धानको मरुवा धानलाई असर गर्ने ढुसीजन्य रोग हो । यो रोग संसारका ८५ वटा देशमा लाग्ने गरेको बताइन्छ ।[१]
बालाको घाँटी चाउरिएका र वरिपरि खरानी रङका भुवादार लाही र पातका केन्द्रामा खैरा थोप्लाहरू देखिन्छन् । रोगका लक्षण प्राय बोट भरी नै देखिन्छन् । यसले बालामा कम दाना लाग्ने गराउँछ ।[१]
हावामा रहेको पानीको मात्रा र पातको चिस्यानले रोगलाई प्रोत्साहन गर्छ ।
रोग निरोधक जातको विकास एवम् प्रयोग, सिँचाइ र विषादीको उचित र आवश्यक मात्राको प्रयोग यसको व्यवस्थापनका लागि अपनाउन सकिन्छ ।
|deadurl=
प्यारामिटर ग्रहण गरेन (सहायता) धानको मरुवा धानलाई असर गर्ने ढुसीजन्य रोग हो । यो रोग संसारका ८५ वटा देशमा लाग्ने गरेको बताइन्छ ।
Magnaporthe grisea, also known as rice blast fungus, rice rotten neck, rice seedling blight, blast of rice, oval leaf spot of graminea, pitting disease, ryegrass blast, Johnson spot,[1][2][3][4][5][6][7] neck blast,[8][9][10][11] wheat blast,[12] and Imochi (Japanese:稲熱) is a plant-pathogenic fungus and model organism[13] that causes a serious disease affecting rice. It is now known that M. grisea consists of a cryptic species complex containing at least two biological species that have clear genetic differences and do not interbreed.[14] Complex members isolated from Digitaria have been more narrowly defined as M. grisea. The remaining members of the complex isolated from rice and a variety of other hosts have been renamed Magnaporthe oryzae, within the same M. grisea complex.[14] Confusion on which of these two names to use for the rice blast pathogen remains, as both are now used by different authors.
Members of the M. grisea complex can also infect other agriculturally important cereals including wheat, rye, barley, and pearl millet causing diseases called blast disease or blight disease. Rice blast causes economically significant crop losses annually. Each year it is estimated to destroy enough rice to feed more than 60 million people. The fungus is known to occur in 85 countries worldwide[15] and as of 2003 was the most devastating fungal plant pathogen in the world.[13]
M. grisea is an ascomycete fungus. It is an extremely effective plant pathogen as it can reproduce both sexually and asexually to produce specialized infectious structures known as appressoria that infect aerial tissues and hyphae that can infect root tissues.
Rice blast has been observed on rice strains M-201, M-202, M-204, M-205, M-103, M-104, S-102, L-204, Calmochi-101, with M-201 being the most vulnerable.[16] Initial symptoms are white to gray-green lesions or spots with darker borders produced on all parts of the shoot, while older lesions are elliptical or spindle-shaped and whitish to gray with necrotic borders. Lesions may enlarge and coalesce to kill the entire leaf. Symptoms are observed on all above-ground parts of the plant.[17] Lesions can be seen on the leaf collar, culm, culm nodes, and panicle neck node. Internodal infection of the culm occurs in a banded pattern. Nodal infection causes the culm to break at the infected node (rotten neck).[18] It also affects reproduction by causing the host to produce fewer seeds. This is caused by the disease preventing maturation of the actual grain.[15]
The pathogen infects as a spore that produces lesions or spots on parts of the rice plant such as the leaf, leaf collar, panicle, culm and culm nodes. Using a structure called an appressorium, the pathogen penetrates the plant. The appressorium cell wall is chitinous and its inner side contains melanin.[1]: 184 which is necessary to damage host structures.[1]: 184 [13] The turgor pressure generated during this process is sufficient to penetrate the plants' cuticles routinely, and experimentally can penetrate Kevlar. This impressive turgor is produced by synthesis of glycerol and maintained by the aforementioned appressorial melanin.[13] The pathogen is able to move between the plant cells using its invasive hyphae to enter through plasmodesmata.[19] M. grisea then sporulates from the diseased rice tissue to be dispersed as conidiospores.[20] After overwintering in sources such as rice straw and stubble, the cycle repeats.[15]
A single cycle can be completed in about a week under favorable conditions where one lesion can generate up to thousands of spores in a single night. Disease lesions, however, can appear in three to four days after infection.[21] With the ability to continue to produce the spores for over 20 days, rice blast lesions can be devastating to susceptible rice crops.[22]
Infection of rice induces phosphorylation of the light-harvesting complex II protein LHCB5 .[23] LHCB5 is required for a reactive oxygen species burst produced by the host which provides resistance against this pathogen.[23]
