dcsimg

Effect of Biofield Treatment on Antimicrobials Susceptibility Pattern of Acinetobacter baumannii – An Experimental Study ( İngilizce )

EOL authors tarafından sağlandı

Abstract

Global emergence of Acinetobacter baumannii (A. baumannii) displays a mechanism of resistance to all existing antimicrobials. Objective of this study was to investigate the effect of biofield treatment on antimicrobial sensitivity pattern, minimum inhibitory concentration (MIC), biochemical reactions and biotype number of A. baumannii. A. baumannii cells were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 19606) number and stored according to the recommended storage protocols until needed for experiments. Two sets of ATCC samples were taken in this experiment and denoted as A and B. ATCC-A sample was revived and divided into two parts i.e. Gr.I (control) and Gr.II (revived) analyzed on day 5 and 10, respectively; likewise, ATCC-B was labeled as Gr.III (lyophilized) and was assessed on day 10. Gr.II and III were treated with Mr. Trivedi’s biofield and were analyzed for its antimicrobial sensitivity, MIC value, biochemical reactions and biotype number with respect to control. Experimental results showed the impact of biofield treatment directly onto the revived and lyophilized form of A. baumannii and found alteration both in qualitative and quantitative aspect as compared with untreated groups. These results showed altered sensitivity pattern of antimicrobials in biofield treated group as compared to control. Apart from altered MIC values, changes were also observed in biotype number of revived treated group as compared to control. These findings suggest that biofield treatment can prevent the emergence of absolute resistance of existing antimicrobials to A. baumannii.

lisans
cc-by-4.0
telif hakkı
Trivedi Global Inc.
bibliyografik atıf
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Effect of Biofield Treatment on Antimicrobials Susceptibility Pattern of Acinetobacter baumannii – An Experimental Study. J Clin Diagn Res 3:117. doi:10.4172/2376-0311.1000117
yazar
Mahendra Trivedi (MahendraTrivedi)
orijinal
kaynağı ziyaret et
ortak site
EOL authors

Acinetobacter baumannii ( Katalanca; Valensiyaca )

wikipedia CA tarafından sağlandı

Acinetobacter baumannii és una espècie de bacteri patogen gram-negatiu que és resistent a la majoria dels antibiòtics per farmacoresistència,[1] algunes estimacions sostenen que aquest patogen podria estar matant a desenes de milers de pacients als Estats Units cada any. A. baumannnii pot causar pneumònia severa i infeccions del tracte urinari (ITU).

Els mutants d'aquest bacteri que no produeixen glicoproteïna són menys virulents, formen menys biofilm i són més susceptibles als antibiòtics.[2]

Referències

  1. Pollack, Andrew «Rising threat of infections unfazed by antibiotics». The New York Times, 2010, 27 feb.
  2. (en anglès) «Cracking a superbug's armour.» University of Alberta. Consultado el 17 de septiembre de 2014.
lisans
cc-by-sa-3.0
telif hakkı
Autors i editors de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia CA

Acinetobacter baumannii: Brief Summary ( Katalanca; Valensiyaca )

wikipedia CA tarafından sağlandı

Acinetobacter baumannii és una espècie de bacteri patogen gram-negatiu que és resistent a la majoria dels antibiòtics per farmacoresistència, algunes estimacions sostenen que aquest patogen podria estar matant a desenes de milers de pacients als Estats Units cada any. A. baumannnii pot causar pneumònia severa i infeccions del tracte urinari (ITU).

Els mutants d'aquest bacteri que no produeixen glicoproteïna són menys virulents, formen menys biofilm i són més susceptibles als antibiòtics.

lisans
cc-by-sa-3.0
telif hakkı
Autors i editors de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia CA

Acinetobacter baumannii ( Çekçe )

wikipedia CZ tarafından sağlandı

Acinetobacter baumannii je multirezistentní gramnegativní kmen bakterie, vyskytující se zcela běžně v přírodě ve vodě, půdě, či v zdravotnických zařízeních. Pro zdravého člověka nepředstavuje zdravotní nebezpečí, u oslabených, či starých jedinců může avšak vyvolati zápal plic, sepsi a záněty. Tato bakterie vykazuje rezistenci vůči několika doposud známých a obvykle užívaných antibiotikům, mezi něž patří kupříkladu Penicilin, Cefalosporin, Fluorchinolon nebo Karbapenem.[1][2][3] Profylaxí proti této rezistentní bakterii se zdá býti nasazení (makro-)fágové léčby.[4] Acinetobacter baumannii byl popsán, pojmenován a objeven profesorem Alexandrem Nemcem.

Odkazy

Reference

  1. NDR. Gefährliche Keime: Acinetobacter baumannii. www.ndr.de [online]. 2015-01-27 [cit. 2017-07-29]. Dostupné online. (německy)
  2. redakce ČRo Leonardo. Porazíme irácké bakterie?. iROZHLAS. 2010-09-01. Dostupné online [cit. 2017-07-29]. (česky)
  3. Acinetobacter Infections: New Insights for the Healthcare Professional: 2011 Edition: ScholarlyPaper. [s.l.]: ScholarlyEditions 22 s. Dostupné online. ISBN 9781464911408. (anglicky) Google-Books-ID: XcLxDcgsGv8C.
  4. Advances in Acinetobacter Research and Application: 2013 Edition: ScholarlyBrief. [s.l.]: ScholarlyEditions 86 s. Dostupné online. ISBN 9781481681575. (anglicky) Google-Books-ID: YLD2y6_JFfcC.

Související články

Pahýl
Tento článek je příliš stručný nebo postrádá důležité informace.
Pomozte Wikipedii tím, že jej vhodně rozšíříte. Nevkládejte však bez oprávnění cizí texty.
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia autoři a editory
orijinal
kaynağı ziyaret et
ortak site
wikipedia CZ

Acinetobacter baumannii: Brief Summary ( Çekçe )

wikipedia CZ tarafından sağlandı

Acinetobacter baumannii je multirezistentní gramnegativní kmen bakterie, vyskytující se zcela běžně v přírodě ve vodě, půdě, či v zdravotnických zařízeních. Pro zdravého člověka nepředstavuje zdravotní nebezpečí, u oslabených, či starých jedinců může avšak vyvolati zápal plic, sepsi a záněty. Tato bakterie vykazuje rezistenci vůči několika doposud známých a obvykle užívaných antibiotikům, mezi něž patří kupříkladu Penicilin, Cefalosporin, Fluorchinolon nebo Karbapenem. Profylaxí proti této rezistentní bakterii se zdá býti nasazení (makro-)fágové léčby. Acinetobacter baumannii byl popsán, pojmenován a objeven profesorem Alexandrem Nemcem.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia autoři a editory
orijinal
kaynağı ziyaret et
ortak site
wikipedia CZ

Acinetobacter baumannii ( Almanca )

wikipedia DE tarafından sağlandı

Acinetobacter baumannii ist ein gramnegatives, aerobes Bakterium. Das Genom des Stammes Acinetobacter baumannii AF-401 wurde im Jahr 2017 vollständig sequenziert. Wie andere Arten der Gattung Acinetobacter gehört das häufig multiresistente (gramnegative) Bakterium zu den Verursachern von nosokomialen Infektionen. In vielen Länder zählt A. baumannii zu den wichtigsten Krankenhauskeimen überhaupt und kommt vor allem auf Intensivstationen vor. Die amerikanische Gesellschaft für Infektionskrankheiten zählt Acinetobacter baumannii aufgrund seiner Fähigkeit, besonders ausgeprägte Antibiotikaresistenzen auszubilden, zu den sogenannten ESKAPE Pathogenen, gegen die therapeutische Möglichkeiten knapp werden.[2]

Merkmale

Erscheinungsbild

Bakterien der Art Acinetobacter baumannii sind stäbchenförmig und kommen in der stationären Wachstumsphase auch kokkenförmig vor.[3] Sie sind nicht in der Lage sich eigenständig fortzubewegen, da ihnen jegliche Ausstattung zur Motilität fehlt. A. baumannii gehört zu den gramnegativen Bakterien, ist in der Gram-Färbung jedoch häufig uneindeutig (gramvariabel) und zeigt im lichtmikroskopischen Bild kokkoide Stäbchen.[2] Es werden keine Überdauerungsformen wie Endosporen gebildet.[3] Auf Casein-Soja-Pepton-Agar wachsen die Bakterienkolonien kreisrund, konvex, glatt und leicht opak. Sie haben einen Durchmesser von 1,5 bis 2,0 mm nach 24 Stunden Inkubation und 3,0 bis 4,0 mm nach 48 Stunden Bebrütung bei 30 °C.[4]

Wachstum und Stoffwechsel

Acinetobacter-Arten sind im Oxidase-Test negativ, das unterscheidet sie von Pseudomonas aus der gleichen Ordnung Pseudomonadales.[3] Sie zählen zu den nicht-fermentierenden Bakterien (sogenannte Nonfermenter).[2]

Das Wachstum erfolgt zwischen 15 und 44 °C. Die meisten Stämmen können aus Glucose Säure bilden. Auf Blutagar erfolgt keine Hämolyse, Gelatine kann nicht hydrolysiert werden. Auf Simmons Citrat-Agar können prototrophe Stämme Citrat verwerten, auxotrophe nicht, es sei denn, sie werden zusätzlich mit Wachstumsfaktoren im Nährmedium versorgt.[4] Weitere Stoffwechseleigenschaften sind im Abschnitt Nachweise aufgeführt.

Genetik

Das Genom des Stammes Acinetobacter baumannii AF-401 wurde im Jahr 2017 vollständig sequenziert. Es handelt sich um ein Projekt zur Genom-Sequenzierung Carbapenem-resister A. baumannii Stämme. Mittlerweile ist das Genom von mehr als 20 Stämmen erforscht.[5] Das Genom weist eine Größe von 3982 Kilobasenpaaren (kb) auf, es sind 3953 Proteine annotiert. Die Ergebnisse der Sequenzierungen zeigen einen GC-Gehalt (den Anteil der Nukleinbasen Guanin und Cytosin) in der Bakterien-DNA von 39 Molprozent (Median).[6] Dies liegt etwas unterhalb des in der Erstbeschreibung angegebenen GC-Gehaltes von 40–43 Molprozent.[4] Zusätzlich zum Bakterienchromosom liegt ein Plasmid vor, auf dem sich mehrere Antibiotika-Resistenzgene befinden. Das Plasmid und damit auch die Antibiotikaresistenz kann mittels horizontalen Gentransfer zwischen Bakterienarten ausgetauscht werden.[2]

Nachweise

Das Kriterium „Wachstum bei 42 °C“ kann zur Unterscheidung von Acinetobacter calcoaceticus verwendet werden, der bei dieser Temperatur nicht wächst.[4]

Biochemische Nachweise

Biochemische Merkmale, wie beispielsweise die vorhandenen Enzyme und die daraus resultierenden Stoffwechseleigenschaften können in einer Bunten Reihe zur Identifizierung von Acinetobacter baumannii bzw. Unterscheidung zwischen den Acinetobacter-Arten oder Unterscheidung dieser von anderen gramnegativen Bakterien genutzt werden. Es erfolgt keine Bildung von Schwefelwasserstoff (H2S), auch die Indolbildung verläuft negativ. Das Enzym β-Galactosidase zum Abbau von Lactose ist ebenfalls nicht vorhanden. Zu den Substraten, die A. baumannii verwerten kann, gehören beispielsweise D- und L-Lactat, Glutarat, L-Aspartat, L-Tyrosin, 4-Aminobutyrat, Ethanol und 2,3-Butandiol.[4]

Für die biochemische Identifizierung können miniaturisierte Testsysteme verwendet werden, geeignet sind Systeme für gramnegative Stäbchen (Enterobacteriaceae) oder gramnegative Stäbchen (Nicht-Enterobacteriaceae). Die Unterscheidung der beiden Arten A. baumannii und A. calcoaceticus ist mit zusätzlichen Tests möglich.[7] Die Speziesdiagnostik ist aber schwierig.[2]

Weitere Nachweise

Mittels MALDI-TOF MS ist eine sichere Abgrenzung zwischen verschiedenen Acinetobacter spp. möglich. Durch partielle Gensequenzierung bei Verwendung des rpoB-Locus oder mittels PCR durch das blaOXA-51-like Gens kann ebenfalls die Spezies Acinetobacter baumannii sicher ermittelt werden.[2]

Vorkommen

A. baumannii ist ein Umweltkeim und kommt im Boden und Wasser vor, zahlreiches Isolate stammen allerdings auch aus klinischen Proben von menschlichen Patienten.[4] Acinetobacter-Stämme mit der Carbapenemase NDM-1 wurden mittlerweile auch aus Klinikabwässern und Geflügelfleisch isoliert.[2]

Systematik und Taxonomie

Hauptartikel: Acinetobacter

Das Epitheton wurde zu Ehren von Paul und Linda Baumann (US-amerikanische Bakteriologen) gewählt.[4] Der Typusstamm von Acinetobacter baumannii wurde in den Sammlungen von Mikroorganismen in den USA (als ATCC 19606), Deutschland (bei der DSMZ als DSM 30007) und weiteren Ländern hinterlegt.[1]

Die beiden Spezies A. baumannii und A. calcoaceticus sind nah miteinander verwandt, dies zeigen phänotypische Testergebnisse und genetische Untersuchungen mit Hilfe der DNA-DNA-Hybridisierung.[4] In der medizinischen Diagnostik werden sie daher als A.-calcoaceticus-A.baumannii-Komplex (ACB-Komplex) bezeichnet. Auch die Spezies Acinetobacter nosocomialis (früher Genom-Spezies 13TU) und Acinetobacter pittii (früher Genom-Spezies 3) werden dazu gezählt.[2]

Medizinische Bedeutung

In vielen Länder zählt A. baumannii zu den wichtigsten Krankenhauskeimen überhaupt und kommt vor allem auf Intensivstationen vor. Die amerikanische Gesellschaft für Infektionskrankheiten zählt Acinetobacter baumannii aufgrund seiner Fähigkeit, besonders ausgeprägte Antibiotikaresistenzen auszubilden, zu den sogenannten ESKAPE Pathogenen, gegen die therapeutische Möglichkeiten knapp werden. Acinetobacter baumannii ist in der Lage, Biofilme zu bilden und auch Trockenheit zu überstehen. Oberflächen um besiedelte Patienten sind daher häufig kontaminiert. Das Übertragungspotenzial übersteigt das klassischer Krankenhauskeime wie MRSA deutlich.[2]

Klinische Erscheinungsformen

Die durch Acinetobacter baumannii verursachten nosokomialen Infektionen zeigen sich in Form von Lungenentzündung (auch durch Beatmung bedingt), katheter-assoziierten Infektionen, Bakteriämie und Sepsis. Auch Wundinfektionen (etwa nach Verbrennungen) und nosokomiale Harnwegsinfektionen sowie Abszesse können auftreten. Selten kommt auch eine Hirnhautentzündung (z. B. nach neurochirurgischen Eingriffen) vor.[8]

Pathogenität

A. baumannii wird durch die Biostoffverordnung in Verbindung mit der TRBA (Technische Regeln für Biologische Arbeitsstoffe) 466 der Risikogruppe 2 zugeordnet.[9]

Antibiotikaresistenz

Acinetobacter baumannii muss nicht, aber kann zu den multiresistenten gramnegativen Stäbchen-Bakterien gehören und wird gemäß der KRINKO-Definition häufig als 3MRGN oder sogar 4MRGN klassifiziert.[2] Tatsächlich ist es im Verlauf der letzten 20 Jahre, analog zur allgemeinen Entwicklung der Resistenzlage, zu einer deutlichen Zunahme der hochresistenten Stämme gekommen. Hierzu hat u. a. die weltweit expandierende individuelle Mobilität beigetragen und möglicherweise existiert im Falle von Acinetobacter eine Assoziation zu bewaffneten Konflikten. Es lassen sich in Kriegsversehrten aus Nordafrika und dem Mittleren Osten zumindest eine Reihe von A. baumannii-Resistenzmechanismen nachweisen, die über das normale Maß hinausgehen[10]. Die meisten A. baumannii-Stämme sind gegenüber Ampicillin sowie Cephalosporinen der ersten und zweiten Generation unempfindlich und oft sind auch Cephalosporine der dritten Generation, Aztreonam und Piperacillin nicht mehr therapeutisch anwendbar. Insbesondere jedoch die Zunahme von Resistenzen gegen Chinolon-Antibiotika und Carbapeneme, die sonst als Reserveantibiotika fungieren, stellen Behandler in der Medizin vor große Probleme. Unter anderem da sich mit zunehmender Resistenz die Fähigkeit zur Biofilmbildung erhöht.[11] Als Behandlungsoptionen verbleiben häufig nur noch Colistin und Tigecyclin[12]. In der Literatur wird bereits vereinzelt das Vorkommen panresistenter Stämme beschrieben[13] und diskutiert, ob dies ein anekdotisches Phänomen bleiben wird. Vielversprechend für zukünftige Therapieversuche wirkt der in 2020 beschriebene β-Laktamase-Inhibitor QPX7728[14]. Der Inhibitor Clavulansäure scheint zumindest in Grenzen eine Eigenaktivität gegen A. baumannii aufzuweisen.[15] Heilversuche mit Cefiderocol wurden beschrieben.[16]

Ausbrüche

Hohen Bekanntheitsgrad erlangte Acinetobacter baumannii durch seinen häufigen Nachweis in infizierten Wunden von US-Soldaten, die aus Einsätzen im Irak und Afghanistan heimkehrten.[17]

Im Juli 2008 wurden in der Medizinischen Hochschule Hannover 23 Fälle in der Intensivstation für Schwerbrandverletzte gemeldet. Der A. baumanii-Stamm war nur noch gegenüber einem Antibiotikum sensibel. Durch konsequent verstärkte Hygienemaßnahmen konnte der resistente Erreger aus der Station eliminiert werden.[18]

Anfang 2015 kam es im Universitätsklinikum Schleswig-Holstein Campus Kiel zu einem Ausbruch, bei dem Acinetobacter baumannii bei 31 Patienten nachgewiesen wurde, 12 Patienten verstarben und bei dreien von diesen könnte die Infektion die direkte Todesursache gewesen sein. Grund zur Sorge war die Tatsache, dass es sich um einen multiresistenten 4MRGN-Erreger handelte.[17]

Therapie

Behandelt werden Acinetobacter-baumannii-Infektionen mit Imipenem oder Meropenem und (je nach Antibiogramm mit) Chinolon bzw. Aminoglykosid. Alternativ kommen (bei nachgewiesener Sensibilität) auch Tigecyclin und Amikacin bzw. Ciprofloxacin in Frage. Resistente Stämme können mit Colistin und Meropenem oder Imipenem behandelt werden. Bei einer Carbapenem-Resistenz kommt eine Kombination von Colistin und Amikacin in Betracht.[19]

Im Jahr 2019 wurde mit dem Molekül Halicin ein potentiell wirksames Antibiotikum gegen Acinetobacter baumannii gefunden.[20]

Lebensmittelverderb

Auf Frischfleisch kann Acinetobacter baumannii zu Geruchsabweichungen führen.[21]

Einzelnachweise

  1. a b Jean Euzéby, Aidan C. Parte: Genus Acinetobacter. In: List of Prokaryotic names with Standing in Nomenclature (LPSN). Abgerufen am 4. April 2018.
  2. a b c d e f g h i j Acinetobacter baumannii – ein Krankenhauskeim mit beunruhigendem Entwicklungspotenzial. In: Robert Koch-Institut (Hrsg.): Epidemiologisches Bulletin 32/2013. 12. August 2013, S. 295–299 (Online [PDF; 135 kB; abgerufen am 4. April 2018]).
  3. a b c Michael T. Madigan, John M. Martinko, Jack Parker: Brock Mikrobiologie. Deutsche Übersetzung herausgegeben von Werner Goebel, 1. Auflage. Spektrum Akademischer Verlag GmbH, Heidelberg/Berlin 2000, ISBN 3-8274-0566-1, S. 530–531.
  4. a b c d e f g h Philippe J. M. Bouvet, Patrick A. D. Grimont: Taxonomy of the Genus Acinetobacter with the Recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and Emended Descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. In: International Journal of Systematic and Evolutionary Microbiology. Band 36, Nr. 2, 1986, S. 228–240, doi:10.1099/00207713-36-2-228.
  5. Acinetobacter baumannii AF-401. In: Webseite JCI Genomes Online Database (GOLD). Abgerufen am 4. April 2018.
  6. Acinetobacter baumannii. In: Webseite Genome des National Center for Biotechnology Information (NCBI). Abgerufen am 4. April 2018.
  7. API® ID-Teststreifen. (PDF; 2,1 MB) In: Webseite der bioMérieux Deutschland GmbH. Abgerufen am 4. April 2018.
  8. Marianne Abele-Horn (2009), S. 260.
  9. TRBA (Technische Regeln für Biologische Arbeitsstoffe) 466: Einstufung von Prokaryonten (Bacteria und Archaea) in Risikogruppen. In: Webseite der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA). 25. August 2015, abgerufen am 29. März 2018 (letzte Änderung vom 31. März 2017).
  10. Paul G. Higgins, Ralf Matthias Hagen, Bernd Kreikemeyer, Philipp Warnke, Andreas Podbielski: Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates from Northern Africa and the Middle East. In: Antibiotics. Band 10, Nr. 3, 11. März 2021, ISSN 2079-6382, S. 291, doi:10.3390/antibiotics10030291, PMID 33799540, PMC 8002098 (freier Volltext) – (mdpi.com [abgerufen am 17. September 2021]).
  11. Mona Mohamed Al-Shamiri, Sirui Zhang, Peng Mi, Yuqing Liu, Meng Xun: Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. In: Microbial Pathogenesis. Band 155, Juni 2021, S. 104922, doi:10.1016/j.micpath.2021.104922 (elsevier.com [abgerufen am 17. September 2021]).
  12. Friedrich Burkhardt: Mikrobiologische Diagnostik; Bakteriologie - Mykologie - Virologie - Parasitologie. Hrsg.: Birgid Neumeister, Heinrich K. Geiss, Rüdiger Braun, Peter Kimmig. 2. Auflage. Georg Thieme Verlag, Stuttgart / New York 2009, ISBN 978-3-13-743602-7, S. 495–496.
  13. Stamatis Karakonstantis, Evangelos I. Kritsotakis, Achilleas Gikas: Is pandrug-resistance in A. baumannii a transient phenotype? Epidemiological clues from a 4-year cohort study at a tertiary referral hospital in Greece. In: Journal of Chemotherapy. Band 33, Nr. 5, 4. Juli 2021, ISSN 1120-009X, S. 354–357, doi:10.1080/1120009X.2020.1839689 (tandfonline.com [abgerufen am 17. September 2021]).
  14. Kirk Nelson, Debora Rubio-Aparicio, Ruslan Tsivkovski, Dongxu Sun, Maxim Totrov: In Vitro Activity of the Ultra-Broad-Spectrum Beta-Lactamase Inhibitor QPX7728 in Combination with Meropenem against Clinical Isolates of Carbapenem-Resistant Acinetobacter baumannii. In: Antimicrobial Agents and Chemotherapy. Band 64, Nr. 11, 20. Oktober 2020, ISSN 0066-4804, doi:10.1128/AAC.01406-20, PMID 32868334, PMC 7577151 (freier Volltext).
  15. Grit Ackermann: Antibiotika und Antimykotika Substanzen, Krankheitsbilder, erregerspezifische Therapie. 4., überarb. und erw. Auflage. Stuttgart 2014, ISBN 978-3-8047-2940-7, S. 49.
  16. Alessandra Oliva, Giancarlo Ceccarelli, Massimiliano De Angelis, Federica Sacco, Maria Claudia Miele: Cefiderocol for compassionate use in the treatment of complicated infections caused by extensively and pan-resistant Acinetobacter baumannii. In: Journal of Global Antimicrobial Resistance. Band 23, Dezember 2020, S. 292–296, doi:10.1016/j.jgar.2020.09.019 (elsevier.com [abgerufen am 17. September 2021]).
  17. a b Christine Starostzik: Problemkeim fordert Klinikpersonal heraus. In: Ärzte Zeitung. 2. Februar 2015, abgerufen am 4. April 2018.
  18. Nicola Siegmund-Schultze: Acinetobacter baumanii: Bei diesem Keim in der Klinik ist Feuer unterm Dach. In: Ärzte Zeitung. 29. Juni 2010, abgerufen am 4. April 2018.
  19. Marianne Abele-Horn: Antimikrobielle Therapie. Entscheidungshilfen zur Behandlung und Prophylaxe von Infektionskrankheiten. Unter Mitarbeit von Werner Heinz, Hartwig Klinker, Johann Schurz und August Stich, 2., überarbeitete und erweiterte Auflage. Peter Wiehl, Marburg 2009, ISBN 978-3-927219-14-4, S. 260.
  20. Julia Merlot, DER SPIEGEL: Kampf gegen Resistenzen: Künstliche Intelligenz entdeckt vielversprechendes Antibiotikum - DER SPIEGEL - Wissenschaft. Abgerufen am 22. Februar 2020.
  21. Arthur Hinton Jr., J. A. Cason, Kimberly D. Ingram: Tracking spoilage bacteria in commercial poultry processing and refrigerated storage of poultry carcasses. In: International Journal of Food Microbiology. Band 91, Nr. 2, März 2004, S. 155–165, doi:10.1016/S0168-1605(03)00377-5.
 title=
lisans
cc-by-sa-3.0
telif hakkı
Autoren und Herausgeber von Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia DE

