dcsimg

Behavior ( İngilizce )

Animal Diversity Web tarafından sağlandı

Cassiopea xamachana uses nematocysts or stinging cells to stun or paralyze prey. The triggering mechanism for these cells is independent of the organism's nervous system. Two stimuli trigger the discharge. One is mechanical or tactile, triggering a modified cillium on the cell. The other receptor detects chemicals, more specifically amino acids.

Communication Channels: tactile ; chemical

Perception Channels: tactile ; chemical

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Conservation Status ( İngilizce )

Animal Diversity Web tarafından sağlandı

Cassiopea xamachana does not receive specific legal consideration; however, in Bermuda the species lives in areas that are protected by legislation that make mooring, anchoring and fishing illegal.

US Federal List: no special status

CITES: no special status

State of Michigan List: no special status

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Life Cycle ( İngilizce )

Animal Diversity Web tarafından sağlandı

Cassiopea xamachana is dioecious, with each sex contributing one type of gamete (sperm or eggs) that will combine to form a zygote. The developing embryos are covered in specialized mucus and wrapped around the bases of sex specific vesicles. This brooding will continue until cilliated planula emerge and begin to swim, commonly characterized as searching behavior. Eventually, the larva will settle on a suitable substrate and irreversibly attach, beginning the metamorphosis into the sedentary polyp stage of the life cycle. Once the development of the oral opening is complete the scyphopolyp will begin to acquire photosynthetic algal symbionts. After acquiring the needed amount of Symbiodinium and when temperatures exceed 20◦C, these scyphistomae will begin to strobilate through a process called monodisc strobilation. Through this process the calyx, the spicules containing a portion of the upper tentacular part of the polyp, will constrict and eventually separate. Over the course of the following week this will transform into an ephyra, an immature medusa stage of the life cycle. The polyp will regenerate its lost tentacular portion and the ephyra will continue to grow and mature to adulthood as a sexually reproducing medusa.

Development - Life Cycle: metamorphosis

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Benefits ( İngilizce )

Animal Diversity Web tarafından sağlandı

The upside-down jellyfish have recently come into the spotlight as significant bioinvaders. They are being transported on live rock to the U.S. from the Indo-Pacific. Live rock is primarily collected from the edges of reefs in the Indo-Pacific. Its exportation is an important source of revenue for many small communities. The trade in live rock is not subject to quarantine restrictions in its principal markets, and therefore poses a serious threat of bioinvasion. The potential is for inadvertent or deliberate release of organisms that reside on its surfaces. Invasive species are a principal threat to biodiversity and are responsible for enormous economic losses globally. Once established in a new environment, invasive species are often difficult to control, and eradication efforts are usually ineffectual. Scyphozoans have gained infamy as an invasive species. They are capable of extraordinary population blooms that can inflict major economic losses and ecological damage. In some areas of the world, they have caused painful or life-threatening stings thus restricting access of swimmers and tourists to aquatic recreational areas, and imposing financial posses on the tourism industry. The unregulated trade in live rock presents a serious bioinvasion risk that warrants the urgent attention of regulatory bodies.

Negative Impacts: injures humans (bites or stings)

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Benefits ( İngilizce )

Animal Diversity Web tarafından sağlandı

At the current date there appears to be no commercial importance for Cassiopea xamachana.

Cassiopea xamachana can be used as a bioindicator species, to integrate relevant information about phosphate availability in low nutrient environments. This may be beneficial to humans in their attempts to restore the health of the Florida Keys reef system.

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Associations ( İngilizce )

Animal Diversity Web tarafından sağlandı

The symbiotic relationship between the upside-down jellyfish and photosynthetic zooxanthellae is ecologically valuable as it provides a pathway for converting energy into usable forms for the marine ecosystem. The symbiotic relationship between the two is similar to that of the zooxanthellae and coral. Medusae always contains zooxanthellae. Newly produced scyphistomae must acquire their symbionts from feeding or absorption from the surrounding water.

Water crabs regularly use the upside down jellyfish as a form of protection. When the crabs reach the surface or the edge of the waterbed they carry the upside down jellyfish on their backs, using the tentacles as a shield.