Rice blast is a significant problem in temperate regions and can be found in areas such as irrigated lowland and upland.[24] Conditions conducive for rice blast include long periods of free moisture and/or high humidity, because leaf wetness is required for infection.[24] Sporulation increases with high relative humidity and at 25–28 °C (77–82 °F), spore germination, lesion formation, and sporulation are at optimum levels.[15]
In terms of control, excessive use of nitrogen fertilization as well as drought stress increase rice susceptibility to the pathogen as the plant is placed in a weakened state and its defenses are low.[15] Flooding and draining fields is normal in rice growing, however leaving a field drained for extended periods also favors infection as that will aerate the soil, converting ammonium to nitrate and thus causing stress to rice crops, as well.[15]
Wheat blast was found in the 2017-2018 rainy season in Zambia]], in the Mpika district of the Muchinga Province.[25][26]
In February 2016 a devastating wheat epidemic struck Bangladesh.[27][28] Transcriptome analysis showed this to be an M. grisea lineage most likely from Minas Gerais, São Paulo, Brasília, and Goiás states of Brazil and not from any geographically proximate strains.[27][28] This successful diagnosis shows the ability of genetic surveillance to untangle the novel biosecurity implications of transcontinental transportation[27][28] and allows the Brazilian experience to be rapidly applied to the Bangladeshi situation.[27][28] To that end the government has set up an early warning system to track its spread through the country.[28]
This fungus faces both fungicides and genetic resistance in some types of rice developed by plant breeders. It is able to establish both resistance to those chemical treatments and virulence to crop resistance by genetic change through mutation. In order to most effectively control infection by M. grisea, an integrated management program should be implemented to avoid overuse of a single control method and fight against genetic resistance. For example, eliminating crop residue could reduce the occurrence of overwintering and discourage inoculation in subsequent seasons. Another strategy would be to plant resistant rice varieties that are not as susceptible to infection by M. grisea.[15] Knowledge of the pathogenicity of M. grisea and its need for free moisture suggest other control strategies such as regulated irrigation and a combination of chemical treatments with different modes of action.[15] Managing the amount of water supplied to the crops limits spore mobility thus dampening the opportunity for infection. Chemical controls such as Carpropamid have been shown to prevent penetration of the appressoria into rice epidermal cells, leaving the grain unaffected.[29] Papajani et al. 2015 finds the essential oils of both Origanum vulgare and Rosmarinus officinalis to be effective in vitro, and provides treatment thresholds.[30]: 107–108
The wheat blast strain can be diagnosed by sequencing.[12]: 45 Thierry et al., 2020 presents a set of genetic markers which can be found by polymerase chain reaction (PCR), real-time PCR (RT-PCR), and loop-mediated isothermal amplification (LAMP).[12]: 45 The big advantages of the Thierry markers are that they do not miss isolates lacking the Mot3 sequence, for example BR0032, and its great sensitivity.[12]: 45
Some innovative biologically-immitative fungicides are being developed from small RNAs and short peptides.[31] SNP-D4 is a short peptide located by an in vitro library screen against the M. oryzae calmodulin.[31] It binds to calmodulin, inhibits conidia formation, and blocks spore germination.[31]
Rice blast is the most important disease concerning rice crops in the world. Since rice is an important food source for much of the world, its effects have a broad range. It has been found in over 85 countries across the world and reached the United States in 1996. Every year the amount of crops lost to rice blast could feed 60 million people. Although there are some resistant strains of rice, the disease persists wherever rice is grown. The disease has never been eradicated from a region.[32]
Three strains, albino (defined by a mutation at the ALB1 locus), buff (BUF1), and rosy (RSY1) have been extensively studied because they are nonpathogenic. This has been found to be due to nonuse of melanin, which is a virulence factor in M. grisea.[1]: 184 The pathovar triticum strain (M. o. pv. triticum) causes the wheat blast disease.[12]
