dcsimg
Severe acute respiratory syndrome-related coronavirus resmi

Severe acute respiratory syndrome-related coronavirus

Severe acute respiratory syndrome-related coronavirus ( Almanca )

wikipedia DE tarafından sağlandı

Severe acute respiratory syndrome-related coronavirus bezeichnet die bisher einzige Spezies (Art) der Untergattung Sarbecovirus der Gattung Betacoronavirus in der Familie der Coronaviridae. Geläufige Abkürzungen wie „SARSr-CoV“,[3] englisch SARS-related coronavirus(es)[3] oder dt. „SARS-assoziierte(s) Coronavirus/-viren“ sind vom Speziesnamen abgeleitete sogenannte „Sammelbezeichnungen“ (englisch collective names).[4]

Die Spezies wurde 2009 vom International Committee on Taxonomy of Viruses (ICTV) ratifiziert und fasste die vormalige Spezies Severe acute respiratory syndrome coronavirus und eine neue Gruppe ähnlicher Viren, genannt Severe acute respiratory syndrome-related bat coronavirus, zusammen zu der neuen Spezies.[5] Die bekanntesten Vertreter dieser Spezies sind SARS-CoV und SARS-CoV-2,[6] die die Erkrankungen SARS bzw. COVID-19 auslösen.

Unterschiede von Sars-CoV-1 und 2

Name

Bis 2009 existierte die Spezies Severe acute respiratory syndrome coronavirus, welche Viren enthielt, die mit dem SARS-Ausbruch 2003 in Verbindung standen, und eine Reihe praktisch identischer Virus-Isolate von Tieren. Es wurde vorgeschlagen, weitere weiter entfernt verwandte, neu entdeckte Fledermausviren (29 an der Zahl) zur Spezies hinzuzunehmen, die große genetische Übereinstimmungen (bis zu 97 % in Schlüsselbereichen) mit den Viren der bisherigen Spezies hatten. Darunter befanden sich z. B. SARS-Rh-BatCoV HKU3, SARSr-Rh-BatCoV und SARSr-Rh-BatCoV 273.[5]

Daraufhin wurde die Spezies Severe acute respiratory syndrome coronavirus mit der Gruppe von neuen, sehr ähnlichen Fledermausviren, genannt Severe acute respiratory syndrome-related bat coronavirus oder „SARS-related Rhinolophus BatCoV“, vereint und die neue Spezies Severe acute respiratory syndrome-related coronavirus gebildet. Im Rahmen dessen wurde auch die neue Unterfamilie Coronavirinae in der Familie Coronaviridae gebildet, und aus der bisherigen Gattung Coronavirus die neuen Gattungen Alpha- bis Gammacoronavirus (aus den vorherigen Phylogruppen 1 bis 3 der bisherigen Gattung).[5]

Die Regeln der ICTV für Virustaxonomie geben vor, dass Spezies-Namen weder abgekürzt noch in andere Sprachen übersetzt werden sollen. Daher sind die geläufigen Abkürzungen wie „SARSr-CoV(s)“ und „SARS-related coronavirus(es)“ keine (international offiziellen) Alternativ-Bezeichnungen der Spezies, sondern zulässige, gebräuchliche Sammelbezeichnungen für einzelne oder alle Viren in dieser Spezies.[4]

