dcsimg

Description of Tetrahymena ( İngilizce )

BioPedia tarafından sağlandı
Tetrahymeninid ciliates, oral polykinetids straight, never sigmoid; morphospecies of Tetrahymena identified on morphological bases are each probably composed of multiple, genetically and reproductively isolated entities.
lisans
cc-by-nc
yazar
biopedia
sağlayıcı
BioPedia
orijinal
kaynağı ziyaret et
ortak site
BioPedia

Tetrahymena ( Katalanca; Valensiyaca )

wikipedia CA tarafından sağlandı

Tetrahymena és un gènere de protozous ciliats de vida lliure no patogènics. Són comuns en aigua dolça. Les espècies de Tetrahymena que s'utilitzen com a organismes model en les recerques biomèdiques són T. thermophila i T. pyriformis.

 src= A Wikimedia Commons hi ha contingut multimèdia relatiu a: Tetrahymena Modifica l'enllaç a Wikidata
lisans
cc-by-sa-3.0
telif hakkı
Autors i editors de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia CA

Tetrahymena ( Çekçe )

wikipedia CZ tarafından sağlandı
 src=
Tetrahymena

Tetrahymena je označení pro skupinu prvoků z kmene nálevníci, žijících volně, běžně ve stojatých vodách. Preferují parazitický, či komenzální způsob života. Často bývají používáni jako modelový organismus (často druhy T. thermophila a T. pyriformis).[1]

Reference

V tomto článku byl použit překlad textu z článku Tetrahymena na anglické Wikipedii.

  1. Elliott, Alfred M. Biology of Tetrahymena. [s.l.]: [s.n.], 1973. (anglicky) Je zde použita šablona {{Cite book}} označená jako k „pouze dočasnému použití“.
Pahýl
Tento článek je příliš stručný nebo postrádá důležité informace.
Pomozte Wikipedii tím, že jej vhodně rozšíříte. Nevkládejte však bez oprávnění cizí texty.
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia autoři a editory
orijinal
kaynağı ziyaret et
ortak site
wikipedia CZ

Tetrahymena: Brief Summary ( Çekçe )

wikipedia CZ tarafından sağlandı
 src= Tetrahymena

Tetrahymena je označení pro skupinu prvoků z kmene nálevníci, žijících volně, běžně ve stojatých vodách. Preferují parazitický, či komenzální způsob života. Často bývají používáni jako modelový organismus (často druhy T. thermophila a T. pyriformis).

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia autoři a editory
orijinal
kaynağı ziyaret et
ortak site
wikipedia CZ

Tetrahymena ( Danca )

wikipedia DA tarafından sağlandı

Tetrahymena er en slægt af fritlevende ciliater. Det er mikrober som kan skifte mellem levemåderne kommensal og patogen. Tetrahymena er almindelig i ferskvandsdamme og er 30-60 mikrometer store. De arter af Tetrahymena, der anvendes som modelorganismer i biomedicinsk forskning, er Tetrahymena thermophila og Tetrahymena pyriformis.[1]

Tetrahymena thermophila

Uddybende Uddybende artikel: Tetrahymena thermophila

Tetrahymena thermophila har to cellekerner. Tetrahymena thermophila eksisterer i syv forskellige køn, som kan reproducere i 21 forskellige kombinationer - og en enkelt Tetrahymena thermophila kan ikke reproducere sig seksuelt med sig selv.

Kilder/referencer

  1. ^ Elliott, Alfred M. (1973). Biology of Tetrahymena. Dowen, Hutchinson and Ross Inc. ISBN 0-87933-013-9.

Eksterne henvisninger

Commons-logo.svg
Wikimedia Commons har medier relateret til: Stub
Denne artikel er kun påbegyndt. Hvis du ved mere om emnet, kan du hjælpe Wikipedia ved at udvide den.
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia-forfattere og redaktører
orijinal
kaynağı ziyaret et
ortak site
wikipedia DA

Tetrahymena: Brief Summary ( Danca )

wikipedia DA tarafından sağlandı

Tetrahymena er en slægt af fritlevende ciliater. Det er mikrober som kan skifte mellem levemåderne kommensal og patogen. Tetrahymena er almindelig i ferskvandsdamme og er 30-60 mikrometer store. De arter af Tetrahymena, der anvendes som modelorganismer i biomedicinsk forskning, er Tetrahymena thermophila og Tetrahymena pyriformis.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia-forfattere og redaktører
orijinal
kaynağı ziyaret et
ortak site
wikipedia DA

Tetrahymena ( Almanca )

wikipedia DE tarafından sağlandı
 src=
β-tubulin in Tetrahymena.
 src=
ZweiTetrahymena-Zellen mit komplementären Paarungstypen bei der sexuellen Konjugation, dabei Kerne auszutauschend.

Tetrahymena ist eine Gattung eukaryotischer Einzeller, die dem Stamm der Wimperntierchen angehört. Arten dieser Gattung kommen in Meeren, im Süßwasser und in feuchter Erde vor. Aufgrund der besonderen Ausprägung ihres Mundapparats (Cytostom) werden sie zu den Hymenostomatida (gr. für ‚Haut-Münder‘) gezählt.

Aufbau

Die Arten der Gattung Tetrahymena sind 30 bis 60 μm groß und allseitig von einer holotrichen Ciliatur bedeckt. Das heißt, der ganze Körper ist von Wimpern überzogen, wodurch auch ihr Übergattungsname Wimperntierchen (von Cilien alias Wimpern) zu erklären ist. Die Ciliatur dient der Fortbewegung und ist extrem empfindlich gegenüber sensorischen (Sinnes-)Reizen. Der Organismus weist den gleichen Oralapparat (Zellmund, Cytostom) wie das Pantoffeltierchen auf, der erkennbar ein Viertel der vorderen Seite einnimmt. Mikroskopisch sichtbar sind die parallel angelegten, von Cilien bedeckten, vier Häutchen, die den Mund kennzeichnen. Die Tetrahymena haben dieser Struktur ihren Namen zu verdanken (gr.: tetra- = ‚vier‘).

Wie andere Wimperntierchen besitzt auch diese Gattung den, zur Exkretion benötigten, Cytoprokt (oder Zellafter). Tetrahymena-Arten weisen die typischen Merkmale einer eukaryotischen Zelle auf, wie beispielsweise endoplasmatisches Reticulum, Lysosom und Ribosom.[1][2]

Genetische Besonderheiten

Die für die Gattung Tetrahymena wie für alle Wimpertierchen kennzeichnende genetische Besonderheit ist der Kerndimorphismus. Die Organismen besitzen jeweils einen Mikro- und einen Makronukleus. Während im diploiden Mikronukleus die DNA sitzt, beinhaltet der Makronukleus die neu geordnete RNA-Interferenz (RNAi).[3]

Die Atmungskette in den Mitochondrien (zumindest) der Spezies T. thermophila weicht von der anderer Eukaryoten ab.[4]

Modellorganismen

Die Arten Tetrahymena thermophila and T. pyriformis werden als Modellorganismen genutzt.[5] T. thermophila wurde beispielsweise genutzt, um Tubulin-Hemmstoffe zu entwickeln. Diese Eiweiße sind für die Zellteilung der Eukaryoten nötig. Man hofft, solche Hemmstoffe als Mittel gegen Parasiten aus der Gruppe der Apicomplexa (etwa die Malaria-Erreger Plasmodium sp. und Toxoplasmose-Erreger Toxoplasma gondii), aber auch gegen menschliche Tumorzellen verwenden zu können.[6]

Arten

Artenliste (Auswahl):

Einzelnachweise

  1. Lexikon der Biologie in acht Bänden, Vierter Band, Breisgau: Verlag Herder Freiburg, 1985
  2. Eric S. Cole: The Tetrahymena Conjugation Junction. National Center for Biotechnology Information, U.S. National Library of Medicine, abgerufen am 21. Oktober 2013 (englisch).
  3. Diethard Baron (Hrsg.): Grüne Reihe. Materialien für den Sekundarbereich II - Ausgabe 2004: Genetik. Schülerband: Materialien S II. Schrödel, Braunschweig 2004, ISBN 3-507-10910-7
  4. Long Zhou, María Maldonado, Abhilash Padavannil, Fei Guo, James A. Letts: Structures of Tetrahymena’s respiratory chain reveal the diversity of eukaryotic core metabolism. In: Science, Nr. 1, 31. März 2022; doi:10.1126/science.abn7747, ResearchGate. Dazu:
    Davis Health et al.: Surprising Secret Revealed by New Technology: Respiration in Tetrahymena Is Different Than in Other Organisms. Auf: SciTechDaily vom 31. März 2022.
  5. Alfred M. Elliott: Biology of Tetrahymena. Dowen, Hutchinson and Ross Inc., 1973, ISBN 978-0-87933-013-2.
  6. Natacha Gaillard Gaillard, A. Sharma, I. Abbaali, T. Liu, F. Shilliday, A. D. Cook, V. Ehrhard, A. J. Roberts, C. A. Moores, N. Morrissette, M. Steinmetz: Inhibiting parasite proliferation using a rationally designed anti-tubulin agent, in: EMBO Molecular Medicine, 18. Oktober 2021, doi:10.15252/emmm.202013818. Dazu:
    Neuer Wirkstoff gegen Parasiten , auf: EurekAlert! vom 18. Oktober 2021
lisans
cc-by-sa-3.0
telif hakkı
Autoren und Herausgeber von Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia DE

Tetrahymena: Brief Summary ( Almanca )

wikipedia DE tarafından sağlandı
 src= β-tubulin in Tetrahymena.  src= ZweiTetrahymena-Zellen mit komplementären Paarungstypen bei der sexuellen Konjugation, dabei Kerne auszutauschend.