Acinetobacter baumannii: Brief Summary ( Almanca )

wikipedia DE tarafından sağlandı

Acinetobacter baumannii ist ein gramnegatives, aerobes Bakterium. Das Genom des Stammes Acinetobacter baumannii AF-401 wurde im Jahr 2017 vollständig sequenziert. Wie andere Arten der Gattung Acinetobacter gehört das häufig multiresistente (gramnegative) Bakterium zu den Verursachern von nosokomialen Infektionen. In vielen Länder zählt A. baumannii zu den wichtigsten Krankenhauskeimen überhaupt und kommt vor allem auf Intensivstationen vor. Die amerikanische Gesellschaft für Infektionskrankheiten zählt Acinetobacter baumannii aufgrund seiner Fähigkeit, besonders ausgeprägte Antibiotikaresistenzen auszubilden, zu den sogenannten ESKAPE Pathogenen, gegen die therapeutische Möglichkeiten knapp werden.

lisans
cc-by-sa-3.0
telif hakkı
Autoren und Herausgeber von Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia DE

அசினிட்டோபாக்டர் பௌமானி ( Tamilce )

wikipedia emerging languages tarafından sağlandı
 src=
அசினிட்டோபாக்டர் பௌமானியின் நுண்ணோக்கித் தோற்றம்

அசினிட்டோபாக்டர் பௌமானி (Acinetobacter baumannii) என்பது சந்தர்ப்பவாத நோய் உண்டாக்கவல்ல கிராம் சாயமேற்காத பாக்டீரியா ஆகும். இது நீண்ட நாட்களாக மருத்துவமனையில் இருக்கும் நோயாளிகளில் மிகமோசமான நோயை உண்டாக்க வல்லது. இதனைக் கட்டுப்படுத்த பல நுண்ணுயிர்க்கொல்லி மருந்துகளாலும் முடியாது. அனைத்து மருந்துகளுக்கும் இது எதிர்ப்பு சக்தியைப் பெற்றுள்ளது.[1]

இது சந்தர்ப்பவாத தொற்றுக்கிருமி ஆகும்.[2] நோய் எதிர்ப்பு ஆற்றல் உள்ள மனிதர்களில் இக்கிருமி நோய் உண்டாக்காது. ஆனால் அவர்களின் உடலில் தொற்றிக் கொள்ளும் இக்கிருமி அவர்கள் மூலமாக நோய்எதிர்ப்பாற்றல் குறைந்த நோயாளிகளை மிகக்கடுமையாகத் தாக்குகிறது.[3] குளிர்பதனம் செய்யப்பட்ட மருத்துவமனை அறைச் சுவர்களில் இந்த பாக்டீரியா 5 மாதங்கள் வரை வாழக்கூடியது.[4]

ஈராக் போரில் காயமுற்று மருத்துவமனையில் இருந்த அமெரிக்க வீரர்கள் பலருக்கு இக்கிருமித் தொற்று ஏற்பட்டதால் இது ஈராக்கிபாக்டர் எனவும் அழைக்கப்படுகிறது.[5]

மேற்கோள்கள்

  1. Pollack, Andrew. "Rising Threat of Infections Unfazed by Antibiotics" New York Times, Feb. 27, 2010
  2. Gerischer U (editor) (2009). Acinetobacter Molecular Biology (1st ). Caister Academic Press. பன்னாட்டுத் தரப்புத்தக எண்:978-1-904455-20-2. http://www.horizonpress.com/acineto.
  3. Steve Silberman (February 2007). "The Invisible Enemy". Wired. http://www.wired.com/wired/archive/15.02/enemy_pr.html. பார்த்த நாள்: 2007-02-15.
  4. Kramer A, Schwebke I, Kampf G (2006). "How long do nosocomial pathogens persist on inanimate surfaces? A systematic review". BMC Infect. Dis. 6: 130. doi:10.1186/1471-2334-6-130. பப்மெட்:16914034.
  5. "Acinetobacter baumannii in Iraq". பார்த்த நாள் 2007-02-15.
lisans
cc-by-sa-3.0
telif hakkı
விக்கிபீடியா ஆசிரியர்கள் மற்றும் ஆசிரியர்கள்

அசினிட்டோபாக்டர் பௌமானி: Brief Summary ( Tamilce )

wikipedia emerging languages tarafından sağlandı
 src= அசினிட்டோபாக்டர் பௌமானியின் நுண்ணோக்கித் தோற்றம்

அசினிட்டோபாக்டர் பௌமானி (Acinetobacter baumannii) என்பது சந்தர்ப்பவாத நோய் உண்டாக்கவல்ல கிராம் சாயமேற்காத பாக்டீரியா ஆகும். இது நீண்ட நாட்களாக மருத்துவமனையில் இருக்கும் நோயாளிகளில் மிகமோசமான நோயை உண்டாக்க வல்லது. இதனைக் கட்டுப்படுத்த பல நுண்ணுயிர்க்கொல்லி மருந்துகளாலும் முடியாது. அனைத்து மருந்துகளுக்கும் இது எதிர்ப்பு சக்தியைப் பெற்றுள்ளது.

இது சந்தர்ப்பவாத தொற்றுக்கிருமி ஆகும். நோய் எதிர்ப்பு ஆற்றல் உள்ள மனிதர்களில் இக்கிருமி நோய் உண்டாக்காது. ஆனால் அவர்களின் உடலில் தொற்றிக் கொள்ளும் இக்கிருமி அவர்கள் மூலமாக நோய்எதிர்ப்பாற்றல் குறைந்த நோயாளிகளை மிகக்கடுமையாகத் தாக்குகிறது. குளிர்பதனம் செய்யப்பட்ட மருத்துவமனை அறைச் சுவர்களில் இந்த பாக்டீரியா 5 மாதங்கள் வரை வாழக்கூடியது.

ஈராக் போரில் காயமுற்று மருத்துவமனையில் இருந்த அமெரிக்க வீரர்கள் பலருக்கு இக்கிருமித் தொற்று ஏற்பட்டதால் இது ஈராக்கிபாக்டர் எனவும் அழைக்கப்படுகிறது.

lisans
cc-by-sa-3.0
telif hakkı
விக்கிபீடியா ஆசிரியர்கள் மற்றும் ஆசிரியர்கள்

Acinetobàcter baumannii ( Eml )

wikipedia emerging_languages tarafından sağlandı
 src=
Di batēr d'l Acinetobàcter baumannii

'L Acinetobàcter baumannii, cgnusû anc cuma 'l Killer di Uśdài o 'l Batēr d'l Iràq, 'l è 'n batēr gram-negatìṿ ch'al mét insém da piò ad trénta spéci o sóta-spéci ch'i s pōlan muciàr sù in tri grup prinsipài: Acinetobacter calcoaceticus-baumannii, Acinetobacter lwoffii e Acinetobacter haemolyticus. I siensiâ i èṅ stâ bòṅ ad tiràr śò al sò genòma[1].

'L è 'n batēr ch'l è drē a śvilupàr-as dimóndi e che s't al ciàp al t pōl anc far murìr parchè al dà adòs a i palmòṅ e a la psiga dl'urìna[2]. Uriginàri dla tèra mója o dl'àqua, adès cal batēr lè a s cata facilmènt anc in di uśdài atàc a i tubèṅ ch'i t insfìlsan dèntar. P'r al fat ch'i pasiènt i èṅ débui e che 'l Acinetobàcter baumannii 'l è dvintâ reśistènt a gl'antibiòtig a fòrsa 'd vìvar in c'l ambînt lè, al risć 'd armàgn'r-ag sèc bcand-'s-al 'l è dimóndi élt anc parchè gl'antibiòtig dla famìja di béta-latàmis i n gh fànan più gnint, dònca 'l è tant inùtil tōr-i.

Culegamènt estéran

Nòti

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors

Acinetobàcter baumannii: Brief Summary ( Eml )

wikipedia emerging_languages tarafından sağlandı
 src= Di batēr d'l Acinetobàcter baumannii

'L Acinetobàcter baumannii, cgnusû anc cuma 'l Killer di Uśdài o 'l Batēr d'l Iràq, 'l è 'n batēr gram-negatìṿ ch'al mét insém da piò ad trénta spéci o sóta-spéci ch'i s pōlan muciàr sù in tri grup prinsipài: Acinetobacter calcoaceticus-baumannii, Acinetobacter lwoffii e Acinetobacter haemolyticus. I siensiâ i èṅ stâ bòṅ ad tiràr śò al sò genòma.

'L è 'n batēr ch'l è drē a śvilupàr-as dimóndi e che s't al ciàp al t pōl anc far murìr parchè al dà adòs a i palmòṅ e a la psiga dl'urìna. Uriginàri dla tèra mója o dl'àqua, adès cal batēr lè a s cata facilmènt anc in di uśdài atàc a i tubèṅ ch'i t insfìlsan dèntar. P'r al fat ch'i pasiènt i èṅ débui e che 'l Acinetobàcter baumannii 'l è dvintâ reśistènt a gl'antibiòtig a fòrsa 'd vìvar in c'l ambînt lè, al risć 'd armàgn'r-ag sèc bcand-'s-al 'l è dimóndi élt anc parchè gl'antibiòtig dla famìja di béta-latàmis i n gh fànan più gnint, dònca 'l è tant inùtil tōr-i.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors

Acinetobacter baumannii ( İngilizce )

wikipedia EN tarafından sağlandı

Acinetobacter baumannii is a typically short, almost round, rod-shaped (coccobacillus) Gram-negative bacterium. It is named after the bacteriologist Paul Baumann.[2] It can be an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived (nosocomial) infection. While other species of the genus Acinetobacter are often found in soil samples (leading to the common misconception that A. baumannii is a soil organism, too), it is almost exclusively isolated from hospital environments.[3] Although occasionally it has been found in environmental soil and water samples,[4] its natural habitat is still not known.

Bacteria of this genus lack flagella, whip-like structures many bacteria use for locomotion, but exhibit twitching or swarming motility. This may be due to the activity of type IV pili, pole-like structures that can be extended and retracted. Motility in A. baumannii may also be due to the excretion of exopolysaccharide, creating a film of high-molecular-weight sugar chains behind the bacterium to move forward.[5] Clinical microbiologists typically differentiate members of the genus Acinetobacter from other Moraxellaceae by performing an oxidase test, as Acinetobacter spp. are the only members of the Moraxellaceae to lack cytochrome c oxidases.[6]

A. baumannii is part of the ACB complex (A. baumannii, A. calcoaceticus, and Acinetobacter genomic species 13TU). It is difficult to determine the specific species of members of the ACB complex and they comprise the most clinically relevant members of the genus.[7][8] A. baumannii has also been identified as an ESKAPE pathogen (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), a group of pathogens with a high rate of antibiotic resistance that are responsible for the majority of nosocomial infections.[9]

Colloquially, A. baumannii is referred to as "Iraqibacter" due to its seemingly sudden emergence in military treatment facilities during the Iraq War.[10] It has continued to be an issue for veterans and soldiers who served in Iraq and Afghanistan. Multidrug-resistant A. baumannii has spread to civilian hospitals in part due to the transport of infected soldiers through multiple medical facilities.[5] During the COVID-19 pandemic, coinfection with A. baumannii secondary to SARS-CoV-2 infections has been reported multiple times in medical publications.[11]

OmpA

Adhesion can be a critical determinant of virulence for bacteria. The ability to attach to host cells allows bacteria to interact with them in various ways, whether by type III secretion system or simply by holding on against the prevailing movement of fluids. Outer membrane protein A (OmpA) has been shown to be involved in the adherence of A. baumannii to epithelial cells. This allows the bacteria to invade the cells through the zipper mechanism.[12] The protein was also shown to localize to the mitochondria of epithelial cells and cause necrosis by stimulating the production of reactive oxygen species.[13]

Antibiotic resistance

Mechanisms of antibiotic resistance can be categorized into three groups. First, resistance can be achieved by reducing membrane permeability or increasing efflux of the antibiotic and thus preventing access to the target. Second, bacteria can protect the antibiotic target through genetic mutation or post-translational modification, and last, antibiotics can be directly inactivated by hydrolysis or modification. One of the most important weapons in the armoury of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, insertion sequences are considered one of the key forces shaping bacterial genomes and ultimately evolution.[11]

AbaR resistance islands

Pathogenicity islands, relatively common genetic structures in bacterial pathogens, are composed of two or more adjacent genes that increase a pathogen's virulence. They may contain genes that encode toxins, coagulate blood, or as in this case, allow the bacteria to resist antibiotics. AbaR-type resistance islands are typical of drug-resistant A. baumannii, and different variations may be present in a given strain. Each consists of a transposon backbone of about 16.3 Kb that facilitates horizontal gene transfer. This makes horizontal gene transfer of this and similar pathogenicity islands more likely because, when genetic material is taken up by a new bacterium, the transposons allow the pathogenicity island to integrate into the new microorganism's genome. In this case, it would grant the new microorganism the potential to resist certain antibiotics. Antibiotic resistance genes are commonly transferred between Gram-negative bacteria through plasmids via conjugation, which accelerates the appearance of new resistant strains. AbaR's contain several genes for antibiotic resistance, all flanked by insertion sequences. There exist several resistance genes circulating along A. baumannii that can be clustered in replicon groups, and may be transferred from the extensively drug-resistant Acinetobacter baumannii (XDR- AB) and New Delhi Metallo-beta-lactamase-1-producing Acinetobacter baumannii (NDM- AB) to environmental isolates of Acinetobacter spp. Conjugation experiments demonstrated that the blaOXA-23, blaPER-1, and aphA6 genes could be successfully transferred between the clinical and the environmental isolates via the plasmid group GR6 or class 1 integrons through in vitro conjugation.[14] In collaboration with some other genes, they provide resistance to aminoglycosides, aminocyclitols, tetracycline, and chloramphenicol.[15][16]

Efflux pumps

Efflux pumps are protein machines that use energy to pump antibiotics and other small molecules that get into the bacterial cytoplasm and the periplasmic space out of the cell. By constantly pumping antibiotics out of the cell, bacteria can increase the concentration of a given antibiotic required to kill them or inhibit their growth when the target of the antibiotic is inside the bacterium. A. baumannii is known to have two major efflux pumps which decrease its susceptibility to antimicrobials. The first, AdeB, has been shown to be responsible for aminoglycoside resistance.[17] The second, AdeDE, is responsible for efflux of a wide range of substrates, including tetracycline, chloramphenicol, and various carbapenems.[18] Many other efflux pumps have been implicated in A. baumannii resistant strains.[11]

Small RNA

Bacterial small RNAs are noncoding RNAs that regulate various cellular processes. Three sRNAs, AbsR11, AbsR25, and AbsR28, have been experimentally validated in the MTCC 1425 (ATCC15308) strain, which is a (multidrug-resistant) strain showing resistance to 12 antibiotics. AbsR25 sRNA could play a role in the efflux pump regulation and drug resistance.[19]

Beta-lactamase

A. baumannii has been shown to produce at least one beta-lactamase, which is an enzyme responsible for cleaving the four-atom lactam ring typical of beta-lactam antibiotics. Beta-lactam antibiotics are structurally related to penicillin, which inhibits synthesis of the bacterial cell wall. The cleaving of the lactam ring renders these antibiotics harmless to the bacteria. A. baumannii have been observed to express beta-lactmases known as Acinetobacter-derived cephalosporinases (ADCs), which are class C beta-lactamases.[20] In addition, the beta-lactamase OXA-51, a class D beta-lactamase, has been observed in A. baumannii, found to be flanked by insertion sequences, suggesting it was acquired by horizontal gene transfer.[21]

Biofilm formation

A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. This is thought to be due to its ability to form biofilms.[22] For many biofilm-forming bacteria, the process is mediated by flagella. However, for A. baumannii, this process seems to be mediated by pili. Further, disruption of the putative pili chaperone and usher genes csuC and csuE were shown to inhibit biofilm formation.[23] The formation of biofilms has been shown to alter the metabolism of microorganisms within the biofilm, consequently reducing their sensitivity to antibiotics. This may be because fewer nutrients are available deeper within the biofilm. A slower metabolism can prevent the bacteria from taking up an antibiotic or performing a vital function fast enough for particular antibiotics to have an effect. They also provide a physical barrier against larger molecules and may prevent desiccation of the bacteria.[4][24] In general, biofilm formation has been linked so far with BfmRS TCS (two-component system) regulating Csu pili, Csu expression regulated by the GacSA TCS, biofilm-associated proteins BapAb, synthesis of the exopolysaccharide poly-β-1,6-N-acetylglucosamine PNAG, acyl-homoserine lactones through AbaR receptor, and AbaI autoinducer synthase. Moreover, inactivation of adeRS operon negatively affects biofilm formation and prompts decreased expression of AdeABC. Disruption of abaF has displayed an increase in fosfomycin susceptibility and a decrease in biofilm formation and virulence, suggesting a major role for this pump.[11]

Signs and symptoms of infection

A. baumannii is an opportunistic pathogen with a range of different diseases, each with their own symptoms. Some possible types of A. baumannii infections include:

Symptoms of A. baumannii infections are often indistinguishable from other opportunistic infections caused by other opportunistic bacteria - including Klebsiella pneumoniae and Streptococcus pneumoniae.

Symptoms of A. baumannii infections in turn range from fevers and chills, rash, confusion and/or altered mental states, pain or burning sensations when urinating, strong urge to urinate frequently, sensitivity to bright light, nausea (with or without vomiting), muscle and chest pains, breathing problems, and cough (with or without yellow, green, or bloody mucus).[25] In some cases, A. baumannii may present no infection or symptoms, as with colonizing an open wound or tracheostomy site.[26]

Treatment

When infections are caused by antibiotic-susceptible Acinetobacter isolates, there may be several therapeutic options, including a broad-spectrum cephalosporin (ceftazidime or cefepime), a combination beta-lactam/beta-lactamase inhibitor (ie, one that includes sulbactam), or a carbapenem (eg, imipenem or meropenem). Because most infections are now resistant to multiple drugs, determining what susceptibilities the particular strain has is necessary for treatment to be successful. Traditionally, infections were treated with imipenem or meropenem, but a steady rise in carbapenem-resistant A. baumannii has been noted.[27] Consequently, treatment methods often fall back on polymyxins, particularly colistin although tetracyclines have shown promise in MDR A. baumannii.[28][29] Colistin is considered a drug of last resort because it often causes kidney damage, among other side effects.[30] Prevention methods in hospitals focus on increased hand-washing and more diligent sterilization procedures.[31] An A. baumannii infection was recently treated using phage therapy.[32] Phages are viruses that attack bacteria,[33] and have also been demonstrated to resensitize A. baumannii to antibiotics it normally resists.[34]

Traumatic injuries, like those from improvised explosive devices, leave large open areas contaminated with debris that are vulnerable to becoming infected with A. baumannii.
The logistics of transporting wounded soldiers result in patients visiting several facilities where they may acquire A. baumannii infections.

Scientists at MIT, Harvard's Broad Institute and MIT's CSAIL found a compound named halicin using deep learning that can effectively kill A. baumannii. The compound is a repurposed drug.[35][36] The candidate drug abaucin has narrow-spectrum effectiveness.

Occurrence in veterans injured in Iraq and Afghanistan

Soldiers in Iraq and Afghanistan are at risk for traumatic injury due to gunfire and improvised explosive devices. Previously, infection was thought to occur due to contamination with A. baumannii at the time of injury. Subsequent studies have shown, although A. baumannii may be infrequently isolated from the natural environment, the infection is more likely nosocomially acquired, likely due to the ability of A. baumannii to persist on artificial surfaces for extended periods, and the several facilities to which injured soldiers are exposed during the casualty-evacuation process. Injured soldiers are first taken to level-I facilities, where they are stabilized. Depending on the severity of the injury, the soldiers may then be transferred to a level-II facility, which consists of a forward surgical team, for additional stabilization. Depending on the logistics of the locality, the injured soldiers may transfer between these facilities several times before finally being taken to a major hospital within the combat zone (level III). Generally after 1–3 days, when the patients are stabilized, they are transferred by air to a regional facility (level IV) for additional treatment. For soldiers serving in Iraq or Afghanistan, this is typically Landstuhl Regional Medical Center in Germany. Finally, the injured soldiers are transferred to hospitals in their home country for rehabilitation and additional treatment.[37] This repeated exposure to many different medical environments seems to be the reason A. baumannii infections have become increasingly common. Multidrug-resistant A. baumannii is a major factor in complicating the treatment and rehabilitation of injured soldiers, and has led to additional deaths.[7][38][39]

Incidence in hospitals

Being referred to as an opportunistic infection, A. baumannii infections are highly prevalent in hospital settings. A. baumannii poses very little risk to healthy individuals;[40] however, factors that increase the risks for infection include:

  • Having a weakened immune system
  • Chronic lung disease
  • Diabetes
  • Lengthened hospital stays
  • Illness that requires use of a hospital ventilator
  • Having an open wound treated in a hospital
  • Treatments requiring invasive devices like urinary catheters

A. baumannii can be spread through direct contact with surfaces, objects, and the skin of contaminated persons.[25]

The importation of A. baumannii and subsequent presence in hospitals has been well documented.[41] A. baumannii is usually introduced into a hospital by a colonized patient. Due to its ability to survive on artificial surfaces and resist desiccation, it can remain and possibly infect new patients for some time. A baumannii growth is suspected to be favored in hospital settings due to the constant use of antibiotics by patients in the hospital.[42] Acinetobacter can be spread by person-to-person contact or contact with contaminated surfaces.[43] Acinetobacter can enter through open wounds, catheters and breathing tubes.[44] In a study of European intensive care units in 2009, A. baumannii was found to be responsible for 19.1% of ventilator-associated pneumonia cases.[45]