Einzelnachweise

  1. a b c d e f g h i j ICTV: ICTV Taxonomy history: Severe acute respiratory syndrome-related coronavirus, EC 51, Berlin, Germany, July 2019; Email ratification March 2020 (MSL #35)
  2. ICTV Master Species List 2018b.v2. MSL #34, März 2019
  3. a b c Ben Hu, Lei-Ping Zeng, Xing-Lou Yang, Xing-Yi Ge, Wei Zhang, Bei Li, Jia-Zheng Xie, Xu-Rui Shen, Yun-Zhi Zhang, Ning Wang, Dong-Sheng Luo, Xiao-Shuang Zheng, Mei-Niang Wang, Peter Daszak, Lin-Fa Wang, Jie Cui, Zheng-Li Shi: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. In: Christian Drosten (Hrsg.): PLOS Pathogens. 30. November 2017, Erster Satz, doi:10.1371/journal.ppat.1006698 (englisch): “SARS-related coronaviruses (SARSr-CoV)”
  4. a b How to write virus and species names? In: talk.ictvonline.org. International Committee on Taxonomy of Viruses (ICTV), 6. April 2020, abgerufen am 7. Mai 2020 (englisch).
  5. a b c ICTV Taxonomy history: Severe acute respiratory syndrome-related coronavirus. In: talk.ictvonline.org. International Committee on Taxonomy of Viruses (ICTV), abgerufen am 7. Mai 2020 (englisch).
    Und zugehöriges Proposal: 2008.085-126V. (PDF; 175 kB) In: talk.ictvonline.org. International Committee on Taxonomy of Viruses (ICTV), S. 23 [2008.105V], 34 [2008.119V] und 36 [2008.121V], abgerufen am 7. Mai 2020 (englisch).
  6. Alexander E. Gorbalenya, Susan C. Baker, Ralph S. Baric, Raoul J. de Groot, Christian Drosten, Anastasia A. Gulyaeva, Bart L. Haagmans, Chris Lauber, Andrey M Leontovich, Benjamin W. Neuman, Dmitry Penzar, Stanley Perlman, Leo L.M. Poon, Dmitry Samborskiy, Igor A. Sidorov, Isabel Sola, John Ziebuhr: Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group. In: bioRxiv. 11. Februar 2020, bioRxiv: 10.1101/2020.02.07.937862v1 (Preprint-Volltext), S. 1–20, doi:10.1101/2020.02.07.937862 (englisch).
 title=
lisans
cc-by-sa-3.0
telif hakkı
Autoren und Herausgeber von Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia DE

Severe acute respiratory syndrome-related coronavirus: Brief Summary ( Almanca )

wikipedia DE tarafından sağlandı

Severe acute respiratory syndrome-related coronavirus bezeichnet die bisher einzige Spezies (Art) der Untergattung Sarbecovirus der Gattung Betacoronavirus in der Familie der Coronaviridae. Geläufige Abkürzungen wie „SARSr-CoV“, englisch SARS-related coronavirus(es) oder dt. „SARS-assoziierte(s) Coronavirus/-viren“ sind vom Speziesnamen abgeleitete sogenannte „Sammelbezeichnungen“ (englisch collective names).

Die Spezies wurde 2009 vom International Committee on Taxonomy of Viruses (ICTV) ratifiziert und fasste die vormalige Spezies Severe acute respiratory syndrome coronavirus und eine neue Gruppe ähnlicher Viren, genannt Severe acute respiratory syndrome-related bat coronavirus, zusammen zu der neuen Spezies. Die bekanntesten Vertreter dieser Spezies sind SARS-CoV und SARS-CoV-2, die die Erkrankungen SARS bzw. COVID-19 auslösen.

Unterschiede von Sars-CoV-1 und 2
lisans
cc-by-sa-3.0
telif hakkı
Autoren und Herausgeber von Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia DE

SARSr-CoV ( Tagalogca )

wikipedia emerging languages tarafından sağlandı

Ang SARSr-CoV[note 1] (Severe acute respiratory syndrome-related coronavirus, SARS-related coronavirus) ay isang species ng coronavirus na napag-alamang nagdudulot ng impeksiyon sa mga tao, paniki, at ilang mammal. Ang SARS-related coronavirus ay isang enveloped, positive-sense, single-stranded RNA virus na pumapasok sa ACE2 receptor ng host cell. Ito ay mas malapit na nauugnay sa group 2 coronavirus (Betacoronavirus).

Ang dalawang strain ng virus ay nagdulot ng outbreak ng malubhang sakit sa paghinga sa mga tao: SARS-CoV, na nagdulot ng outbreak ng severe acute respiratory syndrome (SARS) noong 2002 hanggang 2004, at SARS-CoV-2, na mula noong huling bahagi ng 2019 ay naging sanhi ng isang outbreak ng coronavirus disease 2019 (COVID-19). Ang parehong strain na nagmula sa iisang ninuno ngunit hiwalay na tumalon (cross-species jump) sa tao, at ang SARS-CoV-2 ay hindi isang tuwirang inapo ng SARS-CoV. Mayroong daan-daang ibang strain ng SARSr-CoV, ang lahat ng ito ay kilala lamang na makahawa sa mga species na di-tao: ang mga paniki ay isang pangunahing reservoir ng maraming strain ng SARS-related coronavirus, at ilang strain naman ay sa palm civet na ipapalagay naninuno ng SARS-CoV.