Whole-genome sequences were just becoming possible, and being made available, in 2003.[13]
A mitogen-activated protein kinase (MAPK) called pmk1 is genetically close to one necessary for mating and cell morphology in yeasts, FUS3/KSS1. Defective mutant yeast are somewhat or entirely restored in mating function if they are given a copy of pmk1. It was therefore assumed that this must only be a mating and development gene in M. grisea, however it turns out to be both vital to the female mating process and in appressorium function and pathogenicity as a whole.[13]
Because signal links between MAPKs and cyclic adenosine monophosphates were shown to be required for mating in several other models, including Ustilago maydis and several others, this was assumed to be true for M. grisea, and yet that was then shown to be unnecessary in this model. This demonstrates significant variety in cellular function within fungi.[13]
The transaminase alanine: glyoxylate aminotransferase 1 (AGT1) has been shown to be crucial to the pathogenicity of M. grisea through its maintenance of redox homeostasis in peroxisomes. Lipids transported to the appressoria during host penetration are degraded within a large central vacuole, a process that produces fatty acids. β-Oxidation of fatty acids is an energy producing process that generates Acetyl-CoA and the reduced molecules FADH2 and NADH, which must be oxidized in order to maintain redox homeostasis in appressoria. AGT1 promotes lactate fermentation, oxidizing NADH/FADH2 in the process.[33]
M. grisea mutants lacking the AGT1 gene were observed to be nonpathogenic through their inability to penetrate host surface membranes. This indicates the possibility of impaired lipid utilization in M. grisea appressoria in the absence of the AGT1 gene.[34]
Magnaporthe grisea, also known as rice blast fungus, rice rotten neck, rice seedling blight, blast of rice, oval leaf spot of graminea, pitting disease, ryegrass blast, Johnson spot, neck blast, wheat blast, and Imochi (Japanese:稲熱) is a plant-pathogenic fungus and model organism that causes a serious disease affecting rice. It is now known that M. grisea consists of a cryptic species complex containing at least two biological species that have clear genetic differences and do not interbreed. Complex members isolated from Digitaria have been more narrowly defined as M. grisea. The remaining members of the complex isolated from rice and a variety of other hosts have been renamed Magnaporthe oryzae, within the same M. grisea complex. Confusion on which of these two names to use for the rice blast pathogen remains, as both are now used by different authors.
Members of the M. grisea complex can also infect other agriculturally important cereals including wheat, rye, barley, and pearl millet causing diseases called blast disease or blight disease. Rice blast causes economically significant crop losses annually. Each year it is estimated to destroy enough rice to feed more than 60 million people. The fungus is known to occur in 85 countries worldwide and as of 2003 was the most devastating fungal plant pathogen in the world.
Magnaporthe grisea, llamado tizón del arroz,[1][2][3][4][5][6][7] es un hongo patogénico de las plantas que causa una enfermedad importante que afecta al arroz. Se sabe que M. grisea consiste de un complejo críptico de especies que contiene por lo menos dos especies biológicas que poseen claras diferencias géneticas y que no se cruzan[8] Los miembros aislados de Digitaria han sido definidos en forma más precisa como M. grisea. Y el resto de los miembros aislados del complejo del arroz y de una variedad de otros hospedadores han sido renombrados Magnaporthe oryzae, en el mismo complejo M. grisea.[8] Sigue habiendo confusión sobre cuál de estos dos nombres utilizar para el patógeno del tizón del arroz, ya que ambos son utilizados ahora por diferentes autores.
Los miembros del complejo Magnaporthe grisea también pueden infectar otros cereales de importancia agrícola, como el trigo, centeno, cebada y mijo perla, causando enfermedades llamada enfermedad de tizón. El tizón del arroz causa anualmente pérdidas de cultivos económicamente significativas. Se estima que cada año se destruye suficiente arroz para alimentar a más de 60 millones de personas. Se sabe que el hongo ocurre en 85 países en todo el mundo.[9]
M. grisea es un hongo ascomiceto. Es un patógeno de plantas extremadamente eficaz ya que puede reproducirse tanto sexual como asexualmente para producir estructuras infecciosas especializadas conocidas como appressoria que infectan tejidos aéreos e hifas que pueden infectar tejidos de las raíces.