Tetrahymena ist eine Gattung eukaryotischer Einzeller, die dem Stamm der Wimperntierchen angehört. Arten dieser Gattung kommen in Meeren, im Süßwasser und in feuchter Erde vor. Aufgrund der besonderen Ausprägung ihres Mundapparats (Cytostom) werden sie zu den Hymenostomatida (gr. für ‚Haut-Münder‘) gezählt.

lisans
cc-by-sa-3.0
telif hakkı
Autoren und Herausgeber von Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia DE

Tetrahymena ( İngilizce )

wikipedia EN tarafından sağlandı

Tetrahymena, a unicellular eukaryote, is a genus of free-living ciliates.[1] The genus Tetrahymena is the most widely studied member of its phylum.[2]: 59  It can produce, store and react with different types of hormones. Tetrahymena cells can recognize both related and hostile cells.[3]

They can also switch from commensalistic to pathogenic modes of survival. They are common in freshwater lakes, ponds, and streams.[2]: 277 

Tetrahymena species used as model organisms in biomedical research are T. thermophila and T. pyriformis.[4]

T. thermophila: a model organism in experimental biology

β-tubulin in Tetrahymena.

As a ciliated protozoan, Tetrahymena thermophila exhibits nuclear dimorphism: two types of cell nuclei. They have a bigger, non-germline macronucleus and a small, germline micronucleus in each cell at the same time and these two carry out different functions with distinct cytological and biological properties. This unique versatility allows scientists to use Tetrahymena to identify several key factors regarding gene expression and genome integrity. In addition, Tetrahymena possess hundreds of cilia and has complicated microtubule structures, making it an optimal model to illustrate the diversity and functions of microtubule arrays.

Because Tetrahymena can be grown in a large quantity in the laboratory with ease, it has been a great source for biochemical analysis for years, specifically for enzymatic activities and purification of sub-cellular components. In addition, with the advancement of genetic techniques it has become an excellent model to study the gene function in vivo. The recent sequencing of the macronucleus genome should ensure that Tetrahymena will be continuously used as a model system.

Tetrahymena thermophila exists in 7 different sexes (mating types) that can reproduce in 21 different combinations, and a single tetrahymena cannot reproduce sexually with itself. Each organism "decides" which sex it will become during mating, through a stochastic process.[5][6]

Studies on Tetrahymena have contributed to several scientific milestones including:

  1. First cell which showed synchronized division, which led to the first insights into the existence of mechanisms which control the cell cycle.[7]
  2. Identification and purification of the first cytoskeleton based motor protein such as dynein.[7]
  3. Aid in the discovery of lysosomes and peroxisomes.[7]
  4. Early molecular identification of somatic genome rearrangement.[7]
  5. Discovery of the molecular structure of telomeres, telomerase enzyme, the templating role of telomerase RNA and their roles in cellular senescence and chromosome healing (for which a Nobel Prize was won).[7]
  6. Nobel Prize–winning co-discovery (1989, in Chemistry) of catalytic RNA (ribozyme).[7][8]
  7. Discovery of the function of histone acetylation.[7]
  8. Demonstration of the roles of posttranslational modification such as acetylation and glycylation on tubulins and discovery of the enzymes responsible for some of these modifications (glutamylation)
  9. Crystal structure of 40S ribosome in complex with its initiation factor eIF1
  10. First demonstration that two of the "universal" stop codons, UAA and UAG, will code for the amino acid glutamine in some eukaryotes, leaving UGA as the only termination codon in these organisms.[9]
Main fields of biomedical research where Tetrahymena cells are used as models

Life cycle

Tetrahymena conjugation. When nutrients are scarce, two individuals (A) pair with each other and begin sexual reproduction (conjugation). (B) The diploid micronucleus in each individual undergoes meiosis to form four haploid nuclei, and three of these are degraded. (C) The remaining haploid nucleus divides mitotically to form two pronuclei in each cell. (D) One of the two pronuclei in each cell is exchanged with the mating partner, and fusion leads to the formation of the diploid zygotic nucleus. (E) The zygotic nucleus divides twice mitotically to form four nuclei. (F) Two nuclei become micronuclei, and the other two differentiate to become macronuclei; the original parental macronucleus is degraded. (G) Cell division occurs and the nuclei are distributed to the daughter cells so that each progeny receives one micronucleus and one macronucleus.

The life cycle of T. thermophila consists of an alternation between asexual and sexual stages. In nutrient rich media during vegetative growth cells reproduce asexually by binary fission. This type of cell division occurs by a sequence of morphogenetic events that results in the development of duplicate sets of cell structures, one for each daughter cell. Only during starvation conditions will cells commit to sexual conjugation, pairing and fusing with a cell of opposite mating type. Tetrahymena has seven mating types; each of which can mate with any of the other six without preference, but not its own.

Typical of ciliates, T. thermophila differentiates its genome into two functionally distinct types of nuclei, each specifically used during the two different stages of the life cycle. The diploid germline micronucleus is transcriptionally silent and only plays a role during sexual life stages. The germline nucleus contains 5 pairs of chromosomes which encode the heritable information passed down from one sexual generation to the next. During sexual conjugation, haploid micronuclear meiotic products from both parental cells fuse, leading to the creation of a new micro- and macronucleus in progeny cells. Sexual conjugation occurs when cells starved for at least 2hrs in a nutrient-depleted media encounter a cell of complementary mating type. After a brief period of co-stimulation (~1hr), starved cells begin to pair at their anterior ends to form a specialized region of membrane called the conjugation junction.

Two Tetrahymena cells of complementary mating types pair to exchange nuclei during sexual conjugation.

It is at this junctional zone that several hundred fusion pores form, allowing for the mutual exchange of protein, RNA and eventually a meiotic product of their micronucleus. This whole process takes about 12 hours at 30 °C, but even longer than this at cooler temperatures. The sequence of events during conjugation is outlined in the accompanying figure.[10]

The larger polyploid macronucleus is transcriptionally active, meaning its genes are actively expressed, and so it controls somatic cell functions during vegetative growth. The polyploid nature of the macronucleus refers to the fact that it contains approximately 200–300 autonomously replicating linear DNA mini-chromosomes. These minichromosomes have their own telomeres and are derived via site-specific fragmentation of the five original micronuclear chromosomes during sexual development. In T. thermophila each of these minichromosomes encodes multiple genes and exists at a copy number of approximately 45-50 within the macronucleus. The exception to this is the minichromosome encoding the rDNA, which is massively upregulated, existing at a copy number of approximately 10,000 within the macronucleus. Because the macronucleus divides amitotically during binary fission, these minichromosomes are un-equally divided between the clonal daughter cells. Through natural or artificial selection, this method of DNA partitioning in the somatic genome can lead to clonal cell lines with different macronuclear phenotypes fixed for a particular trait, in a process called phenotypic assortment. In this way, the polyploid genome can fine-tune its adaptation to environmental conditions through gain of beneficial mutations on any given mini-chromosome whose replication is then selected for, or conversely, loss of a minichromosome which accrues a negative mutation. However, the macronucleus is only propagated from one cell to the next during the asexual, vegetative stage of the life cycle, and so it is never directly inherited by sexual progeny. Only beneficial mutations that occur in the germline micronucleus of T. thermophila are passed down between generations, but these mutations would never be selected for environmentally in the parental cells because they are not expressed.[11]

Behavior

Free swimming cells of Tetrahymena are attracted to certain chemicals by chemokinesis. The major chemo-attractants are peptides and/or proteins.[12]

A 2016 study found that cultured Tetrahymena have the capacity to 'learn' the shape and size of their swimming space. Cells confined in a droplet of a water for a short time were, upon release, found to repeat the circular swimming trajectories 'learned' in the droplet. The diameter and duration of these swimming paths reflected the size of the droplet and time allowed to adapt.[13]

DNA repair

It is common among protists that the sexual cycle is inducible by stressful conditions such as starvation.[14] Such conditions often cause DNA damage. A central feature of meiosis is homologous recombination between non-sister chromosomes. In T. thermophila this process of meiotic recombination may be beneficial for repairing DNA damages caused by starvation.

Exposure of T. thermophila to UV light resulted in a greater than 100-fold increase in Rad51 gene expression.[15] Treatment with the DNA alkylating agent methyl methanesulfonate also resulted in substantially elevated Rad 51 protein levels. These findings suggest that ciliates such as T. thermophila utilize a Rad51-dependent recombinational pathway to repair damaged DNA.

The Rad51 recombinase of T. thermophila is a homolog of the Escherichia coli RecA recombinase. In T. thermophila, Rad51 participates in homologous recombination during mitosis, meiosis and in the repair of double-strand breaks.[16] During conjugation, Rad51 is necessary for completion of meiosis. Meiosis in T. thermophila appears to employ a Mus81-dependent pathway that does not use a synaptonemal complex and is considered secondary in most other model eukaryotes.[17] This pathway includes the Mus81 resolvase and the Sgs1 helicase. The Sgs1 helicase appears to promote the non-crossover outcome of meiotic recombinational repair of DNA,[18] a pathway that generates little genetic variation.

Phenotypic and Genotypic Plasticity

Many species of Tetrahymena are known to display unique response mechanisms to stress and various environmental pressures. The unique genomic architecture of the ciliates (presence of a MIC, high ploidy, large number of chromosomes, etc.) allows for differential gene expression, as well as increased genomic flexibility. The following is a non-exhaustive list of examples of phenotypic and genotypic plasticity in the Tetrahymena genus.

Inducible Trophic Polymorphisms

T. vorax is known for its inducible trophic polymorphisms, an ecologically offensive tactic that allows it to change its feeding strategy and diet by altering its morphology.[19] Normally, T. vorax is a bacterivorous microstome around 60 μm in length. However, it has the ability to switch into a carnivorous macrostome around 200 μm in length that can feed on larger competitors. If T. vorax cells are too nutrient starved to undertake transformation, they have also been recorded as transforming into a third “tailed”-microstome morph, thought to be a defense mechanism in response to cannibalistic pressure. While T. vorax is the most well studied Tetrahymena that exhibits inducible trophic polymorphisms, many lesser known species are able to undertake transformation as well, including T. paulina and T. paravorax.[20] However, only T. vorax has been recorded as having both a macrostome and tailed-microstome form.

These morphological switches are triggered by an abundance of stomatin in the environment, a mixture of metabolic compounds released by competitor species, such as Paramecium, Colpidium, and other Tetrahymena. Specifically, chromatographic analysis has revealed that ferrous iron, hypoxanthine, and uracil are the chemicals in stomatin responsible for triggering the morphological change.[21] Many researchers cite “starvation conditions” as inducing the transformation, as in nature, the compound inducers are in highest concentration after microstomal ciliates have grazed down bacterial populations, and ciliates populations are high. When the chemical inducers are in high concentration, T. vorax cells will transform at higher rates, allowing them to prey on their former trophic competitors.