Ang SARS-related coronavirus ay isa sa ilang mga virus na natukoy ng WHO noong 2016 bilang maaaring magdulot ng epidemya sa hinaharap sa isang bagong plano na binuo pagkatapos ng epidemya ng Ebola para sa madaliang pananaliksik at pag-unlad bago at sa panahon ng isang epidemya patungo sa mga diagnostic test, bakuna at gamot. Ang prediksiyon ay nangyari sa ng outbreak ng coronavirus noong 2019-20.

Mga Tala

  1. The terms SARSr-CoV and SARS-CoV are sometimes used interchangeably, especially prior to the discovery of SARS-CoV-2.

Mga Sanggunian

  1. "ICTV Taxonomy history: Severe acute respiratory syndrome-related coronavirus" (html). International Committee on Taxonomy of Viruses (ICTV) (sa Ingles). Nakuha noong 27 January 2019.
lisans
cc-by-sa-3.0
telif hakkı
Mga may-akda at editor ng Wikipedia

SARSr-CoV ( Kuzey Frizce )

wikipedia emerging languages tarafından sağlandı
Amrum.pngTekst üüb Öömrang
 src=
Severe acute respiratory syndrome coronavirus 2 (SARS-2, SARS-CoV-2)

Taxonavigation

Hoodkategorii: Wiiren
Order: Nidovirales
Famile: Coronaviridae
Onerfamile: Orthocoronavirinae
Skööl: Betacoronavirus
Slach: Severe acute respiratory syndrome-related coronavirus (SARSr-CoV)
Stamer: Severe acute respiratory syndrome coronavirusSevere acute respiratory syndrome coronavirus 2 (SARS-2, SARS-CoV-2)Severe acute respiratory syndrome-like coronavirus

Nööm

SARSr-CoV

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors

SARSr-CoV: Brief Summary ( Kuzey Frizce )

wikipedia emerging languages tarafından sağlandı
 src= Severe acute respiratory syndrome coronavirus 2 (SARS-2, SARS-CoV-2)
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors

SARSr-CoV: Brief Summary ( Tagalogca )

wikipedia emerging languages tarafından sağlandı

Ang SARSr-CoV (Severe acute respiratory syndrome-related coronavirus, SARS-related coronavirus) ay isang species ng coronavirus na napag-alamang nagdudulot ng impeksiyon sa mga tao, paniki, at ilang mammal. Ang SARS-related coronavirus ay isang enveloped, positive-sense, single-stranded RNA virus na pumapasok sa ACE2 receptor ng host cell. Ito ay mas malapit na nauugnay sa group 2 coronavirus (Betacoronavirus).

Ang dalawang strain ng virus ay nagdulot ng outbreak ng malubhang sakit sa paghinga sa mga tao: SARS-CoV, na nagdulot ng outbreak ng severe acute respiratory syndrome (SARS) noong 2002 hanggang 2004, at SARS-CoV-2, na mula noong huling bahagi ng 2019 ay naging sanhi ng isang outbreak ng coronavirus disease 2019 (COVID-19). Ang parehong strain na nagmula sa iisang ninuno ngunit hiwalay na tumalon (cross-species jump) sa tao, at ang SARS-CoV-2 ay hindi isang tuwirang inapo ng SARS-CoV. Mayroong daan-daang ibang strain ng SARSr-CoV, ang lahat ng ito ay kilala lamang na makahawa sa mga species na di-tao: ang mga paniki ay isang pangunahing reservoir ng maraming strain ng SARS-related coronavirus, at ilang strain naman ay sa palm civet na ipapalagay naninuno ng SARS-CoV.