El tizón del arroz se ha observado en las cepas de arroz M-201, M-202, M-204, M-205, M-103, M-104, S-102, L-204, Calmochi-101, siendo M-201 la más vulnerable. [10] Los síntomas iniciales son lesiones o manchas de color blanco a gris verdoso que producen bordes más oscuros en todas las partes del brote, mientras que las lesiones más antiguas son elípticas o fusiformes y de tono blanquecino a gris con bordes necróticos. Las lesiones pueden agrandarse y fusionarse para matar toda la hoja. Los síntomas se observan en todas las partes aéreas de la planta.[11] Las lesiones se pueden ver en el collar de la hoja, tallo, los nudos del tallo y el nudo del cuello de la panícula. La infección internodal del culmo se presenta en forma de bandas. La infección nodal hace que el culmo se rompa en el nodo infectado (cuello podrido).[12] También afecta la reproducción al hacer que el hospedador produzca menos semillas. Esto es causado por la enfermedad que impide la maduración del grano.[9]
El patógeno infecta cuando una espora produce lesiones o manchas en partes de la planta de arroz como la hoja, el collar de la hoja, la panícula, el tallo y los nudos del tallo. Usando una estructura llamada apresorio, el patógeno penetra en la planta. El patógeno es capaz de moverse entre las células vegetales utilizando sus hifas invasivas para entrar a través del plasmodesmo.[13]M. grisea luego esporula del tejido del arroz enfermo para dispersarse como conidio esporas.[14] Después de invernar en fuentes como paja de arroz y rastrojo, el ciclo se repite.[9]
Un ciclo se puede completar en aproximadamente una semana en condiciones favorables donde una lesión puede generar hasta miles de esporas en una sola noche. Sin embargo, las lesiones de la enfermedad pueden aparecer de tres a cuatro días después de la infección.[15] Con la capacidad de continuar produciendo las esporas durante más de 20 días, las lesiones por tizón del arroz pueden ser devastadoras para los cultivos de arroz susceptibles.[16]
El tizon del arroz es un problema significativo en regiones templadas y se le encuentra en zonas de tierras bajas o altas irrigadas.[17] Las condiciones propicias para el tizón del arroz incluyen largos períodos de alta humedad, porque la humedad de las hojas es necesaria para que se desarrolle la infección.[17] La esporulación aumenta con la humedad relativa alta (25-28 ° C), la germinación de esporas, la formación de lesiones y la esporulación se encuentran en niveles óptimos..[9]
En términos de control, el uso excesivo de fertilización con nitrógeno y el estrés por sequía aumentan la susceptibilidad del arroz al patógeno, ya que la planta se debilita y sus defensas son bajas.[9] La inundación y el drenaje de los campos son normales en el cultivo de arroz, sin embargo, dejar un campo drenado durante períodos prolongados también favorece la infección, ya que aireará el suelo, convirtiendo el amonio en nitrato y, por lo tanto, causando estrés en los cultivos de arroz.[9]
Se encontró tizon de trigo en la temporada de lluvias 2017-2018 en Zambia, en el distrito de Mpika de la Provincia de Muchinga.[18][19]
En febrero del 2016 una epidemia devastadora del trigo asoló Bangladés.[20][21] Los análisis transcriptome indicaron que la causa era una cepa de M. grisea muy probablemente la de los estados de Minas Gerais, São Paulo, Brasília, y Goiás en Brasil y no de cepas geográficamente más cercanas.[20][21] Este diagnóstico exitoso muestra la capacidad de la vigilancia genética para desenredar las nuevas implicaciones de bioseguridad del transporte transcontinental,[20][21] y permitió aplicar la experiencia brasilera rápidamente para gestionar la situación en Bangladés.[20][21] A este efecto el gobierno de Bangladés ha creado un sistema de alerta temprana para monitorear su difusión por el país.[21]
El hongo ha podido desarrollar resistencia tanto a tratamientos químicos como genética en algunos tipos de arroz desarrollados por fitomejoradores. Se cree que el hongo puede lograrlo mediante un cambio genético mediante mutación. Para controlar de manera más eficaz la infección por M. grisea, se debe implementar un programa de manejo integrado para evitar el uso excesivo de un único método de control y luchar contra la resistencia genética. Por ejemplo, la eliminación de residuos de cultivos podría reducir la ocurrencia de hibernación y desalentar la inoculación en temporadas posteriores. Otra estrategia sería plantar variedades de arroz resistentes que no sean tan susceptibles a la infección por M. grisea.[9] El conocimiento de la patogenicidad de M. grisea y su necesidad de humedad libre sugiere otras estrategias de control como el riego regulado y una combinación de tratamientos químicos con diferentes modos de acción.[9] La gestión de la cantidad de agua suministrada a los cultivos limita la movilidad de las esporas, lo que reduce la posibilidad de infección. Se ha demostrado que los controles químicos como la Carpropamida previenen la penetración de los apresorios en las células epidérmicas del arroz, sin afectar el grano.[22]
El tizón del arroz es la enfermedad más importante que afecta a los cultivos de arroz en el mundo. Dado que el arroz es una fuente importante de alimento para gran parte del mundo, sus efectos tienen un amplio impacto. Se ha encontrado en más de 85 países de todo el mundo y llegó a los Estados Unidos en 1996. Cada año, la cantidad de cosechas perdidas por el tizón del arroz podría alimentar a 60 millones de personas. Aunque existen algunas cepas de arroz resistentes, la enfermedad persiste dondequiera que se cultive el arroz. La enfermedad nunca ha sido erradicada de una región.[23]
|url-status=
ignorado (ayuda) |doi-access=
ignorado (ayuda); Se sugiere usar |número-autores=
(ayuda) Magnaporthe grisea, llamado tizón del arroz, es un hongo patogénico de las plantas que causa una enfermedad importante que afecta al arroz. Se sabe que M. grisea consiste de un complejo críptico de especies que contiene por lo menos dos especies biológicas que poseen claras diferencias géneticas y que no se cruzan Los miembros aislados de Digitaria han sido definidos en forma más precisa como M. grisea. Y el resto de los miembros aislados del complejo del arroz y de una variedad de otros hospedadores han sido renombrados Magnaporthe oryzae, en el mismo complejo M. grisea. Sigue habiendo confusión sobre cuál de estos dos nombres utilizar para el patógeno del tizón del arroz, ya que ambos son utilizados ahora por diferentes autores.