Mutualist Species:

  • Symbiodinium
lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Trophic Strategy ( İngilizce )

Animal Diversity Web tarafından sağlandı

The up-side down jellyfish has a symbiotic relationship with zooxanthellae, located in their mesoglea. The zooxanthellae helps the jellyfish obtain most of its carbon, however, it does not meet the daily metabolic needs of the jellyfish so the jellyfish must supplement their diet. They filter feed, absorbing dissolved nutrients in the water, and/or capturing prey with their tentacles.

Nematocysts or stinging cells located in the tentacles allows the jellyfish to stun or paralyze their prey. Water pressure inside a stinging cell is controlled by osmosis. The inside of the cell is hypertonic compared to the surrounding marine environment, so water would flow in if it could. Under normal conditions, this flow is prevented. However, when both stimuli are detected the membrane will change to allow water to enter into the cell. This increased pressure will evert the barbed thread that rests inside. These specialized stinging cells can only fire once, after discharge the cell will die. Therefore, these very specific trigger mechanisms are required to ensure that nematocysts are not wasted on something that is not prey or a predator.

After the prey has been captured the jellyfish begins digestion on the oral surface and moves the partly digested prey where it can be ingested by a secondary mouth. The upside-down jellyfish has mutated from other jellies as its central mouth has become occluded and various secondary mouths have been created at the ends of the manubrial branches. Most other jellies have one mouth at the center of the oral surface.

Animal Foods: zooplankton

Plant Foods: algae; phytoplankton

Foraging Behavior: filter-feeding

Primary Diet: carnivore (Eats other marine invertebrates)

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Distribution ( İngilizce )

Animal Diversity Web tarafından sağlandı

The northern distribution limit of Cassiopea xamachana is the southeastern tip of the United States as upside-down jellyfish appear in large numbers in varying areas of the Florida Keys. This species is also found in Bermuda, the Caribbean Sea and warmer areas of the western Atlantic Ocean. They are commonly found in places such Walsingham Pond and Harrington Sound, on the bottom of an inshore bay or pond. The highest density of these scyphozoans occurs in the Caribbean but throughout the course of the last decade the distribution seems to be expanding to other locations such as the Hawaiian and Mediterranean waters, including the Red Sea.

Biogeographic Regions: atlantic ocean (Native ); pacific ocean (Introduced ); mediterranean sea (Introduced )

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Habitat ( İngilizce )

Animal Diversity Web tarafından sağlandı

Cassiopea xamachana frequently resides inshore in shallow, tropical, marine waters, on particular sandy mudflats. Upside-down jellyfish most commonly use muddy substrata in mangrove leaves to settle upon, giving rise to the common name "mangrove jellyfish." The jellyfish are found during the mid to late summer with very few scyphistomae observed between late November and early June. Numerous quantities of the benthic-dwelling ephyra and strobilating scyphistomae were observed from late June until the end of the fall season. There were nearly none observed throughout the winter or spring.

Range depth: Shallow Areas (low) m.

Habitat Regions: tropical ; saltwater or marine

Aquatic Biomes: benthic ; reef

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Life Expectancy ( İngilizce )

Animal Diversity Web tarafından sağlandı

The time of the entire life cycle of this jellyfish is unknown.

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Morphology ( İngilizce )

Animal Diversity Web tarafından sağlandı

The up-side down jellyfish does not have the typical physical characteristics of jellyfish. Often it has a somewhat green or gray/blue coloration. This display is the result of numerous densely packed symbiotic zooxanthellae, Symbiodinium microadriaticum. The medusa, the dominant adult phase of the life cycle, possesses four branching tentacles that extend from the body, up into the water column. These structures are used in feeding and provide nutrients in combination with what is made available by the photosynthetic dinoflagellates. The large, dome shaped exumbrella of the medusa contains a central depression that is used mainly for attachment purposes as the up-side down jellyfish remains sedentary throughout a majority of its lifecycle.

Range length: 20.3 to 35.6 cm.

Average length: 30.5 cm.

Range basal metabolic rate: 1.3 to 4.87 cm3.O2/g/hr.

Average basal metabolic rate: 2.39 cm3.O2/g/hr.

Other Physical Features: ectothermic ; heterothermic ; radial symmetry ; polymorphic

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Associations ( İngilizce )

Animal Diversity Web tarafından sağlandı

Leatherback, green, and loggerhead sea turtles, feed on upside-down jellyfish.