The exact genetic, and structural mechanisms that underlie T. vorax transformation are unknown. However, some progress has been made in identifying candidate genes. Researchers from the University of Alabama have used cDNA subtraction to remove actively transcribed DNA from microstome and macrostome T. vorax cells, leaving only differentially transcribed cDNA molecules.[22] While nine differentiation-specific genes were found, the most frequently expressed candidate gene was identified as a novel sequence, SUBII-TG.

The sequenced region of SUBII-TG was 912 bp long and consists of three largely identical 105 bp open-reading frames. A northern blot analysis revealed that low levels of transcription are detected in microstome cells, while high levels of transcription occur in macrostome cells. Furthermore, when the researchers limited SUBII-TG expression in the presence of stomatin (using antisense oligonucleotide methods), a 55% reduction in SUBII-TG mRNA correlated with a 51% decrease in transformation, supporting the notion that the gene is at least partially responsible for controlling the transformation in T. vorax. However, very little is known about the SUBII-TG gene. Researchers were only able to sequence a portion of the entire open-reading frame, and other candidate genes have not been investigated thoroughly. mRNA and amino acid sequencing indicate that ubiquitin may play a crucial role in allowing transformation to take place as well. However, no known genes in the ubiquitin family have been identified in T. vorax.[23] Finally, the genetic mechanisms of the “tailed” microstome morph are completely unknown.

Metal Resistance, Gene & Genome Amplification

Other related species exhibit their own unique responses to various stressors. In T. thermophila, chromosome amplification and gene expansion are inducible responses to common organometallic pollutants such as Cadmium, Copper, and Lead.[24] Strains of T. thermophila that were exposed to large quantities of Cd2+ over time were found to have a 5-fold increase of MTT1, and MTT3 (metallothionein genes that code for Cadmium and Lead binding proteins) as well as CNBDP, an unrelated gene that lies just upstream of MTT1 on the same chromosome. The fact that a non-metallothionein gene on the same locus as MTT1 and MTT3 increased copy number indicates that the entire chromosome had been amplified, as opposed to just specific genes. Tetrahymena species are 45-ploid for their macronucleus, meaning that the wild type of T. thermophila normally contains 45 copies of each chromosome. While the actual number of unique chromosomes are unknown, the number is thought to be around 187 in the MAC, and 5 in the MIC.[25] Thus, the Ca2+ adapted strain contained 225 copies of the specific chromosome in question. This resulted in a nearly 28 times increase in detected expression levels of MTT1, and slightly less in MTT3.

Interestingly, when researchers grew a sample of the T. thermophila population in normal growth medium (lacking Cd2+) for 1 month, the number of MTT1, MTT3, and CNBDP genes decreased to an average of 3 copies (135C). By 7 months in normal growth medium, the T. thermophila cells were found reduced to just the wild type copy number (45C). When researchers returned cells from the same colony to Cd2+ medium, within a week MTT1, MTT3, and CNBDP genes increased to 3 copies once again (135C). Thus, the authors argue that chromosome amplification is an inducible and reversible mechanism in the Tetrahymena genetic response to metal stress.

Researchers also used gene-knockdown experiments, where the copy number of another metallothionein gene on a different chromosome, MTT5, was dramatically reduced. Within a week, the new strain was found to have developed 4 novel genes from at least 1 duplication of MTT1. However, chromosome duplication had not taken place, as indicated by the wild-type ploidy and the normal quantity of other genes on the same chromosomes. Rather, researchers believe that the duplication resulted from homologous recombination events, producing transcriptionally active, upregulated genes that carry repeated MTT1.

Enhanced Motility and Dispersal

T. thermophila also undergoes phenotypic changes when faced with limited resource availability. Cells are capable of changing their shape and size, along with behavioral swimming strategies in response to starvation.[26] The more motile cells that change in response to starvation are known as dispersers, or disperser cells. While rates and levels of phenotypic change differ between strains, disperser cells form in nearly all strains of T. thermophila when faced with starvation. Dispersers, and non-dispersing cells both become dramatically thinner and smaller, increasing the basal body and cilia density, allowing them to swim between 2 and 3 times faster than normal cells.[27] Some strains of T. thermophila have also been found to develop a single, non-beating, enlarged cilia that assists the cell in steering or directing movement. While the behavior has been shown to correlate with faster dispersal and form as a reversible trait in Tetrahymena cells, little is known about the genetic or cellular mechanisms that allow for its development. Furthermore, other studies show that when genetically variable populations of T. thermophila were starved, dispersal cells actually increased in cell length, despite still becoming thinner.[28] More research is needed to determine the genetic mechanisms that underlie disperser formation.

Species in genus

Species in this genus include.[1]

In education

Cornell University offers a National Institutes of Health (NIH) funded program through the Science Education Partnership Award (SEPA) Program called Advancing Secondary Science Education thru Tetrahymena (ASSET).[29] The group develops stand-alone labs or lessons using Tetrahymena as training modules that teachers can use in classes.

References

  1. ^ a b "Tetrahymena - Encyclopedia of Life". eol.org. Retrieved 2021-10-16.
  2. ^ a b Tetrahymena Thermophila. Academic Press. 2012-10-22. ISBN 978-0-12-385968-6.
  3. ^ Csaba, György (September 2016). "Lectins and Tetrahymena – A review" (PDF). Acta Microbiologica et Immunologica Hungarica. 63 (3): 279–291. doi:10.1556/030.63.2016.001. PMID 27539329.
  4. ^ Elliott AM (1973). Biology of Tetrahymena. Dowen, Hutchinson and Ross Inc. ISBN 978-0-87933-013-2.
  5. ^ Cervantes MD, Hamilton EP, Xiong J, Lawson MJ, Yuan D, Hadjithomas M, et al. (2013). "Selecting one of several mating types through gene segment joining and deletion in Tetrahymena thermophila". PLOS Biology. 11 (3): e1001518. doi:10.1371/journal.pbio.1001518. PMC 3608545. PMID 23555191.
  6. ^ Quirk, Trevor (27 March 2013). "How a microbe chooses among seven sexes". Nature: nature.2013.12684. doi:10.1038/nature.2013.12684. S2CID 179307103.
  7. ^ a b c d e f g Orias E (10 February 2002). "Sequencing the Tetrahymena thermophila Genome White Paper". National Human Genome Research Institute.
  8. ^ Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (November 1982). "Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena". Cell. 31 (1): 147–57. doi:10.1016/0092-8674(82)90414-7. PMID 6297745. S2CID 14787080.
  9. ^ Horowitz S, Gorovsky MA (April 1985). "An unusual genetic code in nuclear genes of Tetrahymena". Proceedings of the National Academy of Sciences of the United States of America. 82 (8): 2452–5. Bibcode:1985PNAS...82.2452H. doi:10.1073/pnas.82.8.2452. PMC 397576. PMID 3921962.
  10. ^ Elliott, AM; Hayes, RE (1953). "Mating Types in Tetrahymena". Biological Bulletin. 105 (2): 269–284. doi:10.2307/1538642. JSTOR 1538642.
  11. ^ Prescott DM (June 1994). "The DNA of ciliated protozoa". Microbiological Reviews. 58 (2): 233–67. doi:10.1128/MMBR.58.2.233-267.1994. PMC 372963. PMID 8078435.
  12. ^ Leick V, Hellung-Larsen P (January 1992). "Chemosensory behaviour of Tetrahymena". BioEssays. 14 (1): 61–6. doi:10.1002/bies.950140113. PMID 1546982.
  13. ^ Kunita I, Yamaguchi T, Tero A, Akiyama M, Kuroda S, Nakagaki T (May 2016). "A ciliate memorizes the geometry of a swimming arena". Journal of the Royal Society, Interface. 13 (118): 20160155. doi:10.1098/rsif.2016.0155. PMC 4892268. PMID 27226383.
  14. ^ Bernstein H, Bernstein C, Michod RE. Sex in microbial pathogens. Infect Genet Evol. 2018 Jan;57:8-25. doi: 10.1016/j.meegid.2017.10.024. Epub 2017 Oct 27. PMID: 29111273
  15. ^ Campbell C, Romero DP (July 1998). "Identification and characterization of the RAD51 gene from the ciliate Tetrahymena thermophila". Nucleic Acids Research. 26 (13): 3165–72. doi:10.1093/nar/26.13.3165. PMC 147671. PMID 9628914.
  16. ^ Marsh TC, Cole ES, Stuart KR, Campbell C, Romero DP (April 2000). "RAD51 is required for propagation of the germinal nucleus in Tetrahymena thermophila". Genetics. 154 (4): 1587–96. doi:10.1093/genetics/154.4.1587. PMC 1461009. PMID 10747055.
  17. ^ Chi J, Mahé F, Loidl J, Logsdon J, Dunthorn M (March 2014). "Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway". Molecular Biology and Evolution. 31 (3): 660–72. doi:10.1093/molbev/mst258. PMID 24336924.
  18. ^ Lukaszewicz A, Howard-Till RA, Loidl J (November 2013). "Mus81 nuclease and Sgs1 helicase are essential for meiotic recombination in a protist lacking a synaptonemal complex". Nucleic Acids Research. 41 (20): 9296–309. doi:10.1093/nar/gkt703. PMC 3814389. PMID 23935123.
  19. ^ Banerji, Aabir; Morin, Peter J. (May 2014). "Trait-mediated apparent competition in an intraguild predator-prey system". Oikos. 123 (5): 567–574. doi:10.1111/j.1600-0706.2013.00937.x.
  20. ^ Ryals, Phillip E.; Smith-Somerville, Harriett E.; Buhse, Howard E. (2002). "Phenotype Switching in Polymorphic Tetrahymena: A Single-Cell Jekyll and Hyde". A Survey of Cell Biology. International Review of Cytology. Vol. 212. pp. 209–238. doi:10.1016/s0074-7696(01)12006-1. ISBN 978-0-12-364616-3. PMID 11804037.
  21. ^ Smith-Somerville, Harriett E.; Hardman, John K.; Timkovich, Russell; Ray, William J.; Rose, Karen E.; Ryals, Phillip E.; Gibbons, Sandra H.; Buhse, Howard E. (2000-06-20). "A complex of iron and nucleic acid catabolites is a signal that triggers differentiation in a freshwater protozoan". Proceedings of the National Academy of Sciences. 97 (13): 7325–7330. Bibcode:2000PNAS...97.7325S. doi:10.1073/pnas.97.13.7325. PMC 16544. PMID 10860998.
  22. ^ Green, M. M.; LeBoeuf, R. D.; Churchill, P. F. (2000). "Biological and molecular characterization of cellular differentiation in Tetrahymena vorax: a potential biocontrol protozoan". Journal of Basic Microbiology. 40 (5–6): 351–361. doi:10.1002/1521-4028(200012)40:5/6<351::aid-jobm351>3.0.co;2-q. PMID 11199495. S2CID 21981461.
  23. ^ Martin, Teresa Dianne (1996). Analysis of ubiquitin and differential gene expression during differentiation in Tetrahymena vorax (Thesis). ProQuest 304234889.
  24. ^ de Francisco, Patricia; Martín‐González, Ana; Turkewitz, Aaron P.; Gutiérrez, Juan Carlos (July 2018). "Genome plasticity in response to stress in Tetrahymena thermophila : selective and reversible chromosome amplification and paralogous expansion of metallothionein genes". Environmental Microbiology. 20 (7): 2410–2421. doi:10.1111/1462-2920.14251. PMC 6117198. PMID 29687579.
  25. ^ Yao, Meng-Chao; Chao, Ju-Lan; Cheng, Chao-Yin (21 November 2014). "Programmed Genome Rearrangements in Tetrahymena". Microbiology Spectrum. 2 (6): 2.6.31. doi:10.1128/microbiolspec.MDNA3-0012-2014. PMID 26104448.
  26. ^ Junker, Anthony D.; Jacob, Staffan; Philippe, Hervé; Legrand, Delphine; Pearson, Chad G. (August 2021). "Plastic cell morphology changes during dispersal". iScience. 24 (8): 102915. Bibcode:2021iSci...24j2915J. doi:10.1016/j.isci.2021.102915. PMC 8367785. PMID 34430806.
  27. ^ Fjerdingstad, Else J; Schtickzelle, Nicolas; Manhes, Pauline; Gutierrez, Arnaud; Clobert, Jean (2007). "Evolution of dispersal and life history strategies – Tetrahymena ciliates". BMC Evolutionary Biology. 7 (1): 133. doi:10.1186/1471-2148-7-133. PMC 1997130. PMID 17683620.
  28. ^ Jacob, Staffan; Laurent, Estelle; Morel‐Journel, Thibaut; Schtickzelle, Nicolas (February 2020). "Fragmentation and the context‐dependence of dispersal syndromes: matrix harshness modifies resident‐disperser phenotypic differences in microcosms". Oikos. 129 (2): 158–169. doi:10.1111/oik.06857. S2CID 208584362.
  29. ^ "Cornell develops educational toolkit for testing e-cigarettes". Cornell University College of Veterinary Medicine. 9 January 2020.
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia EN