Los miembros del complejo Magnaporthe grisea también pueden infectar otros cereales de importancia agrícola, como el trigo, centeno, cebada y mijo perla, causando enfermedades llamada enfermedad de tizón. El tizón del arroz causa anualmente pérdidas de cultivos económicamente significativas. Se estima que cada año se destruye suficiente arroz para alimentar a más de 60 millones de personas. Se sabe que el hongo ocurre en 85 países en todo el mundo.
Magnaporthe grisea est une espèce de champignons magnaporthes) ascomycètes hétérothalliques et haploïdes de la famille des Magnaporthaceae.
C'est le premier pathogène des monocultures intensives de riz dont il nécrose la tige au niveau des épis.
La pyriculariose, nom donné à cette maladie est responsable de pertes atteignant souvent 20 % de la récolte, voire 100 % dans les zones humides et fraiches (ex : Yunnan Chine). Il attaque aussi d'autres Poaceae, le blé, le seigle, l'orge et le millet.
D’un point de vue économique M. grisea cause d’importantes pertes chaque année ; on estime qu’en une année, il détruit une quantité de riz pouvant nourrir plus de 60 millions de personnes. Ce champignon est présent dans quelque 85 pays. Il est parfois utilisé comme organisme modèle dans l'étude des champignons phytopathogènes.
M. grisea est un champignon ascomycète. C'est un redoutable agent pathogène des plantes, capable de se reproduire aussi bien de façon sexuée qu'asexuée pour développer des structures spécialisées dans l’infection connue sous le nom d’appressorium qui infectent les tissus aériens et les hyphes.
En 2004, il a été montré qu’en plus d'infecter les plantes par les feuilles, M.grisea peut aussi infecter les racines. de la plante. Le mode d'infection de la racine est semblable à celui de la plupart des champignons : il développe de longs hyphes qui forment un tapis pour pénétrer à l'intérieur de la racine. Une fois entré dans la racine, le champignon peut produire des structures de latence. Ce champignon peut aussi envahir le système vasculaire de la plante en poussant dans le xylème et le phloème et en bloquant le transport des éléments nutritifs et de l'eau des racines, produisant ainsi des lésions sur les parties aériennes des plantes.
L'infection des racines et des tissus vasculaires peut tuer les plantes en empêchant l'approvisionnement en eau et en nutriments.
Les souches du champignon peuvent infecter en plus du riz, d'autres graminées comme l'orge, le blé, le seigle, le mil, certaines herbes et le gazon. Ainsi, même lorsque les récoltes sont brûlées pour détruire les infections, de l'herbe ou des mauvaises herbes peuvent jouer le rôle de réservoir de la maladie. La maladie peut porter des noms différents selon la culture infectés.
Le riz et les Poaceae ont coévolué avec ce pathogène. Ils possèdent contre lui de nombreux gènes de résistance, mais qui pour la plupart sont spécifiques à certains variants du champignon.
Magnaporthe grisea est le premier champignon pathogène dont le génome (11 109 gènes) a été entièrement séquencé[1].
La première description de la maladie s’est probablement faite en Chine en 1637. Il a ensuite été décrite au Japon en 1704 (référence ?) et en Italie en 1828 (référence ?). Le champignon est actuellement présent dans au moins 85 pays. En 1996, M. grisea a été trouvé en Californie et a depuis été trouvé dans l'herbe sur les terrains de golf dans le Midwest des États-Unis.
Le champignon a été capable de développer une résistance à des traitements chimiques et a pu surmonter la sélection génétique des plants de riz résistants. Les chercheurs espèrent que le fait d'avoir la séquence du génome du champignon rendra possible le développement de méthodes de contrôle efficaces. Par exemple, un mutant de M. grisea, incapable de produire une pénétration de la feuille perd la capacité d’infecter le riz.