Known Predators:

  • Derochelys coriacea, Leatherback sea turtles
  • Chelonia mydas, Green sea turtles
  • Caretta caretta, Loggerhead sea turtles

Anti-predator Adaptations: cryptic

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Reproduction ( İngilizce )

Animal Diversity Web tarafından sağlandı

Males release gametes into the water and females take them in for fertilization.

Mating System: polygynandrous (promiscuous)

The life cycle of Cassiopea xamachana is similar to other scyphozoans, with alternation of generations between a sessile polyp stage (scyphistomae) and dominant mobile medusa stage. The scyphistomae reproduce asexually by budding when resources are plentiful. Each newly produced bud will settle and lead to the production of another sedentary polyp. Eventually, the scyphistomae will begin to produce the adult medusa stage through the monadisc strobilation process discussed above. This strobilation process only takes place during the winter and fall seasons despite the medusa being found year round. Typically, scyphozoans will only strobilate during the winter months. Eventually this will lead to the development of an immature ephyra which will continue to grow into a fully mature, sexually reproducing adult medusa. The medusae are gonochoristic and the females eggs will be fertilized by the sperm released from a nearby male. The female will then internally brood her young until the eggs hatch and become free swimming planula. These small, mobile larvae will preferentially settle on a specific substrate and grow into the asexually reproducing polyp to complete the life cycle.

Key Reproductive Features: seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; asexual ; fertilization (Internal )

The only form of parental care in Cassiopea xamachana is the temporary brooding of developing planula larvae discussed above. This minimal amount of parental investment in brooding will only last until the cilliated planula larvae hatch from the egg envelope. This form of parental care is fundamental as cnidarians often do not invest a great deal of resources in developing offspring.

Parental Investment: no parental involvement; female parental care ; pre-hatching/birth (Provisioning: Female)

lisans
cc-by-nc-sa-3.0
telif hakkı
The Regents of the University of Michigan and its licensors
bibliyografik atıf
Post, M. and P. Sacca 2012. "Cassiopea xamachana" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Cassiopea_xamachana.html
yazar
Michael Post, Rutgers University
yazar
Patrizia Sacca, Rutgers University
düzenleyici
David V. Howe, Rutgers University
düzenleyici
Renee Mulcrone, Special Projects

Cassiopea andromeda ( Almanca )

wikipedia DE tarafından sağlandı

Cassiopea andromeda ist eine Quallenart. Untypisch für Quallen, lebt sie überwiegend sesshaft auf dem flachen Meeresgrund, mit der Unterseite nach oben gekehrt.

Beschreibung

Meduse

Die Qualle besitzt einen gelbbraun gefärbten, glatten, tellerartigen Schirm ohne Randtentakel mit fast glattem Rand, von der ungefähren Gestalt eines Saugnapfs, im ausgewachsenen Zustand mit etwa 300 Millimeter Durchmesser. Er kann eine weiße Zeichnung aus Flecken und Radiärstreifen tragen, diese ist aber variabel, oft verwaschen und kann auch vollständig fehlen. Die zentrale Mundöffnung ist von acht fiederteilig fein verzweigten Mundarmen umgeben, deren Länge nicht ganz den Schirmdurchmesser erreicht. Die Mundarme verzweigen zweiteilig (dichotom), teilweise auch mehrere aus einer Wurzel (bäumchen- oder handförmig, pinnat), nach außen hin sehr fein. Alle Armäste sind in einer Ebene ausgebreitet schräg spitzwinklig vom Schirm wegstrebend. Am Ende besitzen sie flache, saumartige Auswüchse. Wie typisch für Medusen, sind sie dicht von Nesselkapseln besetzt. Auf den Armen sitzen senkrecht abstehende, abweichend gefärbte sogenannte Kolbenblasen unterschiedlicher Anzahl und Größe, die vermutlich Sinnesfunktion besitzen. Die Färbung der Mundarme selbst ist sehr variabel.

An den Mund schließt im Inneren ein linsenförmiger Magenraum mit im Verhältnis zur Schirmgröße recht geringem Durchmesser an. Dieser setzt sich nach außen in ca. 32 radiär verlaufende Kanäle fort, die durch ein Netz von Querverbindungen (Anastomosen) miteinander verbunden sind, diese durchziehen den gesamten Körper einschließlich der Arme.