Tetrahymena: Brief Summary ( İngilizce )

wikipedia EN tarafından sağlandı

Tetrahymena, a unicellular eukaryote, is a genus of free-living ciliates. The genus Tetrahymena is the most widely studied member of its phylum.: 59  It can produce, store and react with different types of hormones. Tetrahymena cells can recognize both related and hostile cells.

They can also switch from commensalistic to pathogenic modes of survival. They are common in freshwater lakes, ponds, and streams.: 277 

Tetrahymena species used as model organisms in biomedical research are T. thermophila and T. pyriformis.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia EN

Tetrahymena ( İspanyolca; Kastilyaca )

wikipedia ES tarafından sağlandı

Tetrahymena es un género de protozoos ciliados, que se encuentran naturalmente en aguas dulces. Las especies T. termophila y T. pyriformis son ampliamente empleadas como modelos de investigaciones biomédicas.[1]

T. thermophila: un organismo modelo en biología experimental

Como protozoo ciciliado, T. thermophila exhibe un marcado dimorfismo nuclear. Posee dos tipos de núcleo celular: un gran macronúcleo, y un pequeño micronúcleo, que coexisten en una sola célula y cumplen diversas funciones con propiedades bioquímicas y citológicas diferentes. Esta versatilidad única permite a los científicos usar la Tetrahymena para identificar factores clave relacionados con la expresión de los genes y la integridad del genoma. Además, posee cientos de cilias y complicadas estructuras de microtúbulos. Esto lo convierte en el modelo ideal para elucidar la diversidad de funciones de los sistemas de microtúbulos.

 src=
Núcleos MIC y MAC en azul.

Ya que Tetrahymena puede ser fácilmente cultivada en grandes cantidades en los laboratorios, ha sido por años una gran fuente de análisis de actividades enzimáticas importantes y para la purificación de componentes subcelulares. También se han desarrollado técnicas de genética molecular avanzadas, incluyendo la transformación mediada por ADN, el knock-out y knock-in de genes por recombinación homóloga, marcado de epítopos, y la expresión de genes inducible y reprimible. Estas características lo convierten en un excelente modelo para el estudio de funciones genéticas in vivo. Recientemente se secuenció completamente el genoma macronuclear, lo que promete que se continúe usando la Tetrahymena como sistema modelo en la era genómica y post-genómica.

Los estudios de este microorganismo han contribuido en varios avances científicos:

  1. Primera célula cuya división fue sincronizada, llevando a los primeros indicios de la existencia ciclo celular de los mecanismos de control.
  2. Identificación y purificación de la primera proteína motora del citoesqueleto (por ejemplo, la dineína, y su actividad direccional).

Alimentos sin colesterol

Científicos argentinos habrían encontrado un método para emplear la Tetrahymena para eliminar el 90 % del colesterol de la leche y huevos, y convertir un 5 % en pro-vitamina D. De esta forma podrían crearse nuevos productos nutracéuticos (alimentos que posee un adicional beneficio a la salud), por el bajo colesterol por un lado, y por la inclusión de pro-vitamina D por el otro.[2][3]

Referencias

  1. Alfred M. Elliott (1973). «Biology of Tetrahymena». Dowen, Hutchinson and Ross Inc. ISBN 0-87933-013-9.
  2. «Consejo Nacional De Investigaciones Cientificas Y Técnicas».
  3. «Conicet en los medios».
 title=
lisans
cc-by-sa-3.0
telif hakkı
Autores y editores de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia ES

Tetrahymena: Brief Summary ( İspanyolca; Kastilyaca )

wikipedia ES tarafından sağlandı

Tetrahymena es un género de protozoos ciliados, que se encuentran naturalmente en aguas dulces. Las especies T. termophila y T. pyriformis son ampliamente empleadas como modelos de investigaciones biomédicas.​

lisans
cc-by-sa-3.0
telif hakkı
Autores y editores de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia ES

Tetrahymena ( Fransızca )

wikipedia FR tarafından sağlandı

Tetrahymena est un genre de ciliés pouvant être commensaux ou pathogènes. Les espèces sont très communes dans l'eau douce. Ses dimensions normales sont de 50 µm de longueur et de 20 µm de largeur[1].

Les chercheurs en biochimie utilisent les espèces Tetrahymena thermophila[2] et Tetrahymena pyriformis[3] comme organisme modèle. On a par exemple montré que cette espèce dispose de récepteurs hormonaux, dont l'un induit la production de mélatonine par le protozoaire, quand il est exposé à de faibles dose de cette hormone, notamment impliqué dans la photoadaptation[4] avec des effets d'attractivité vers la lumière le jour[5], de chemotactisme la nuit[5] et autres[5].

Tetrahymena thermophila a la particularité d'exister en 7 sexes (types sexuels) différents, ce qui donne 21 différentes combinaisons possibles d'accouplement, chacun de ces sexes étant incompatible avec lui-même. Chaque organisme "décide" via un processus stochastique du sexe qu'il aura durant l'accouplement[6].

Chez le poisson guppy, la Tetrahymena est responsable d'une maladie[7] nommée Guppy Killers.

 src=
Cycle du tetrahymena

Cycle de vie

Le cycle de vie de la Tetrahymena est en enchaînement de stades sexués et asexués. En milieu riche en nutriments, pendant la croissance végétative, les cellules se reproduisent asexuellement par fission binaire. Ce type de division cellulaire se produit par une séquence d'évènements morphogénétiques qui aboutit au développement d'ensembles de structures cellulaires en double, un pour chaque cellule fille. Ce n'est que pendant les conditions de famine que les cellules s'engagent dans la conjugaison sexuelle, l'appariement et la fusion avec une cellule de type d'accouplement opposé. La tetrahymena a sept types d'accouplement ; chacun d'entre eux peut s'accoupler avec l'un des six autres sans préférence, mais pas avec son propre type.

Typique des ciliés, T. thermophila différencie son génome en deux types de noyaux fonctionnellement distincts, chacun utilisé spécifiquement pendant les deux différentes étapes du cycle de vie. Le micronoyau de la lignée germinale diploïde est silencieux sur le plan de la transcription et ne joue un rôle que pendant les étapes de la vie sexuelle. Le noyau germinal contient 5 paires de chromosomes qui codent les informations héréditaires transmises d'une génération sexuelle à l'autre. Lors de la conjugaison sexuelle, les produits méiotiques des micro-nucléaires haploïdes des deux cellules parentales fusionnent, entraînant la création d'un nouveau micro et macro-noyau dans les cellules de la progéniture. La conjugaison sexuelle se produit lorsque des cellules affamées pendant au moins 2 heures dans un milieu pauvre en nutriments rencontrent une cellule de type complémentaire. Après une brève période de costimulation d'environ 1 heure, les cellules affamées commencent à s'accoupler à leurs extrémités antérieures pour former une région spécialisée de la membrane appelée jonction de conjugaison.

Deux cellules de tetrahymena qui sont de types d'accouplement complémentaires s'accouplent pour échanger leurs noyaux pendant la conjugaison sexuelle.