References

  1. ^ Parte, A.C. "Acinetobacter". LPSN.
  2. ^ Lin, Ming-Feng; Lan, Chung-Yu (2014). "Antimicrobial Resistance in Acinetobacter baumannii: From Bench to Bedside". World Journal of Clinical Cases. 2 (12): 787–814. doi:10.12998/wjcc.v2.i12.787. PMC 4266826. PMID 25516853.
  3. ^ Antunes, Luísa C.S.; Visca, Paolo; Towner, Kevin J. (August 2014). "Acinetobacter baumannii: evolution of a global pathogen". Pathogens and Disease. 71 (3): 292–301. doi:10.1111/2049-632X.12125. PMID 24376225.
  4. ^ a b Yeom, Jinki; Shin, Ji-Hyun; Yang, Ji-Young; Kim, Jungmin; Hwang, Geum-Sook; Bundy, Jacob Guy (6 March 2013). "1H NMR-Based Metabolite Profiling of Planktonic and Biofilm Cells in Acinetobacter baumannii 1656-2". PLOS ONE. 8 (3): e57730. Bibcode:2013PLoSO...857730Y. doi:10.1371/journal.pone.0057730. PMC 3590295. PMID 23483923.
  5. ^ a b McQueary, Christin N.; Kirkup, Benjamin C.; Si, Yuanzheng; Barlow, Miriam; Actis, Luis A.; Craft, David W.; Zurawski, Daniel V. (30 June 2012). "Extracellular stress and lipopolysaccharide modulate Acinetobacter baumannii surface-associated motility". Journal of Microbiology. 50 (3): 434–443. doi:10.1007/s12275-012-1555-1. PMID 22752907. S2CID 18294862.
  6. ^ Garrity, G., ed. (2000). "Pts. A & B: The Proteobacteria". Bergey's Manual of Systematic Bacteriology. Vol. 2 (2nd ed.). New York: Springer. p. 454. ISBN 978-0-387-95040-2.
  7. ^ a b O'Shea, MK (May 2012). "Acinetobacter in modern warfare". International Journal of Antimicrobial Agents. 39 (5): 363–75. doi:10.1016/j.ijantimicag.2012.01.018. PMID 22459899.
  8. ^ Gerner-Smidt, P (October 1992). "Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex". Journal of Clinical Microbiology. 30 (10): 2680–5. doi:10.1128/JCM.30.10.2680-2685.1992. PMC 270498. PMID 1383266.
  9. ^ Rice, LB (15 April 2008). "Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE". The Journal of Infectious Diseases. 197 (8): 1079–81. doi:10.1086/533452. PMID 18419525.
  10. ^ Drummond, Katie (2010-05-24). "Pentagon to Troop-Killing Superbugs: Resistance Is Futile". Wired.com. Condé Nast. Retrieved 8 April 2013.
  11. ^ a b c d Kyriakidis, I; Vasileiou, E; Pana, Z-D; Tragiannidis, A (2021). "Acinetobacter baumannii Antibiotic Resistance Mechanisms". Pathogens. 10 (373): 373. doi:10.3390/pathogens10030373. PMC 8003822. PMID 33808905.
  12. ^ Choi, Chul Hee; Lee, Jun Sik; Lee, Yoo Chul; Park, Tae In; Lee, Je Chul (2008). "Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells". BMC Microbiology. 8 (1): 216. doi:10.1186/1471-2180-8-216. PMC 2615016. PMID 19068136.
  13. ^ Lee, Jun Sik; Choi, Chul Hee; Kim, Jung Wook; Lee, Je Chul (23 June 2010). "Acinetobacter baumannii outer membrane protein a induces dendritic cell death through mitochondrial targeting". The Journal of Microbiology. 48 (3): 387–392. doi:10.1007/s12275-010-0155-1. PMID 20571958. S2CID 33040805.
  14. ^ Leungtongkam, Udomluk; Thummeepak, Rapee; Tasanapak, Kannipa; Sitthisak, Sutthirat (2018). "Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii". PLOS ONE. 13 (12): e0208468. Bibcode:2018PLoSO..1308468L. doi:10.1371/journal.pone.0208468. PMC 6283642. PMID 30521623.
  15. ^ Šeputienė, Vaida; Povilonis, Justas; Sužiedėlienė, Edita (April 2012). "Novel Variants of AbaR Resistance Islands with a Common Backbone in Acinetobacter baumannii Isolates of European Clone II". Antimicrobial Agents and Chemotherapy. 56 (4): 1969–1973. doi:10.1128/AAC.05678-11. PMC 3318354. PMID 22290980.
  16. ^ Post, V.; White, P. A.; Hall, R. M. (7 April 2010). "Evolution of AbaR-type genomic resistance islands in multiply antibiotic-resistant Acinetobacter baumannii". Journal of Antimicrobial Chemotherapy. 65 (6): 1162–1170. doi:10.1093/jac/dkq095. PMID 20375036.
  17. ^ Magnet, S; Courvalin, P; Lambert, T (December 2001). "Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454". Antimicrobial Agents and Chemotherapy. 45 (12): 3375–80. doi:10.1128/aac.45.12.3375-3380.2001. PMC 90840. PMID 11709311.
  18. ^ Chau, SL; Chu, YW; Houang, ET (October 2004). "Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3". Antimicrobial Agents and Chemotherapy. 48 (10): 4054–5. doi:10.1128/aac.48.10.4054-4055.2004. PMC 521926. PMID 15388479.
  19. ^ Sharma, Rajnikant; Arya, Sankalp; Patil, Supriya Deepak; Sharma, Atin; Jain, Pradeep Kumar; Navani, Naveen Kumar; Pathania, Ranjana (2014-01-01). "Identification of novel regulatory small RNAs in Acinetobacter baumannii". PLOS ONE. 9 (4): e93833. Bibcode:2014PLoSO...993833S. doi:10.1371/journal.pone.0093833. ISSN 1932-6203. PMC 3976366. PMID 24705412.
  20. ^ Périchon, Bruno; Goussard, Sylvie; Walewski, Violaine; Krizova, Lenka; Cerqueira, Gustavo; Murphy, Cheryl; Feldgarden, Michael; Wortman, Jennifer; Clermont, Dominique; Nemec, Alexandr; Courvalin, Patrice (February 2014). "Identification of 50 Class D β-Lactamases and 65 Acinetobacter-Derived Cephalosporinases in Acinetobacter spp". Antimicrobial Agents and Chemotherapy. 58 (2): 936–949. doi:10.1128/AAC.01261-13. PMC 3910822. PMID 24277043.
  21. ^ Higgins, PG; Pérez-Llarena, FJ; Zander, E; Fernández, A; Bou, G; Seifert, H (25 February 2013). "OXA-235, a novel Class D Beta-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii". Antimicrobial Agents and Chemotherapy. 57 (5): 2121–6. doi:10.1128/AAC.02413-12. PMC 3632948. PMID 23439638.
  22. ^ Espinal, P; Martí, S; Vila, J (January 2012). "Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces". The Journal of Hospital Infection. 80 (1): 56–60. doi:10.1016/j.jhin.2011.08.013. PMID 21975219.
  23. ^ Tomaras, AP; Dorsey, CW; Edelmann, RE; Actis, LA (December 2003). "Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system". Microbiology. 149 (Pt 12): 3473–84. doi:10.1099/mic.0.26541-0. PMID 14663080.
  24. ^ Worthington, RJ; Richards, JJ; Melander, C (7 October 2012). "Small molecule control of bacterial biofilms". Organic & Biomolecular Chemistry. 10 (37): 7457–74. doi:10.1039/c2ob25835h. PMC 3431441. PMID 22733439.
  25. ^ a b "What Is Acinetobacter Baumannii?". Everyday Health. 18 June 2015. Retrieved 18 April 2017.
  26. ^ "Acinetobacter". Centers for Disease Control and Prevention. 6 November 2019. Retrieved 2023-03-09.
  27. ^ Su, CH; Wang, JT; Hsiung, CA; Chien, LJ; et al. (2012). "Increase of carbapenem-resistant Acinetobacter baumannii infection in acute care hospitals in Taiwan: Association with hospital antimicrobial usage". PLOS One. 7 (5): e37788. Bibcode:2012PLoSO...737788S. doi:10.1371/journal.pone.0037788. PMC 3357347. PMID 22629456.
  28. ^ Abbo, A; Navon-Venezia, S; Hammer-Muntz, O; Krichali, T; et al. (January 2005). "Multidrug-resistant Acinetobacter baumannii". Emerging Infectious Diseases. 11 (1): 22–9. doi:10.3201/eid1101.040001. PMC 3294361. PMID 15705318.
  29. ^ Falagas, Matthew E.; Vardakas, Konstantinos Z.; Kapaskelis, Anastasios; Triarides, Nikolaos A.; Roussos, Nikolaos S. (May 2015). "Tetracyclines for multidrug-resistant Acinetobacter baumannii infections". International Journal of Antimicrobial Agents. 45 (5): 455–460. doi:10.1016/j.ijantimicag.2014.12.031. ISSN 1872-7913. PMID 25801348.
  30. ^ Spapen, H; Jacobs, R; Van Gorp, V; Troubleyn, J; et al. (25 May 2011). "Renal and neurological side effects of colistin in critically ill patients". Annals of Intensive Care. 1 (1): 14. doi:10.1186/2110-5820-1-14. PMC 3224475. PMID 21906345.
  31. ^ "Acinetobacter in Healthcare Settings". CDC. Retrieved 8 April 2013.
  32. ^ "He was dying. Antibiotics weren't working. Then doctors tried a forgotten treatment". Mother Jones. Retrieved 2018-05-17.
  33. ^ Altamirano, Fernando L. Gordillo; Barr, Jeremy J. (20 March 2019). "Phage Therapy in the Postantibiotic Era". Clinical Microbiology Reviews. 32 (2). doi:10.1128/CMR.00066-18. PMC 6431132. PMID 30651225.
  34. ^ Gordillo Altamirano, Fernando; Forsyth, John H.; Patwa, Ruzeen; Kostoulias, Xenia; Trim, Michael; Subedi, Dinesh; Archer, Stuart K.; Morris, Faye C.; Oliveira, Cody; Kielty, Luisa; Korneev, Denis; O'Bryan, Moira K.; Lithgow, Trevor J.; Peleg, Anton Y.; Barr, Jeremy J. (February 2021). "Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials". Nature Microbiology. 6 (2): 157–161. doi:10.1038/s41564-020-00830-7. PMID 33432151. S2CID 231584777.
  35. ^ Ray, Tiernan (13 March 2020). "MIT's deep learning found an antibiotic for a germ nothing else could kill". ZDNet.
  36. ^ Stokes, Jonathan M.; Yang, Kevin; Swanson, Kyle; Jin, Wengong; Cubillos-Ruiz, Andres; Donghia, Nina M.; MacNair, Craig R.; French, Shawn; Carfrae, Lindsey A.; Bloom-Ackerman, Zohar; Tran, Victoria M.; Chiappino-Pepe, Anush; Badran, Ahmed H.; Andrews, Ian W.; Chory, Emma J.; Church, George M.; Brown, Eric D.; Jaakkola, Tommi S.; Barzilay, Regina; Collins, James J. (20 February 2020). "A Deep Learning Approach to Antibiotic Discovery". Cell. 180 (4): 688–702.e13. doi:10.1016/j.cell.2020.01.021. PMC 8349178. PMID 32084340.
  37. ^ "Army Medical Logistics" (PDF). FM 4-02.1. United States. Archived from the original (PDF) on 2013-03-23. Retrieved April 8, 2013.
  38. ^ Meghoo, Colin A.; Dennis, James W.; Tuman, Caroline; Fang, Raymond (May 2012). "Diagnosis and management of evacuated casualties with cervical vascular injuries resulting from combat-related explosive blasts". Journal of Vascular Surgery. 55 (5): 1329–1337. doi:10.1016/j.jvs.2011.11.125. PMID 22325667.
  39. ^ Murray, Clinton K. (March 2008). "Epidemiology of Infections Associated With Combat-Related Injuries in Iraq and Afghanistan". The Journal of Trauma: Injury, Infection, and Critical Care. 64 (Supplement): S232–S238. doi:10.1097/TA.0b013e318163c3f5. PMID 18316967.
  40. ^ "Acinetobacter in Healthcare Settings". Centers for Disease Control and Prevention. US Department of Health and Human Services. Retrieved 18 April 2017.
  41. ^ Jones, Anna; Morgan, Dilys; Walsh, Amanda; Turton, Jane; Livermore, David; Pitt, Tyrone; Green, Andy; Gill, Martin; Mortiboy, Deborah (June 2006). "Importation of multidrug-resistant Acinetobacter spp infections with casualties from Iraq". The Lancet Infectious Diseases. 6 (6): 317–318. doi:10.1016/S1473-3099(06)70471-6. PMID 16728314.
  42. ^ Dijkshoorn, Lenie; Nemec, Alexandr; Seifert, Harald (December 2007). "An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii". Nature Reviews Microbiology. 5 (12): 939–951. doi:10.1038/nrmicro1789. PMID 18007677. S2CID 3446152.
  43. ^ "Acinetobacter in Healthcare Settings - HAI - CDC". www.cdc.gov. Retrieved 2 April 2018.
  44. ^ "Multidrug-Resistant Acinetobacter baumannii (MDRAB)." WHO Western Pacific Region, WPRO | WHO Western Pacific Region, 1 Nov. 2010, www.wpro.who.int/mediacentre/factsheets/fs_20101102/en/.
  45. ^ Koulenti, Despoina; Lisboa, Thiago; Brun-Buisson, Christian; Krueger, Wolfgang; Macor, Antonio; Sole-Violan, Jordi; Diaz, Emili; Topeli, Arzu; DeWaele, Jan; Carneiro, Antonio; Martin-Loeches, Ignacio; Armaganidis, Apostolos; Rello, Jordi; EU-VAP/CAP Study Group (August 2009). "Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units". Critical Care Medicine. 37 (8): 2360–2369. doi:10.1097/CCM.0b013e3181a037ac. PMID 19531951. S2CID 205537662.
  46. ^ Ng, J.; Gosbell, I. B.; Kelly, J. A.; Boyle, M. J.; Ferguson, J. K. (6 September 2006). "Cure of multiresistant Acinetobacter baumannii central nervous system infections with intraventricular or intrathecal colistin: case series and literature review". Journal of Antimicrobial Chemotherapy. 58 (5): 1078–1081. doi:10.1093/jac/dkl347. PMID 16916866.
  47. ^ Farrugia, Daniel N.; Elbourne, Liam D. H.; Hassan, Karl A.; Eijkelkamp, Bart A.; Tetu, Sasha G.; Brown, Melissa H.; Shah, Bhumika S.; Peleg, Anton Y.; Mabbutt, Bridget C.; Paulsen, Ian T.; de Crécy-Lagard, Valerie (19 March 2013). "The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii". PLOS ONE. 8 (3): e58628. Bibcode:2013PLoSO...858628F. doi:10.1371/journal.pone.0058628. PMC 3602452. PMID 23527001.
  48. ^ Werneck, J. S.; Picao, R. C.; Carvalhaes, C. G.; Cardoso, J. P.; Gales, A. C. (3 December 2010). "OXA-72-producing Acinetobacter baumannii in Brazil: a case report". Journal of Antimicrobial Chemotherapy. 66 (2): 452–454. doi:10.1093/jac/dkq462. PMID 21131320.
  49. ^ Martins, N.; Martins, I.S.; Freitas, W.V.; Matos, J.A.; Magalhães, A.C.G.; Girão, V.B.C.; Dias, R.C.S.; Souza, T.C.; Pellegrino, F.L.P.C.; Costa, L.D.; Boasquevisque, C.H.R.; Nouér, S.A.; Riley, L.W.; Santoro-Lopes, G.; Moreira, B.M. (June 2012). "Severe infection in a lung transplant recipient caused by donor-transmitted carbapenem-resistant Acinetobacter baumannii". Transplant Infectious Disease. 14 (3): 316–320. doi:10.1111/j.1399-3062.2011.00701.x. PMC 3307813. PMID 22168176.
  50. ^ Superti, Silvana Vargas; Martins, Daniela de Souza; Caierão, Juliana; Soares, Fabiana da Silva; Prochnow, Taísa; Zavascki, Alexandre Prehn (April 2009). "Indications of carbapenem resistance evolution through heteroresistance as an intermediate stage in Acinetobacter baumannii after carbapenem administration". Revista do Instituto de Medicina Tropical de São Paulo. 51 (2): 111–113. doi:10.1590/s0036-46652009000200010. PMID 19390741.
  51. ^ Gionco, B.; Pelayo, J. S.; Venancio, E. J.; Cayo, R.; Gales, A. C.; Carrara-Marroni, F. E. (26 June 2012). "Detection of OXA-231, a new variant of blaOXA-143, in Acinetobacter baumannii from Brazil: a case report". Journal of Antimicrobial Chemotherapy. 67 (10): 2531–2532. doi:10.1093/jac/dks223. PMID 22736746.
  52. ^ Zhao, W.S.; Liu, G.Y.; Mi, Z.H.; Zhang, F. (March 2011). "Coexistence of blaOXA-23 with armA and novel gyrA mutation in a pandrug-resistant Acinetobacter baumannii isolate from the blood of a patient with haematological disease in China". Journal of Hospital Infection. 77 (3): 278–279. doi:10.1016/j.jhin.2010.11.006. PMID 21281989.
  53. ^ Xiao, SC; Zhu, SH; Xia, ZF; Ma, B; Cheng, DS (November 2009). "Successful treatment of a critical burn patient with obstinate hyperglycemia and septic shock from pan-drug-resistant strains". Medical Science Monitor. 15 (11): CS163-5. PMID 19865060.
  54. ^ Wu, Yu-Chin; Hsieh, Te-Chun; Sun, Shung-Shung; Wang, Chih-Hsiu; Yen, Kuo-Yang; Lin, Yu-Yi; Kao, Chia-Hung (November 2009). "Unexpected Cloud-Like Lesion on Gallium-67 Scintigraphy: Detection of Subcutaneous Abscess Underneath the Skin With Normal Appearance in a Comatose Patient in an Intensive Care Setting". The American Journal of the Medical Sciences. 338 (5): 388. doi:10.1097/MAJ.0b013e3181a6dd36. PMID 19770790.
  55. ^ Duan, Xiaojun; Yang, Liu; Xia, Peiyuan (26 August 2009). "Septic arthritis of the knee caused by antibiotic-resistant Acinetobacter baumannii in a gout patient: a rare case report". Archives of Orthopaedic and Trauma Surgery. 130 (3): 381–384. doi:10.1007/s00402-009-0958-x. PMID 19707778. S2CID 37311301.
  56. ^ Wagner, JA; Nenoff, P; Handrick, W; Renner, R; Simon, J; Treudler, R (February 2011). "Necrotizing fasciitis caused by Acinetobacter baumannii : A case report". Der Hautarzt; Zeitschrift für Dermatologie, Venerologie, und Verwandte Gebiete (in German). 62 (2): 128–30. doi:10.1007/s00105-010-1962-3. PMID 20835812.
  57. ^ Aivazova, V; Kainer, F; Friese, K; Mylonas, I (January 2010). "Acinetobacter baumannii infection during pregnancy and puerperium". Archives of Gynecology and Obstetrics. 281 (1): 171–4. doi:10.1007/s00404-009-1107-z. PMID 19462176. S2CID 23112180.
  58. ^ Schulte, B; Goerke, C; Weyrich, P; Gröbner, S; Bahrs, C; Wolz, C; Autenrieth, IB; Borgmann, S (December 2005). "Clonal spread of meropenem-resistant Acinetobacter baumannii strains in hospitals in the Mediterranean region and transmission to South-west Germany". The Journal of Hospital Infection. 61 (4): 356–7. doi:10.1016/j.jhin.2005.05.009. PMID 16213625.
  59. ^ Piparsania, S; Rajput, N; Bhatambare, G (September–October 2012). "Intraventricular polymyxin B for the treatment of neonatal meningo-ventriculitis caused by multi-resistant Acinetobacter baumannii--case report and review of literature". The Turkish Journal of Pediatrics. 54 (5): 548–54. PMID 23427525.
  60. ^ John, TM; Jacob, CN; Ittycheria, CC; George, AM; Jacob, AG; Subramaniyam, S; Puthiyaveettil, J; Jayaprakash, R (March 2012). "Macrophage activation syndrome following Acinetobacter baumannii sepsis". International Journal of Infectious Diseases. 16 (3): e223–4. doi:10.1016/j.ijid.2011.12.002. PMID 22285540.
  61. ^ Sharma, A; Shariff, M; Thukral, SS; Shah, A (October 2005). "Chronic community-acquired Acinetobacter pneumonia that responded slowly to rifampicin in the anti-tuberculous regime". The Journal of Infection. 51 (3): e149–52. doi:10.1016/j.jinf.2004.12.003. PMID 16230195.
  62. ^ Jeong, HL; Yeom, JS; Park, JS; Seo, JH; Park, ES; Lim, JY; Park, CH; Woo, HO; Youn, HS (July–August 2011). "Acinetobacter baumannii isolation in cerebrospinal fluid in a febrile neonate". The Turkish Journal of Pediatrics. 53 (4): 445–7. PMID 21980849.
  63. ^ Hong, KB; Oh, HS; Song, JS; Lim, JH; Kang, DK; Son, IS; Park, JD; Kim, EC; Lee, HJ; Choi, EH (July 2012). "Investigation and control of an outbreak of imipenem-resistant Acinetobacter baumannii Infection in a Pediatric Intensive Care Unit". The Pediatric Infectious Disease Journal. 31 (7): 685–90. doi:10.1097/inf.0b013e318256f3e6. PMID 22466324. S2CID 1078450.
  64. ^ Lee, YK; Kim, JK; Oh, SE; Lee, J; Noh, JW (December 2009). "Successful antibiotic lock therapy in patients with refractory peritonitis". Clinical Nephrology. 72 (6): 488–91. doi:10.5414/cnp72488. PMID 19954727.
  65. ^ Lee, SY; Lee, JW; Jeong, DC; Chung, SY; Chung, DS; Kang, JH (August 2008). "Multidrug-resistant Acinetobacter meningitis in a 3-year-old boy treated with i.v. colistin". Pediatrics International. 50 (4): 584–5. doi:10.1111/j.1442-200x.2008.02677.x. PMID 18937759. S2CID 42715424.
  66. ^ Adams, D; Yee, L; Rimmer, JA; Williams, R; Martin, H; Ovington, C (February 2011). "Investigation and management of an A. baumannii outbreak in ICU". British Journal of Nursing. 20 (3): 140, 142, 144–7. doi:10.12968/bjon.2011.20.3.140. PMID 21378633.
  67. ^ Pencavel, TD; Singh-Ranger, G; Crinnion, JN (May 2006). "Conservative treatment of an early aortic graft infection due to Acinetobacter baumanii". Annals of Vascular Surgery. 20 (3): 415–7. doi:10.1007/s10016-006-9030-2. PMID 16602028. S2CID 38699601.
  68. ^ Gusten, WM; Hansen, EA; Cunha, BA (January–February 2002). "Acinetobacter baumannii pseudomeningitis". Heart & Lung. 31 (1): 76–8. doi:10.1067/mhl.2002.120258. PMID 11805753.
  69. ^ Fitzpatrick, MA; Esterly, JS; Postelnick, MJ; Sutton, SH (July–August 2012). "Successful treatment of extensively drug-resistant Acinetobacter baumannii peritoneal dialysis peritonitis with intraperitoneal polymyxin B and ampicillin-sulbactam". Annals of Pharmacotherapy. 46 (7–8): e17. doi:10.1345/aph.1r086. PMC 8454916. PMID 22811349. S2CID 20744216.
  70. ^ Patel, JA; Pacheco, SM; Postelnick, M; Sutton, S (15 August 2011). "Prolonged triple therapy for persistent multidrug-resistant Acinetobacter baumannii ventriculitis". American Journal of Health-System Pharmacy. 68 (16): 1527–31. doi:10.2146/ajhp100234. PMID 21817084.
  71. ^ Sullivan, DR; Shields, J; Netzer, G (June 2010). "Fatal case of multi-drug resistant Acinetobacter baumannii necrotizing fasciitis". The American Surgeon. 76 (6): 651–3. doi:10.1177/000313481007600636. PMID 20583528. S2CID 41059355.
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia EN

Acinetobacter baumannii: Brief Summary ( İngilizce )

wikipedia EN tarafından sağlandı

Acinetobacter baumannii is a typically short, almost round, rod-shaped (coccobacillus) Gram-negative bacterium. It is named after the bacteriologist Paul Baumann. It can be an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived (nosocomial) infection. While other species of the genus Acinetobacter are often found in soil samples (leading to the common misconception that A. baumannii is a soil organism, too), it is almost exclusively isolated from hospital environments. Although occasionally it has been found in environmental soil and water samples, its natural habitat is still not known.

Bacteria of this genus lack flagella, whip-like structures many bacteria use for locomotion, but exhibit twitching or swarming motility. This may be due to the activity of type IV pili, pole-like structures that can be extended and retracted. Motility in A. baumannii may also be due to the excretion of exopolysaccharide, creating a film of high-molecular-weight sugar chains behind the bacterium to move forward. Clinical microbiologists typically differentiate members of the genus Acinetobacter from other Moraxellaceae by performing an oxidase test, as Acinetobacter spp. are the only members of the Moraxellaceae to lack cytochrome c oxidases.