Des spores de M. grisea ont été préparées pour servir d'arme biologique contre les cultures à la fois par les États-Unis et l'URSS pendant la Seconde Guerre mondiale[2]. Les États-Unis sont connus pour avoir étudié ce champignon pour l’utiliser contre des cultures de riz du Japon pendant la Seconde Guerre mondiale[3]. Les "Chemical Warfare Service" américains ont collaboré avec des scientifiques canadiens et britanniques mais la guerre a pris fin avant que le projet ne soit concrétisé[4]. Dans la mesure où les spores résistent peu aux climats chauds, le champignon n'a pas été considéré comme ayant beaucoup de potentiel comme arme biologique[3]. Les chercheurs américains ont montré un regain d'intérêt pour M. grisea en tant qu’arme au cours des années 1960[5]. De 1962 à 1969 des spores de M. grisea sont produites par Pfizer et expédiée à Fort Detrick. L'ensemble des stocks de M.grisea des États-Unis a été détruit au cours du processus de démilitarisation des armes biologiques, qui a été achevé en 1973[6].
Une technique traditionnelle d'élevage de carpes en association avec la riziculture a fait l'objet d'études récentes, montrant qu'elle permettait d'utiliser 2/3 de pesticides en moins et 1/4 de fertilisants en moins [7]. Les carpes permettent en effet de lutter efficacement contre Magnaporthe grisea ou d'autres parasites comme la cicadelle brune[7]. Par ailleurs, elles permettent de réguler la quantité d'azote et ainsi de faire un moindre usage des fertilisants[7].
Magnaporthe grisea est une espèce de champignons magnaporthes) ascomycètes hétérothalliques et haploïdes de la famille des Magnaporthaceae.
C'est le premier pathogène des monocultures intensives de riz dont il nécrose la tige au niveau des épis.
La pyriculariose, nom donné à cette maladie est responsable de pertes atteignant souvent 20 % de la récolte, voire 100 % dans les zones humides et fraiches (ex : Yunnan Chine). Il attaque aussi d'autres Poaceae, le blé, le seigle, l'orge et le millet.
D’un point de vue économique M. grisea cause d’importantes pertes chaque année ; on estime qu’en une année, il détruit une quantité de riz pouvant nourrir plus de 60 millions de personnes. Ce champignon est présent dans quelque 85 pays. Il est parfois utilisé comme organisme modèle dans l'étude des champignons phytopathogènes.
Galar fungasach a dhéanann loit ar dhuilleoga, gais is panacail na ríse. Bíonn cailliúint shuntasach, fiú cliseadh an bhairr i rís páirce báite mar thoradh air. É seo ba chúis leis an ngorta sa Bheangáil sna 1940idí déanacha nuair a fuair na milliúin bás in oirthear na hIndia is an Bheangáil Thoir (an Bhanglaidéis anois). Annamh anois mar gur tugadh isteach saghsanna frithsheasmhacha.
Karah padi ialah sejenis penyakit padi yang berbahaya disebabkan oleh kulat (Pyricularia oryzae). Penyakit ini boleh menyebabkan kehilangan hasil padi sehingga 100% dan menurunkan mutu padi. Ia merupakan penyakit bawaan biji benih.
Jika anda melihat rencana yang menggunakan templat {{tunas}} ini, gantikanlah ia dengan templat tunas yang lebih spesifik.
Karah padi ialah sejenis penyakit padi yang berbahaya disebabkan oleh kulat (Pyricularia oryzae). Penyakit ini boleh menyebabkan kehilangan hasil padi sehingga 100% dan menurunkan mutu padi. Ia merupakan penyakit bawaan biji benih.
Jika anda melihat rencana yang menggunakan templat {{tunas}} ini, gantikanlah ia dengan templat tunas yang lebih spesifik.
Magnaporthe grisea, também conhecido como fungo da brusone do arroz, é um fungo patógeno vegetal, que causa uma importante doença que afecta a planta do arroz. Sabe-se agora que M. grisea consiste num complexo de espécies crípticas contendo pelo menos duas espécies biológicas que possuem nítidas diferenças genéticas e que não procriam entre elas.[1] Membros do complexo isolados de Digitaria foram mais estreitamente definidos como M. grisea. Os restantes membros do complexo isolados do arroz e de outros hospedeiros foram renomeados Magnaporthe oryzae. Permanece alguma confusão sobre qual designação utilizar para o patógeno da brusone do arroz, pois os dois são usados por diferentes autores.