C'est à cette zone de jonction que se forment plusieurs centaines de pores de fusion, permettant l'échange mutuel de protéines, d'ARN et éventuellement d'un produit méiotique de leur micro-noyau. Tout ce processus prend environ 12 heures à 30 °C, mais encore plus longtemps à des températures plus basses. La séquence des évènements pendant la conjugaison est décrite en anglais dans la figure ci-jointe (figure "cycle du tetrahymena")[8].

Liste d'espèces

Selon ITIS:

 src=
Répartition de la β-tubuline
chez Tetrahymena sp. (marquage à la GFP)

Mécanisme unique d'épissage des introns de son ARNmessager

Tetrahymena est connu comme étant un cas exceptionnel en biologie moléculaire. En effet, l'épissage des introns de certains ARN précurseurs est catalysé par l'ARN transcrit lui-même. Chez Tetrahymena, le précurseur de l'ARN ribosomique contient un intron qui est capable de s'épisser seul, en l'absence de facteurs externes. Dans l'immense majorité autres eucaryotes, c'est le splicéosome qui remplit cette fonction en trans. On a trouvé depuis ce type d'introns auto-épissables chez d'autres ciliés, dans des gènes mitochondriaux et chez certains virus comme le bactériophage T4). Cette découverte a permis de démontrer que, pour la première fois, une molécule d'ARN pouvait, dans certains cas, agir comme une enzyme et catalyser une réaction biochimique spécifique[9]. Ces ARN à action enzymatique ont été appelés ribozymes. Le ribosome (l'ARN ribosomique de la grande sous unité) est un ribozyme.

Intérêt de la T. thermophila dans la recherche et l'éducation

La tetrahymena a été un modèle utile pour la recherche fondamentale notamment parce qu'elle est facile à cultiver et qu'elle présente une série de processus complexes, le tout au sein d'une seule cellule. Pour ces mêmes raisons, tetrahymena a montré un énorme potentiel en tant qu'outil d'enseignement des principes fondamentaux de la biologie à de multiples niveaux d'enseignement scientifique[10].

L'élaboration spéciale de certains mécanismes eucaryotes de base du tetrahymena ont facilité des découvertes notamment :

- Première cellule dont la division a été synchronisée, ce qui a permis de découvrir l'existence de mécanismes de contrôle du cycle cellulaire[11].

- Identification et purification du premier moteur cytosquelettique, la dynéine, et détermination de l'activité directionnelle[11].

- Participation à la découverte des lysosomes et des peroxysomes.[11]

- L'une des premières descriptions moléculaires du réarrangement programmé du génome somatique[11].

- Découverte de la structure moléculaire des télomères, de l'enzyme télomérase, du rôle de modèle de l'ARN télomérase et de leurs rôles dans la sénescence cellulaire et la guérison des chromosomes.[11]

- Co-découverte d'ARN catalytique (ribozymes), récompensée par le prix Nobel[11]

- Découverte de la fonction d'acétylation des histones dans la transcription[11].

Notes

  1. (en) Joseph Frankel, « Chapter 2 Cell Biology of Tetrahymena thermophila », dans Methods in Cell Biology, vol. 62, Academic Press, 1er janvier 1999 (DOI , lire en ligne), p. 27–125
  2. Organisme thermophile
  3. Alfred M. Elliott, Biology of Tetrahymena, 1973 (ISBN 0-87933-013-9)
  4. Kohidai, O Vakkuri, et al. Induction of melatonin synthesis in Tetrahymena pyriformis by hormonal imprinting-A unicellular" factory" of the indoleamine (PDF) … - CELLULAR AND …, 2003 - chemotaxis.
  5. a b et c László KÕHIDAI et al., Impact of melatonin on the cell division, phagocytosis and chemotaxis of Tetrahymena pyriformis] (PDF), Short communication ; Acta protozoologica, (2002) 41: 85 - 89
  6. Selecting One of Several Mating Types through Gene Segment Joining and Deletion in Tetrahymena thermophila Cervantes MD, Hamilton EP, Xiong J, Lawson MJ, Yuan D, et al. (2013) Selecting One of Several Mating Types through Gene Segment Joining and Deletion in Tetrahymena thermophila. PLoS Biol 11(3): e1001518.
  7. Tetrahymena sur Portail Aquariophilie
  8. Alfred M. Elliott et Robert E. Hayes, « Mating types in tetrahymena », The Biological Bulletin, vol. 105, no 2,‎ 1er octobre 1953, p. 269–284 (ISSN , DOI , lire en ligne, consulté le 17 septembre 2020)
  9. Biologie moléculaire médicale, Eric Asselin Ph.D, notes de cours, 43
  10. (en) Joshua J. Smith, Emily A. Wiley et Donna M. Cassidy-Hanley, « Chapter 16 - Tetrahymena in the Classroom », dans Methods in Cell Biology, vol. 109, Academic Press, coll. « Tetrahymena Thermophila », 1er janvier 2012 (PMID , PMCID , DOI , lire en ligne), p. 411–430
  11. a b c d e f et g (en) Eduardo Orias, « Sequencing the Tetrahymena thermophila Genome White Paper », 10 février 2002

Voir aussi

lisans
cc-by-sa-3.0
telif hakkı
Auteurs et éditeurs de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia FR

Tetrahymena: Brief Summary ( Fransızca )

wikipedia FR tarafından sağlandı

Tetrahymena est un genre de ciliés pouvant être commensaux ou pathogènes. Les espèces sont très communes dans l'eau douce. Ses dimensions normales sont de 50 µm de longueur et de 20 µm de largeur.

Les chercheurs en biochimie utilisent les espèces Tetrahymena thermophila et Tetrahymena pyriformis comme organisme modèle. On a par exemple montré que cette espèce dispose de récepteurs hormonaux, dont l'un induit la production de mélatonine par le protozoaire, quand il est exposé à de faibles dose de cette hormone, notamment impliqué dans la photoadaptation avec des effets d'attractivité vers la lumière le jour, de chemotactisme la nuit et autres.

Tetrahymena thermophila a la particularité d'exister en 7 sexes (types sexuels) différents, ce qui donne 21 différentes combinaisons possibles d'accouplement, chacun de ces sexes étant incompatible avec lui-même. Chaque organisme "décide" via un processus stochastique du sexe qu'il aura durant l'accouplement.

Chez le poisson guppy, la Tetrahymena est responsable d'une maladie nommée Guppy Killers.

 src= Cycle du tetrahymena
lisans
cc-by-sa-3.0
telif hakkı
Auteurs et éditeurs de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia FR

Tetrahymena ( Galiçyaca )

wikipedia gl Galician tarafından sağlandı
Para a especie principal do xénero ver Tetrahymena thermophila.

Tetrahymena é un xénero de protozoos ciliados de vida libre. En certos caos pode tamén adoptar unha forma de vida comensal ou patoxénica; por exemplo, no peixe guppy Tetrahymena pode causar unha doenza mortal[1]. Son comúns en estanques de auga doce. Algunhas especies de Tetrahymena utilízanse como organismos modelo en investigacións biomédicas, como T. thermophila e T. pyriformis.[2] Entre os descubrimentos realizados estudando Tetrahymena salientaremos o da estrutura dos telómeros e a telomerase, o autosplicing do ARN, as primeiras proteínas motoras e a regulación xénica por acetilación das histonas.

Tetrahymena ten dous tipos de núcleos (dimorfismo nuclear), un pequeno (micronúcleo), diploide usado para a reprodución e outro máis grande (macronúcleo) poliploide para o funcionamento da célula. O macronúcleo divídese por amitose e periodicamente debe ser rexenerado a partir do micronúcleo. Ten tamén reprodución por conxugación.

 src=
Principais campos da investigación biomédica nos que se usan especies de Tetrahymena como organismo modelo.

As especies do xénero Tertrahymena teñen un tamaño de 30-60 microns e están cubertas completamente por unha ciliatura típica de holotrico. A ciliatura sérvelle para a locomoción e é moi sensible aos estímulos sensoriais. O organismo ten un aparato oral de grande tamaño, comparable ao do paramecio. As catro membranas que ten na zona oral danlle o nome a este xénero (tetra = catro, hymen = membrana); estas catro membranas están situadas a esquerda e dereita, tres membranas de tipo membranela a un lado e unha membrana ondulante no outro. A célula presenta un citoprocto para a excreción de residuos.

 src=
β-tubulina en Tetrahymena.

Notas

  1. Guppy disease - Tetrahymena
  2. Alfred M. Elliott (1973). Biology of Tetrahymena. Dowen, Hutchinson and Ross Inc. ISBN 0-87933-013-9.

Véxase tamén

lisans
cc-by-sa-3.0
telif hakkı
Autores e editores de Wikipedia

Tetrahymena: Brief Summary ( Galiçyaca )

wikipedia gl Galician tarafından sağlandı
Para a especie principal do xénero ver Tetrahymena thermophila.

Tetrahymena é un xénero de protozoos ciliados de vida libre. En certos caos pode tamén adoptar unha forma de vida comensal ou patoxénica; por exemplo, no peixe guppy Tetrahymena pode causar unha doenza mortal. Son comúns en estanques de auga doce. Algunhas especies de Tetrahymena utilízanse como organismos modelo en investigacións biomédicas, como T. thermophila e T. pyriformis. Entre os descubrimentos realizados estudando Tetrahymena salientaremos o da estrutura dos telómeros e a telomerase, o autosplicing do ARN, as primeiras proteínas motoras e a regulación xénica por acetilación das histonas.

Tetrahymena ten dous tipos de núcleos (dimorfismo nuclear), un pequeno (micronúcleo), diploide usado para a reprodución e outro máis grande (macronúcleo) poliploide para o funcionamento da célula. O macronúcleo divídese por amitose e periodicamente debe ser rexenerado a partir do micronúcleo. Ten tamén reprodución por conxugación.

 src= Principais campos da investigación biomédica nos que se usan especies de Tetrahymena como organismo modelo.