A. baumannii is part of the ACB complex (A. baumannii, A. calcoaceticus, and Acinetobacter genomic species 13TU). It is difficult to determine the specific species of members of the ACB complex and they comprise the most clinically relevant members of the genus. A. baumannii has also been identified as an ESKAPE pathogen (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), a group of pathogens with a high rate of antibiotic resistance that are responsible for the majority of nosocomial infections.

Colloquially, A. baumannii is referred to as "Iraqibacter" due to its seemingly sudden emergence in military treatment facilities during the Iraq War. It has continued to be an issue for veterans and soldiers who served in Iraq and Afghanistan. Multidrug-resistant A. baumannii has spread to civilian hospitals in part due to the transport of infected soldiers through multiple medical facilities. During the COVID-19 pandemic, coinfection with A. baumannii secondary to SARS-CoV-2 infections has been reported multiple times in medical publications.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia EN

Acinetobacter baumannii ( İspanyolca; Kastilyaca )

wikipedia ES tarafından sağlandı

Acinetobacter baumannii es una especie de bacteria cocobacilo patógena gram-negativa, no fermentador y resistente a la mayoría de los antibióticos. Como resultado de su resistencia al tratamiento con fármacos,[1]​ algunas estimaciones afirman que la enfermedad podría estar matando a decenas de miles de pacientes en los Estados Unidos cada año[cita requerida]. La enfermedad producida por la A. baumannii puede causar neumonía severa e infecciones del tracto urinario (ITU).

En 2012, en la Universidad de Alberta se afirmó haber encontrado una debilidad en la coraza molecular de este patógeno. Mutantes que no producen glicoproteínas son menos virulentos, forman menos biofilm y son más susceptibles a los antibióticos.[2]

Halicin[3]​ es un compuesto conocido que encuentra un nuevo uso y es efectivo contra el Acinetobacter baumannii, o A. baumannii, una bacteria "resistentes a múltiples fármacos" que no pueden combatir los antibióticos existentes.[4]​ El compuesto fue encontrado por un equipo de MIT, Harvard’s Broad Institute y MIT CSAIL utilizado el aprendizaje profundo.[5]

Referencias

  1. Pollack, Andrew (2010, 27 feb). «Rising threat of infections unfazed by antibiotics». The New York Times.
  2. (en inglés) «Cracking a superbug's armour.» Archivado el 10 de enero de 2014 en Wayback Machine. University of Alberta. Consultado el 17 de septiembre de 2014.
  3. Marchant, Jo (20 de febrero de 2020). «Powerful antibiotics discovered using AI». Nature (en inglés). doi:10.1038/d41586-020-00018-3. Consultado el 2 de diciembre de 2021.
  4. «La resistencia de la bacteria Acinetobacter baumannii en los Hospitales> IDIVAL - Instituto de Investigación Sanitaria Valdecilla». www.idival.org. Consultado el 2 de diciembre de 2021.
  5. Ray, Tiernan. «MIT’s deep learning found an antibiotic for a germ nothing else could kill». ZDNet (en inglés). Consultado el 16 de marzo de 2020.

 title=
lisans
cc-by-sa-3.0
telif hakkı
Autores y editores de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia ES

Acinetobacter baumannii: Brief Summary ( İspanyolca; Kastilyaca )

wikipedia ES tarafından sağlandı

Acinetobacter baumannii es una especie de bacteria cocobacilo patógena gram-negativa, no fermentador y resistente a la mayoría de los antibióticos. Como resultado de su resistencia al tratamiento con fármacos,​ algunas estimaciones afirman que la enfermedad podría estar matando a decenas de miles de pacientes en los Estados Unidos cada año[cita requerida]. La enfermedad producida por la A. baumannii puede causar neumonía severa e infecciones del tracto urinario (ITU).

En 2012, en la Universidad de Alberta se afirmó haber encontrado una debilidad en la coraza molecular de este patógeno. Mutantes que no producen glicoproteínas son menos virulentos, forman menos biofilm y son más susceptibles a los antibióticos.​

Halicin​ es un compuesto conocido que encuentra un nuevo uso y es efectivo contra el Acinetobacter baumannii, o A. baumannii, una bacteria "resistentes a múltiples fármacos" que no pueden combatir los antibióticos existentes.​ El compuesto fue encontrado por un equipo de MIT, Harvard’s Broad Institute y MIT CSAIL utilizado el aprendizaje profundo.​

lisans
cc-by-sa-3.0
telif hakkı
Autores y editores de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia ES

Acinetobacter baumannii ( Baskça )

wikipedia EU tarafından sağlandı

Acinetobacter baumannii bakterio patogeno oportunista gram negatiboa da. Gaur egun, mundu mailan ezagutzen den infekzio nosokomialen eragile bakteriano nagusienetakoa da; antibiotikoekiko erakusten duen erresisentzia handiagatik. Ospitaleetan bere hazkuntza faboratua azaltzen da, eta oraindik ez da infekzioaren tratamendu eraginkorrik aurkitu. Hargatik, azken urteotan asko ikerturiko mikroorganismoa da.[1]

 src=
Acinetobacter baumannii-ren SEM mikrografia.

Iraqibacter izen arruntez ere ezagutzen da, Iraq-eko militarren zainketa guneetan mikroorganismoak izaniko hedapena dela eta.[2]

Historia

Mikroorganismoa lehenengo aldiz isolatu zenean (Beijerinck,1911) “Micrococcus calco-aceticus” gisa sailkatu zen. 43 urte behar izan ziren Acinetobacter generoaren baitan sartzeko (Brisou and Prevot, 1954). DNA-DNA hibridazio bidez (Bouvet and Grimnot, 1986) eginiko ikerketak jarraituz, egun Acinetobacter generoaren barruan 26 espezie daude (bederatzi espezie genomiko). Horietatik lau (A.calcoaceticus, A.baumannii, Acinetobacter 3 eta 13 TU espezie genomikoak) fenotipikoki oso antzekoak dira, desberdintzeko zailak eta ACB (Acinetobacter calcoaceticus baumannii) konplexuaren baitan sailkatzen dira. [3]



Morfologia

 src=
Acinetobacter baumanni-ren fase geldikorra. Koko itxura eta taldekaturik

Acinetobacter baumannii kokobaziloa dela esaten da, baina bakterio pleomorfikoa da, hau da, bizi-zikloan zehar, etapa ezberdinetan forma ezberdina erakusten du. Fase geldikorrean aurkitzen denean, koko itxura nabariagoa erakusten du, eta askotan, taldeka agertzen da. Acinetobacter baumanni-ren fase geldikorra. Koko itxura eta taldekaturik Hazkuntza-fasean daudenean, 1,5-2,5 eta 1-1,5 μm bitartean neurtzen dute, eta jada kokobazilo itxura nabarmentzen da.[4]

Ekologia

Acinetobacter generoko espezie guztiak ingurune guztietan bizi daitezkeela uste da, hainbat ur eta lur laginen aurrean erresistentzia erakutsi dutelako. A.baumannii ordea, ia esklusiboki ospitaleetako inguruneetatik isolatu da eta bere habitat natural zehatza ezezaguna da oraindik.

Mikroorganismoa, batik bat ehun hezeetan aurkitu da, hala nola, mukosan, edo agerian dauden azaletan Acinetobacter generoko beste espezie batzuekin batera.[3] Dena den, mikroorganismoaren agerpena eta azaleko-infekzioen arteko lotura urria da. Azal-infekzioak eragiten dituzten populazioen %3-a soilik dagokio A.baumannii-ri. Azterketa bera, etxebizitzarik gabeko pertsonen artean burutzerakoan infekzio-tasa %22-ra igotzen da; honek higiene-ohiturek mikroorganismoaren hazkuntzan eragina dutela erakusten du.

Infekzioa jasateko beste talde arriskutsu bat militarrena da. Hauek, Irak bezelako guneetara heltzean, basamortuko baldintza lehor eta aretsuak direla eta, patogenoarentzako infekzio-aukera bikainak izaten dira. Gaur egun, bakterio honen jatorria gune jakin batzuetan kokatzen den arren, asko zabaltzen ari da Britainia eta Ameriketako Estatu Batuetan batez ere, bertako armadan lan egiten duten gaixoak ospitaleetan tratatzen dituztelako. [5]


Acinetobacter generoko espezieak, zenbait elikagaietan eta bereziki barazkietan ager daitezke. Hortaz, ospitaleetako janaria ere mikroorganismoaren itu izan daiteke. Oro har, ospitaleetan kutsatuta agertzeko arrisku gehien duten materialak kortinak, gaixoa altxatzeko tresnak eta atearen heldulekua dira. Arreta berezia behar du, halaber, arnasketarekin eta zaurien zainketarekin erlazionatutako tresnen (laringoskopioak...) desinfekzioak.

Genoma

Mikroorganismoaren material genetikoaren azterketak informazio ugari ematen digu. Aipatu bezala, Acinetobacter generoko espezien guanina-zitosinaproportzioa %39-47 bitartekoa izaten da.

Genomaren osagaiei dagokionez, gene kodetzaile gehienak metabolismoari eta garraioari lotuta agertzen dira, eta gene kodetzailearen kantitate murritzena zelula zatiketara bideratutakoa da.

Genoma tresna baliagarria da Acinetobacter generoaren baitan espezie mailako identifikazioa burutu ahal izateko. Halaber, ikusi da A.baylyi espeziearen BD413 trpE27 andui mutatua gai dela edozein Acinetobacter-en DNA-rekin kontaktuan bere forma basatira itzultzeko. Hortaz, konjugazio honen azterketak generoko espezieak identifikatzeko balio du. Ildo beretik, genoma-azterketaren tekniken bidez espezie mailako sailkapen zehatzak lor daitezke; kasu askotan azterketa fenotipikoak baino askozaz ere zehatzagoak direnak. Anplifikaturiko 16S rRNA genearen errestrikzio analisia (ARDRA), RpoB genearen sekuentziazioa eta AFLP (amplified fragment lenght polymorphism) dira teknika erabilienetakoak. [3]

Metabolismoa

Derrigorrezko aerobioa da eta kimioorganotrofo heterotrofoa. Honez gain, prototrofoa da, hau da, ez du inolako substantzia organiko espezifikorik behar hazteko, beharrezko dituen hazkuntza-faktore guztiak bere kabuz sintetizatzeko gai da. Karbohidratoez baliatuz, hazteko gai da, metabolismo zentraleko hainbat bide burutzen dituelako. Hala nola, glukoneogenesia, pirubatoaren oxidazioa, zitratoaren zikloa, pentosa fosfato bidezidorra... edo bestelako bidezidor batzuen bidez.

Aipatzekoa da A. baumanni-k ez duela glikolisirik burutzen. Halaber, ez da pentosa fosfatoen bide oxidatiboa, edo glikano eta glukosaminoglikanoen sintesia egiteko gai. Gainera, mikroorganismo ez hartzitzailea da. Mikroorganismo bidezko lur kutsatuen bioerremediazioa. Karbohidrato lurrintsuen degradazioa burutu dezake. Hau burutzeko gai diren mikroorganismoek, molekula bakoitzarentzako monooxigenasa entzima espezifiko bat erabiltzeaz gain, bide periferiko deritzen prozesu biokimikoak burutzen dituzte. Hauen bitartez, xurgatzen dituzten substantzia aromatikoen eraztunak apurtzen dituzte degradatu ahal izateko. Azken bide honek aplikazioak ditu bioerremediazioan; petroleoz kutsatutako guneak garbitzeko erabili izan da.[6]


Mikroorganismoa oxidasa negatiboa izanik, ez dauka c zitokromo oxidasarik. Ezaugarri hau, Moraxellacea familia beste espezietatik bereizteko erabiltzen da.

 src=
Mikroorganismo bidezko lur kutsatuen bioerremediazioa.

Aipagarria da, 22-40ºC bitarteko tenperaturetan bizi daitekeela, baina honen tenperatura optimoak 30-35ºC bitartean daude.

Epidemiologia

Ebakuntza gela bat. Operazioen osteko A.baumannii infekzioen heriotza tasa oso altua da.

Acinetobacter ospitaleetan oso ugaria izateko arrazoi nagusi bat dago: ospitaleetan antibiotikoen erabilera maiz burutzen denez, hauekiko erresistenteak diren bakterioen “hautaketa” burutzen da. Horrenbestez, antibiotikoekiko erresistenteak diren bakterioek bizirauten dute, inguruko baliabideak eskuratzeko lehia murriztuta gelditzen da eta populazioaren handipena arazorik gabe burutu.

A.baumannii-k bakterio gram negatiboek sortutako infekzioen %2-10 eragiten ditu. 2002-2007 urteen artean Estatu Batuetan infekzio kasuek nabarmen egin zuten gora, gehienbat inmunogutxiegitasuna pairatzen zuten pertsonengan.

 src=
Ebakuntza gela bat. Operazioen osteko A.baumannii infekzioen heriotza tasa oso altua da.

Transmisio bide nagusiena ospitaleko material abiotikoak dira. Gainera, transmisio eta infekzio kasuek nabarmen egiten dute gora zainketa intentsiboko unitateetan. Espainian, infekzioen %90 ospitaleetan eskuratutakoak dira eta soilik %4 ospitalez kanpoko guneetan. Infekzioen gehiengoa arnas bideetakoak dira (%39), larruazalekoak (%24) gernu-aparatuan (%23) eta gutxi batzuk odol hodietakoak (%3).

Patogenizitate-mekanismoak

Bakterio gram negatibodunen horma zelularra. Bertan OmpA proteinak eta porinak ikusten ditugu Azken urteetan ikerketa ugari burutu diren arren, oraindik ere, bada zer aztertu A.baumannii-ren birulentzia-mekanismoen inguruan. Ikusi da adibidez, OmpA, kanpo mintzeko proteinak, patogenizitate handia duela. Proteina hau ostalariaren epitelio eta mitokondrioetara atxikitzen da. Hala, mitokondrioetako disfuntzioa eragiten du (puztu egiten dira) eta jarraian c zitokromoaren gehiegizko jariapena hasten da, apoptosomak eratuz. Erreakzio-kate honek, azkenerako, zelulen apoptosia eragiten du.

OmpA mikroorganismoaren gainazal-proteina ugariena da, eta hortaz, biofilmen eraketan garrantzia berezia hartzen du. Ikusi da fosfolipasa D eta C proteinek ere A.baumannii-ren birulentzian eragiten dutela. Erresistentzia gehigarria dira mikroorganismoarentzat eta honen toxizitatea handiagotzen dute.

Erresistentzia-mekanismoak

A.baumannii-k genoma aldatzeko gaitasun ikaragarria du eta honenbestez erresistentzia-mekanismoak eskuratzekoa ere bai. Bakterioen aurkako tratamendu ugari dauden lekuetan hazteko gai da, ospitaleetako zainketa intentsiboko guneetan adibidez. Ikusi da erresistentzia-gene asko sekuentzia motzetan pilatzen direla “ erresistentzia irlak” deritzen guneetan (Aba R izenez ezagutzen direnak). Gune hauetako transferentzia horizontala ematen da maiz. Tetraziklina, kloranfenikola, aminoglikosidoa eta aminozitolekiko erresistenteak diren irlak identifikatu dira. Hainbat erresistentzia mekanismo ezagutzen dira.

A.baumannii-k, biofilmak eratzeko duen gaitasunari esker, muturreko baldintza eta inguruneetan hazteko gai da. Biofilmak era ditzake baldintza abiotikoetan, ospitaleetako material esterilizatuan besteak beste; bai eta gure organismoko epitelio ehunetan.

Biofilmak mikroorganismoen zelulen taldekapenak dira, eta hainbat exopolisakaridoz osatutako matrize batez inguraturik egoten dira. Matrize honek, babesa emateaz gain, sustratura atxikitzeko gaitasuna ere ematen die.

 src=
Bakterio gram negatiboen horma zelularra. Bertan OmpA proteinak eta porinak ikus ditzakegu.

Antibiotikoak inaktibatzen dituzten entzima ezagunenak beta-laktamasak dira, penizilina eta zefalosporinak bezalako antibiotiko beta-laktamikoak hidrolizatzeko gai direnak. Carbapanem-ak, beta-laktamasen jarduera inhibitzeko sintetizatutako antibiotikoak dira berez, baina, ikusi da A.baumannii, OXA-51 taldeko entzimen bidez hauek suntsitzeko gai dela.

Antibiotiko asko eta asko mintzeko porinen bitartez sartzen dira zeluletara. A.baumannii-k oso porina txikiak ditu ordea, eta honek tratamenduaren insertzioa are zailagoa bihurtzen du. Gainera, mintz zelularrean zenbait kanporatze-ponpa ditu, antibiotikoak ingurune extrazelularrera bideratzeko gaitasuna dutenak.

Honez gain, zenbait andui mutagenikok (gyrA eta parC geneak) mintzaren atxikimendu-guneetan aldaketa konformazionalak eragiten dituzte, antibiotikoekin lotzea oraindik ere gehiago zailduz. Azken ikerketen arabera, antimikrobiralen gehiegizko erabilerak ere anduien arteko konjugazioak eta erresistentzia faboratzen ditu. [7]

Gaixotasunak

A.baumannii-k organo guztiak infekta ditzake, baina infekzio gehienak fluxu altuko guneetan kokatzen dira, hala nola, biriketan, gernu maskurian edo sabelaldeko likido peritonealean. Ohiko gaixotasunak pneumonia, odol-fluxuko infekzioak eta meningitisa dira.

Ondorio patologiko garrantzitsuenak arnas-hodietako infekzioen ondoriozkoak dira. VAP pneumonia (ventilator associated pneumonia) biriketako infekzioa da, ospitaletan arnasteko makinak behar dituzten pazienteetan ohikoa. Izan ere, hodi endotrakeala primerako habitata da A. baumannii-rentzako, plastikora azkar itsas daitekeelako eta hodian biofilmak sortu. Pneumonia honen agerraldia erlazionatuta egon daiteke langileak eramaile oportunistak izatearekin, higiene-baldintzak egokiak ez direnean batez ere.

Ospitaletik kanpoko pneumonia: Ospitaletik kanpo eta A. baumaniik sortutako pneumoniaren kasuak Australia eta Asian eman dira soilik. Infekzioen jatorria eztarri garraioa dela uste da eta ohikoagoa da alkohol eta tabakoaren kontsumoa handia izanik. Bat-bateko krisi batekin hasten da eta odol-fluxura hedatuz doa. Hilkortasun-tasa %40-60 artean dago.

Odol-fluxuko infekzioak: Odol-fluxuko infekzio nosokomialen %1,3ak Acinetobacter-ek sortzen ditu, ohikoago delarik ZIU-n (Zaintza Intentsiboko Unitatea) dauden gaixoetan. Hilkortasun-tasa %16.3koa da ZIUtik kanpo eta %34 eta % 43.4 artekoa ZIUko gaixoengan. Honek hirugarren hilkortasun-tasarik handienarekin kokatzen du Acinetobacter ZIU barruan, soilik Pseudomonas aeruginosa eta Candida espezieen ondoren.

Meningitisa: Meningitis nosokomiala gero eta arruntagoa bilakatzen ari da operazioen ostean eta bere hilkortasun-tasa oso handia da, %70-era helduz.[7]

Tratamenduak

Antibiotikoekiko garatutako erresistentzia dela eta, ez da batere erraza tratamendu eraginkorrak aurkitzea.[5]

 src=
Antibiotikoekiko erresistentzia eta sentsibilitatea erakusten duten zenbait kolonia.

Gehien erabiltzen zen antibiotikoa Carbapanem-a zen, beta-laktamasei oso erresistentea delako, baina azken urteotan antibiotiko honi erresistenteak diren zenbait andui agertu dira, tratamendu-aukerak are gehiago murriztuz.

Beste aukera bat tigeziklina antibiotikoa da, zain barneko injekzioen bidez ematen dena. Baina ez da lagungarria kasu guztietan eta 2 μg/ml edo gehiagoko dosiak emanez gero, hilkortasun-tasa handitu egiten da. Hau dela eta, tigeziklinaren alternatiba gisa minozizlinaren erabilera testatzen ari da. Orokorrean nahiko metodo arrakastatsua da baina hemen ere andui erresistenteak agertu dira; A.baumanii anduien %20a ez da minozizlinarekiko sentibera.

Tetraziklinen ordez, sulbactam antibiotikoa ere frogatzen ari dira. Sulbactam beta-laktamasa entzimak inhibitzeko erabiltzen da patogeno askoren kasuan, entzima beta laktamikoetara lotzen da eta beraien jarduera eteten du.Desabantaila nagusia konposatua derrigorrean anpizilinarekin konbinatuta eskuratu beharra dagoela da.

Antibiotiko gehienen limitazioak ikusita, polimixina da azken urteotan erabilera handiena izan duen konposatua. Eraginkorra da, baina zoritxarrez, dosi efektiboak toxikoak dira. Gainera, erresistentzia-kasu berri batzuk agertu dira.

Egoera ikusita, enpresa farmazeutiko asko antibiotiko berrien bila dabiltza, jada ezagunak direnen konbinazioak eginez. Bakteriofagoen bidezko tratamenduak ere frogatzen ari dira, A. baumanii – ren fago espezifikoekin (AB1 eta AB2). Dena den, oraindik ere erabilpen klinikotik urrun dauden tratamenduak dira.[8][9]


Erreferentziak

  1. Yeom, Jinki; Shin, Ji-Hyun; Yang, Ji-Young; Kim, Jungmin; Hwang, Geum-Sook (2013-03-06) «1H NMR-Based Metabolite Profiling of Planktonic and Biofilm Cells in Acinetobacter baumannii 1656-2» PLoS ONE (3): e57730 doi:10.1371/journal.pone.0057730 ISSN 1932-6203 . Noiz kontsultatua: 2019-05-17.
  2. Bicknell, Joan (1989-05) «Mental Handicap: A Community Service. By Nick Bouras, Katie Drummond, David Brooks and Matt Laws. NUPRD, Lewisham Hospital, London SE13. 1988. Pp. 47. £5.00.» Psychiatric Bulletin (05): 267 doi:10.1192/pb.13.5.267 ISSN 0955-6036 . Noiz kontsultatua: 2019-05-17.
  3. a b c Howard, Aoife; O’Donoghue, Michael; Feeney, Audrey; Sleator, Roy D. (2012-05) «Acinetobacter baumannii» Virulence (3): 243–250 doi:10.4161/viru.19700 ISSN 2150-5594 . Noiz kontsultatua: 2019-05-17.
  4. Rosen, B; O'Leary, E; Shan, Y; Pat, W; Peter, B (2018-02-14) «Abstract P4-06-09: Addition of a remote genetic counselor to the breast specialist's team improves clinical decision-making» Cancer Research (4 Supplement): P4–06-09-P4-06-09 doi:10.1158/1538-7445.sabcs17-p4-06-09 ISSN 0008-5472 . Noiz kontsultatua: 2019-05-17.
  5. a b Singh, Harmanjit; Natt, Navreet; Garewal, Nipunjot; T, Pugazhenthan (2013) «Bedaquiline: a new weapon against MDR and XDR-TB» International Journal of Basic & Clinical Pharmacology (2): 96 doi:10.5455/2319-2003.ijbcp20130301 ISSN 2319-2003 . Noiz kontsultatua: 2019-05-17.
  6. «METABOLIC PATHWAYS» Metabolic Regulation (Elsevier): xix–xx 1971 ISBN 9780122992551 . Noiz kontsultatua: 2019-05-17.
  7. a b Howard, Aoife; O’Donoghue, Michael; Feeney, Audrey; Sleator, Roy D. (2012-05) «Acinetobacter baumannii» Virulence (3): 243–250 doi:10.4161/viru.19700 ISSN 2150-5594 . Noiz kontsultatua: 2019-05-17.
  8. Maragakis, Lisa L.; Perl, Trish M. (2008-04-15) «Antimicrobial Resistance:Acinetobacter baumannii:Epidemiology, Antimicrobial Resistance, and Treatment Options» Clinical Infectious Diseases (8): 1254–1263 doi:10.1086/529198 ISSN 1058-4838 . Noiz kontsultatua: 2019-05-17.
  9. Wong, Darren; Nielsen, Travis B.; Bonomo, Robert A.; Pantapalangkoor, Paul; Luna, Brian; Spellberg, Brad (2016-12-14) «Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges» Clinical Microbiology Reviews (1) doi:10.1128/cmr.00058-16 ISSN 0893-8512 . Noiz kontsultatua: 2019-05-17.