Ang SARS-related coronavirus ay isa sa ilang mga virus na natukoy ng WHO noong 2016 bilang maaaring magdulot ng epidemya sa hinaharap sa isang bagong plano na binuo pagkatapos ng epidemya ng Ebola para sa madaliang pananaliksik at pag-unlad bago at sa panahon ng isang epidemya patungo sa mga diagnostic test, bakuna at gamot. Ang prediksiyon ay nangyari sa ng outbreak ng coronavirus noong 2019-20.

lisans
cc-by-sa-3.0
telif hakkı
Mga may-akda at editor ng Wikipedia

Severe acute respiratory syndrome-relatit coronavirus ( İskoçça )

wikipedia emerging languages tarafından sağlandı

Severe acute respiratory syndrome-relatit coronavirus (SARSr-CoV)[note 1] is a species o coronavirus that infects humans, bats an certain ither mammals.[2][3]

References

  1. "ICTV Taxonomy history: Severe acute respiratory syndrome-related coronavirus" (html). International Committee on Taxonomy of Viruses (ICTV) (in Inglis). Retrieved 27 January 2019.
  2. Branswell H (9 November 2015). "SARS-like virus in bats shows potential to infect humans, study finds". Stat News. Retrieved 20 February 2020.
  3. Wong AC, Li X, Lau SK, Woo PC (February 2019). "Global Epidemiology of Bat Coronaviruses". Viruses. 11 (2): 174. doi:10.3390/v11020174. PMC 6409556. PMID 30791586. Most notably, horseshoe bats were found to be the reservoir of SARS-like CoVs, while palm civet cats are considered to be the intermediate host for SARS-CoVs [43,44,45].
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors

Severe acute respiratory syndrome-relatit coronavirus: Brief Summary ( İskoçça )

wikipedia emerging languages tarafından sağlandı

Severe acute respiratory syndrome-relatit coronavirus (SARSr-CoV) is a species o coronavirus that infects humans, bats an certain ither mammals.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors

गंभीर तीव्र श्वसन सिंड्रोम-संबंधित कोरोनाव्हायरस ( Marathi )

wikipedia emerging languages tarafından sağlandı
गंभीर तीव्र श्वसन सिंड्रोम-संबंधित कोरोनाव्हायरस
species of virus that causes severe acute respiratory syndrome
माध्यमे अपभारण कराWikipedia-logo-v2.svg विकिपीडिया
Wikispecies-logo.svg Wikispeciesप्रकारटॅक्सॉनसामान्य नाव
Taxonomyसाम्राज्यVirusRealmRiboviriaOrderNidoviralesFamilyCoronaviridaeSubfamilyOrthocoronavirinaeGenusBetacoronavirusSubgenusSarbecovirusSpeciesSevere acute respiratory syndrome-related coronavirusअधिकार नियंत्रण no fallback page found for autotranslate (base=Translations:Template:Wikidata Infobox/i18n/msg-editlink-alttext, lang=mr)

गंभीर तीव्र श्वसन सिंड्रोम संबंधित कोरोनाव्हायरस (SARSr-CoV) [१] ही कोरोना विषाणूची प्रजाती आहे, जी मानव, वटवाघूळ आणि काही इतर सस्तन प्राणी इत्यादीना संसर्गबाधित करते. [२] [३] हा एकएफाईड पॉझिटिव्ह-सेन्स-सिंगल-स्ट्रेंडेड आरएनए विषाणू आहे जो एसीई 2 रीसेप्टरला बांधूण त्याच्या होस्ट सेलमध्ये प्रवेश करतो. [४] हाबीटाकोरोनॅव्हायरस आणि सबजेनस सरबेकॉरोनाव्हायरस या वंशातील एक सदस्य आहे. [५] [६]