As especies do xénero Tertrahymena teñen un tamaño de 30-60 microns e están cubertas completamente por unha ciliatura típica de holotrico. A ciliatura sérvelle para a locomoción e é moi sensible aos estímulos sensoriais. O organismo ten un aparato oral de grande tamaño, comparable ao do paramecio. As catro membranas que ten na zona oral danlle o nome a este xénero (tetra = catro, hymen = membrana); estas catro membranas están situadas a esquerda e dereita, tres membranas de tipo membranela a un lado e unha membrana ondulante no outro. A célula presenta un citoprocto para a excreción de residuos.

 src= β-tubulina en Tetrahymena.
lisans
cc-by-sa-3.0
telif hakkı
Autores e editores de Wikipedia

Tetrahymena ( İtalyanca )

wikipedia IT tarafından sağlandı

Tetrahymena è un genere di protisti ciliati comuni in acqua dolce. Le due specie tetrahymena thermophila e tetrahymena pyriformis sono utilizzate come organismi modello nella ricerca biomedica.[1]

A differenza degli altri eucarioti e come per gli altri ciliati, tetrahymena ha due tipi differenti di nuclei (dimorfismo nucleare), uno piccolo (micronucleo), diploide usato per la riproduzione e uno più grande (macronucleo) poliploide per il funzionamento della cellula. Il macronucleo è prodotto dal micronucleo per ampliamento del genoma. La sua divisione avviene per amitosi. Periodicamente il macronucleo deve essere rigenerato dal micronucleo. In molti casi questo avviene attraverso la riproduzione sessuale che avviene usualmente per coniugazione.

 src=
I molti campi della ricerca biomedica dove le cellule di Tetrahymena sono usate come modelli

Organismo modello nella biologia sperimentale

 src=
β-tubulina in Tetrahymena.

Come protozoo ciliato, Tetrahymena thermophila esibisce dimorfismo nucleare: due tipi di nuclei cellulari. Essi hanno un macronucleo più grande, non della linea germinale, e un piccolo micronucleo, della linea germinale, in ciascuna cellula allo stesso tempo ed entrambi eseguono funzioni diverse con distinte proprietà citologiche e biologiche. Questa versatilità unica permette agli scienziati di usare Tetrahymena per identificare parecchi fattori chiave riguardanti l'espressione genica e l'integrità genomica. Inoltre, Tetrahymena possiede dozzine di ciglia ed ha complicate strutture microtubulari, che lo rendono un modello ottimale per illustrare la diversità e le funzioni delle disposizioni microtubulari.

Poiché Tetrahymena può essere coltivata facilmente in grande quantità nel laboratorio, essa è da anni una grande fonte per le analisi biochimiche, specificamente per le attività enzimatiche e per la purificazione dei componenti sub-cellulari. Inoltre, con l'avanzamento delle tecniche genetiche è diventata un eccellente modello per studiare la funzione genica in vivo. Il recente sequenziamento del genoma del macronucleo dovrebbe garantire che Tetrahymena continuerà ad essere utilizzata come sistema modello.

Tetrahymena thermophila può esistere in 7 diversi sessi che possono riprodursi in 21 combinazioni diverse, e una singola tetrahymena non può riprodursi sessualmente con sé stessa.

Gli studi su Tetrahymena hanno contribuito a parecchie pietre miliari scientifiche tra cui:

  1. Prima cellula che mostrava la divisione sincronizzata, che condusse alle prime comprensioni dell'esistenza di meccanismi che controllano il ciclo cellulare.[2]
  2. Identificazione e purificazione della prima proteina motrice basata sul citoscheletro come la dineina.[2]
  3. Aiuto nella scoperta dei lisosomi e dei perossisomi.[2]
  4. Prima identificazione molecolare della ridisposizione genomica somatica.[2]
  5. Scoperta della struttura molecolare dei telomeri, dell'enzima telomerasi, del ruolo di stampo dell'RNA telomerasi e dei loro ruoli nella senescenza cellulare e nella guarigione cromosomica (per la quale fu vinto un premio Nobel).[2]
  6. Co-scoperta premiata con il premio Nobel (1989, per la Chimica) dell'acido ribonucleico catalitico (ribozima).[2]
  7. Scoperta della funzione dell'acetilazione dell'istone.[2]
  8. Dimostrazione dei ruoli della modificazione post traduzionale come l'acetilazione e la glicilazione sulle tubuline e scoperta degli enzimi responsabili di alcune di queste modificazioni (glutamilazione).
  9. Struttura cristallina del ribosoma 40S in unione con il suo fattore di iniziazione eIF1.
  10. Prima dimostrazione che due dei codoni di stop "universali", UAA e UAG, codificheranno per la glutammina in alcuni eucarioti, lasciando UGA come unico codone di terminazione in questi organismi.[3]
  11. Scoperta dell'autosplicing dell'RNA.[4]

Note

  1. ^ Alfred M. Elliott, Biology of Tetrahymena, Dowen, Hutchinson and Ross Inc., 1973, ISBN 0-87933-013-9.
  2. ^ a b c d e f g Tetrahymena Genome Sequencing White Paper
  3. ^ Horowitz S e Gorovsky M, An unusual genetic code in nuclear genes of Tetrahymena, in Proc. Natl. Acad. Sci. USA, vol. 82, n. 8, aprile 1985, pp. 2452-2455, DOI:10.1073/pnas.82.8.2452, PMC 397576, PMID 3921962.
  4. ^ K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling e T. R. Cech, Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena, in Cell, vol. 31, 1982, p. 147, DOI:10.1016/0092-8674(82)90414-7.

Bibliografia

ISBN 0-12-544164-9

 title=
lisans
cc-by-sa-3.0
telif hakkı
Autori e redattori di Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia IT

Tetrahymena: Brief Summary ( İtalyanca )

wikipedia IT tarafından sağlandı

Tetrahymena è un genere di protisti ciliati comuni in acqua dolce. Le due specie tetrahymena thermophila e tetrahymena pyriformis sono utilizzate come organismi modello nella ricerca biomedica.

A differenza degli altri eucarioti e come per gli altri ciliati, tetrahymena ha due tipi differenti di nuclei (dimorfismo nucleare), uno piccolo (micronucleo), diploide usato per la riproduzione e uno più grande (macronucleo) poliploide per il funzionamento della cellula. Il macronucleo è prodotto dal micronucleo per ampliamento del genoma. La sua divisione avviene per amitosi. Periodicamente il macronucleo deve essere rigenerato dal micronucleo. In molti casi questo avviene attraverso la riproduzione sessuale che avviene usualmente per coniugazione.

 src= I molti campi della ricerca biomedica dove le cellule di Tetrahymena sono usate come modelli
lisans
cc-by-sa-3.0
telif hakkı
Autori e redattori di Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia IT

Tetrahymena ( Lehçe )

wikipedia POL tarafından sağlandı
 src=
Ten artykuł od 2016-08 wymaga zweryfikowania podanych informacji.
Należy podać wiarygodne źródła, najlepiej w formie przypisów bibliograficznych.
Część lub nawet wszystkie informacje w artykule mogą być nieprawdziwe. Jako pozbawione źródeł mogą zostać zakwestionowane i usunięte.
Dokładniejsze informacje o tym, co należy poprawić, być może znajdują się w dyskusji tego artykułu.
Po wyeliminowaniu niedoskonałości należy usunąć szablon {{Dopracować}} z tego artykułu.
Ilustracja
Tetrahymena thermophila Systematyka Domena eukarionty Królestwo protisty Typ orzęski Gromada Oligohymenophorea Rząd Hymenostomatida Rodzina Tetrahymenidae Nazwa systematyczna Tetrahymena

Tetrahymenarodzaj orzęsków. Występuje u niego 7 płci (oznaczanych I, II, III, IV, V, VI i VII), z których każda może współżyć z każdą inną. Orzęski różnej płci wyglądają tak samo, ale nie występują równie często.

U Tetrahymena płeć kontroluje gen zwany "mat". Każdy jego allel nie decyduje o płci, tylko określa jej prawdopodobieństwo. W sumie jest co najmniej 14 alleli, podzielonych na 2 główne grupy: A i B. W grupie A możliwa jest każda płeć poza IV i VII, w B każda inna od I.

Tetrahymena ma dwa jądra komórkowe: małe (mikronukleus) i duże (makronukleus). Makronukleus kontroluje codzienne funkcje życiowe, mikronukleus odpowiada za życie seksualne. Podczas połączenia dwóch orzęsków, zwanego koniugacją, mikronukleusy wymieniają geny. Po tej wymianie powstają nowe makronukleusy. Później zmodyfikowane koniugacją orzeski mogą się rozmnażać przez podział.

Jest pierwszym organizmem, u którego wykryto (w 1982 roku), a następnie opisano mechanizm autokatalitycznego wycinania intronów (tzw. self-splicing)[1].

Przypisy

lisans
cc-by-sa-3.0
telif hakkı
Autorzy i redaktorzy Wikipedii
orijinal
kaynağı ziyaret et
ortak site
wikipedia POL

Tetrahymena: Brief Summary ( Lehçe )

wikipedia POL tarafından sağlandı

Tetrahymena – rodzaj orzęsków. Występuje u niego 7 płci (oznaczanych I, II, III, IV, V, VI i VII), z których każda może współżyć z każdą inną. Orzęski różnej płci wyglądają tak samo, ale nie występują równie często.

U Tetrahymena płeć kontroluje gen zwany "mat". Każdy jego allel nie decyduje o płci, tylko określa jej prawdopodobieństwo. W sumie jest co najmniej 14 alleli, podzielonych na 2 główne grupy: A i B. W grupie A możliwa jest każda płeć poza IV i VII, w B każda inna od I.

Tetrahymena ma dwa jądra komórkowe: małe (mikronukleus) i duże (makronukleus). Makronukleus kontroluje codzienne funkcje życiowe, mikronukleus odpowiada za życie seksualne. Podczas połączenia dwóch orzęsków, zwanego koniugacją, mikronukleusy wymieniają geny. Po tej wymianie powstają nowe makronukleusy. Później zmodyfikowane koniugacją orzeski mogą się rozmnażać przez podział.

Jest pierwszym organizmem, u którego wykryto (w 1982 roku), a następnie opisano mechanizm autokatalitycznego wycinania intronów (tzw. self-splicing).

lisans
cc-by-sa-3.0
telif hakkı
Autorzy i redaktorzy Wikipedii
orijinal
kaynağı ziyaret et
ortak site
wikipedia POL

Tetrahymena ( Portekizce )

wikipedia PT tarafından sağlandı

Tetrahymena é um gênero de protozoários ciliados não patogênicos de vida livre cujos integrantes são encontrados principalmente em água fresca. As espécies Tetrahymena thermophila e Tetrahymena pyriformis são amplamente utilizadas em pesquisas medicinais e biológicas.