Kanpo estekak

(RLQ=window.RLQ||[]).push(function(){mw.log.warn("Gadget "ErrefAurrebista" was not loaded. Please migrate it to use ResourceLoader. See u003Chttps://eu.wikipedia.org/wiki/Berezi:Gadgetaku003E.");});
lisans
cc-by-sa-3.0
telif hakkı
Wikipediako egileak eta editoreak
orijinal
kaynağı ziyaret et
ortak site
wikipedia EU

Acinetobacter baumannii: Brief Summary ( Baskça )

wikipedia EU tarafından sağlandı

Acinetobacter baumannii bakterio patogeno oportunista gram negatiboa da. Gaur egun, mundu mailan ezagutzen den infekzio nosokomialen eragile bakteriano nagusienetakoa da; antibiotikoekiko erakusten duen erresisentzia handiagatik. Ospitaleetan bere hazkuntza faboratua azaltzen da, eta oraindik ez da infekzioaren tratamendu eraginkorrik aurkitu. Hargatik, azken urteotan asko ikerturiko mikroorganismoa da.

 src= Acinetobacter baumannii-ren SEM mikrografia.

Iraqibacter izen arruntez ere ezagutzen da, Iraq-eko militarren zainketa guneetan mikroorganismoak izaniko hedapena dela eta.

lisans
cc-by-sa-3.0
telif hakkı
Wikipediako egileak eta editoreak
orijinal
kaynağı ziyaret et
ortak site
wikipedia EU

Acinetobacter baumannii ( Fransızca )

wikipedia FR tarafından sağlandı

Acinetobacter baumannii est une bactérie à Gram négatif du genre Acinetobacter.

Il s'agit d'un germe de maladie opportuniste chez l'Homme, particulièrement chez les personnes immuno-déprimées et que l'on trouve aussi comme agent d' infections nosocomiales où sa transmission est manuportée[1]. Il a aussi été isolé du sol et de l'eau dans l'environnement[2].

Antibiorésistance

La bactérie n’est pas toujours responsable d’infections et peut simplement être présente sur la peau ou les muqueuses des patients. Chez les patients fragilisés, elle est à l’origine d’infections variées parfois sévères (infections pulmonaires, infections de plaies ou de brûlures...). La létalité des infections nosocomiales à Acinetobacter baumannii varie entre 17 et 46 % pour les septicémies et peut atteindre 70 % pour les pneumopathies[1]. En France en 2001, Acinetobacter baumannii représentait 1,2 % des micro-organismes isolés d’infections nosocomiales[3]. En service de réanimation, on l’isolait dans 5 % des infections pulmonaires[1].

Une souche d’Acinetobacter baumannii responsable d'une épidémie de 12 patients a été identifiée pour la première fois à l'hôpital de Valenciennes en 2003[4].

La bactérie a acquis des caractéristiques de résistance aux antibiotiques originales qui la rendent préoccupante mais qui facilitent son identification. Elle produit une enzyme bêta-lactamase à spectre élargi (BLSE) de type VEB-1[Note 1] qui la rend résistante à presque tous les antibiotiques de la famille des bêta-lactamines. La souche reste seulement sensible à deux antibiotiques : la colistine et l’imipénème, même si on note, principalement dans les services de réanimation, l'émergence de souches d'ABRI (« Acinetobacter baumanii résistant à l'imipénème »).

Par la suite, 6 souches multi-résistantes d’Acinetobacter baumannii New Delhi métallo-bêta-lactamase (NDM-1) positives (possédant le gène bla NDM-1[5]) originaires d'Afrique du Nord émergent en mai 2013 en France[6]. Les auteurs concluent : « L'identification de plusieurs isolats d'A. baumannii qui possèdent le gène bla NDM-1 originaires d'Afrique du nord, sans lien évident avec le sous-continent indien, suggère fortement que le clone A. baumannii NDM-1 producteur est probablement répandu en Afrique du Nord et qu'il pourrait jouer un rôle de réservoir pour NDM-1. »

En février 2020, la presse belge annonce que 6 cas d'infection par cette bactérie ont été déclarés dans un hôpital d'Hornu dont 2 en sont décédés[7].

Notes et références

Notes

  1. VEB pour Vietnam Extended-spectrum Beta-lactamase

Références

  1. a b et c « Infections ou colonisations à Acinetobacter baumannii multi-résistant aux antibiotiques, France », Institut de veille sanitaire, 2004 (consulté le 29 mai 2013)
  2. (en) Yeom J, Shin JH, Yang JY, Kim J, Hwang GS, « (1)H NMR-based metabolite profiling of planktonic and biofilm cells in Acinetobacter baumannii 1656-2 », PloS one, vol. 8, no 3,‎ 2013, e57730 (PMID , lire en ligne, consulté le 29 mai 2013)
  3. « Enquête de prévalence nationale 2001 », Institut de veille sanitaire, 2001 (consulté le 29 mai 2013)
  4. (en) Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P, « Outbreak of extended-spectrum beta-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital », Journal of clinical microbiology, vol. 41, no 8,‎ 2003, p. 3542-3547 (PMID , lire en ligne, consulté le 29 mai 2013)
  5. (en) Hishinuma A, Yoshida A, Suzuki H, Okuzumi K, Ishida T, « Complete sequencing of an IncFII NDM-1 plasmid in Klebsiella pneumoniae shows structural features shared with other multidrug resistance plasmids », The Journal of antimicrobial chemotherapy, Oxford Journal,‎ 16 mai 2013, p. 1-3 (ISSN et , PMID , DOI , lire en ligne)
  6. (en) Bonnin RA, Cuzon G, Poirel L, Nordmann P, « Multidrug-Resistant Acinetobacter baumannii Clone, France », Emerging infectious diseases, vol. 19, no 5,‎ 2013, p. 822-823 (PMID , lire en ligne, consulté le 29 mai 2013)
  7. Hornu : une bactérie résistante fait 2 morts | RTBF.be, consulté le 6 février 2020.

Références taxinomiques

Voir aussi

lisans
cc-by-sa-3.0
telif hakkı
Auteurs et éditeurs de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia FR

Acinetobacter baumannii: Brief Summary ( Fransızca )

wikipedia FR tarafından sağlandı

Acinetobacter baumannii est une bactérie à Gram négatif du genre Acinetobacter.

Il s'agit d'un germe de maladie opportuniste chez l'Homme, particulièrement chez les personnes immuno-déprimées et que l'on trouve aussi comme agent d' infections nosocomiales où sa transmission est manuportée. Il a aussi été isolé du sol et de l'eau dans l'environnement.

lisans
cc-by-sa-3.0
telif hakkı
Auteurs et éditeurs de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia FR

Acinetobacter baumannii ( İrlandaca )

wikipedia GA tarafından sağlandı

Is speiceas de bhaictéir phataigineacha é Acinetobacter baumannii, dá dtagraítear mar bhaictéar aeróbach graim-dhiúltach, a bhíonn frithsheasmhach in aghaidh an chuid is mó de na antaibheathaigh. Mar thoradh ar a fhrithsheasmhach in aghaidh cóireála drugaí, tugann roinnt meastacháin le fios go bhfuil an galar ag marú na mílte othar istigh in oispidéal gach bliain, sna Stáit Aontaithe Mheiriceá. Ní amháin sin, ach tá sé ráite ag speisialtóirí go "bhfhéadfadh siad dul chun cinn mar bhagairt níos mó". is féidir gur chúis leis an bhreoiteacht niúmóine throm a chur ar bun agus ionfhabhtuithe chonaire an fhuail, shruth na fola, agus i gcodanna eile de chuid na colainne.

lisans
cc-by-sa-3.0
telif hakkı
Údair agus eagarthóirí Vicipéid
orijinal
kaynağı ziyaret et
ortak site
wikipedia GA

Acinetobacter baumannii ( Galiçyaca )

wikipedia gl Galician tarafından sağlandı

Acinetobacter baumannii é unha especie bacteriana gramnegativa de forma curta e case arredondada (cocobacilos). Pode seu un patóxeno oportunista dos humanos, que afecta principalmente a persoas inmunocomprometidas, que se está a facer cada vez máis importante como causante de infeccións adquiridas en hospitais (nosocomiais). Aínda que outras especies do xénero Acinetobacter se atopan a miúdo en mostras do solo, A. baumannii non é un organismo habitual do solo, xa que se illa case exclusivamente en ambientes hospitalarios.[1] Aínda que ocasionalmente se ten illado en mostras medioambientais do solo e auga,[2] o seu hábitat natural aínda se descoñece. As bacterias deste xénero carecen de flaxelos, pero teñen unha motilidade ao retorcerse e sacudirse e presentan enxameamento. Isto pode deberse á actividade dos pili de tipo IV, que son estruturas como variñas que se poden retraer ou estender. A motilidade en A. baumannii pode deberse tamén á excreción de exopolisacáridos, que crean unha película de cadeas de azucres de alto peso molecular por detrás da bacteria para que esta se mova cara adiante.[3] Os microbiólogos clínicos diferencian normalmente os membros do xénero Acinetobacter doutras Moraxellaceae realizando a proba da oxidase, xa que as Acinetobacter spp. son os únicos membros das moraxeláceas que carecen de citocromo c oxidases.[4] A. baumannii forma parte co complexo ACB (A. baumannii, A. calcoaceticus, e Acinetobacter especie xenómica 13TU). Os membros do complexo ACB son difíciles de determinar distinguindo as especies, e comprenden os membros clinicamente máis relevantes do xénero.[5][6] A. baumannii é pertence tamén ao grupo de patóxenos ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, e Enterobacter sp.), un grupo de patóxenos cun alto grao de resistencia a antibióticos que son responsables da maioría das infeccións nosocomiais.[7] Houbo unha epidemia significativa de cepas resistentes a antibióticos en instalacións sanitarias militares durante a guerra de Iraq.[8] As cepas resistentes a multifármacos de A. baumannii espalláronse tamén en hospitais civís.[3]

O nome da bacteria significa 'bacteria inmóbil de Baumann', do grego a, 'non', kineô, 'moverse', bakterion (neolatín bacteria), 'bastonciño (bacteria)', e en honor dos microbiólogos Paul e Linda Baumann.[9]

Factores e determinantes de virulencia

Moitos microbios, incluíndo A. baumannii, teñen varias propiedades que lles permiten ter máis éxito como patóxenos. Estas propiedades poden ser posuír factores de virulencia como toxinas ou sistemas de entrega de toxinas, que afectan directamente á céula hóspede. Poden tamén ser determinantes de virulencia, que son cualidades que contribúen á fitness do microbio e lle permiten sobrevivir no ambiente do hóspede, pero que non afectan ao hóspede directamente. As seguintes cracterísticas son algúns dos factores que fan que A. baumannii sexa un patóxeno eficaz:

Illas de resistencia AbaR

As illas de patoxenicidade son estruturas xenéticas relativamente comúns en patóxenos bacterianos, que están compostas por dous ou máis xenes adxacentes que incrementan a virulencia do patóxeno. Poden conter xenes que codifican toxinas, coagulan o sangue, ou, como neste caso, permiten que a bacteria resista aos antibióticos. As illas e resistencia de tipo AbaR son típicas dos A. baumannii resistentes a fármacos, e poden estar presentes diferentes variantes nunha determinada cepa. Cada unha consiste nun esqueleto de transposón duns 16,3 Kb que facilita a transferencia horizontal de xenes. Os transposóns permiten que porcións do material xenético sexan escindidas dun lugar do xenoma e integradas noutro. Cando o material xenético é captado por unha nova bacteria, os transposóns permiten que a illa de patoxenicidade se integre no xenoma do novo microorganismo. Nese caso, garantiríase aos novos organismos o potencial de resistir certos antibióticos. Os AbaRs conteñen varios xenes para a resistencia a antibióticos, todos flanqueados por secuencias de inserción. Estes xenes proporcionan resistencia a aminoglicósidos, aminociclitois, tetraciclina, e cloranfenicol.[10][11]

Beta-lactamase

A. baumannii produce polo menos unha beta-lactamase, que é un encima responsable de clivar o anel lactama de catro átomos típico de antibióticos beta-lactámicos. Os antibióticos beta-lactámicos están estruturalmente relacionados coa penicilina, a cal inhibe a síntese da parede celular bacteriana. A clivaxe do anel lactámico fai que estes antibióticos sexan inofensivos para a bacteria. A beta-lactamase OXA-23 está flanqueada por secuencias de inserción, o que suxire que foi adquirida por transferencia horizontal de xenes.[12]

Formación de biopelículas

A. baumannii ten unha aparente capacidade de sobrevivir en superficies artificiais durante un longo período de tempo, o que lle permite persistir nos ambientes hospitalarios. Crese que isto se debe á súa capacidade de formar biopelículas.[13] Para moitas bacterias formadoras de biopelículas, o proceso está mediado polos flaxelos. Porén, en A. baumannii este proceso semella estar mediado polos pili. Ademais, a alteración de supostas chaperonas de pili e xenes acompañante csuC e csuE inhibe a formación de biopelículas.[14] A formación de biopelículas altera o metabolismo dos microorganismos dentro da biopelícula, e en consecuencia reduce a súa sensibilidade aos antibióticos. Isto pode deberse a que nas partes máis profundas das biopelículas hai unha menor dispoñibilidade de nutrientes. Un metabolismo máis lento pode impedir que a bacteria capte un antibiótico ou realice unha función vital o suficientemente rápido como para que un determinado antibiótico teña efecto. Tamén proporciona unha barreira física contra moléculas grandes e pode impedir o desecamento das bacterias.[2][15]

Cápsula

Moitas bacterias virulentas posúen a capacidade de xerar unha cápsula protectora arredor de cada célula. Esta cápsula, feita de longas cadeas de azucres, proporciona unha barreira física extra entre os antibióticos, anticorpos, e sistema do complemento. A asociación dun incremento da virulencia coa presenza dunha cápsula foi demostrada clasicamente no experimento de Griffith. Identificouse un clúster de xenes responsable da secreción da cápsula de polisacárido que inhibe o efecto antibiótico do complemento cando crecen en fluído da ascite. Demostrouse despois un decrecemento da mortalidade dos microorganismos asociada coa perda da produción da cápsula usando un modelo da virulencia na rata.[16][17]

Bombas de efluxo

As bombas de efluxo son máquinas proteicas que usan a enerxía para bombear fóra da célula antibióticos e outras pequenas moléculas que entran no citoplasma bacteriano e o espazo periplásmico. Ao bombearen constantemente os antibióticos fóra da célula, as bacterias poden incrementar a concentración dun determinado antibiótico necesaria para matalos ou inhibir o seu crecemento cando a diana do antibiótico está dentro da bacteria. A. baumannii ten dúas bombas de efluxo principais que diminúen a súa susceptibilidade aos antimicrobianos. O primeiro, o AdeB, é responsable da resistencia a aminoglicósidos.[18] O segundo, o AdeDE, é responsable do efluxo dun amplo rango de substratos, incluíndo tetraciclina, cloranfenicol, e varios carbapenems.[19]

ARN pequeno

Os ARNs pequenos bacterianos son ARN non codificantes que regulan varios procesos celulares. Tres ARNs pequenos, chamados AbsR11, AbsR25 e AbsR28, foron validados experimentalmente na cepa MTCC 1425 (ATCC15308), que é unha cepa con resistencia a multifármacos, que mostra resistencia a 12 antibióticos. O ARN pequeno AbsR25 podería exercer un papel na regulación da bomba de efluxo e a resistencia a fármacos.[20]

Proteína A da membrana externa (OMPA)

A adhesión pode ser un determinante crítico da virulencia para as bacterias. A capacidade de unirse ás células hóspede permite que as bacterias interaccionen con elas de varias maneiras, ou ben polo sistema de secreción de tipo III ou ben simplemente para manterse opoñéndose ao movemento prevalecente de fluídos. A proteína A da membrana externa (OMPA) está implicada na adherencia de A. baumannii a células epiteliais. Isto permite que a bacteria invada as células por medio dun mecanismo de cremalleira.[21] A proteína localízase nas mitocondrias das células epiteliais e causa necrose ao estimular a produción de especies reactivas do oxíxeno.[22]

Tratamento da infección

Como a maioría das infeccións son agora resistentes a múltiples fármacos, é necesario determinar que susceptibilidades que ten unha determinada cepa para que o tratamento sexa un éxito. Tradicionalmente, as infeccións eran tratadas con imipenem ou meropenem, pero detectouse un aumento constante de A. baumannii resistente a carbapenem.[23] Consecuentemente, os métodos de tratamento a miúdo recorren ás polimixinas, especiealmente a colistina.[24] A colistina é considerada un fármaco de último recurso porque a miúdo causa danos renais, entre outros efectos secundarios.[25] Os métodos de prevención en hospitais están enfocados en incrementar a limpeza das mans e procedementos de esterilizacións máis eficientes.[26]

 src=
Feridas como as causadas por artefactos explosivos improvisados poden infectarse facilmente por A. baumannii.
 src=
A loxística de soldados transportados ten como resultado que os pacientes visiten distintas instalacións onde poden adquirir infeccións por A. baumannii.

Infeccións en veteráns feridos en Iraq e Afganistán

Moitos soldados feridos nas guerras de Iraq e Afganistán sufriron infeccións por A. baumannii. Inicialmente, pensábase que a infección se producía no momento da ferida, pero os estudios posteriores indicaron que hai maior probabilidade de adquirila en instalacións médicas (infección nosocomial), debido á capacidade da bacteria de persistir moito tempo sobre superficies artificiais e tamén aos sucesivos traslados dos soldados feridos a diversas instalacións médicas durante o seu proceso de evacuación e atención.[27] As A. baumannii resistentes a multifármacos son un factor principal na complicación do tratamento e rehabilitación de soldados feridos, o que incrementa o número de mortes.[5][28][29]

Incidencia de A. baumannii en hospitais

A importación de A. baumannii e a subseguinte presenza en hospitais está ben documentada.[30] A. baumannii é xeralmente introducida nun hospital polo paciente colonizado. Debido á súa capacidade de sobrevivir en superficies artificiais e resistir ao desecamento, pode permanecer e posiblemente infectar novos pacientes durante algún tempo. O crecemento de A baumannii sospéitase que é favorecido en instalacións hospitalarias debido ao uso constante de antibióticos nos pacientes nos hospitais.[31] Acinetobacter pode transmitirse de persoa a persoa ou cando unha persoa contacta con superficies contaminados.[32] Nun estudo feito en unidades de coidados intensivos en Europa en 2009, A. baumannii era a responsable do 19,1% de casos de pneumonía asociados con respiración asistida.[33]