Os membros do complexo Magnaporthe grisea podem também infectar vários outros cereais com importância agrícola, incluindo trigo, centeio, cevada e mexoeira, causando doenças chamadas brusones. A brusone do arroz causa anualmente perdas de colheitas economicamente significativas, estimando-se que em cada ano esta doença destrua arroz suficiente para alimentar 60 milhões de pessoas. É conhecida a ocorrência deste fungo em 85 países de todo o mundo.
M. grisea é um fungo ascomicete. É um patógeno vegetal extremamente eficaz, pois pode reproduzir-se tanto sexuada como assexuadamente, para produzir estruturas infecciosas conhecidas como apressórios que infectam tecidos aéreos e hifas que podem infectar os tecidos da raiz.
Em 2004 foi demonstrado que além de infectar as plantas pela folha, M. grisea pode também infectar as raízes da planta. O modo de infecção da raiz é o mesmo da maioria dos fungos que infectam raízes: desenvolve longas hifas que formam um "emplastro" de infecção para conseguir o acesso ao interior da raiz. O fungo da brusone pode também invadir o sistema vascular da planta, crescendo no xilema e floema e bloqueando o transporte de nutrientes e água desde as raízes.
A infecção dos tecidos vasculares e da raiz é potencialmente fatal para a planta, ao cortar o fornecimento de água e nutrientes à raiz.
Em 2005 foi sequenciado o genoma completo de M. grisea. Prevê-se que este organismo tenha mais de 11000 genes. Espera-se que o conhecimento do genoma revele os mecanismos da interacção fungo patogénico-planta, tanto na infecção aérea como das raízes.
A brusone do arroz foi provavelmente registada pela primeira vez como doença da febre do arroz na China em 1637. Mais tarde foi descrita como imochi-byo no Japão em 1704, e como brusone na Itália em 1828. Em 1996 a brusone do arroz foi encontrada na Califórnia, Estados Unidos, e desde então tem sido encontrada em relvados de campos de golfe no Midwest dos Estados Unidos.
Algumas estirpes do fungo podem infectar gramíneas domesticadas como a cevada, trigo, centeio, mexoeira e relvados, além do arroz. Assim, mesmo quando as colheitas são queimadas para destruir a infecção fúngica, ervas daninhas podem funcionar como reservatórios da doença. A doença pode ter nomes diferentes consoante a cultura infectada: brusone do arroz, brusone do trigo, brusone do centeio e assim por diante.
A Brusone é a principal doença da cultura do arroz a nível mundial, sendo ocasionada pelo fungo Magnaporthe oryzae, o qual causa infecções na folha bandeira, e consequentemente a planta produz panículas com grãos chochos, a doença afeta gravemente a planta desta forma, limitando sua produção. Todas as fases do ciclo da doença são influenciadas por fatores climáticos, a doença pode ocorrer em todas as partes da planta desde o estágio inicial de desenvolvimento a produção de grãos.
Fatores que propiciam o desenvolvimento da doença: a deposição de orvalho ou gotas de chuva; as altas temperaturas, entre 25 ºC a 28 ºC; elevada umidade do ar, acima de 90%; excesso de adubação nitrogenada; plantas muito próximas e a baixa luminosidade. Estes fatores propiciam o desenvolvimento e o agravamento da enfermidade. A fonte de inóculo são sementes infectadas e os restos culturais deixados na lavoura, e a infecção secundária tem como fonte as lesões esporulativas das folhas. (LOBO, FILIPPI; 2017)[2]
A disseminação do patógeno ocorre principalmente pelo vento, e após o patógeno estar na superfície da planta e na água inundada ele penetra a planta pela cutícula, raramente pelos estômatos, sendo esta colonização dos tecidos facilitada por toxinas que causa a morte das células, e ainda por hifas que se desenvolvem no tecido morto da planta. (H. Kimati, 1997)[3]
O fungo foi capaz de desenvolver resistência tanto aos tratamentos químicos como à resistência genética desenvolvida por criadores de plantas em algumas variedades de arroz. Pensa-se que o fungo consegue tal resistência por meio de mudança genética por mutação. Os investigadores esperam que ao terem a informação da sequência total do genoma do fungo seja possível o desenvlvimento de métodos de controlo efectivos. Por exemplo, mostrou-se que um M. grisea mutante incapaz de produzir o apressório não tem capacidade de infectar o arroz.