Ciclo de Vida

O ciclo de vida da T. thermophila é constituído por uma alternância entre fases sexuadas e assexuadas. Em ambientes favoráveis e ricos em nutrientes, as células reproduzem-se por bipartição de forma assexuada. Esse tipo de divisão celular resulta no desenvolvimento de conjuntos duplicados de estruturas celulares, um para cada célula-filha. Apenas quando há escassez de alimento é que as células irão reproduzir-se sexuadamente conjuntamente com outra célula de sexo oposto. A T. thermophila possui sete tipos de sexos diferentes, cada um dos quais capaz de se reproduzir com qualquer um dos outros seis, sem preferência.

T. thermophila diferencia o seu genoma em dois tipos de núcleos, o macronúcleo, responsável por regular o metabolismo celular, e o micronúcleo, cujo genoma permanece silenciado a maior parte do tempo, servindo apenas para a reprodução sexual. O micronúcleo contém 5 pares de cromossomas que codificam a informação genética que é transmitida pela célula para os seus descendentes. Durante a conjugação sexual, os micronúcleos haplóides de cada célula, decorrentes da divisão meiótica de cada micronúcleo original, fundem-se, levando à criação de novos micronúcleos e macronúcleos em cada uma das células. As duas células começam por formar poros na sua zona de junção, permitindo a troca mútua de proteínas, RNA e, eventualmente os produtos da meiose dos micronúcleos. O processo leva cerca de 12 horas a 30°C, mas ainda mais que isso a temperaturas mais baixas.[1]

Ver também

 title=
lisans
cc-by-sa-3.0
telif hakkı
Autores e editores de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia PT

Tetrahymena: Brief Summary ( Portekizce )

wikipedia PT tarafından sağlandı

Tetrahymena é um gênero de protozoários ciliados não patogênicos de vida livre cujos integrantes são encontrados principalmente em água fresca. As espécies Tetrahymena thermophila e Tetrahymena pyriformis são amplamente utilizadas em pesquisas medicinais e biológicas.

lisans
cc-by-sa-3.0
telif hakkı
Autores e editores de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia PT

Tetrahymena thermophila ( Vietnamca )

wikipedia VI tarafından sağlandı

Tetrahymena thermophila là một sinh vật lạ, nhân chuẩn đơn bào hình trứng, được tìm thấy trong môi trường nước ngọt. T. thermophila có đến 7 giới tính khác nhau, khi giao phối, có bảy loại gen ghép cặp quy định giới tính. Ngoài ra, sinh vật này cũng có thể sinh sản vô tính bằng phương pháp tự nhân đôi.[1]

Một số đặc điểm

T.thermophila là một tế bào có hai nhân quan trọng: nhân nhỏ chứa vật liệu cần thiết cho sự sinh sản; nhân to tạo tính mềm dẻo cho vi sinh vật, chứa ít nhất 25.000 gen năm trên khoảng 200 nhiễm sắc thể.

Mỗi tế bào T.thermophila đều có 2 gen, một gen kiểm soát hoạt động hằng ngày của vi sinh vật, gen còn lại đóng vai trò như buồng trứng và tinh hoàn ở động vật. Gen thứ 2 chứa các cặp gen không hoàn chỉnh của 6 hoặc 7 giới tính. Khi hai vi khuẩn giao phối, tùy theo kết quả gép đôi của các gen quy định giới tính sẽ quyết định giới tính ở thế hệ sau. Giới tính của thế hệ sau cũng có thể mang giới tính như cha/mẹ, hoặc khác.

Mỗi con Tetrahymena đều có giới tính riêng, mô hình giao phối riêng ở trên vỏ tế bào. Khác với các sinh vật đơn bào khác, sinh vật này có khả năng kết đôi đặc biệt giúp nhằm tăng cơ hội sinh sản trong tự nhiên. T.thermophila không có thói quen quan hệ tình dục đồng giới, sinh sản bằng phương pháp phân đôi và giao phối khác giới. Hầu hết trường hợp, T.thermophila sinh sản vô tính, một tế bào mẹ phân chia thành 2 tế bào con. Khi nguồn thức ăn khan hiếm, chúng có khuynh hướng kết đôi để sinh sản. Khi 2 tế bào kết hợp, tạo ra ADN chung, thì 2 tế bào còn lại rã đám. “Đó là trường hợp giao phối mà không sinh sản”, theo chuyên gia Orias. Phát hiện này đã giúp các nhà khoa học hiểu thêm về các tế bào khác bao gồm cả các tế bào trong cơ thể con người.

Khi T.thermophila giao phối, có bảy loại gen ghép cặp quy định giới tính, do đó giới tính của thế hệ sau khác so với bố mẹ và có thể có tới 7 giới tính khác nhau. Sự hình thành giới tính đời sau được sắp đặt hoàn toàn ngẫu nhiên.

Khi giao phối, có bảy loại gen ghép cặp quy định giới tính, các loại gen ghép cặp sẽ thông qua quá trình chọn lọc và cuối cùng chỉ giữ lại một loại gen chuẩn nhất, sáu loại khác sẽ bị đào thải và ADN được điều chỉnh lại và sẽ quyết định giới tính của đời sau.[2]

Chú thích

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia tác giả và biên tập viên
orijinal
kaynağı ziyaret et
ortak site
wikipedia VI

Tetrahymena thermophila: Brief Summary ( Vietnamca )

wikipedia VI tarafından sağlandı

Tetrahymena thermophila là một sinh vật lạ, nhân chuẩn đơn bào hình trứng, được tìm thấy trong môi trường nước ngọt. T. thermophila có đến 7 giới tính khác nhau, khi giao phối, có bảy loại gen ghép cặp quy định giới tính. Ngoài ra, sinh vật này cũng có thể sinh sản vô tính bằng phương pháp tự nhân đôi.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia tác giả và biên tập viên
orijinal
kaynağı ziyaret et
ortak site
wikipedia VI

Tetrahymena ( Rusça )

wikipedia русскую Википедию tarafından sağlandı
Группа: SAR
Надтип: Альвеоляты
Подтип: Intramacronucleata
Инфратип: Ventrata
Класс: Oligohymenophorea
Отряд: Tetrahymenida
Семейство: Tetrahymenidae
Род: Тетрахимены
Международное научное название

Tetrahymena

Виды Commons-logo.svg
Изображения
на Викискладе
ITIS 46386NCBI 5890EOL 61455

Тетрахимены[источник не указан 24 дня] (лат. Tetrahymena) — род преимущественно свободноживущих пресноводных ресничных инфузорий, включающий около 40 валидных видов. Обычны в прудах среди гниющей листвы на дне водоёмов, но найдены также в водотоках и горячих источниках. Большинство видов — микрофаги, питающиеся бактериями, однако есть также хищные виды, питающиеся другими инфузориями. Для некоторых видов описан переход к комменсализму или факультативному (возможно, иногда и облигатному) паразитизму на пресноводных беспозвоночных — улитках, личинках комаров-звонцов и др. Некоторые виды рода Tetrahymena используются как модельные организмы в биологических и медицинских исследованиях, например, T. thermophila и T. pyriformis[1].

 src=
Tetrahymena используется как модельный организм в биологических и медицинских исследованиях

T. thermophila — модельный организм в экспериментальной биологии

Как и всем инфузориям, Tetrahymena thermophila свойственен ядерный дуализм: у неё имеется два типа ядер — большое, соматическое (макронуклеус), и малое, половое (микронуклеус), которые находятся в клетке одновременно и имеют различные функции. Tetrahymena также имеет тысячи ресничек и сложные структуры цитоскелета (пелликулу, инфрацилиатуру и др.), что делает её идеальным модельным объектом для изучения систем цитоскелета.

Так как модельные виды Tetrahymena легко выращивать в больших количествах в лабораторных условиях, это отличный объект для биохимического анализа ферментов и выделения компонентов клетки. Разработаны молекулярно-генетические методы, которые позволяют модифицировать ДНК, убирать и встраивать гены путём гомологичной рекомбинации, индуцировать и репрессировать экспрессию генов, что делает тетрахимену идеальным объектом для изучения функции генов in vivo. После полного секвенирования генома макронуклеуса («начерно» осуществлённого в 2006 г.) Tetrahymena может быть использована как модельная система и в постгеномный период молекулярной биологии.

Изучение Tetrahymena внесло вклад в многие разделы биохимии и молекулярной биологии и позволило сделать ряд открытий:

  1. Это были первые эукариотические клетки, чьё деление удалось синхронизировать, что позволило начать изучение механизмов контроля клеточного цикла
  2. Выделены и очищены первые двигательные белки цитоскелета, например, динеин, и определена его двигательная активность
  3. Исследованы детали работы лизосом и пероксисом
  4. Ранние молекулярные описания перестройки соматических генов
  5. Открытие молекулярной структуры теломер, фермента теломеразы, участвующей в поддержании структуры хромосом
  6. Открытие каталитических РНК (рибозимов)
  7. Открытие роли ацетилирования гистонов в транскрипции
  8. Показана роль механизма, подобного РНК-интерференции, в формирования гетерохроматина
  9. Показана роль посттрансляционной модификации (гликозилирование и ацетилирование) тубулинов и идентифицированы некоторые ферменты, отвечающие за модификацию (глутаминирование) тубулинов[2]
  10. Показано, что единственный стоп-кодон УГА у тетрахимены может кодировать аминокислоту селеноцистеин (таким образом, тетрахимена оказалась первым организмом, у которого возможно считывание при транскрипции всех 64 кодонов)

Примечания

  1. Alfred M. Elliott. Biology of Tetrahymena. — 1973. — ISBN 0-87933-013-9.
  2. Tetrahymena Genome Sequencing White Paper.
lisans
cc-by-sa-3.0
telif hakkı
Авторы и редакторы Википедии