Notas

  1. Antunes, LCS; Visca, P; Towner, KJ (2014). "Acinetobacter baumannii: evolution of a global pathogen". Pathogens and Disease 71 (3): 292–301. PMID 24376225. doi:10.1111/2049-632X.12125.
  2. 2,0 2,1 Yeom, J; Shin, JH; Yang, JY; Kim, J; Hwang, GS (2013). "(1)H NMR-Based Metabolite Profiling of Planktonic and Biofilm Cells in Acinetobacter baumannii 1656-2.". PLoS ONE 8 (3): e57730. Bibcode:2013PLoSO...857730Y. PMID 23483923. doi:10.1371/journal.pone.0057730.
  3. 3,0 3,1 McQueary, CN; Kirkup, BC; Si, Y; Barlow, M; Actis, LA; Craft, DW; Zurawski, DV (June 2012). "Extracellular stress and lipopolysaccharide modulate Acinetobacter baumannii surface-associated motility.". Journal of Microbiology 50 (3): 434–43. PMID 22752907. doi:10.1007/s12275-012-1555-1.
  4. Garrity, edited by G. (2000). Bergey's Manual of Systematic Bacteriology Vol. 2, Pts. A & B: The Proteobacteria. (2nd ed., rev. ed.). New York: Springer. p. 454. ISBN 0-387-95040-0.
  5. 5,0 5,1 O'Shea, MK (May 2012). "Acinetobacter in modern warfare.". International Journal of Antimicrobial Agents 39 (5): 363–75. PMID 22459899. doi:10.1016/j.ijantimicag.2012.01.018.
  6. Gerner-Smidt, P (October 1992). "Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex.". Journal of Clinical Microbiology 30 (10): 2680–5. PMID 1383266.
  7. Rice, LB (Apr 15, 2008). "Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE.". The Journal of Infectious Diseases 197 (8): 1079–81. PMID 18419525. doi:10.1086/533452.
  8. Drummond, Katie. "Pentagon to Troop-Killing Superbugs: Resistance Is Futile". Wired.com. Condé Nast. Consultado o 8 April 2013.
  9. LPSN - List of Prokaryotic Names with Standing in Nomenclature Acinetobacter
  10. Seputiene, V.; Povilonis, J.; Suziedeliene, E. (30 January 2012). "Novel Variants of AbaR Resistance Islands with a Common Backbone in Acinetobacter baumannii Isolates of European Clone II". Antimicrobial Agents and Chemotherapy 56 (4): 1969–1973. PMC 3318354. PMID 22290980. doi:10.1128/AAC.05678-11.
  11. Post, V; White, PA; Hall, RM (June 2010). "Evolution of AbaR-type genomic resistance islands in multiply antibiotic-resistant Acinetobacter baumannii.". The Journal of Antimicrobial Chemotherapy 65 (6): 1162–70. PMID 20375036. doi:10.1093/jac/dkq095.
  12. Higgins, PG; Pérez-Llarena, FJ; Zander, E; Fernández, A; Bou, G; Seifert, H (Feb 25, 2013). "OXA-235, a novel Class D Beta-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii.". Antimicrobial Agents and Chemotherapy 57 (5): 2121–6. PMID 23439638. doi:10.1128/AAC.02413-12.
  13. Espinal, P; Martí, S; Vila, J (January 2012). "Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces.". The Journal of Hospital Infection 80 (1): 56–60. PMID 21975219. doi:10.1016/j.jhin.2011.08.013.
  14. Tomaras, AP; Dorsey, CW; Edelmann, RE; Actis, LA (December 2003). "Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system.". Microbiology 149 (Pt 12): 3473–84. PMID 14663080. doi:10.1099/mic.0.26541-0.
  15. Worthington, RJ; Richards, JJ; Melander, C (Oct 7, 2012). "Small molecule control of bacterial biofilms.". Organic & Biomolecular Chemistry 10 (37): 7457–74. PMID 22733439. doi:10.1039/c2ob25835h.
  16. Kleinman, HK; McGarvey, ML; Hassell, JR; Star, VL; Cannon, FB; Laurie, GW; Martin, GR (Jan 28, 1986). "Basement membrane complexes with biological activity.". Biochemistry 25 (2): 312–8. PMID 2937447. doi:10.1021/bi00350a005.
  17. Luke, NR; Sauberan, SL; Russo, TA; Beanan, JM; Olson, R; Loehfelm, TW; Cox, AD; St Michael, F; Vinogradov, EV; Campagnari, AA (May 2010). "Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis.". Infection and Immunity 78 (5): 2017–23. PMID 20194587. doi:10.1128/iai.00016-10.
  18. Magnet, S; Courvalin, P; Lambert, T (December 2001). "Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454.". Antimicrobial Agents and Chemotherapy 45 (12): 3375–80. PMID 11709311. doi:10.1128/aac.45.12.3375-3380.2001.
  19. Chau, SL; Chu, YW; Houang, ET (October 2004). "Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3.". Antimicrobial Agents and Chemotherapy 48 (10): 4054–5. PMID 15388479. doi:10.1128/aac.48.10.4054-4055.2004.
  20. Sharma, Rajnikant; Arya, Sankalp; Patil, Supriya Deepak; Sharma, Atin; Jain, Pradeep Kumar; Navani, Naveen Kumar; Pathania, Ranjana (2014-01-01). "Identification of novel regulatory small RNAs in Acinetobacter baumannii". PloS One 9 (4): e93833. ISSN 1932-6203. PMC 3976366. PMID 24705412. doi:10.1371/journal.pone.0093833.
  21. Choi, CH; Lee, JS; Lee, YC; Park, TI; Lee, JC (Dec 10, 2008). "Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells.". BMC Microbiology 8: 216. PMID 19068136. doi:10.1186/1471-2180-8-216.
  22. Lee, JS; Choi, CH; Kim, JW; Lee, JC (June 2010). "Acinetobacter baumannii outer membrane protein A induces dendritic cell death through mitochondrial targeting.". Journal of Microbiology 48 (3): 387–92. PMID 20571958. doi:10.1007/s12275-010-0155-1.
  23. Su, CH; Wang, JT; Hsiung, CA; Chien, LJ; et al. (2012). "Increase of carbapenem-resistant Acinetobacter baumannii infection in acute care hospitals in Taiwan: Association with hospital antimicrobial usage". PLOS ONE 7 (5): e37788. Bibcode:2012PLoSO...737788S. PMID 22629456. doi:10.1371/journal.pone.0037788.
  24. Abbo, A; Navon-Venezia, S; Hammer-Muntz, O; Krichali, T; et al. (January 2005). "Multidrug-resistant Acinetobacter baumannii". Emerging Infectious Diseases 11 (1): 22–9. PMID 15705318. doi:10.3201/eid1101.040001.
  25. Spapen, H; Jacobs, R; Van Gorp, V; Troubleyn, J; et al. (May 25, 2011). "Renal and neurological side effects of colistin in critically ill patients". Annals of Intensive Care 1 (1): 14. PMID 21906345. doi:10.1186/2110-5820-1-14.
  26. "Acinetobacter in Healthcare Settings". CDC. Consultado o April 8, 2013.
  27. "Army Medical Logistics" (PDF). FM 4-02.1. United States. Arquivado dende o orixinal (PDF) o 23 de marzo de 2013. Consultado o April 8, 2013.
  28. Meghoo, CA; Dennis, JW; Tuman, C; Fang, R (May 2012). "Diagnosis and management of evacuated casualties with cervical vascular injuries resulting from combat-related explosive blasts.". Journal of Vascular Surgery 55 (5): 1329–36; discussion 1336–7. PMID 22325667. doi:10.1016/j.jvs.2011.11.125.
  29. Murray, CK (March 2008). "Epidemiology of infections associated with combat-related injuries in Iraq and Afghanistan.". The Journal of Trauma 64 (3 Suppl): S232–8. PMID 18316967. doi:10.1097/ta.0b013e318163c3f5.
  30. Jones, A; Morgan, D; Walsh, A; Turton, J; Livermore, D; Pitt, T; Green, A; Gill, M; Mortiboy, D (June 2006). "Importation of multidrug-resistant Acinetobacter spp infections with casualties from Iraq". The Lancet infectious diseases 6 (6): 317–8. PMID 16728314. doi:10.1016/S1473-3099(06)70471-6.
  31. Dijkshoorn, L; Nemec, A; Seifert, H (December 2007). "An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii.". Nature Reviews Microbiology 5 (12): 939–51. PMID 18007677. doi:10.1038/nrmicro1789.
  32. http://www.cdc.gov/HAI/organisms/acinetobacter.html
  33. Koulenti, D; Lisboa, T; Brun-Buisson, C; Krueger, W; Macor, A; Sole-Violan, J; Diaz, E; Topeli, A; DeWaele, J; Carneiro, A; Martin-Loeches, I; Armaganidis, A; Rello, J (August 2009). EU-VAP/CAP Study, Group. "Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units.". Critical Care Medicine 37 (8): 2360–8. PMID 19531951. doi:10.1097/ccm.0b013e3181a037ac.
  34. Ng, J; Gosbell, IB; Kelly, JA; Boyle, MJ; Ferguson, JK (November 2006). "Cure of multiresistant Acinetobacter baumannii central nervous system infections with intraventricular or intrathecal colistin: case series and literature review.". The Journal of Antimicrobial Chemotherapy 58 (5): 1078–81. PMID 16916866. doi:10.1093/jac/dkl347.
  35. Farrugia, DN; Elbourne, LD; Hassan, KA; Eijkelkamp, BA; Tetu, SG; Brown, MH; Shah, BS; Peleg, AY; Mabbutt, BC; Paulsen, IT (2013). "The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii". PLoS ONE 8 (3): e58628. Bibcode:2013PLoSO...858628F. PMID 23527001. doi:10.1371/journal.pone.0058628.
  36. Werneck, JS; Picão, RC; Carvalhaes, CG; Cardoso, JP; Gales, AC (February 2011). "OXA-72-producing Acinetobacter baumannii in Brazil: a case report.". The Journal of Antimicrobial Chemotherapy 66 (2): 452–4. PMID 21131320. doi:10.1093/jac/dkq462.
  37. Martins, N; Martins, IS; de Freitas, WV; de Matos, JA; Magalhães, AC; Girão, VB; Dias, RC; de Souza, TC; Pellegrino, FL; Costa, LD; Boasquevisque, CH; Nouér, SA; Riley, LW; Santoro-Lopes, G; Moreira, BM (June 2012). "Severe infection in a lung transplant recipient caused by donor-transmitted carbapenem-resistant Acinetobacter baumannii.". Transplant Infectious Disease 14 (3): 316–20. PMID 22168176. doi:10.1111/j.1399-3062.2011.00701.x.
  38. Superti, SV; Martins Dde, S; Caierão, J; Soares Fda, S; Prochnow, T; Zavascki, AP (Mar–Apr 2009). "Indications of carbapenem resistance evolution through heteroresistance as an intermediate stage in Acinetobacter baumannii after carbapenem administration.". Revista do Instituto de Medicina Tropical de Sao Paulo 51 (2): 111–3. PMID 19390741. doi:10.1590/s0036-46652009000200010.
  39. Gionco, B; Pelayo, JS; Venancio, EJ; Cayô, R; Gales, AC; Carrara-Marroni, FE (October 2012). "Detection of OXA-231, a new variant of blaOXA-143, in Acinetobacter baumannii from Brazil: a case report.". The Journal of Antimicrobial Chemotherapy 67 (10): 2531–2. PMID 22736746. doi:10.1093/jac/dks223.
  40. Zhao, WS; Liu, GY; Mi, ZH; Zhang, F (March 2011). "Coexistence of blaOXA-23 with armA and novel gyrA mutation in a pandrug-resistant Acinetobacter baumannii isolate from the blood of a patient with haematological disease in China.". The Journal of Hospital Infection 77 (3): 278–9. PMID 21281989. doi:10.1016/j.jhin.2010.11.006.
  41. Xiao, SC; Zhu, SH; Xia, ZF; Ma, B; Cheng, DS (November 2009). "Successful treatment of a critical burn patient with obstinate hyperglycemia and septic shock from pan-drug-resistant strains.". Medical Science Monitor 15 (11): CS163–5. PMID 19865060.
  42. Wu, YC; Hsieh, TC; Sun, SS; Wang, CH; Yen, KY; Lin, YY; Kao, CH (November 2009). "Unexpected cloud-like lesion on gallium-67 scintigraphy: detection of subcutaneous abscess underneath the skin with normal appearance in a comatose patient in an intensive care setting.". The American Journal of the Medical Sciences 338 (5): 388. PMID 19770790. doi:10.1097/maj.0b013e3181a6dd36.
  43. Duan, X; Yang, L; Xia, P (March 2010). "Septic arthritis of the knee caused by antibiotic-resistant Acinetobacter baumannii in a gout patient: a rare case report.". Archives of Orthopaedic and Trauma Surgery 130 (3): 381–4. PMID 19707778. doi:10.1007/s00402-009-0958-x.
  44. 44,0 44,1 Wagner, JA; Nenoff, P; Handrick, W; Renner, R; Simon, J; Treudler, R (February 2011). "[Necrotizing fasciitis caused by Acinetobacter baumannii : A case report].". Der Hautarzt; Zeitschrift für Dermatologie, Venerologie, und verwandte Gebiete 62 (2): 128–30. PMID 20835812. doi:10.1007/s00105-010-1962-3.
  45. Aivazova, V; Kainer, F; Friese, K; Mylonas, I (January 2010). "Acinetobacter baumannii infection during pregnancy and puerperium.". Archives of Gynecology and Obstetrics 281 (1): 171–4. PMID 19462176. doi:10.1007/s00404-009-1107-z.
  46. Schulte, B; Goerke, C; Weyrich, P; Gröbner, S; Bahrs, C; Wolz, C; Autenrieth, IB; Borgmann, S (December 2005). "Clonal spread of meropenem-resistant Acinetobacter baumannii strains in hospitals in the Mediterranean region and transmission to South-west Germany.". The Journal of Hospital Infection 61 (4): 356–7. PMID 16213625. doi:10.1016/j.jhin.2005.05.009.
  47. Piparsania, S; Rajput, N; Bhatambare, G (Sep–Oct 2012). "Intraventricular polymyxin B for the treatment of neonatal meningo-ventriculitis caused by multi-resistant Acinetobacter baumannii--case report and review of literature.". The Turkish Journal of Pediatrics 54 (5): 548–54. PMID 23427525.
  48. John, TM; Jacob, CN; Ittycheria, CC; George, AM; Jacob, AG; Subramaniyam, S; Puthiyaveettil, J; Jayaprakash, R (March 2012). "Macrophage activation syndrome following Acinetobacter baumannii sepsis.". International Journal of Infectious Diseases 16 (3): e223–4. PMID 22285540. doi:10.1016/j.ijid.2011.12.002.
  49. Sharma, A; Shariff, M; Thukral, SS; Shah, A (October 2005). "Chronic community-acquired Acinetobacter pneumonia that responded slowly to rifampicin in the anti-tuberculous regime.". The Journal of Infection 51 (3): e149–52. PMID 16230195. doi:10.1016/j.jinf.2004.12.003.
  50. Jeong, HL; Yeom, JS; Park, JS; Seo, JH; Park, ES; Lim, JY; Park, CH; Woo, HO; Youn, HS (Jul–Aug 2011). "Acinetobacter baumannii isolation in cerebrospinal fluid in a febrile neonate". The Turkish journal of Pediatrics 53 (4): 445–7. PMID 21980849.
  51. Hong, KB; Oh, HS; Song, JS; Lim, JH; Kang, DK; Son, IS; Park, JD; Kim, EC; Lee, HJ; Choi, EH (July 2012). "Investigation and control of an outbreak of imipenem-resistant Acinetobacter baumannii Infection in a Pediatric Intensive Care Unit.". The Pediatric Infectious Disease Journal 31 (7): 685–90. PMID 22466324. doi:10.1097/inf.0b013e318256f3e6.
  52. Lee, YK; Kim, JK; Oh, SE; Lee, J; Noh, JW (December 2009). "Successful antibiotic lock therapy in patients with refractory peritonitis.". Clinical Nephrology 72 (6): 488–91. PMID 19954727. doi:10.5414/cnp72488.
  53. Lee, SY; Lee, JW; Jeong, DC; Chung, SY; Chung, DS; Kang, JH (August 2008). "Multidrug-resistant Acinetobacter meningitis in a 3-year-old boy treated with i.v. colistin.". Pediatrics International 50 (4): 584–5. PMID 18937759. doi:10.1111/j.1442-200x.2008.02677.x.
  54. Adams, D; Yee, L; Rimmer, JA; Williams, R; Martin, H; Ovington, C (Feb 10–23, 2011). "Investigation and management of an A. Baumannii outbreak in ICU.". British Journal of Nursing 20 (3): 140, 142, 144–7. PMID 21378633. doi:10.12968/bjon.2011.20.3.140.
  55. Pencavel, TD; Singh-Ranger, G; Crinnion, JN (May 2006). "Conservative treatment of an early aortic graft infection due to Acinetobacter baumanii.". Annals of Vascular Surgery 20 (3): 415–7. PMID 16602028. doi:10.1007/s10016-006-9030-2.
  56. Gusten, WM; Hansen, EA; Cunha, BA (Jan–Feb 2002). "Acinetobacter baumannii pseudomeningitis.". Heart & Lung 31 (1): 76–8. PMID 11805753. doi:10.1067/mhl.2002.120258.
  57. Fitzpatrick, MA; Esterly, JS; Postelnick, MJ; Sutton, SH (Jul–Aug 2012). "Successful treatment of extensively drug-resistant Acinetobacter baumannii peritoneal dialysis peritonitis with intraperitoneal polymyxin B and ampicillin-sulbactam". Annals of Pharmacotherapy 46 (7–8): e17. PMID 22811349. doi:10.1345/aph.1r086.
  58. Patel, JA; Pacheco, SM; Postelnick, M; Sutton, S (Aug 15, 2011). "Prolonged triple therapy for persistent multidrug-resistant Acinetobacter baumannii ventriculitis.". American Journal of Health-System Pharmacy 68 (16): 1527–31. PMID 21817084. doi:10.2146/ajhp100234.
  59. Sullivan, DR; Shields, J; Netzer, G (June 2010). "Fatal case of multi-drug resistant Acinetobacter baumannii necrotizing fasciitis.". The American Surgeon 76 (6): 651–3. PMID 20583528.
lisans
cc-by-sa-3.0
telif hakkı
Autores e editores de Wikipedia

Acinetobacter baumannii: Brief Summary ( Galiçyaca )

wikipedia gl Galician tarafından sağlandı

Acinetobacter baumannii é unha especie bacteriana gramnegativa de forma curta e case arredondada (cocobacilos). Pode seu un patóxeno oportunista dos humanos, que afecta principalmente a persoas inmunocomprometidas, que se está a facer cada vez máis importante como causante de infeccións adquiridas en hospitais (nosocomiais). Aínda que outras especies do xénero Acinetobacter se atopan a miúdo en mostras do solo, A. baumannii non é un organismo habitual do solo, xa que se illa case exclusivamente en ambientes hospitalarios. Aínda que ocasionalmente se ten illado en mostras medioambientais do solo e auga, o seu hábitat natural aínda se descoñece. As bacterias deste xénero carecen de flaxelos, pero teñen unha motilidade ao retorcerse e sacudirse e presentan enxameamento. Isto pode deberse á actividade dos pili de tipo IV, que son estruturas como variñas que se poden retraer ou estender. A motilidade en A. baumannii pode deberse tamén á excreción de exopolisacáridos, que crean unha película de cadeas de azucres de alto peso molecular por detrás da bacteria para que esta se mova cara adiante. Os microbiólogos clínicos diferencian normalmente os membros do xénero Acinetobacter doutras Moraxellaceae realizando a proba da oxidase, xa que as Acinetobacter spp. son os únicos membros das moraxeláceas que carecen de citocromo c oxidases. A. baumannii forma parte co complexo ACB (A. baumannii, A. calcoaceticus, e Acinetobacter especie xenómica 13TU). Os membros do complexo ACB son difíciles de determinar distinguindo as especies, e comprenden os membros clinicamente máis relevantes do xénero. A. baumannii é pertence tamén ao grupo de patóxenos ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, e Enterobacter sp.), un grupo de patóxenos cun alto grao de resistencia a antibióticos que son responsables da maioría das infeccións nosocomiais. Houbo unha epidemia significativa de cepas resistentes a antibióticos en instalacións sanitarias militares durante a guerra de Iraq. As cepas resistentes a multifármacos de A. baumannii espalláronse tamén en hospitais civís.

O nome da bacteria significa 'bacteria inmóbil de Baumann', do grego a, 'non', kineô, 'moverse', bakterion (neolatín bacteria), 'bastonciño (bacteria)', e en honor dos microbiólogos Paul e Linda Baumann.

lisans
cc-by-sa-3.0
telif hakkı
Autores e editores de Wikipedia

Acinetobacter baumannii ( Endonezce )

wikipedia ID tarafından sağlandı

Acinetobacter baumannii adalah bakteri gram-negatif yang dapat menyebabkan infeksi nosokomial pada manusia.[1] Bakteri ini dapat tumbuh pada suhu 44 °C, menggunakan berbagai jenis karbohidrat sebagai sumber nutrisi, dan mampu melekat pada sel epitelial manusia.[1] Karakteristik dari bakteri ini adalah aerobik, berbentuk koko-basil, dan dapat dengan cepat tahan (resisten) terhadap berbagai antibiotik. [2] Bakteri ini diketahui dapat melakukan kolonisasi di unit operasi, medis, persalinan, dan perawatan luka bakar dalam suatu rumah sakit serta berperan dalam infeksi penyakit akut seperti meningitis, pneumonia, dan bakteremia.[2] Acinetobacter baumannii juga diketahui tahan (reisten) terhadap sabun dan antiseptik konvensional sehingga kontaminasi koloni bakteri ini pada tangan petugas kesehatan mudah terjadi.[3]

Referensi

  1. ^ a b (Inggris) Jordi Rello (2008). Nosocomial Pneumonia: Strategies for Management. Wiley-Interscience. ISBN 978-0-470-05955-5.
  2. ^ a b (Inggris) Daniel Villers, Eric Espaze, Marianne Coste-Burel, Frederic Giauffret, Emmanuelle Ninin, Franchise Nicolas, Herve Richet (1998). "Nosocomial Acinetobacter baumannii Infections: Microbiological and Clinical Epidemiology". Annals of Internal Medicine. 129 (3): 183–189. Parameter |month= yang tidak diketahui akan diabaikan (bantuan)Pemeliharaan CS1: Banyak nama: authors list (link)
  3. ^ (Inggris) Jordi Rello, Marin Kollef (2007). Infectious Diseases in Critical Care. Springer. ISBN 978-3-540-34405-6.Page.234-237
EscherichiaColi NIAID.jpg Artikel bertopik bakteri ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.
lisans
cc-by-sa-3.0
telif hakkı
Penulis dan editor Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia ID

Acinetobacter baumannii: Brief Summary ( Endonezce )

wikipedia ID tarafından sağlandı

Acinetobacter baumannii adalah bakteri gram-negatif yang dapat menyebabkan infeksi nosokomial pada manusia. Bakteri ini dapat tumbuh pada suhu 44 °C, menggunakan berbagai jenis karbohidrat sebagai sumber nutrisi, dan mampu melekat pada sel epitelial manusia. Karakteristik dari bakteri ini adalah aerobik, berbentuk koko-basil, dan dapat dengan cepat tahan (resisten) terhadap berbagai antibiotik. Bakteri ini diketahui dapat melakukan kolonisasi di unit operasi, medis, persalinan, dan perawatan luka bakar dalam suatu rumah sakit serta berperan dalam infeksi penyakit akut seperti meningitis, pneumonia, dan bakteremia. Acinetobacter baumannii juga diketahui tahan (reisten) terhadap sabun dan antiseptik konvensional sehingga kontaminasi koloni bakteri ini pada tangan petugas kesehatan mudah terjadi.

lisans
cc-by-sa-3.0
telif hakkı
Penulis dan editor Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia ID

Acinetobacter baumannii ( Felemenkçe; Flemish )

wikipedia NL tarafından sağlandı

Acinetobacter baumannii is een gramnegatieve kleine vrijwel ronde staafvormige coccobacil. A. baumannii komt voor als opportunistisch pathogeen bij patiënten met een slechtwerkend immuunsysteem en wordt steeds vaker gezien bij ziekenhuisinfecties.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia-auteurs en -editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia NL

Acinetobacter baumannii: Brief Summary ( Felemenkçe; Flemish )

wikipedia NL tarafından sağlandı

Acinetobacter baumannii is een gramnegatieve kleine vrijwel ronde staafvormige coccobacil. A. baumannii komt voor als opportunistisch pathogeen bij patiënten met een slechtwerkend immuunsysteem en wordt steeds vaker gezien bij ziekenhuisinfecties.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia-auteurs en -editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia NL

Acinetobacter baumannii ( Lehçe )

wikipedia POL tarafından sağlandı
Acinetobacter baumannii.JPG
Acinetobacter baumannii Systematyka Królestwo bakterie Typ proteobakterie Klasa gammaproteobakterie Rząd Pseudomonadales Rodzina Moraxellaceae Rodzaj Acinetobacter Gatunek Acinetobacter baumannii Nazwa systematyczna Acinetobacter baumannii Brisou & Prévot 1954

Acinetobacter baumannii – gatunek Gram-ujemnych, niefermentujących bakterii. Często wywołuje zakażenia oportunistyczne u ludzi. jej naturalnym środowiskiem jest woda i gleba. Infekcja Acinetobacter baumannii jest częstym zakażeniem wewnątrzszpitalnym u pacjentów wymagających dużej ilości procedur inwazyjnych, przebywających na oddziałach intensywnej terapii[1]. Często znajdowana jest w różnych materiałach klinicznych - krwi, moczu, płynie mózgowo-rdzeniowym, materiale z ran pooperacyjnych Zakażenie u takich pacjentów może często prowadzić do sepsy. Bakteria ta może również wchodzić w skład fizjologicznej mikroflory skóry człowieka, szczególnie u osób hospitalizowanych.

Morfologia i fizjologia[2]

Bakteria Acinetobacter baumannii ma kształt krótkich, pękatych pałeczko-ziarniaków, czasem tworzących układy w formie dwoinek. W wyniku barwienia metodą Grama, przyjmują różowy kolor (wynik gramujemny), trudno odbarwiają się alkoholem. Nie są urzęsione, co odróżnia je od większości gramujemnych pałeczek niefermentujących. Mają bardzo małe wymagania pokarmowe. Mogą wyrastać na podłożach z tylko jednym związkiem organicznym będącym źródłem węgla. Jako źródło azotu mogą wykorzystywać siarczan amonu lub azotany.

Na stałych pożywkach tworzą bezbarwne, okrągłe kolonie. Niektóre szczepy wytwarzają otoczkę i rosną w formie śluzowych kolonii. A. baumanii posiadają adhezyjne fimbrie dzięki którym komórki bakterii ściśle do siebie przylegają. Cecha ta uniemożliwia pobranie części kolonii ezą - cała kolonia przykleja się ezy. Optymalna temperatura dla wzrostu tej bakterii to około 33-35 °C, chociaż potrafią przeżyć i wzrastać również w temperaturze 40 °C, Graniczne pH w jakim wyrastają to od 5,0 do 8,0. Efektem przemiany materii tych bakterii są lotne substancje o charakterystycznym, nieprzyjemnym zapachu.

Pałeczki A. baumannii prowadzą ściśle tlenowy metabolizm. Rozkładają laktozę, w związku z tym na podłożu MacConkeya wyrastają w formie różowych kolonii. Nie wytwarzają oksydazy cytochromowej tak jak większość tlenowych pałeczek gramujemnych, co często może być przyczyną ich mylenia z fermentującymi pałeczkami z rodziny Enterobacteriaceae. Do ich rozróżnienia wykorzystuje się badanie rozkładu cukrów w warunkach tlenowych i beztlenowych na podłożu Hugha-Leifsona.

Chorobotwórczość i leczenie

Dużym problemem terapeutycznym jest występowanie szczepów opornych na większość stosowanych antybiotyków (MDRAB – multidrug-resistant A. baumannii). Największą skuteczność w leczeniu wykazują imipenem i sulperazon (cefoperazon + sulbaktam)[3].

Istnieją doniesienia o częstym występowaniu zakażeń Acinetobacter baumannii wśród amerykańskich żołnierzy w Iraku[4].

Przypisy

  1. Rodríguez-Baño J, Pascual A, Gálvez J, Muniain MA, Ríos MJ, Martínez-Martínez L, Pérez-Cano R, Perea EJ. Acinetobacter baumannii bacteremia: clinical and prognostic features. „Enferm Infecc Microbiol Clin.”. 21 (5), s. 242-7, May 2003. PMID: 12732114.
  2. Szewczyk, Eligia., Wydawnictwo NaukoweW.N. PWN. Wydawnictwo NaukoweW.N., Diagnostyka bakteriologiczna, wyd. Wyd. 2 zm, Warszawa: Wydawnictwo Naukowe PWN, 2013, ISBN 978-83-01-16060-9, OCLC 843395714 [dostęp 2018-10-21] .
  3. Wrażliwość in vitro na cefoperazon/sulbaktam wieloopornych szczepów Acinetobacter spp.
  4. Scott P, Deye G, Srinivasan A, Murray C, Moran K, Hulten E, Fishbain J, Craft D, Riddell S, Lindler L, Mancuso J, Milstrey E, Bautista CT, Patel J, Ewell A, Hamilton T, Gaddy C, Tenney M, Christopher G, Petersen K, Endy T, Petruccelli B. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. „Clin Infect Dis.”. 44 (12), s. 1577-84, Jun 15; 2007. PMID: 17516401.