Die Unterseite der Qualle, insbesondere die Mundarme, trägt eingelagert symbiontische autotrophe (d. h. zur Photosynthese befähigte) Dinoflagellaten, die verschiedenen Stämmen der Art Symbiodinium microadriaticum zugeordnet werden[1] (die Farbe der Qualle steht dabei in keinem Zusammenhang mit diesen und ihrer spezieller Farbe[2]). Solche sogenannte Zooxanthellen sind sonst eher typisch für Polypen von Nesseltieren, insbesondere Korallenarten. Auch bei Cassiopea kommen sie sowohl im Polypen- wie auch im Medusenstadium vor. Die Qualle ist auf ihre Endosymbionten angewiesen und ohne sie nicht lebensfähig. Sie ernährt sich aber nicht rein autotroph, sondern daneben auch räuberisch, vor allem von planktonischen Kleinkrebsen (v. a. Copepoden).

Polyp

Das Polypenstadium der Art ist 5 bis 10 Millimeter groß, langgestielt mit schüsselförmigem Kelch (Calyx). Der Fuß und der Stiel bis auf etwa halbe Länge sind von einer festen Peridermröhre geschützt. Auf der etwas eingesenkten Mundscheibe sitzt ein zylindrischer, vierlippiger Hypostom, am Rand des Calyx etwa 40 dünne Tentakel. Der Polyp trägt dieselben symbiontischen Zooxanthellen wie das Medusenstadium.[3]

 src=
Symbiose zwischen C. andromeda und Zooxanthellen

Lebenszyklus

Die Art besitzt den typischen Generationswechsel (Metagenese) der meisten Nesseltiere. Die getrenntgeschlechtlichen, selten auch zwittrigen Medusen produzieren Planula-Larven, die sich auf Hartsubstrat am Meeresboden festsetzen und die Polypen-Generation bilden. Als Substrat werden zum Beispiel abgefallene Mangrovenblätter verwendet, sie kommen aber auch auf einer Vielzahl anderer, von abgestorbenem Seegras bis hin zu Plastikabfällen, vor. Polypen schnüren ihren Kopfteil durch Strobilation zu frei schwimmenden, Ephyren genannten Medusenlarven ab, die zu Medusen heranwachsen, alternativ können sie auch knospenartige Keime von Tochterpolypen abscheiden. Diese sind larvenartig beweglich und differenzieren sich erst nach Entfernung vom Mutterpolypen[4]. Bei der Strobilation schnürt jeder Polyp eine einzelne, etwas weniger als 4 Millimeter breite Ephyre ab (monodiske Entwicklung), zurück bleibt nur der Stielabschnitt mit einer neuen Mundöffnung, der anschließend durch Neubildung des Calyx regeneriert. Die Ephyre besteht aus einem flachen Schirm mit zahlreichen kleinen Randlappen mit abgerundeten Spitzen, die paarweise durch ein Häutchen verbunden sind. Zentral sitzt ein langer Mundstiel (Manubrium).[3]

Ökologie und Lebensweise

Die ausgewachsenen Medusen liegen normalerweise auf dem Meeresgrund, so dass der Schirm dem Boden anliegt, mit den Mundstielen nach oben. Sie ähneln so, da der Schirm zunächst nicht sichtbar ist, bei oberflächlicher Betrachtung einer Seeanemone. Der Schirm pumpt mit schwachen undulierenden Wellenbewegungen Wasser auf die Mundstiele zu, die so planktonische Beuteorganismen zugeführt bekommen. Bei Bedarf kann sie schwimmen. Da die Art sich überwiegend von ihren autotrophen Endosymbionten ernährt, bevorzugt sie flache, gut durchlichtete Wassertiefen, auch die Gezeitenzonen. Die Medusen kommen nur auf feinsubstratigem Sand- oder Schlammgrund vor. Die Art lebt vor allem in tropischen Gewässern, kann aber bis in warmtemperate Meereszonen wie das Mittelmeer vordringen. Sie lebt gern, aber keinesfalls exklusiv, in Mangroven, sie wird deshalb gelegentlich als "Mangrovenqualle" bezeichnet. Bei einer Untersuchung im Roten Meer wurde die Art als eine ökologische Schlüsselart auf dem dortigen Meeresboden eingeschätzt. Sie bevorzugte die Übergangszone zwischen einem Korallenriff und der anschließenden Sandbank gegenüber diesen Lebensräumen selbst, am seltensten war sie in Seegraswiesen. Die Dichte in der Übergangszone betrug etwa acht Individuen pro Quadratmeter, die (in der Riffzone) bis maximal etwa 20 Prozent des Grunds bedeckten.[5]

