albédo nuageux)[43]. En augmentant les pluies, ce type de phénomène peut se traduire par une augmentation du lessivage des terres et donc d'une augmentation de l'eutrophisation des eaux littorales.

Liste d'espèces

Selon World Register of Marine Species (22 nov. 2011)[44] :

Selon ITIS (22 nov. 2011)[45] :

Génétique

Un projet en cours vise le séquençage génétique de Phaeocystis antarctica[1].

Références

  1. a b c d e et f Welcome to the Phaeocystis antarctica genome sequencing project homepage
  2. Lancelot C., Billen G., Sournia A., Weisse T., Colijin F., Veldhuis M.J.W., Davies A. & P. Wassman, 1987. Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. AMBIO., 16 (1): 38-46.
  3. Lancelot C. & S. Mathot, 1987. Dynamics of a Phaeocystis -dominated spring bloom in Belgian coastal waters. 1. Phytoplankton activities and related parameters. Mar. Ecol. Prog. Ser., 37 (2-3): 239-248.
  4. Veldhuis M.J.W., Colijn F. & L.A.H. Venekamp, 1986. The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth. J. Sea Res., 20 (1): 37-48.
  5. Cadée G.C. & Hegeman J., 1986. Seasonal and annual variation in Phaeocystis pouchetii (Haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Neth. J. Sea Res., 20 (1): 29- 36.
  6. http://sciencesetavenir.nouvelobs.com/nature-environnement/20130128.OBS6869/pourquoi-l-ecume-a-t-elle-envahi-une-station-balneaire-australienne.html#reagir
  7. Lancelot C., 1995. The mucilage phenomenon in the continental coastal waters of the North Sea. The Science of the Total Environment, 165: 83- 102.
  8. Veldhuis M.J.W. & Admiraal W., 1985. Transfer of photosynthetic products in gelatinous colonies of Phaeocystis pouchetii (Haptophyceae) and its effects on the mesurement of excretion rate. Mar. Ecol. Prog. Ser., 26: 301-304.
  9. (en) Véronique Schoemann, Sylvie Becquevort, Jacqueline Stefels, Véronique Rousseau et Christiane Lancelot, « Phaeocystis blooms in the global ocean and their controlling mechanisms: a review », Journal of Sea Research, Elsevier, vol. 53, nos 1-2,‎ janvier 2005, p. 43–66 (DOI , lire en ligne [PDF], consulté le 18 mars 2016).
  10. Lancelot C. &V. Rousseau, 1994. Ecology of Phaeocystis : the key role of colony forms The Haptophyte Algae. Green J.C. & B.S.C. Leadbeater eds., Clarendon Press, Oxford. The Systematics Association, Special volume N°. 51, pp. 229-245.
  11. Bätje & Michaelis, 1986 ; Weisse et al., 1986 ; Lancelot et al.,1987) cités par le rapport d'IFREMER cité dans les liens externes
  12. Riegman et al., 1992
  13. Source : Alain Lefebvre / Ifremer Manche - Mer du Nord Laboratoire Environnement et Ressources (consulté 15 juin 2008), citant Lancelot C., Wassmann P. & H. Barth, 1994. Ecology of Phaeocystis dominated ecosystems. J. Mar. Syst., 5 (1): 1-4.
  14. Lancelot C., Wassmann P. & H. Barth, 1994. Ecology of Phaeocystisdominated ecosystems. J. Mar. Syst., 5 (1): 1-4.
  15. Verity P.G., Villareal T.A. & T.J. Smayda, 1988. Ecological investigations of blooms of colonial Phaeocystis pouchetti - 1. Abundance, biochemical composition, and metabolic rates. J. Plankton Res., 10 (2): 219-248
  16. Lancelot C. &V. Rousseau, 1994. Ecology of Phaeocystis : the key role of colony forms The Haptophyte Algae. Green J.C. & B.S.C. Leadbeater eds., Clarendon Press, Oxford. The Systematics Association, Special volume N°. 51, pp. 229-245.
  17. Weisse T., Tande K., Verity P., Hansen F. & W. Gieskes, 1994. The trophic significance of Phaeocystis blooms. J. Mar. Syst., 5(1): 67-79.
  18. Kaskin, 1963
  19. Lancelot C., Billen G., Sournia A., Weisse T., Colijin F., Veldhuis M.J.W., Davies A. & P. Wassman, 1987. Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. AMBIO., 16 (1): 38-46.
  20. Lancelot C. & S. Mathot, 1987. Dynamics of a Phaeocystis –dominated spring bloom in Belgian coastal waters. 1. Phytoplankton activities and related parameters. Mar. Ecol. Prog. Ser., 37 (2-3): 239-248.
  21. Cadée G.C. & Hegeman J., 1986. Seasonal and annual variation in Phaeocystis pouchetii (Haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Neth. J. Sea Res., 20 (1): 29-36.
  22. Veldhuis M.J.W., Colijn F. & L.A.H. Venekamp, 1986. The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth. J. Sea Res., 20 (1): 37-48.
  23. Bätje M. & Michaelis H., 1986.Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea). Mar. Biol., 93 (1): 21-27.
  24. Cadée & Hegeman, 1974 ; Lancelot & Mathot, 1987 ; Lancelot et al., 1987, 1998 ; Veldhuis et al., 1986 ; Weisse al., 1986
  25. Lancelot et al., 1998
  26. Lefebvre & Libert, 2004
  27. Lefebvre A. & Libert A., 2004. Suivi régional des nutriments sur le littoral du Nord-Pas-de-Calais Picardie. Bilan de l’année 2003. Rapport DEL/BL/RST/04/04, 92 pages, réseau REPHY (Réseaux Phytoplancton & Phycotoxines d'IFREMER
  28. Riegman R., Noordeloos A.M. & Cadee,-G.C., 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar. Biol., 112 (3): 479-484.
  29. Veldhuis M.J.W. & Admiraal W., 1985. Transfer of photosynthetic products in gelatinous colonies of Phaeocystis pouchetii (Haptophyceae) and its effects on the mesurement of excretion rate. Mar. Ecol. Prog. Ser., 26: 301-304.
  30. Peperzak L, Colijn F, Gieskes WWC, Peeters JCH (1998) Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone (North Sea): the silicon depletion versus the daily irradiance hypothesis. J Plankton Res 20: 517-537.
  31. Lionel Denis, Nicolas Desroy; Consequences of spring phytodetritus sedimentation on the benthic compartment along a depth gradient in the Eastern English Channel ; Marine Pollution Bulletin, Volume 56, Issue 11, November 2008, Pages 1844-1854
  32. Mathieu Rauch, Lionel Denis, Jean-Claude Dauvin, The effects of Phaeocystis globosa bloom on the dynamics of the mineralization processes in intertidal permeable sediment in the Eastern English Channel (Wimereux, France), Marine Pollution Bulletin Volume 56, Issue 7, July 2008, Pages 1284–1293
  33. Billen, 1994 – Wassmann, 1994 – Weisse et al, 1994 – Lancelot, 1995
  34. Thingstad F. & G. Billen, 1994. Microbial degradation of Phaeocystis material in the water column. J. Mar. Syst., 5(1): 55-65.
  35. Rousseau et al, 1994
  36. Wassmann P., 1994. Significance of sedimentation for the termination of Phaeocystis blooms. J. Mar. Syst., 5(1): 81-100. Voir aussi Rousseau et al., 1994, Lancelot, 1995
  37. Veldhuis & Admiraal, 1985 – Lancelot & Rousseau, 1994
  38. rapport Ifremer page 21/39
  39. Présentation (programme national environnement côtier) et rapport : Le bloom de Phaeocystis en Manche orientale Nuisances socio-économiques et / ou écologiques ?, Ifremer ; sept. 2004 ; (PDF, 39 pages, consulté 2010/07/04
  40. Ropert M. & Olivesi R., 2002. État de l'activité mytilicole sur le secteur de Quend Plage (Picardie). Première approche des problèmes de mortalités printanières de moules associées au développement saisonnier de « vase » sur les bouchots. Rapport DEL/BL/RST/02/03, 20 pages.
  41. Riegman R., Noordeloos A.M. & Cadee,-G.C., 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar. Biol., 112 (3): 479-484.
  42. Wassmann P., 1994. Significance of sedimentation for the termination of Phaeocystis blooms. J. Mar. Syst., 5(1): 81-100
  43. Lancelot et al., 1994
  44. World Register of Marine Species, consulté le 22 nov. 2011
  45. Integrated Taxonomic Information System (ITIS), www.itis.gov, CC0 https://doi.org/10.5066/F7KH0KBK, consulté le 22 nov. 2011