हे सुद्धा पहा

संदर्भ

  1. ^ The terms SARSr-CoV and SARS-CoV are sometimes used interchangeably, especially prior to the discovery of SARS-CoV-2.
  2. ^ Branswell, Helen (9 November 2015). Stat News. Missing or empty |title= (सहाय्य); |access-date= requires |url= (सहाय्य)
  3. ^ Wong, Antonio C. P.; Li, Xin; Lau, Susanna K. P.; Woo, Patrick C. Y. (2019-02-20). "Global Epidemiology of Bat Coronaviruses". Viruses. 11 (2): 174. doi:10.3390/v11020174. ISSN 1999-4915. PMC 6409556. PMID 30791586. Most notably, horseshoe bats were found to be the reservoir of SARS-like CoVs, while palm civet cats are considered to be the intermediate host for SARS-CoVs [43,44,45].
  4. ^ Xing-Yi Ge; Jia-Lu Li; Xing-Lou Yang; et al. (2013). "Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor". Nature. 503 (7477): 535–8. Bibcode:2013Natur.503..535G. doi:10.1038/nature12711. PMC 5389864. PMID 24172901.
  5. ^ https://talk.ictvonline.org/taxonomy/. Missing or empty |title= (सहाय्य)
  6. ^ Woo, Patrick C. Y.; Huang, Yi; Lau, Susanna K. P.; Yuen, Kwok-Yung (2010-08-24). "Coronavirus Genomics and Bioinformatics Analysis". Viruses. 2 (8): 1804–1820. doi:10.3390/v2081803. ISSN 1999-4915. PMC 3185738. PMID 21994708. Figure 2. Phylogenetic analysis of RNA-dependent RNA polymerases (Pol) of coronaviruses with complete genome sequences available. The tree was constructed by the neighbor-joining method and rooted using Breda virus polyprotein.
lisans
cc-by-sa-3.0
telif hakkı
विकिपीडियाचे लेखक आणि संपादक

गंभीर तीव्र श्वसन सिंड्रोम-संबंधित कोरोनाव्हायरस: Brief Summary ( Marathi )

wikipedia emerging languages tarafından sağlandı

गंभीर तीव्र श्वसन सिंड्रोम संबंधित कोरोनाव्हायरस (SARSr-CoV) ही कोरोना विषाणूची प्रजाती आहे, जी मानव, वटवाघूळ आणि काही इतर सस्तन प्राणी इत्यादीना संसर्गबाधित करते. हा एकएफाईड पॉझिटिव्ह-सेन्स-सिंगल-स्ट्रेंडेड आरएनए विषाणू आहे जो एसीई 2 रीसेप्टरला बांधूण त्याच्या होस्ट सेलमध्ये प्रवेश करतो. हाबीटाकोरोनॅव्हायरस आणि सबजेनस सरबेकॉरोनाव्हायरस या वंशातील एक सदस्य आहे.

lisans
cc-by-sa-3.0
telif hakkı
विकिपीडियाचे लेखक आणि संपादक

沙士病毒 ( Lzh )

wikipedia emerging_languages tarafından sağlandı
 src=
電子顯微鏡下像

沙士病毒,官名嚴重急性呼吸道綜合征冠狀病毒,英言Severe acute respiratory syndrome-related coronavirus,略云SARS-CoV,屬冠狀病毒科。初現於二〇〇三年,作瘟疫於廣東,波及中國[一][二]。染病者,炎肺起熱,四肢痛乏,頭痛咳嗽。疫初,廣東政府欲蔽百姓,噤默媒體,斷香港電視臺之聲。[三]事後,時中華人民共和國衛生部部長張文康因此免職。

  1. 世衛組織:SARS源頭在廣東順德
  2. "非典"十年:"毒王"黃杏初和"非典"一起"隱身"
  3. 劉·文斌 為人民服務: 兩岸制度競爭的核心 ; 秀威資訊出版社,二千十一年; ISBN 9789862217351
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors

沙士病毒: Brief Summary ( Lzh )

wikipedia emerging_languages tarafından sağlandı
 src= 電子顯微鏡下像

沙士病毒,官名嚴重急性呼吸道綜合征冠狀病毒,英言Severe acute respiratory syndrome-related coronavirus,略云SARS-CoV,屬冠狀病毒科。初現於二〇〇三年,作瘟疫於廣東,波及中國。染病者,炎肺起熱,四肢痛乏,頭痛咳嗽。疫初,廣東政府欲蔽百姓,噤默媒體,斷香港電視臺之聲。事後,時中華人民共和國衛生部部長張文康因此免職。

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors

SARS-related coronavirus ( İngilizce )

wikipedia EN tarafından sağlandı

Severe acute respiratory syndrome–related coronavirus (SARSr-CoV or SARS-CoV)[note 1] is a species of virus consisting of many known strains phylogenetically related to severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) that have been shown to possess the capability to infect humans, bats, and certain other mammals.[2][3] These enveloped, positive-sense single-stranded RNA viruses enter host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor.[4] The SARSr-CoV species is a member of the genus Betacoronavirus and of the subgenus Sarbecovirus (SARS Betacoronavirus).[5][6]