Die Art lebt in Symbiose mit Putzergarnelen der Gattung Periclimenes (Familie Palaemonidae) und Idiomysis tsunrnamali (Familie Mysidae). Pro Meduse kommen meist ein bis vier der transparenten Garnelen vor, Einzelheiten der Lebensbeziehung sind bisher kaum bekannt.[6]

Giftwirkung

Wie viele Quallen besitzt Cassiopea andromeda ein Nesselgift, das auch auf den Menschen Wirkung besitzt. Auf empfindlicher, ungeschützter Haut kann es zu schmerzhaften Stichen kommen.[7][8]

Systematik und Taxonomie

Die Art wurde von Peter Forsskål 1775 als Medusa andromeda erstbeschrieben und 1829 von Johann Friedrich Eschscholtz in die von ihm neubeschriebene Gattung Cassiopea transferiert. Die Taxonomie der Gattung auf morphologischer Basis ist geprägt von Konfusion und Meinungsverschiedenheiten zwischen verschiedenen Autoren. Während anfangs beinahe jeder Bearbeiter sein Material aus einer neuen Region als neue Art oder zumindest neue Unterart beschrieb, meist anhand geringfügiger Modifikationen von Färbung und Form, wurden alle diese Formen später zur weit gefassten Sammelart Cassiopea andromeda vereinigt. Nach diesem Konzept enthielt die Gattung nur eine Art (monotypisch). Meist wurden aber zumindest die Formen aus der Karibik als eigenständige Arten Cassiopea xamachana und C. frondosa anerkannt. Nach neueren DNA-Untersuchungen[9] sind morphologische Unterschiede in der Gattung zu variabel, um danach Arten sicher abgrenzen zu können. Anhand der mtDNA konnten sechs klar divergente Gruppen mit substantiellen genetischen Unterschieden abgegrenzt werden, die nach Meinung der Autoren Artrang verdienen. Die karibische Cassiopea xamachana und die indopazifisch verbreitete Cassiopea andromeda erwiesen sich dabei allerdings als zur selben Klade gehörig, so dass den Ergebnissen nach ein Artunterschied zwischen ihnen nicht gerechtfertigt wäre. Allerdings haben die Autoren die kryptischen Arten zwar unterschieden, aber nicht formal beschrieben und benannt, so dass die nun unterschiedenen morphologisch ununterscheidbaren Kryptospezies zum Teil keinen validen Artnamen besitzen.

Verbreitung

Während die Sammelart Cassiopea andromeda fast weltweit verbreitet ist, ist die Art im engeren Sinne (vgl.[9]) im Pazifik, Indischen Ozean und im Roten Meer verbreitet. Nach dem Bau des Suezkanals ist sie ins Mittelmeer eingewandert (ein Beispiel der sogenannten Lessepsschen Wanderung). Im Kanal selbst stammen erste Nachweise von 1886, 1903 gelang der erste Fund im Mittelmeer (bei Zypern), spätere Funde 1955 bei Santorin und 1990 an der israelischen Küste[10], seit 2008 auch in einer Lagune der türkischen Küste[11]. Mittlerweile wurde diese Art aber auch im westlichen Mittelmeer vor der Küste Maltas als Neobiont entdeckt[12]. Außerdem liegen Funde aus Hawaii, nahe der Hafenbucht von Pearl Harbor vor[13], die zu verschiedenen der Kryptospezies gehören[9], darunter auch C. andromeda im engeren Sinne. Hier liegt eine Verschleppung durch Schiffsaufwuchs oder Ballastwasser nahe, die wohl auch sonst zur Verbreitung der Art beitragen.