Bibliografia

Diagnostyka bakteriologiczna. Eligia M. Szewczyk. Wyd. II zm. Warszawa. Wydawnictwo Naukowe PWN. 2013. ​ISBN 978-83-01-16060-9

lisans
cc-by-sa-3.0
telif hakkı
Autorzy i redaktorzy Wikipedii
orijinal
kaynağı ziyaret et
ortak site
wikipedia POL

Acinetobacter baumannii: Brief Summary ( Lehçe )

wikipedia POL tarafından sağlandı

Acinetobacter baumannii – gatunek Gram-ujemnych, niefermentujących bakterii. Często wywołuje zakażenia oportunistyczne u ludzi. jej naturalnym środowiskiem jest woda i gleba. Infekcja Acinetobacter baumannii jest częstym zakażeniem wewnątrzszpitalnym u pacjentów wymagających dużej ilości procedur inwazyjnych, przebywających na oddziałach intensywnej terapii. Często znajdowana jest w różnych materiałach klinicznych - krwi, moczu, płynie mózgowo-rdzeniowym, materiale z ran pooperacyjnych Zakażenie u takich pacjentów może często prowadzić do sepsy. Bakteria ta może również wchodzić w skład fizjologicznej mikroflory skóry człowieka, szczególnie u osób hospitalizowanych.

lisans
cc-by-sa-3.0
telif hakkı
Autorzy i redaktorzy Wikipedii
orijinal
kaynağı ziyaret et
ortak site
wikipedia POL

Acinetobacter baumannii ( Portekizce )

wikipedia PT tarafından sağlandı

Acinetobacter baumannii é uma espécie de bactéria aeróbia Gram-negativa, com distribuição cosmopolita no solo, onde desempenha um importante papel na decomposição de compostos aromáticos. Apesar de ser a segunda bactéria não-fermentadora mais frequentemente isolada em humanos, apresenta elevada patogenicidade, com estirpes resistentes à maioria dos antibióticos.[1] Provoca infecções oportunistas,[2] afectando mais frequentemente as vias respiratórias e o tracto urinário, podendo causar pneumonias severas e infecções urinárias (ITU) de difícil controlo. Como resultado da sua resistência à desinfecção e aos fármacos e longo tempo de permanência activa em superfícies secas e na pele saudável,[1] estima-se que infecte anualmente dezenas de milhar de pacientes em ambiente hospitalar,[1] sendo uma das infecções hospitalares mais comuns. As estirpes resistentes a múltiplos antibióticos, e por extensão as suas infecções, são em geral referidas pela sigla MDRAB (do inglês: Multidrug-resistant Acinetobacter baumannii ou MDRAB).

Biologia e ecologia

Durante a fase de crescimento, a bactéria é um bacilo, com bastonetes com até 2,5 μm de comprimento. Durante a fase estacionária do crescimento bacteriano, as células tornam-se mais curtas e arredondadas, assemelhando-se a pequenos cocos ao encolher para cerca de metade do seu tamanho inicial. As bactérias encontram-se em geral em pares ou em grupos densos de células interligadas.

Apesar das espécies incluídas no género Acinetobacter não possuem flagelos, o que está na base da etimologia do nome genérico, um neologismo derivado da palavra grega acineto que significa "sem movimento",[3] A. baumannii exibe motilidade limitada, deslocando-se por efeito da deformação cíclica da sua parede celular,[4] contorcendo-se numa variante microscópica do processo utilizado pelas lesmas.

A. baumannii é uma bactéria gram-negativa, não fermentadora, sendo que um dos testes bioquímicos utilizados para a distinguir de outros microorganismos patogénicos é o determinar a ausência de oxidase, já que a espécie é oxidase-negativa[5]. Atua produzindo lactonas secretoras de N-acil-homoserina (AHLs) que medeiam o quorum sensing (QS) em bactérias.[6]

Acinetobacter baumannii é o patógeno humano mais relevante do género Acinetobacter. A maioria dos isolatos são multi-resistentes a antibióticos, contendo no seu genoma pequenas sequências isoladas ("ilhas") de DNA transmitidas geneticamente de outros organismos, bem como outros materiais citológicos e genéticos de proveniência exógena (isto é provenientes de outras espécies de microorganismos). A presença de materiais genéticos e citológicos exógenos leva a uma maior virulência.[2]

A espécie é um decompositor com distribuição cosmopolita que faz parte da composição normal da generalidade dos solos. Como as restantes espécies do género Acinetobacter, exerce um papel importante na decomposição de matérias ricas em compostos aromáticos, integrando um dos níveis tróficos essenciais da microbiologia ambiental.

A espécie é resistente à secura, podendo sobreviver na forma arredondada (cocóide) típica da sua fase estacionária de crescimento, em que as células são reduzidas por exsicação a cerca de metade do seu volume na fase de crescimento, durante várias semanas mesmo em superfícies secas e sujeitas a radiação solar. Naquela forma, foi demonstrada a viabilidade da bactéria após períodos de até 5 meses em superfícies secas não perturbadas, dependendo o período de sobrevivência do teor de humidade relativa do ar ambiente.[7] Foi também demonstrado que pode sobreviver durante várias semanas sobre pele humana saudável. Na forma cocóide também resiste à maioria dos desinfectantes oxidativos.

Transmissão e prevalência

Muito comum em solos de todo o mundo, podendo sobreviver na pele humana ou superfícies secas durante períodos longos,[7] a linhagem A. baumannii é a segunda bactéria não-fermentadora mais frequentemente isolada em seres humanos saudáveis. Contudo, com frequência exibe patogenicidade, afectando em geral indivíduos imunocomprometidos, sendo frequentemente isolada em infecções nosocomiais. Estirpes resistentes da espécie são especialmente prevalentes em unidades de tratamento intensivo, onde são comuns casos esporádicos de infecção, que nalguns casos mais virulentos podem assumir carácter epidémico. Dada a sua capacidade para infectar o aparelho respiratório humano, A. baumannii é causa frequente de pneumonia nosocomial, especialmente de pneumonia associada à ventilação mecânica. Pode ainda causar diversas outras infecções, incluindo infecções de pele, de feridas e bacteremia.

A forma mais comum de entrada de A. baumannii no corpo humano é através de feridas abertas, sendo que em ambiente hospitalar as vias mais comuns são os cateteres, as sondas nasogástricas e os tubos respiratórios utilizados na intubação endotraqueal de pacientes. Sendo um patógeno oportunista, em geral infecta apenas indivíduos com sistema imunitário comprometido, como os feridos com gravidade, os idosos, as crianças e os portadores de doenças que deprimem o sistema imunitário (como a SIDA).

A simples infestação não apresenta particulares riscos, já que a colonização não provoca morbidez em indivíduos que não estejam já doentes. Por essa razão, profissionais de saúde e visitantes portadores assintomáticos da bactéria podem promover inadvertidamente a sua disseminação, provocando a infestação de hospitais, centros de saúde e outras estruturas frequentadas por indivíduos susceptíveis, o que faz da iatrogenia o mecanismo mais frequente de infecção[8].

O número de infecções infecções hospitalares causadas por A. baumannii aumentou nos anos mais recentes, seguindo uma tendência de aumento da incidência comum à maioria infecções causadas por patógenos nosocomiais, tais como MRSA, VRSA e VRE.[9]

Foram muito frequentes as infecções por A. baumannii entre os militares norte-americanos feridos na Guerra do Iraque, o que levou a que a bactéria fosse frequentemente designada na imprensa norte-americana por Iraqibacter.[10] Quando as primeiras infecções surgiram entre os militares feridos, em Abril de 2003, os relatórios iniciais atribuíam a infecção às características do solo iraquiano, mas estudos posteriores demonstraram a contaminação generalizada dos hospitais de campanha, aparentemente pela via da importação de pessoal e equipamento de hospitais europeus já previamente infestados, num caso típico de transmissão por fomite.

Patogenicidade e controlo das infecções

A. baumannii, como típico patógeno oportunista, expressa uma miríade de factores que influenciam a sua patogenicidade em humanos. Entre esses factores está a capacidade da bactéria se fixar e de persistir agarrada a superfícies sólidas, a capacidade de extrair do meio circundante nutrientes essenciais (nomeadamente o ferro), a adesão às células epiteliais, e sua subsequente morte por apoptose, e a produção e secreção de enzimas e produtos tóxicos capazes de danificar os tecidos infectados. Contudo, conhece-se pouco sobre a natureza molecular e a bioquímica da maioria desses processos e factores, em particular sobre o papel de cada um deles na virulência e patogénese das infecções bacterianas graves.[2]

Algumas estirpes de A. baumanniiexibem motilidade reduzida quando expostas a luz com comprimentos de onda na região do azul. Esta fotossensibilidade pode ter um papel importante na formação de biofilmes e influenciar outros factores determinantes da virulência.[11]

As contaminação por estirpes multi-resistentes de A. baumannii são na actualidade um problema comum nos hospitais das regiões mais desenvolvidas do mundo, com destaque para a América do Norte e a Europa. Causam nos seres humanos uma ampla variedade de quadros infecciosos, razão pela qual a bactéria é considerada um importante agente patogénico afectando feridos, nomeadamente os feridos de guerra e vítimas de politraumatismo, nos quais provoca infecções graves, frequentemente fatais, entre as quais a fasciite necrosante.[12][13]

Também a bacteremia resultante de infecção nosocomial por A. baumannii pode ser a causa de severas complicações clínicas, estando associada a uma elevada taxa de mortalidade.[14]

A primeira linha de tratamento é em geral a aplicação de um antibiótico beta-lactâmico do grupo dos carbapenem, nomeadamente imipenem, embora a resistência a esse grupo de antibióticos seja cada vez mais comum. Outras opções de tratamento incluem ministrar polimixinas, tigeciclina ou aminoglicosídeos.[15]

O cumprimento de medidas estritas de controlo de infecções, como a monitorização da lavagem de mãos, pode baixar substancialmente as taxas de infecção hospitalas.[16]

As infecções por MDRAB são difíceis de controlar e o seu tratamento é dispendioso, podendo agravar substancialmente os custos de exploração das unidades de saúde contaminadas e fazer crescer significativamente as taxas de morbilidade e mortalidade entre os pacientes atendidos nas suas instalações.

Existem em fase de desenvolvimento algumas novas aproximações clínicas ao controlo de infecções por MDRAB, entre elas a utilização de um bacteriófago específico deste tipo de bactéria[17][18].

Em 2012, foram publicados relatórios indicando que investigadores da Universidade de Alberta (Canadá) teriam encontrado uma estratégia eficaz de combate às infecções por MDRAB.[19]

Referências

  1. a b c Pollack, Andrew. "Rising Threat of Infections Unfazed by Antibiotics" New York Times, Feb. 27, 2010
  2. a b c Gerischer U (editor) (2009). Acinetobacter Molecular Biology 1st ed. [S.l.]: Caister Academic Press. ISBN 978-1-904455-20-2
  3. Asif Zia (19 de abril de 2004). «Infectious Disease Case Conference». Wake Forest University. Consultado em 3 de outubro de 2007 [ligação inativa][ligação inativa]
  4. Clemmer K, Bonomo R, Rather P (2011). «Analysis of Surface Motility in Acinetobacter baumanii». Microbiology. doi:10.1099/mic.0.049791-0 !CS1 manut: Nomes múltiplos: lista de autores (link)
  5. Acinetobacter - MicrobeWiki
  6. John, James; Saranathan, Rajagopalan; Adigopula, Lakshmi Narayana; Thamodharan, Vasanth; Singh, Satya Prakash; Lakshmi, T. Pragna; CharanTej, Mallu Abhiram; Rao, R. Srinivasa; Krishna, R. (Outubro de 2016). «The quorum sensing molecule N-acyl homoserine lactone produced by Acinetobacter baumannii displays antibacterial and anticancer properties». Biofouling. 32 (9): 1029–1047. ISSN 1029-2454. PMID 27643959. doi:10.1080/08927014.2016.1221946
  7. a b Kramer A, Schwebke I, Kampf G (2006). «How long do nosocomial pathogens persist on inanimate surfaces? A systematic review». BMC Infect. Dis. 6. 130 páginas. PMC . PMID 16914034. doi:10.1186/1471-2334-6-130 !CS1 manut: Nomes múltiplos: lista de autores (link)
  8. Steve Silberman (fevereiro de 2007). «The Invisible Enemy». Wired. Consultado em 15 de fevereiro de 2007. Cópia arquivada em 16 de fevereiro de 2007
  9. The Coalition of the Contaminated. «Mapping Acinetobacter baumannii from Iraq to Civilian Hospitals». Consultado em 3 de outubro de 2007. Cópia arquivada em 12 de outubro de 2007
  10. «Acinetobacter baumannii in Iraq». Consultado em 15 de fevereiro de 2007. Cópia arquivada em 2 de fevereiro de 2007
  11. Mussi, M. A., Gaddy, J. A., Cabruja, M., Arivett, B. A., Viale, A. M., Rasia, R., Actis, L. A. (1 de outubro de 2010). «The Opportunistic Human Pathogen Acinetobacter baumannii Senses and Responds to Light». Journal of Bacteriology. 192 (24): 6336–6345. doi:10.1128/JB.00917-10 !CS1 manut: Usa parâmetro autores (link)
  12. Charnot-Katsikas A, Dorafshar AH, Aycock JK, David MZ, Weber SG, Frank KM (janeiro de 2009). «Two cases of necrotizing fasciitis due to Acinetobacter baumannii». Journal of Clinical Microbiology. 47 (1): 258–63. PMC . PMID 18923009. doi:10.1128/JCM.01250-08. Consultado em 3 de julho de 2010 !CS1 manut: Nomes múltiplos: lista de autores (link)
  13. Sullivan DR, Shields J, Netzer G (junho de 2010). «Fatal case of multi-drug resistant Acinetobacter baumannii necrotizing fasciitis». The American Surgeon. 76 (6): 651–3. PMID 20583528 !CS1 manut: Nomes múltiplos: lista de autores (link)
  14. Chen HP, Chen TL, Lai CH, Fung CP, Wong WW, Yu KW, Liu CY. (2005). «Predictors of mortality in Acinetobacter baumannii bacteremia.». J Microbiol Immunol Infect. 38 (2): 127–36. PMID 15843858 !CS1 manut: Nomes múltiplos: lista de autores (link)
  15. Bassetti M, Righi E, Esposito S, Petrosillo N, Nicolini L (dezembro de 2008). «Drug treatment for multidrug-resistant Acinetobacter baumannii infections». Future Microbiol. 3 (6): 649–60. PMID 19072182. doi:10.2217/17460913.3.6.649 !CS1 manut: Nomes múltiplos: lista de autores (link)
  16. Jia-Rui Chong (1 de outubro de 2007). «The path of war sets doctors on the warpath of disease». Napa Valley Register. Consultado em 3 de outubro de 2007
  17. «Intralytix, Inc. - Bacteriophage Research and Development». Consultado em 31 de julho de 2012. Arquivado do original em 23 de julho de 2012
  18. «Intralytix, Inc. - Human Therapeutics». Consultado em 31 de julho de 2012. Arquivado do original em 23 de julho de 2012
  19. Research from University of Alberta Yields New Findings on Acinetobacter baumannii.

 title=
lisans
cc-by-sa-3.0
telif hakkı
Autores e editores de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia PT

Acinetobacter baumannii: Brief Summary ( Portekizce )

wikipedia PT tarafından sağlandı

Acinetobacter baumannii é uma espécie de bactéria aeróbia Gram-negativa, com distribuição cosmopolita no solo, onde desempenha um importante papel na decomposição de compostos aromáticos. Apesar de ser a segunda bactéria não-fermentadora mais frequentemente isolada em humanos, apresenta elevada patogenicidade, com estirpes resistentes à maioria dos antibióticos. Provoca infecções oportunistas, afectando mais frequentemente as vias respiratórias e o tracto urinário, podendo causar pneumonias severas e infecções urinárias (ITU) de difícil controlo. Como resultado da sua resistência à desinfecção e aos fármacos e longo tempo de permanência activa em superfícies secas e na pele saudável, estima-se que infecte anualmente dezenas de milhar de pacientes em ambiente hospitalar, sendo uma das infecções hospitalares mais comuns. As estirpes resistentes a múltiplos antibióticos, e por extensão as suas infecções, são em geral referidas pela sigla MDRAB (do inglês: Multidrug-resistant Acinetobacter baumannii ou MDRAB).

lisans
cc-by-sa-3.0
telif hakkı
Autores e editores de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia PT

Acinetobacter baumannii ( Romence; Moldovaca )

wikipedia RO tarafından sağlandı

Acinetobacter baumannii este o bacterie gram-negativă, de obicei scurtă, aproape rotundă în formă de tijă (coccobacillus). Acesta poate fi un agent patogen oportunist la om, care afectează persoanele cu sistemul imunitar compromis, și care este din ce în ce mai frecvent cauza infecțiilor spitalicești (nosocomiale). În timp ce alte specii din genul Acinetobacter sunt adesea găsite în probe de sol (ceea ce duce la concepția greșită că A. baumannii este un organism care trăiește de asemenea în sol), A. baumannii este aproape exclusiv prezentă în medii spitalicești[2]. Deși ocazional a fost identificată în probe de sol și apă din natură[3], habitatul său natural este încă necunoscut.

Bacteriile din acest gen nu prezintă flagel, o structură ca un bici folosită pentru locomoție, dar prezintă motilitate prin spasme sau de grup. Acest lucru poate fi datorat activității pililor de tip IV, care pot fi extinși și retrași. Motilitatea în A. baumannii poate fi de asemenea datorată excreției de exopolizaharide, prin care se creează un film de polizaharide cu masă moleculară mare în urma bacteriei care îi permite astfel să avanseze[4]. Microbiologii clinici diferențieză membrii din genul Acinetobacter de alte Moraxellaceae prin efectuarea unui test al oxidazei, deoarece Acinetobacter spp. sunt singurii membri ai Moraxellaceae cărora le lipsesc oxidazele citocromului c[5].

A. baumannii este parte a complexului ACB (A. baumannii, A. calcoaceticus și speciile genomice Acinetobacter 13TU). Membrii complexului ACB sunt dificil de diferențiat și reprezintă membrii genului care sunt cei mai relevanți din punct de vedere clinic[6][7]. A. baumannii este de asemenea un patogen ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter sp.), un grup de agenți patogeni cu o rată ridicată de rezistență la antibiotice, care sunt responsabili de majoritatea infecțiilor nosocomiale[8].

Colocvial, A. baumannii este numită și „Iraqibacter” datorită apariției aparent bruște în spitalele militare din timpul Războiului din Irak[9]. Bacteria a continuat să fie o problemă pentru veteranii și soldații care au luptat în Irak și Afganistan. Tulpinile A. baumannii rezistente la antibiotice s-au răspândit în spitale civile, ca urmare a transportului de soldați infectați prin mai multe unități medicale[4].

Semne și simptome ale infecției

A. baumannii este un agent patogen oportunist, care profită de o serie de alte boli, fiecare cu propriile simptome. Unele infecții posibile în care poate apărea A. baumannii sunt:

Simptomele infecției cu A. baumannii sunt de multe ori imposibil de distins de alte infecții cauzate de alte bacterii oportuniste, precum Klebsiella pneumoniae și Streptococcus pneumoniae.

Simptomele infecției cu A. baumannii variază de la febră și frisoane, erupții cutanate, confuzie și/sau stare mentală alterată, dureri sau senzații de usturime la urinare, nevoia puternică de a urina frecvent, sensibilitate la lumină, greață (cu sau fără vărsături), dureri musculare și în piept, probleme de respirație și tuse (cu sau fără mucus galben, verde sau sângeros)[10]. În unele cazuri, A. baumannii poate să nu prezinte simptome sau urme de infecție, precum în cazul colonizării unei răni deschise sau traheostomii.

Tratament

Pentru că cele mai multe infecții sunt acum rezistente la mai multe medicamente, stabilirea susceptibilităților tulpinii este necesară pentru ca tratamentul să fie de succes. În mod tradițional, infecțiile au fost tratate cu imipenem sau meropenem, dar a fost observată o creștere constantă în A. baumannii rezistente la carbapenem[11]. În consecință, metodele de tratament de multe ori se bazează pe polimixine, în special colistin[12]. Colistinul este considerat un medicament de ultimă instanță pentru că de multe ori provoacă leziuni renale, printre alte efecte secundare[13]. Metodele de prevenire în spitale se concentrează pe creșterea frecvenței spălării mâinilor și îmbunătățirea procedurilor de sterilizare[14]. Acinetobacter baumannii a fost tratată recent cu ajutorul bacteriofagilor (virusuri anti-bacteriene)[15].

 src=
Leziuni traumatice, cum ar fi cele cauzate de dispozitive explozive improvizate, lasă zone mari deschise contaminate cu resturi, care sunt vulnerabile în a deveni infectate cu A. baumannii.

Incidența în spitale

Fiind cunoscută ca o infecție oportunistă, infecțiile cu A. baumanii sunt extrem de răspândite în spitale. A. baumanii prezintă risc foarte mic pentru persoanele sănătoase[16], dar factorii care cresc riscurile de infecție includ:

  • Un sistem imunitar slăbit
  • Boli pulmonare cronice
  • Diabet
  • Șederi prelungit în spital
  • Boli care necesită utilizarea unui ventilator
  • Răni deschise tratate într-un spital
  • Tratamente care necesită dispozitive invazive, precum catetere urinare

A. baumanii se poate răspândi prin contact direct cu suprafețe, obiecte și pielea persoanelor contaminate[10].

Introducerea bacteriei A. baumannii și, ulterior, prezența în spitale este bine documentată[17]. A. baumannii este de obicei adusă în spital de un pacient colonizat. Datorită capacității sale de a supraviețui pe suprafețe artificiale și rezistenței la uscare, bacteria poate rămâne prezentă și infecta pacienți noi după mult timp. Dezvoltarea A. baumannii este suspectată a fi favorizată în spital datorită utilizării constante de antibiotice de către pacienții din spital[18]. Acinetobacter pot fi transmisă prin contactul dintre persoane sau prin contactul cu suprafețe contaminate[19]. Acinetobacter poate intra prin răni deschise, catetere și tuburi de respirat[20]. Într-un studiu din 2009 al unităților de terapie intensivă din Europa, A. baumannii a fost găsită responsabilă pentru 19,1% din cazurile de pneumonie asociată utilizării ventilatorului[21].

Studii de caz documentate Țară Referință Australia [22][23] Brazilia [24][25][26][27] China [28][29][30][31] Germania [32][32][33][34] India [35][36][37] Coreea De Sud [38][39][40][41] Regatul Unit [42][43] Statele Unite Ale Americii [44][45][46][47]

Un studiu din 2013 din Indonezia a arătat că infecțiile neonatale cu A. baumanii s-au datorat acelorași tulpini de bacterii găsite în spitalele în care nou-născuții au petrecut primele zile. Aceste tulpini au fost găsite pe suprafețe dure, precum și pe mâinile personalului medical[48].