Two strains of the virus have caused outbreaks of severe respiratory diseases in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV or SARS-CoV-1), which caused the 2002–2004 outbreak of severe acute respiratory syndrome (SARS), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing pandemic of COVID-19.[7][8] There are hundreds of other strains of SARSr-CoV, which are only known to infect non-human species: bats are a major reservoir of many strains of SARSr-CoV; several strains have been identified in Himalayan palm civets, which were likely ancestors of SARS-CoV-1.[7][9]

The SARS-related coronavirus was one of several viruses identified by the World Health Organization (WHO) in 2016 as a likely cause of a future epidemic in a new plan developed after the Ebola epidemic for urgent research and development before and during an epidemic towards diagnostic tests, vaccines and medicines. This prediction came to pass with the COVID-19 pandemic.[10][11]

Classification

SARS-related coronavirus is a member of the genus Betacoronavirus (group 2) and monotypic of the subgenus Sarbecovirus (subgroup B).[12] Sarbecoviruses, unlike embecoviruses or alphacoronaviruses, have only one papain-like proteinase (PLpro) instead of two in the open reading frame ORF1ab.[13] SARSr-CoV was determined to be an early split-off from the betacoronaviruses based on a set of conserved domains that it shares with the group.[14][15]

Bats serve as the main host reservoir species for the SARS-related coronaviruses like SARS-CoV-1 and SARS-CoV-2. The virus has coevolved in the bat host reservoir over a long period of time.[16] Only recently have strains of SARS-related coronavirus been observed to have evolved into having been able to make the cross-species jump from bats to humans, as in the case of the strains SARS-CoV-1 and SARS-CoV-2.[17][4] Both of these strains descended from a single ancestor but made the cross-species jump into humans separately. SARS-CoV-2 is not a direct descendant of SARS-CoV-1.[7]

Genome

Genome organization and viral proteins of SARS-CoV

The SARS-related coronavirus is an enveloped, positive-sense, single-stranded RNA virus. Its genome is about 30 kb, which is one of the largest among RNA viruses. The virus has 14 open reading frames which overlap in some cases.[18] The genome has the usual 5′ methylated cap and a 3′ polyadenylated tail.[19] There are 265 nucleotides in the 5'UTR and 342 nucleotides in the 3'UTR.[18]

The 5' methylated cap and 3' polyadenylated tail allows the positive-sense RNA genome to be directly translated by the host cell's ribosome on viral entry.[20] SARSr-CoV is similar to other coronaviruses in that its genome expression starts with translation by the host cell's ribosomes of its initial two large overlapping open reading frames (ORFs), 1a and 1b, both of which produce polyproteins.[18]

The functions of several of the viral proteins are known.[25] ORFs 1a and 1b encode the replicase/transcriptase polyprotein, and later ORFs 2, 4, 5, and 9a encode, respectively, the four major structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N).[26] The later ORFs also encode for eight unique proteins (orf3a to orf9b), known as the accessory proteins, many with no known homologues. The different functions of the accessory proteins are not well understood.[25]

SARS coronaviruses have been genetically engineered in several laboratories.[27]

Phylogenetics

Phylogenetic analysis showed that the evolutionary branch composed of Bat coronavirus BtKY72 and BM48-31 was the base group of SARS–related CoVs evolutionary tree, which separated from other SARS–related CoVs earlier than SARS-CoV-1 and SARS-CoV-2.[28][29]

SARSr‑CoV

Bat CoV BtKY72

Bat CoV BM48-31

SARS-CoV-1 related coronavirus

SARS-CoV-2 related coronavirus

SARS-CoV-1 related

A phylogenetic tree based on whole-genome sequences of SARS-CoV-1 and related coronaviruses is:

SARS‑CoV‑1 related coronavirus

16BO133, 86.3% to SARS-CoV-1, Rhinolophus ferrumequinum, North Jeolla, South Korea[30]

JTMC15, 86.4% to SARS-CoV-1, Rhinolophus ferrumequinum, Tonghua, Jilin[31]