Tetrahymena: Brief Summary ( Rusça )

wikipedia русскую Википедию tarafından sağlandı

Тетрахимены[источник не указан 24 дня] (лат. Tetrahymena) — род преимущественно свободноживущих пресноводных ресничных инфузорий, включающий около 40 валидных видов. Обычны в прудах среди гниющей листвы на дне водоёмов, но найдены также в водотоках и горячих источниках. Большинство видов — микрофаги, питающиеся бактериями, однако есть также хищные виды, питающиеся другими инфузориями. Для некоторых видов описан переход к комменсализму или факультативному (возможно, иногда и облигатному) паразитизму на пресноводных беспозвоночных — улитках, личинках комаров-звонцов и др. Некоторые виды рода Tetrahymena используются как модельные организмы в биологических и медицинских исследованиях, например, T. thermophila и T. pyriformis.

 src= Tetrahymena используется как модельный организм в биологических и медицинских исследованиях
lisans
cc-by-sa-3.0
telif hakkı
Авторы и редакторы Википедии

四膜蟲 ( Çince )

wikipedia 中文维基百科 tarafından sağlandı

T hegewischi
T. hyperangularis
T. malaccensis
T. pigmentosa
T. pyriformis
T. thermophila
T. vorax

四膜蟲Tetrahymena)是自由游離生活的(非寄生性的)纤毛原生動物,也可以從偏利共生轉變為病原生存模式。 它們在淡水池中很常見。在生物醫學研究中用作模式生物的四膜蟲屬是嗜熱棲熱菌(T. thermophila)和熱厭氧桿菌(T. pyriformis)[1]

结构

四膜蟲是一種單細胞真核生物,分布在全球的淡水水域中,屬於囊泡蟲類 (Alveolata)纖毛蟲门(Ciliophora),與一般人所熟知的草履蟲Paramecium)在型態生理上十分相似。四膜蟲外觀呈橢圓長梨狀,體長約50微米,全身佈滿數百根長約4—6微米長的纖毛,纖毛排列成數十條縱列,是不同種間纖毛蟲分類的特徵之一。四膜蟲身體前端具有口器(oral apparatus),有三組三列的口部纖毛,早期在光學顯微鏡下觀察時看似有四列膜狀構造,因此據以命名。

四膜蟲主要是游離生活的異營生物,以攝取水中的細菌與其他有機質維生,尚未發現會造成人體疾病或對人類健康造成危害。

嗜熱棲熱菌:實驗生物學中的模式生物

 src=
四膜蟲的β-微管蛋白

四膜蟲與草履蟲等其他纖毛蟲一樣,具有雙元核型英语nuclear dimorphism(nuclear dimorphism):在一個細胞中有兩種类型的细胞核,小核負責生殖功能,一般生長時小核的基因並不會表現/表達;和大核英语macronucleus(macronucleus)負責維持細胞生長營養所需,可觀察到旺盛的基因轉錄。

四膜蟲易於在實驗室裡培養,這歸功於研究人員已經找出可以適於四膜蟲生長所需的液態培養基成分,因此四膜蟲從早年開始即是一種實驗生物學上所使用的模式生物(model organism),用這種生物當作範例與工具,研究各種基礎生物學的現象。由於可以大量培養四膜蟲,所以它適於作為生化純化分析的材料來源。現代的分子生物技術與分子遺傳操作法也已經成功地使用在四膜蟲上,研究人員可以把DNA轉殖入四膜蟲細胞中,這些DNA可經由同源重組互換的方式將染色體上的基因剔除(knock-out),或在特定的基因座上將基因置入(knock-in),因此四膜蟲也適於藉由遺傳工程技術來解析基因的功能。近年來,四膜蟲大核的基因體(genome)也已經完成定序,所以在進入基因體時代的今日與後基因體時代,生物學家仍可以持續以四膜蟲為材料進行研究。

性别

四膜虫交配时,其后代的性别可能和其父母的性别都不一样——有7种可能的性别。研究人员发现了四膜虫中决定其后代性别的复杂DNA特性,并确认了性别形成是随机的[2]。该结果发表在3月26日的《科学公共图书馆 — 生物学》上。

每一只四膜虫都有其自身性别或交配模式的基因——存在于其大核(或称体核)中,同时也带有另一个仅用于繁殖的小核。这种“生殖核”不完全包含7种交配型基因,经过剪切、粘贴的过程,最终会留下1个完整的基因,其他6种会被淘汰。重新调整过的DNA成为四膜虫下一代体核的一部分,并会决定其交配模式。

在四膜虫通过接合产生子代时,子代的体核在发育过程中需要在6种残缺的基因对中挑出一种,并组装成完整的基因对,才能使子代呈现对应的交配型。研究者发现,这一交配型选择过程是随机的——在子代的体核发育过程中,上述串联的交配型基因序列会发生一系列随机的剪切-连接反应。6种残缺的基因对中的5种会随着反应的进行被删掉,而剩下的一对则会与II型的MTA末端序列以及III型的MTB末端序列组装,形成具有功能的完整MTA/MTB基因对 。

参见

参考资料

  1. ^ Elliott, Alfred M. Biology of Tetrahymena. Dowen, Hutchinson and Ross Inc. ISBN 0-87933-013-9. 1973.
  2. ^ Selecting; Segment Joining, Gene; Deletion; Cervantes, MD; Hamilton, EP; Xiong, J; Lawson, MJ; Yuan, D; 等. Selecting One of Several Mating Types through Gene Segment Joining and Deletion in Tetrahymena thermophila. PLoS Biol. 2013, 11 (3): e1001518. doi:10.1371/journal.pbio.1001518.
遗传学中主要的模式生物
纖毛蟲門
后纤束亚门
Postciliodesmatophora
粘孢子总门
Ixorheorida英语Ixorheorida
Septatorina英语Septatorina
Chromerida英语Chromerida
Other
Perkinsozoa英语Perkinsozoa
Perkinsea英语Perkinsea
Acavomonidia 物種識別信息
 title=
lisans
cc-by-sa-3.0
telif hakkı
维基百科作者和编辑

四膜蟲: Brief Summary ( Çince )

wikipedia 中文维基百科 tarafından sağlandı

四膜蟲(Tetrahymena)是自由游離生活的(非寄生性的)纤毛原生動物,也可以從偏利共生轉變為病原生存模式。 它們在淡水池中很常見。在生物醫學研究中用作模式生物的四膜蟲屬是嗜熱棲熱菌(T. thermophila)和熱厭氧桿菌(T. pyriformis)。

lisans
cc-by-sa-3.0
telif hakkı
维基百科作者和编辑

テトラヒメナ ( Japonca )

wikipedia 日本語 tarafından sağlandı
Question book-4.svg
この記事は検証可能参考文献や出典が全く示されていないか、不十分です。
出典を追加して記事の信頼性向上にご協力ください。2011年9月
テトラヒメナ Tetrahymena thermophila.png
T. thermophila
分類 ドメ
イン
: 真核生物 Eukaryota : アルベオラータ Alveolata : 繊毛虫門 Ciliophora : 貧膜口綱 Oligohymenophorea : ミズケムシ目 Hymenostomatida : テトラヒメナ科 Tetrahymenidae : テトラヒメナ属 Tetrahymena 学名 Tetrahymena Furgason, 1940

本文参照

テトラヒメナ学名Tetrahymena)は水中に生息する繊毛虫の一つ。洋梨型の形態をしており、体長は 30-100 μm 程度。多数の繊毛が生えており、これによって運動する。細胞内には収縮胞がある。細胞核大核小核にわかれており、小核は生殖核とも呼ばれる。小核は通常の染色体数をもち、細胞分裂のたびに受け継がれてゆく。大核は多細胞生物でいうと体細胞のような役割をしており、多倍体として生活に必要な遺伝子のコピー数を増やしている。大核には染色体の末端が多数存在するため、テロメア研究のモデル生物として用いられた。また触媒機能をもつ RNAリボザイムもテトラヒメナにおいて初めて発見された。

テトラヒメナ属の種

  • T. hegewischi
  • T. hyperangularis
  • T. malaccensis
  • T. pigmentosa
  • T. pyriformis
  • T. thermophila
執筆の途中です この項目は、原生生物に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますポータル 生き物と自然プロジェクト 生物)。
 title=
lisans
cc-by-sa-3.0
telif hakkı
ウィキペディアの著者と編集者

テトラヒメナ: Brief Summary ( Japonca )

wikipedia 日本語 tarafından sağlandı
lisans
cc-by-sa-3.0
telif hakkı
ウィキペディアの著者と編集者

테트라하이메나 ( Korece )

wikipedia 한국어 위키백과 tarafından sağlandı

 src=
테트라하이메나의 베타 튜불린.

테트라하이메나(Tetrahymena)는 섬모충류에 속하는 원생동물이다. 편리 공생에서 병원체로 전환할 수도 있다. 이들은 일반적으로 민물에 산다. 생물의학 연구에서 모델 생물로 사용되는 테트라하이메나 종들은 T. thermophilaT. pyriformis가 있다.[1]

Tetrahymena thermophila의 경우 7개의 성이 있으며 21개의 다른 조합으로 번식할 수 있다. 성은 성적(性的)으로 자가 생식하여 번식할 수 없다.

하위 종

  • Tetrahymena hegewischi
  • Tetrahymena hyperangularis
  • Tetrahymena malaccensis
  • Tetrahymena pigmentosa
  • Tetrahymena pyriformis
  • Tetrahymena thermophila
  • Tetrahymena vorax

각주

  1. Alfred M. Elliott (1973). 《Biology of Tetrahymena》. 《Dowen, Hutchinson and Ross Inc.》. ISBN 0-87933-013-9. |volume=에 templatestyles stripmarker가 있음(위치 1) (도움말)
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia 작가 및 편집자

테트라하이메나: Brief Summary ( Korece )

wikipedia 한국어 위키백과 tarafından sağlandı
 src= 테트라하이메나의 베타 튜불린.

테트라하이메나(Tetrahymena)는 섬모충류에 속하는 원생동물이다. 편리 공생에서 병원체로 전환할 수도 있다. 이들은 일반적으로 민물에 산다. 생물의학 연구에서 모델 생물로 사용되는 테트라하이메나 종들은 T. thermophila와 T. pyriformis가 있다.

Tetrahymena thermophila의 경우 7개의 성이 있으며 21개의 다른 조합으로 번식할 수 있다. 성은 성적(性的)으로 자가 생식하여 번식할 수 없다.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia 작가 및 편집자