Note

  1. ^ Parte, A.C. „Acinetobacter”. www.bacterio.net.
  2. ^ Antunes, LCS; Visca, P; Towner, KJ (2014). „Acinetobacter baumannii: evolution of a global pathogen”. Pathogens and Disease. 71 (3): 292–301. doi:10.1111/2049-632X.12125. PMID 24376225.
  3. ^ Yeom, J; Shin, JH; Yang, JY; Kim, J; Hwang, GS (2013). „(1)H NMR-Based Metabolite Profiling of Planktonic and Biofilm Cells in Acinetobacter baumannii 1656-2”. PLoS ONE. 8 (3): e57730. Bibcode:2013PLoSO...857730Y. doi:10.1371/journal.pone.0057730. PMC 3590295Accesibil gratuit. PMID 23483923.
  4. ^ a b McQueary, CN; Kirkup, BC; Si, Y; Barlow, M; Actis, LA; Craft, DW; Zurawski, DV (iunie 2012). „Extracellular stress and lipopolysaccharide modulate Acinetobacter baumannii surface-associated motility”. Journal of Microbiology. 50 (3): 434–43. doi:10.1007/s12275-012-1555-1. PMID 22752907.Mentenanță CS1: Formatul datelor (link)
  5. ^ Garrity, G., ed. (2000). „Pts. A & B: The Proteobacteria”. Bergey's Manual of Systematic Bacteriology. 2 (ed. 2nd ed., rev.). New York: Springer. p. 454. ISBN 978-0-387-95040-2.
  6. ^ O'Shea, MK (mai 2012). „Acinetobacter in modern warfare”. International Journal of Antimicrobial Agents. 39 (5): 363–75. doi:10.1016/j.ijantimicag.2012.01.018. PMID 22459899.Mentenanță CS1: Formatul datelor (link)
  7. ^ Gerner-Smidt, P (octombrie 1992). „Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex”. Journal of Clinical Microbiology. 30 (10): 2680–5. PMC 270498Accesibil gratuit. PMID 1383266.Mentenanță CS1: Formatul datelor (link)
  8. ^ Rice, LB (15 aprilie 2008). „Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE”. The Journal of Infectious Diseases. 197 (8): 1079–81. doi:10.1086/533452. PMID 18419525.
  9. ^ Drummond, Katie. „Pentagon to Troop-Killing Superbugs: Resistance Is Futile”. Wired.com. Condé Nast. Accesat în 8 aprilie 2013.
  10. ^ a b „What Is Acinetobacter Baumannii?”. Everyday Health. Accesat în 18 aprilie 2017.
  11. ^ Su, CH; Wang, JT; Hsiung, CA; Chien, LJ; et al. (2012). „Increase of carbapenem-resistant Acinetobacter baumannii infection in acute care hospitals in Taiwan: Association with hospital antimicrobial usage”. PLOS ONE. 7 (5): e37788. Bibcode:2012PLoSO...737788S. doi:10.1371/journal.pone.0037788. PMC 3357347Accesibil gratuit. PMID 22629456.
  12. ^ Abbo, A; Navon-Venezia, S; Hammer-Muntz, O; Krichali, T; et al. (ianuarie 2005). „Multidrug-resistant Acinetobacter baumannii. Emerging Infectious Diseases. 11 (1): 22–9. doi:10.3201/eid1101.040001. PMC 3294361Accesibil gratuit. PMID 15705318.Mentenanță CS1: Formatul datelor (link)
  13. ^ Spapen, H; Jacobs, R; Van Gorp, V; Troubleyn, J; et al. (25 mai 2011). „Renal and neurological side effects of colistin in critically ill patients”. Annals of Intensive Care. 1 (1): 14. doi:10.1186/2110-5820-1-14. PMC 3224475Accesibil gratuit. PMID 21906345.
  14. ^ „Acinetobacter in Healthcare Settings”. CDC. Accesat în 8 aprilie 2013.
  15. ^ „He was dying. Antibiotics weren't working. Then doctors tried a forgotten treatment”. Mother Jones (în engleză). Accesat în 17 mai 2018.
  16. ^ Acinetobacter in Healthcare Settings”. Centers for Disease Control and Prevention. US Department of Health and Human Services. Accesat în 18 aprilie 2017.
  17. ^ Jones, A; Morgan, D; Walsh, A; Turton, J; Livermore, D; Pitt, T; Green, A; Gill, M; Mortiboy, D (iunie 2006). „Importation of multidrug-resistant Acinetobacter spp infections with casualties from Iraq”. The Lancet Infectious Diseases. 6 (6): 317–8. doi:10.1016/S1473-3099(06)70471-6. PMID 16728314.Mentenanță CS1: Formatul datelor (link)
  18. ^ Dijkshoorn, L; Nemec, A; Seifert, H (decembrie 2007). „An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii”. Nature Reviews Microbiology. 5 (12): 939–51. doi:10.1038/nrmicro1789. PMID 18007677.Mentenanță CS1: Formatul datelor (link)
  19. ^ „Acinetobacter in Healthcare Settings - HAI - CDC”. www.cdc.gov. Accesat în 2 aprilie 2018.
  20. ^ Multirezistente Acinetobacter baumanni (MDRAB)." CINE Regiunea Pacificului de Vest, WPRO | CINE Regiunea Pacificului de Vest, 1 Nov. 2010, www.wpro.who.int/mediacentre/factsheets/fs_20101102/en/.
  21. ^ Koulenti, D; Lisboa, T; Brun-Buisson, C; Krueger, W; Macor, A; Sole-Violan, J; Diaz, E; Topeli, A; DeWaele, J (august 2009). EU-VAP/CAP Study, Group. „Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units”. Critical Care Medicine. 37 (8): 2360–8. doi:10.1097/ccm.0b013e3181a037ac. PMID 19531951.Mentenanță CS1: Formatul datelor (link)
  22. ^ Ng, J; Gosbell, IB; Kelly, JA; Boyle, MJ; Ferguson, JK (noiembrie 2006). „Cure of multiresistant Acinetobacter baumannii central nervous system infections with intraventricular or intrathecal colistin: case series and literature review”. The Journal of Antimicrobial Chemotherapy. 58 (5): 1078–81. doi:10.1093/jac/dkl347. PMID 16916866.Mentenanță CS1: Formatul datelor (link)
  23. ^ Farrugia, DN; Elbourne, LD; Hassan, KA; Eijkelkamp, BA; Tetu, SG; Brown, MH; Shah, BS; Peleg, AY; Mabbutt, BC (2013). „The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii. PLoS ONE. 8 (3): e58628. Bibcode:2013PLoSO...858628F. doi:10.1371/journal.pone.0058628. PMC 3602452Accesibil gratuit. PMID 23527001. open access publication - free to read
  24. ^ Werneck, JS; Picão, RC; Carvalhaes, CG; Cardoso, JP; Gales, AC (februarie 2011). „OXA-72-producing Acinetobacter baumannii in Brazil: a case report”. The Journal of Antimicrobial Chemotherapy. 66 (2): 452–4. doi:10.1093/jac/dkq462. PMID 21131320.Mentenanță CS1: Formatul datelor (link)
  25. ^ Martins, N; Martins, IS; de Freitas, WV; de Matos, JA; Magalhães, AC; Girão, VB; Dias, RC; de Souza, TC; Pellegrino, FL (iunie 2012). „Severe infection in a lung transplant recipient caused by donor-transmitted carbapenem-resistant Acinetobacter baumannii. Transplant Infectious Disease. 14 (3): 316–20. doi:10.1111/j.1399-3062.2011.00701.x. PMC 3307813Accesibil gratuit. PMID 22168176.Mentenanță CS1: Formatul datelor (link)
  26. ^ Superti, SV; Martins Dde, S; Caierão, J; Soares Fda, S; Prochnow, T; Zavascki, AP (2009). „Indications of carbapenem resistance evolution through heteroresistance as an intermediate stage in Acinetobacter baumannii after carbapenem administration”. Revista do Instituto de Medicina Tropical de Sao Paulo. 51 (2): 111–3. doi:10.1590/s0036-46652009000200010. PMID 19390741.
  27. ^ Gionco, B; Pelayo, JS; Venancio, EJ; Cayô, R; Gales, AC; Carrara-Marroni, FE (octombrie 2012). „Detection of OXA-231, a new variant of blaOXA-143, in Acinetobacter baumannii from Brazil: a case report”. The Journal of Antimicrobial Chemotherapy. 67 (10): 2531–2. doi:10.1093/jac/dks223. PMID 22736746.Mentenanță CS1: Formatul datelor (link)
  28. ^ Zhao, WS; Liu, GY; Mi, ZH; Zhang, F (martie 2011). „Coexistence of blaOXA-23 with armA and novel gyrA mutation in a pandrug-resistant Acinetobacter baumannii isolate from the blood of a patient with haematological disease in China”. The Journal of Hospital Infection. 77 (3): 278–9. doi:10.1016/j.jhin.2010.11.006. PMID 21281989.Mentenanță CS1: Formatul datelor (link)
  29. ^ Xiao, SC; Zhu, SH; Xia, ZF; Ma, B; Cheng, DS (noiembrie 2009). „Successful treatment of a critical burn patient with obstinate hyperglycemia and septic shock from pan-drug-resistant strains”. Medical Science Monitor. 15 (11): CS163–5. PMID 19865060.Mentenanță CS1: Formatul datelor (link)
  30. ^ Wu, YC; Hsieh, TC; Sun, SS; Wang, CH; Yen, KY; Lin, YY; Kao, CH (noiembrie 2009). „Unexpected cloud-like lesion on gallium-67 scintigraphy: detection of subcutaneous abscess underneath the skin with normal appearance in a comatose patient in an intensive care setting”. The American Journal of the Medical Sciences. 338 (5): 388. doi:10.1097/maj.0b013e3181a6dd36. PMID 19770790.Mentenanță CS1: Formatul datelor (link)
  31. ^ Duan, X; Yang, L; Xia, P (martie 2010). „Septic arthritis of the knee caused by antibiotic-resistant Acinetobacter baumannii in a gout patient: a rare case report”. Archives of Orthopaedic and Trauma Surgery. 130 (3): 381–4. doi:10.1007/s00402-009-0958-x. PMID 19707778.Mentenanță CS1: Formatul datelor (link)
  32. ^ a b Wagner, JA; Nenoff, P; Handrick, W; Renner, R; Simon, J; Treudler, R (februarie 2011). „Necrotizing fasciitis caused by Acinetobacter baumannii : A case report”. Der Hautarzt; Zeitschrift für Dermatologie, Venerologie, und Verwandte Gebiete (în German). 62 (2): 128–30. doi:10.1007/s00105-010-1962-3. PMID 20835812.Mentenanță CS1: Formatul datelor (link) Mentenanță CS1: Limbă nerecunoscută (link)
  33. ^ Aivazova, V; Kainer, F; Friese, K; Mylonas, I (ianuarie 2010). „Acinetobacter baumannii infection during pregnancy and puerperium”. Archives of Gynecology and Obstetrics. 281 (1): 171–4. doi:10.1007/s00404-009-1107-z. PMID 19462176.Mentenanță CS1: Formatul datelor (link)
  34. ^ Schulte, B; Goerke, C; Weyrich, P; Gröbner, S; Bahrs, C; Wolz, C; Autenrieth, IB; Borgmann, S (decembrie 2005). „Clonal spread of meropenem-resistant Acinetobacter baumannii strains in hospitals in the Mediterranean region and transmission to South-west Germany”. The Journal of Hospital Infection. 61 (4): 356–7. doi:10.1016/j.jhin.2005.05.009. PMID 16213625.Mentenanță CS1: Formatul datelor (link)
  35. ^ Piparsania, S; Rajput, N; Bhatambare, G (2012). „Intraventricular polymyxin B for the treatment of neonatal meningo-ventriculitis caused by multi-resistant Acinetobacter baumannii--case report and review of literature”. The Turkish Journal of Pediatrics. 54 (5): 548–54. PMID 23427525.
  36. ^ John, TM; Jacob, CN; Ittycheria, CC; George, AM; Jacob, AG; Subramaniyam, S; Puthiyaveettil, J; Jayaprakash, R (martie 2012). „Macrophage activation syndrome following Acinetobacter baumannii sepsis”. International Journal of Infectious Diseases. 16 (3): e223–4. doi:10.1016/j.ijid.2011.12.002. PMID 22285540.Mentenanță CS1: Formatul datelor (link)
  37. ^ Sharma, A; Shariff, M; Thukral, SS; Shah, A (octombrie 2005). „Chronic community-acquired Acinetobacter pneumonia that responded slowly to rifampicin in the anti-tuberculous regime”. The Journal of Infection. 51 (3): e149–52. doi:10.1016/j.jinf.2004.12.003. PMID 16230195.Mentenanță CS1: Formatul datelor (link)
  38. ^ Jeong, HL; Yeom, JS; Park, JS; Seo, JH; Park, ES; Lim, JY; Park, CH; Woo, HO; Youn, HS (2011). „Acinetobacter baumannii isolation in cerebrospinal fluid in a febrile neonate”. The Turkish Journal of Pediatrics. 53 (4): 445–7. PMID 21980849.
  39. ^ Hong, KB; Oh, HS; Song, JS; Lim, JH; Kang, DK; Son, IS; Park, JD; Kim, EC; Lee, HJ (iulie 2012). „Investigation and control of an outbreak of imipenem-resistant Acinetobacter baumannii Infection in a Pediatric Intensive Care Unit”. The Pediatric Infectious Disease Journal. 31 (7): 685–90. doi:10.1097/inf.0b013e318256f3e6. PMID 22466324.Mentenanță CS1: Formatul datelor (link)
  40. ^ Lee, YK; Kim, JK; Oh, SE; Lee, J; Noh, JW (decembrie 2009). „Successful antibiotic lock therapy in patients with refractory peritonitis”. Clinical Nephrology. 72 (6): 488–91. doi:10.5414/cnp72488. PMID 19954727.Mentenanță CS1: Formatul datelor (link)
  41. ^ Lee, SY; Lee, JW; Jeong, DC; Chung, SY; Chung, DS; Kang, JH (august 2008). „Multidrug-resistant Acinetobacter meningitis in a 3-year-old boy treated with i.v. colistin”. Pediatrics International. 50 (4): 584–5. doi:10.1111/j.1442-200x.2008.02677.x. PMID 18937759.Mentenanță CS1: Formatul datelor (link)
  42. ^ Adams, D; Yee, L; Rimmer, JA; Williams, R; Martin, H; Ovington, C (februarie 2011). „Investigation and management of an A. Baumannii outbreak in ICU”. British Journal of Nursing. 20 (3): 140, 142, 144–7. doi:10.12968/bjon.2011.20.3.140. PMID 21378633.Mentenanță CS1: Formatul datelor (link)
  43. ^ Pencavel, TD; Singh-Ranger, G; Crinnion, JN (mai 2006). „Conservative treatment of an early aortic graft infection due to Acinetobacter baumanii”. Annals of Vascular Surgery. 20 (3): 415–7. doi:10.1007/s10016-006-9030-2. PMID 16602028.Mentenanță CS1: Formatul datelor (link)
  44. ^ Gusten, WM; Hansen, EA; Cunha, BA (2002). „Acinetobacter baumannii pseudomeningitis”. Heart & Lung. 31 (1): 76–8. doi:10.1067/mhl.2002.120258. PMID 11805753.
  45. ^ Fitzpatrick, MA; Esterly, JS; Postelnick, MJ; Sutton, SH (2012). „Successful treatment of extensively drug-resistant Acinetobacter baumannii peritoneal dialysis peritonitis with intraperitoneal polymyxin B and ampicillin-sulbactam”. Annals of Pharmacotherapy. 46 (7–8): e17. doi:10.1345/aph.1r086. PMID 22811349.
  46. ^ Patel, JA; Pacheco, SM; Postelnick, M; Sutton, S (15 august 2011). „Prolonged triple therapy for persistent multidrug-resistant Acinetobacter baumannii ventriculitis”. American Journal of Health-System Pharmacy. 68 (16): 1527–31. doi:10.2146/ajhp100234. PMID 21817084.
  47. ^ Sullivan, DR; Shields, J; Netzer, G (iunie 2010). „Fatal case of multi-drug resistant Acinetobacter baumannii necrotizing fasciitis”. The American Surgeon. 76 (6): 651–3. PMID 20583528.Mentenanță CS1: Formatul datelor (link)
  48. ^ Acinetobacter baumannii: Role in Blood Stream Infection in Neonatal Unit, Cipto Mangunkusumo Hospital, Jakarta, Indonesia”. International Journal of Microbiology. 2013: 180763. 2013. doi:10.1155/2013/180763. PMC 3830835Accesibil gratuit. PMID 24288538.
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia autori și editori
orijinal
kaynağı ziyaret et
ortak site
wikipedia RO

Acinetobacter baumannii: Brief Summary ( Romence; Moldovaca )

wikipedia RO tarafından sağlandı

Acinetobacter baumannii este o bacterie gram-negativă, de obicei scurtă, aproape rotundă în formă de tijă (coccobacillus). Acesta poate fi un agent patogen oportunist la om, care afectează persoanele cu sistemul imunitar compromis, și care este din ce în ce mai frecvent cauza infecțiilor spitalicești (nosocomiale). În timp ce alte specii din genul Acinetobacter sunt adesea găsite în probe de sol (ceea ce duce la concepția greșită că A. baumannii este un organism care trăiește de asemenea în sol), A. baumannii este aproape exclusiv prezentă în medii spitalicești. Deși ocazional a fost identificată în probe de sol și apă din natură, habitatul său natural este încă necunoscut.

Bacteriile din acest gen nu prezintă flagel, o structură ca un bici folosită pentru locomoție, dar prezintă motilitate prin spasme sau de grup. Acest lucru poate fi datorat activității pililor de tip IV, care pot fi extinși și retrași. Motilitatea în A. baumannii poate fi de asemenea datorată excreției de exopolizaharide, prin care se creează un film de polizaharide cu masă moleculară mare în urma bacteriei care îi permite astfel să avanseze. Microbiologii clinici diferențieză membrii din genul Acinetobacter de alte Moraxellaceae prin efectuarea unui test al oxidazei, deoarece Acinetobacter spp. sunt singurii membri ai Moraxellaceae cărora le lipsesc oxidazele citocromului c.

A. baumannii este parte a complexului ACB (A. baumannii, A. calcoaceticus și speciile genomice Acinetobacter 13TU). Membrii complexului ACB sunt dificil de diferențiat și reprezintă membrii genului care sunt cei mai relevanți din punct de vedere clinic. A. baumannii este de asemenea un patogen ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter sp.), un grup de agenți patogeni cu o rată ridicată de rezistență la antibiotice, care sunt responsabili de majoritatea infecțiilor nosocomiale.

Colocvial, A. baumannii este numită și „Iraqibacter” datorită apariției aparent bruște în spitalele militare din timpul Războiului din Irak. Bacteria a continuat să fie o problemă pentru veteranii și soldații care au luptat în Irak și Afganistan. Tulpinile A. baumannii rezistente la antibiotice s-au răspândit în spitale civile, ca urmare a transportului de soldați infectați prin mai multe unități medicale.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia autori și editori
orijinal
kaynağı ziyaret et
ortak site
wikipedia RO

Acinetobacter baumannii ( Rusça )

wikipedia русскую Википедию tarafından sağlandı
Порядок: Pseudomonadales
Семейство: Moraxellaceae
Вид: Acinetobacter baumannii
Международное научное название

Acinetobacter baumannii
Bouvet and Grimont 1986

Wikispecies-logo.svg
Систематика
на Викивидах
Commons-logo.svg
Изображения
на Викискладе
ITIS 958767NCBI 470EOL 972983

Acinetobacter baumannii (лат.) — вид грамотрицательных бактерий из рода ацинетобактеров. Видовой эпитет дан в честь Пола и Линды Бауман (Paul & Linda Baumann)[1].

Описание

Эти бактерии короткие, почти круглые. Их естественная среда обитания до сих пор неизвестна, но в человеческой культуре они ответственны за множество случаев внутрибольничных инфекций. Вызывают менингит, пневмонию, заражение ран, инфекции кровотока и урологические инфекции. Являются проблемой для западных ветеранов Ирака и Афганистана, так как неоднократно приводили к осложнениям при лечении полученных ими ранений. Из-за последнего обстоятельства бактерию даже иронично прозвали Iraqibacter. Оппортунистические заболевания, вызванные Acinetobacter baumannii, могут не отличаться по симптомам от вызванных другими бактериями. Бактерия представляет очень небольшой риск для здоровых людей, атакуя, однако, тех, чей иммунитет снижен, а пребывание в больничных стенах длится уже долгое время, а также больных диабетом, заболеваниями лёгких и некоторых других пациентов[2].

A. baumannii входит в так называемый комплекс ACB (A. baumannii, A. calcoaceticus и неописанный вид Acinetobacter 13TU). Внутри него трудно отследить конкретный вид и его воздействие[3][4]. A. baumannii также включают в так называемый ESKAPE-патоген (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa и виды из рода Enterobacter), группу бактерий с повышенной резистентностью к антибиотикам, которые ответственны за большинство больничных инфекций[5].

Меры профилактики и противодействия

В больницах для предотвращения заражения этими бактериями практикуют более внимательное отношение к мытью рук и процедурам стерилизации[6]. Ряд препаратов эффективны против них, однако имеют побочные эффекты.

Примечания

  1. Genus Acinetobacter : [англ.] // LPSN. (Проверено 16 декабря 2017).
  2. Acinetobacter in Healthcare Settings (неопр.). Centers for Disease Control and Prevention. US Department of Health and Human Services. Проверено 18 апреля 2017.
  3. O'Shea M. K. (May 2012). “Acinetobacter in modern warfare”. International Journal of Antimicrobial Agents. 39 (5): 363—375. DOI:10.1016/j.ijantimicag.2012.01.018. PMID 22459899.
  4. Gerner-Smidt P. (October 1992). “Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex”. Journal of Clinical Microbiology. 30 (10): 2680—2685. PMC 270498. PMID 1383266.
  5. Rice L. B. (15 April 2008). “Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE”. The Journal of Infectious Diseases. 197 (8): 1079—1081. DOI:10.1086/533452. PMID 18419525.
  6. Acinetobacter in Healthcare Settings (неопр.). CDC. Проверено 8 апреля 2013.
 title=
lisans
cc-by-sa-3.0
telif hakkı
Авторы и редакторы Википедии

Acinetobacter baumannii: Brief Summary ( Rusça )

wikipedia русскую Википедию tarafından sağlandı

Acinetobacter baumannii (лат.) — вид грамотрицательных бактерий из рода ацинетобактеров. Видовой эпитет дан в честь Пола и Линды Бауман (Paul & Linda Baumann).

lisans
cc-by-sa-3.0
telif hakkı
Авторы и редакторы Википедии

鮑氏不動桿菌 ( Çince )

wikipedia 中文维基百科 tarafından sağlandı
 src=
本条目可参照英語維基百科相應條目来扩充(2018年4月20日)
若您熟悉来源语言和主题,请协助参考外语维基扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。

鮑氏不動桿菌(學名:Acinetobacter baumannii,俗稱:AB菌),屬於革蘭氏陰性菌,不具鞭毛,移動性不高,但生命力極強,可廣泛地存在於大自然中。該菌是不动杆菌属细菌中在临床医学中常见的一种,也是水產養殖業動物的病原菌。

因為抗生素的濫用,導致鮑氏不動桿菌產生抗藥性,變成「多重抗藥性鮑氏不動桿菌」。目前對抗多重抗藥性鮑氏不動桿菌的方法只有用後線抗生素老虎黴素[1]

参考

  1. ^ 房海,陈翠珍,张晓君编著. 水产养殖动物病原细菌学. 北京:中国农业出版社. 2010.01: 488. ISBN 978-7-109-14027-1. 请检查|date=中的日期值 (帮助)
α立克次體目立克次體科/
立克次體病斑疹傷寒 斑點熱蜱傳播 蟎傳播 跳蚤傳播 無形小體科 根瘤菌目布魯氏桿菌科 巴爾通氏體科 β奈瑟氏球菌科M+ M- 未分類: 伯克氏菌目 γ腸桿菌科
(OX-)Lac+ 慢/弱 Lac-H2S+H2S- 巴斯德氏菌科嗜血杆菌属: 多殺性巴氏桿菌 抗伴放線放線桿菌 軍團菌目 硫發菌目 弧菌科 假單胞菌目 黃單胞菌科 心桿菌科 氣單胞菌目 ε胎兒彎曲菌

细菌分类

gr+fgr+at)/gr-pcgr-o

药物(J1pwnm疫苗

 title=
lisans
cc-by-sa-3.0
telif hakkı
维基百科作者和编辑

鮑氏不動桿菌: Brief Summary ( Çince )

wikipedia 中文维基百科 tarafından sağlandı

鮑氏不動桿菌(學名:Acinetobacter baumannii,俗稱:AB菌),屬於革蘭氏陰性菌,不具鞭毛,移動性不高,但生命力極強,可廣泛地存在於大自然中。該菌是不动杆菌属细菌中在临床医学中常见的一种,也是水產養殖業動物的病原菌。

因為抗生素的濫用,導致鮑氏不動桿菌產生抗藥性,變成「多重抗藥性鮑氏不動桿菌」。目前對抗多重抗藥性鮑氏不動桿菌的方法只有用後線抗生素老虎黴素

lisans
cc-by-sa-3.0
telif hakkı
维基百科作者和编辑