Quellen

  • Gustav Stiasny (1921): Studien über Rhizostomeen mit besonderer Berücksichtigung der Fauna des Malaiischen Archipels nebst einer Revision des Systems. Capita zoologica deel I, aflevering 2: 1-178. Volltextquelle

Einzelnachweise

  1. Rudolf J. Blank & Volker A.R. Huss (1989): DNA divergency and speciation in Symbiodinium (Dinophyceae). Plant Systematics and Evolution Volume 163, Issue 3-4: 153-163.
  2. Lampert, K. P., Bürger, P., Striewski, S. and Tollrian, R. (2012): Lack of association between color morphs of the Jellyfish Cassiopea andromeda and zooxanthella clade. Marine Ecology 33: 364–369. doi:10.1111/j.1439-0485.2011.00488.x
  3. a b Ilka Straehler-Pohl (2009): Die Phylogenie der Rhopaliophora (Scyphozoa und Cubozoa) und die Paraphylie der 'Rhizostomeae'. Dissertation, Universität Hamburg.
  4. D.K. Hofmann, W.K. Fitt, J. Fleck (1996): Checkpoints in the life-cycle of Cassiopea spp.: control of metagenesis and metamorphosis in a tropical jellyfish. International Journal of Developmental Biology 40: 331-338.
  5. Wolfgang Niggl & Christian Wild (2010): Spatial distribution of the upside-down jellyfish Cassiopea sp. within fringing coral reef environments of the Northern Red Sea – implications for its life cycle. Helgoland Marine Research Volume 64, Issue 4: 281-287.
  6. J. E. Martinelli Filho, S. N. Stampar, A. C. Morandini, E. C. Mossolin (2008): Cleaner shrimp (Caridea: Palaemonidae) associated with scyphozoan jellyfish. Vie et milieu - life and environment 58 (2): 133-140.
  7. Gian Luigi Mariottini & Luigi Pane (2010): Mediterranean Jellyfish Venoms: A Review on Scyphomedusae. In: Marine Drugs 8: 1122-1152. doi:10.3390/md8041122
  8. Mustafa Alparslan Poisonous Marine Organisms In Turkey And First Medical Aids. In: 2nd International Symposium on Sustainable Development, June 8-9 2010, Sarajevo. download
  9. a b c Brenden S. Holland, Michael N. Dawson, Gerald L. Crow, Dietrich K. Hofmann (2004): Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology 145: 1119–1128. doi:10.1007/s00227-004-1409-4
  10. B. S. Galil, E. Spanier, W. W. Ferguson (1990): The Scyphomedusae of the Mediterranean coast of Israel, including two Lessepsian migrants new to the Mediterranean. Zoologische Mededelingen 64: 95-105.
  11. Elif Özgür & Bayram Öztürk (2008): A population of the alien jellyfish, Cassiopea andromeda (Forsskål, 1775) (Cnidaria: Scyphozoa: Rhizostomea) in the Ölüdeniz Lagoon, Turkey. Aquatic Invasions Volume 3, Issue 4: 423-428. doi:10.3391/ai.2008.3.4.8
  12. Patrick J. Schembri et al. (2009): First record of Cassiopea andromeda (Scyphozoa: Rhizostomeae: Cassiopeidae) from the central Mediterranean Sea (PDF; 105 kB), Marine Biodiversity Records
  13. Bishop Museum and University of Hawaii: Guidebook of Introduced Marine Species of Hawaii
 title=
lisans
cc-by-sa-3.0
telif hakkı
Autoren und Herausgeber von Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia DE

Cassiopea andromeda: Brief Summary ( Almanca )

wikipedia DE tarafından sağlandı

Cassiopea andromeda ist eine Quallenart. Untypisch für Quallen, lebt sie überwiegend sesshaft auf dem flachen Meeresgrund, mit der Unterseite nach oben gekehrt.

lisans
cc-by-sa-3.0
telif hakkı
Autoren und Herausgeber von Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia DE

Cassiopea andromeda ( İngilizce )

wikipedia EN tarafından sağlandı

Cassiopea andromeda is one of many cnidarian species called the upside-down jellyfish. It usually lives in intertidal sand or mudflats, shallow lagoons, and around mangroves. This jellyfish, often mistaken for a sea anemone, usually keeps its mouth facing upward. Its yellow-brown bell, which has white or pale streaks and spots, pulsates to run water through its arms for respiration and to gather food.