Esporos de M. grisea foram preparados como arma biológica anti-planta de modo independente pelos Estados Unidos e União Soviética durante a Segunda Guerra Mundial. Sabe-se que os Estados Unidos efectuaram pesquisas sobre este agente para uso contra a cultura de arroz do Japão durante a Segunda Guerra Mundial.[4] O Serviço de Guerra Química dos Estados Unidos trabalhou com cientistas canadianos e britânicos para converter a brusone do arroz numa arma biológica mas no fim da Segunda Guerra Mundial na Europa não se encontrava pronta para uso no campo de batalha.[5] Como os esporos não suportavam bem o tempo quente, pensava-se que este agente não tinha grande potencial como arma biológica.[4] A investigação de armas biológicas dos Estados Unidos voltaria a focar a sua atenção sobre M. grisea como arma durante a década de 1960.[6] Entre 1962–1969, esporos de M. grisea foram produzidos pela Charles Pfizer and Company e enviados para Fort Detrick. As existências de M. grisea foram destruídas durante o processo de desmilitarização de armas biológicas dos Estados Unidos, completado em 1973.[7] Existem também receios de que M. grisea possa ser usado como arma biológica por uma organização terrorista.[8]
Magnaporthe grisea, também conhecido como fungo da brusone do arroz, é um fungo patógeno vegetal, que causa uma importante doença que afecta a planta do arroz. Sabe-se agora que M. grisea consiste num complexo de espécies crípticas contendo pelo menos duas espécies biológicas que possuem nítidas diferenças genéticas e que não procriam entre elas. Membros do complexo isolados de Digitaria foram mais estreitamente definidos como M. grisea. Os restantes membros do complexo isolados do arroz e de outros hospedeiros foram renomeados Magnaporthe oryzae. Permanece alguma confusão sobre qual designação utilizar para o patógeno da brusone do arroz, pois os dois são usados por diferentes autores.
Os membros do complexo Magnaporthe grisea podem também infectar vários outros cereais com importância agrícola, incluindo trigo, centeio, cevada e mexoeira, causando doenças chamadas brusones. A brusone do arroz causa anualmente perdas de colheitas economicamente significativas, estimando-se que em cada ano esta doença destrua arroz suficiente para alimentar 60 milhões de pessoas. É conhecida a ocorrência deste fungo em 85 países de todo o mundo.
Magnaporthe grisea je grzib[8], co go nojprzōd ôpisoł T.T. Hebert, a terŏźnõ nazwã doł mu M.E. Barr 1977. Magnaporthe grisea nŏleży do zorty Magnaporthe i familije Magnaporthaceae.[9][10] Żŏdne podgatōnki niy sōm wymianowane we Catalogue of Life.[9]
Magnaporthe grisea je grzib, co go nojprzōd ôpisoł T.T. Hebert, a terŏźnõ nazwã doł mu M.E. Barr 1977. Magnaporthe grisea nŏleży do zorty Magnaporthe i familije Magnaporthaceae. Żŏdne podgatōnki niy sōm wymianowane we Catalogue of Life.
도열병균(稻熱病菌, rice blast fungus)은 식물에 기생하는 진균이다. 도열병균은 서로 교잡되지 않는 두 개 이상의 종이 섞여 있는 은성종복합체임이 밝혀져 있다.[1] 그중 바랭이에게서 분리되는 균종을 M. grisea라 하고, 벼에서 분리되는 나머지 균종을 M. oryzae라 한다.
도열병균종복합체의 균종들은 벼, 밀, 보리, 호밀, 진주조, 벼 등 주요 곡물에 치명적인 질병인 열병(熱病, blast disease)을 일으키며, 특히 벼(稻: 도)에게 걸릴 경우 도열병(稻熱病, rice blast)이라 한다. 도열병은 매년 쌀 생산량의 주요 하락 원인일 정도로 벼농사에 치명적인 질병이며, 매년 6000만 명이 먹을 수 있는 쌀을 파괴한다. 열병은 전세계 85개국에서 창궐하는 것으로 알려져 있다.[2]
도열병균(稻熱病菌, rice blast fungus)은 식물에 기생하는 진균이다. 도열병균은 서로 교잡되지 않는 두 개 이상의 종이 섞여 있는 은성종복합체임이 밝혀져 있다. 그중 바랭이에게서 분리되는 균종을 M. grisea라 하고, 벼에서 분리되는 나머지 균종을 M. oryzae라 한다.
도열병균종복합체의 균종들은 벼, 밀, 보리, 호밀, 진주조, 벼 등 주요 곡물에 치명적인 질병인 열병(熱病, blast disease)을 일으키며, 특히 벼(稻: 도)에게 걸릴 경우 도열병(稻熱病, rice blast)이라 한다. 도열병은 매년 쌀 생산량의 주요 하락 원인일 정도로 벼농사에 치명적인 질병이며, 매년 6000만 명이 먹을 수 있는 쌀을 파괴한다. 열병은 전세계 85개국에서 창궐하는 것으로 알려져 있다.