Bat SARS CoV Rf1, 87.8% to SARS-CoV-1, Rhinolophus ferrumequinum, Yichang, Hubei[32]

BtCoV HKU3, 87.9% to SARS-CoV-1, Rhinolophus sinicus, Hong Kong and Guangdong[33]

LYRa11, 90.9% to SARS-CoV-1, Rhinolophus affinis, Baoshan, Yunnan[34]

Bat SARS-CoV/Rp3, 92.6% to SARS-CoV-1, Rhinolophus pearsoni, Nanning, Guangxi[32]

Bat SL-CoV YNLF_31C, 93.5% to SARS-CoV-1, Rhinolophus ferrumequinum, Lufeng, Yunnan[35]

Bat SL-CoV YNLF_34C, 93.5% to SARS-CoV-1, Rhinolophus ferrumequinum, Lufeng, Yunnan[35]

SHC014-CoV, 95.4% to SARS-CoV-1, Rhinolophus sinicus, Kunming, Yunnan[36]

WIV1, 95.6% to SARS-CoV-1, Rhinolophus sinicus, Kunming, Yunnan[36]

WIV16, 96.0% to SARS-CoV-1, Rhinolophus sinicus Kunming, Yunnan[37]

Civet SARS-CoV, 99.8% to SARS-CoV-1, Paguma larvata, market in Guangdong, China[33]

SARS-CoV-1

SARS-CoV-2, 79% to SARS-CoV-1[38]

SARS-CoV-2 related

A phylogenetic tree based on whole-genome sequences of SARS-CoV-2 and related coronaviruses is:[39][40]

SARS‑CoV‑2 related coronavirus

(Bat) Rc-o319, 81% to SARS-CoV-2, Rhinolophus cornutus, Iwate, Japan[41]

Bat SL-ZXC21, 88% to SARS-CoV-2, Rhinolophus pusillus, Zhoushan, Zhejiang[42]

Bat SL-ZC45, 88% to SARS-CoV-2, Rhinolophus pusillus, Zhoushan, Zhejiang[42]

Pangolin SARSr-CoV-GX, 85.3% to SARS-CoV-2, Manis javanica, smuggled from Southeast Asia[43]

Pangolin SARSr-CoV-GD, 90.1% to SARS-CoV-2, Manis javanica, smuggled from Southeast Asia[44]

Bat RshSTT182, 92.6% to SARS-CoV-2, Rhinolophus shameli, Steung Treng, Cambodia[45]

Bat RshSTT200, 92.6% to SARS-CoV-2, Rhinolophus shameli, Steung Treng, Cambodia[45]

(Bat) RacCS203, 91.5% to SARS-CoV-2, Rhinolophus acuminatus, Chachoengsao, Thailand[40]

(Bat) RmYN02, 93.3% to SARS-CoV-2, Rhinolophus malayanus, Mengla, Yunnan[46]

(Bat) RpYN06, 94.4% to SARS-CoV-2, Rhinolophus pusillus, Xishuangbanna, Yunnan[39]

(Bat) RaTG13, 96.1% to SARS-CoV-2, Rhinolophus affinis, Mojiang, Yunnan[47]

(Bat) BANAL-52, 96.8% to SARS-CoV-2, Rhinolophus malayanus, Vientiane, Laos[48]

SARS-CoV-2

SARS-CoV-1, 79% to SARS-CoV-2

Morphology

Illustration created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses; note the spikes that adorn the outer surface, which impart the look of a corona surrounding the virion.[49]
Illustration of SARSr-CoV virion

The morphology of the SARS-related coronavirus is characteristic of the coronavirus family as a whole. The viruses are large pleomorphic spherical particles with bulbous surface projections that form a corona around the particles in electron micrographs.[50] The size of the virus particles is in the 80–90 nm range. The envelope of the virus in electron micrographs appears as a distinct pair of electron dense shells.[51]

The viral envelope consists of a lipid bilayer where the membrane (M), envelope (E) and spike (S) proteins are anchored.[52] The spike proteins provide the virus with its bulbous surface projections, known as peplomers. The spike protein's interaction with its complement host cell receptor is central in determining the tissue tropism, infectivity, and species range of the virus.[53][54]