Alimentation and strategies

Cassiopea andromeda is carnivorous and eats small animals from the sea or just pieces of them after it paralyzes its prey with its mucus and nematocysts when they are released. This jellyfish also lives in a symbiotic relationship with photosynthetic dinoflagellate algae, the zooxanthellae, and with shrimps. The zooxanthellae live in the tissues of the ventral surface of its body and it is the responsible for the color of it. As the zooxanthellae gets food for the Cassiopea andromeda, in response, it gets the sunlight that is necessary for the photosynthetic dinoflagellate algae. Therefore, the shrimp has a different symbiotic relationship with this jellyfish. It lives in its tentacles and protects it by taking the parasites off. In exchange, the Cassiopea andromeda mainly offers protection to the shrimp from the environment. This symbiotic relationship is called mutualism, where both species benefit from their interactions.

Symbiotic relationship between C. andromeda and algae

Reproduction

As a cnidarian, this jellyfish has an asexual and sexual reproduction. It reproduces by budding when it is in a polyp form. When it is in a medusa form, it reproduces sexually. The medusa female produces the eggs and keeps them. As the male produces the sperm and releases them in the water, the female uses its tentacles to bring the sperm to fertilize its eggs.

Size

This jellyfish can measure a maximum of 30.0 cm wide.

Interactions with humans

The species can deliver a painful sting. Symptoms include mild pain, rash, and swelling.

References

  1. ^ Cassiopea andromeda var. malayensis Maas, 1903 in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset doi:10.15468/39omei accessed via GBIF.org on 2023-05-29.
  2. ^ Cassiopea depressa subsp. picta Vanhöffen, 1888 in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset doi:10.15468/39omei accessed via GBIF.org on 2023-05-29.
  3. ^ Collins, A.G.; Morandini, A.C. (2023). World List of Scyphozoa. Cassiopea picta Vanhöffen, 1888. Accessed through: World Register of Marine Species on 2023-05-29.
  4. ^ WoRMS (2023). Cassiopea polypoides Keller, 1883. Accessed at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=1561018 on 2023-05-29.
  5. ^ WoRMS (2023). Medusa andromeda Forskål, 1775. Accessed at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=1393206 on 2023-05-29.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia EN

Cassiopea andromeda: Brief Summary ( İngilizce )

wikipedia EN tarafından sağlandı

Cassiopea andromeda is one of many cnidarian species called the upside-down jellyfish. It usually lives in intertidal sand or mudflats, shallow lagoons, and around mangroves. This jellyfish, often mistaken for a sea anemone, usually keeps its mouth facing upward. Its yellow-brown bell, which has white or pale streaks and spots, pulsates to run water through its arms for respiration and to gather food.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia EN

Cassiopea andromeda ( Fransızca )

wikipedia FR tarafından sağlandı

Cassiopea andromeda est une méduse cassiopée également appelée méduse des mangroves[1] que l'on trouve notamment dans les zones Indo-Pacifique, mer Rouge, Méditerranée orientale[2].

lisans
cc-by-sa-3.0
telif hakkı
Auteurs et éditeurs de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia FR

Cassiopea andromeda: Brief Summary ( Fransızca )

wikipedia FR tarafından sağlandı

Cassiopea andromeda est une méduse cassiopée également appelée méduse des mangroves que l'on trouve notamment dans les zones Indo-Pacifique, mer Rouge, Méditerranée orientale.

lisans
cc-by-sa-3.0
telif hakkı
Auteurs et éditeurs de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia FR

Cassiopea andromeda ( Felemenkçe; Flemish )

wikipedia NL tarafından sağlandı

Cassiopea andromeda is een schijfkwal uit de familie Cassiopeidae. De kwal komt uit het geslacht Cassiopea. Cassiopea andromeda werd in 1775 voor het eerst wetenschappelijk beschreven door Forsskål.