Voir aussi

лиценца
cc-by-sa-3.0
авторски права
Auteurs et éditeurs de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia FR

Phaeocystis: Brief Summary ( француски )

добавил wikipedia FR

Phaeocystis est un genre d'algues nanoplanctoniques marines de la classe des Prymnésiophycées.

лиценца
cc-by-sa-3.0
авторски права
Auteurs et éditeurs de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia FR

Ecology ( англиски )

добавил World Register of Marine Species
Massive blooms of palmelloid mucilaginous algae attributed to Phaeocystis in the southern North Sea have been recorded in recent years. Blooms off the Dutch coast may occur levels of chlorophyll as high as 50 mg m-³ /day in a 25 m water column (Gieskes & Kraay, 1977). Banks of froth on beaches from the breakdown of these blooms are a visible and olfactory nuisance. Sulphurous products from the blooms may also contribute t the fomration of acid rain (Turner et al., 1988).

Навод

Reid, P.C.; Lancelot, C.; Gieskes, W.W.C.; Hagmeier, E.; Weichart, G. (1990). Phytoplankton of the North Sea and its dynamics: a review. Neth. J. Sea Res. 26(2-4): 295-331

лиценца
cc-by-4.0
авторски права
WoRMS Editorial Board
учесник
[email]
изворно
посети извор
соработничко мреж. место
World Register of Marine Species