Bronnen, noten en/of referenties
Geplaatst op:
13-12-2011
Dit artikel is een beginnetje over biologie. U wordt uitgenodigd om op bewerken te klikken om uw kennis aan dit artikel toe te voegen. Beginnetje
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia-auteurs en -editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia NL

仙后水母 ( Çince )

wikipedia 中文维基百科 tarafından sağlandı
二名法 Cassiopea andromeda
Forskål, 1775

仙后水母學名Cassiopea andromeda),中文別名倒立水母朝天水母[註 1],英文俗名為 Upside-down jellyfish[1],分佈於全球熱帶海域,主要棲息於陽光充足且無海流的淺海[2],如潮間帶至水深10公尺的沙質環境,有時也可見於淺水泥質底、海草床上或瀉湖地形。[1][3]臺灣地區曾在屏東綠島澎湖群島東沙島潟湖等地發現過本物種[1]

形態與行為

國立海洋生物博物館展示的仙后水母

仙后水母擁有八個分枝狀口腕,個體大小約20至30公分,體色為褐色、淺褐、灰色或淺綠,表面有時佈有斑點或淺色條紋。牠們時常以觸手朝上、傘頂朝下的姿態漂浮於海底,為其別名「倒立水母」等的由來。仙后水母藉「倒立」使共生於其觸手及身體的蟲黃藻光合作用,供應自身能量。不過牠們仍會捕食小型浮游生物,為肉食性動物。仙后水母不常游泳或移動,其觸手具有微弱毒性,不可觸摸。[1][2]

經濟

仙后水母主要用於商業觀賞,飼養時可餵食豐年蝦活體或水母液體飼料[1]。其對水質要求不高,為水母中較易養殖的品種。[4]其萃取液經研究發現,能幫助人類皮膚上皮細胞、人類纖維母細胞增生,可開發為美容產品。[5]

註釋

  1. ^ 仙后水母的其他中文別名:倒吊水母、車輪水母、反口水母[1]

參考資料

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 仙后水母. 自然與人文數位博物館. 國立自然科學博物館. [2017-08-20]. (原始内容存档于2017-08-20) (中文(台灣)‎).
  2. ^ 2.0 2.1 東沙島周邊指標生物族群調查與復育評估 —標本製作與管理規劃 (PDF), 行政院環境保護署, 2013-12 [2017-08-20], (原始内容存档 (PDF)于2017-08-21) (中文(台灣)‎)
  3. ^ 莫聞. 東沙環礁上的有趣生物:倒立水母. 環境資訊中心. 台北: 臺灣環境資訊協會. 2010-03-05 [2017-08-20]. (原始内容存档于2017-08-20) (中文(台灣)‎).
  4. ^ 水族實驗中心. 海洋教育中心. 國立海洋生物博物館. [2017-08-20]. (原始内容存档于2017-08-20) (中文(台灣)‎).
  5. ^ 邱芷柔. 〈南部〉美和科大研發 獨創水母面膜. 自由時報. 內埔: 自由時報. 2016-11-26 [2017-08-20]. (原始内容存档于2017-08-20) (中文(台灣)‎).
lisans
cc-by-sa-3.0
telif hakkı
维基百科作者和编辑

仙后水母: Brief Summary ( Çince )

wikipedia 中文维基百科 tarafından sağlandı

仙后水母(學名:Cassiopea andromeda),中文別名倒立水母、朝天水母等,英文俗名為 Upside-down jellyfish,分佈於全球熱帶海域,主要棲息於陽光充足且無海流的淺海,如潮間帶至水深10公尺的沙質環境,有時也可見於淺水泥質底、海草床上或瀉湖地形。臺灣地區曾在屏東綠島澎湖群島東沙島潟湖等地發現過本物種。

lisans
cc-by-sa-3.0
telif hakkı
维基百科作者和编辑

Description ( İngilizce )

World Register of Marine Species tarafından sağlandı
Width to 12 cm. Disc flat, with eight short mouth-arms each with four (or six) side-branches supporting many filaments and clubs. Typically brown (due to commensal microalgae within) with paler spots. Usually inverted on bottom but can swim. Habitat: calm waters, down to 30 m. Distribution: W Indian Ocean, to W Pacific Ocean and Mediterranean

Referans

Drummond, R.B. (1981) Common Trees of the Central Watershed Woodlands of Zimbabwe. Natural Resources Board, Harare. Pages 168 - 169 (Includes a picture).

lisans
cc-by-4.0
telif hakkı
WoRMS Editorial Board
Katkıda bulunan
Esther Fondo [email]