Inside the envelope, there is the nucleocapsid, which is formed from multiple copies of the nucleocapsid (N) protein, which are bound to the positive-sense single-stranded (~30 kb) RNA genome in a continuous beads-on-a-string type conformation.[55][56] The lipid bilayer envelope, membrane proteins, and nucleocapsid protect the virus when it is outside the host.[57]

Life cycle

SARS-related coronavirus follows the replication strategy typical of all coronaviruses.[19][58]

Attachment and entry

The attachment of the SARS-related coronavirus to the host cell is mediated by the spike protein and its receptor.[59] The spike protein receptor binding domain (RBD) recognizes and attaches to the angiotensin-converting enzyme 2 (ACE2) receptor.[4] Following attachment, the virus can enter the host cell by two different paths. The path the virus takes depends on the host protease available to cleave and activate the receptor-attached spike protein.[60]

The attachment of sarbecoviruses to ACE2 has been shown to be an evolutionarily conserved feature, present in many species of the taxon.[61]

The first path the SARS coronavirus can take to enter the host cell is by endocytosis and uptake of the virus in an endosome. The receptor-attached spike protein is then activated by the host's pH-dependent cysteine protease cathepsin L. Activation of the receptor-attached spike protein causes a conformational change, and the subsequent fusion of the viral envelope with the endosomal wall.[60]

Alternatively, the virus can enter the host cell directly by proteolytic cleavage of the receptor-attached spike protein by the host's TMPRSS2 or TMPRSS11D serine proteases at the cell surface.[62][63] In the SARS coronavirus, the activation of the C-terminal part of the spike protein triggers the fusion of the viral envelope with the host cell membrane by inducing conformational changes which are not fully understood.[64]

Genome translation

After fusion the nucleocapsid passes into the cytoplasm, where the viral genome is released.[59] The genome acts as a messenger RNA, and the cell's ribosome translates two-thirds of the genome, which corresponds to the open reading frame ORF1a and ORF1b, into two large overlapping polyproteins, pp1a and pp1ab.

The larger polyprotein pp1ab is a result of a -1 ribosomal frameshift caused by a slippery sequence (UUUAAAC) and a downstream RNA pseudoknot at the end of open reading frame ORF1a.[67] The ribosomal frameshift allows for the continuous translation of ORF1a followed by ORF1b.[68]

The polyproteins contain their own proteases, PLpro and 3CLpro, which cleave the polyproteins at different specific sites. The cleavage of polyprotein pp1ab yields 16 nonstructural proteins (nsp1 to nsp16). Product proteins include various replication proteins such as RNA-dependent RNA polymerase (RdRp), RNA helicase, and exoribonuclease (ExoN).[68]

The two SARS-CoV-2 proteases (PLpro and 3CLpro) also interfere with the immune system response to the viral infection by cleaving three immune system proteins. PLpro cleaves IRF3 and 3CLpro cleaves both NLRP12 and TAB1. "Direct cleavage of IRF3 by NSP3 could explain the blunted Type-I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of IL-6 and inflammatory response observed in COVID-19 patients."[69]

Replication and transcription

Model of the replicase-transcriptase complex of a coronavirus. RdRp for replication (red), ExoN for proofreading (dark blue), ExoN cofactor (yellow), RBPs to avoid secondary structure (light blue), RNA sliding clamp for processivity and primase domain for priming (green/orange), and a helicase to unwind RNA (downstream).

A number of the nonstructural replication proteins coalesce to form a multi-protein replicase-transcriptase complex (RTC).[68] The main replicase-transcriptase protein is the RNA-dependent RNA polymerase (RdRp). It is directly involved in the replication and transcription of RNA from an RNA strand. The other nonstructural proteins in the complex assist in the replication and transcription process.[65]

The protein nsp14 is a 3'-5' exoribonuclease which provides extra fidelity to the replication process. The exoribonuclease provides a proofreading function to the complex which the RNA-dependent RNA polymerase lacks. Similarly, proteins nsp7 and nsp8 form a hexadecameric sliding clamp as part of the complex which greatly increases the processivity of the RNA-dependent RNA polymerase.[65] The coronaviruses require the increased fidelity and processivity during RNA synthesis because of the relatively large genome size in comparison to other RNA viruses.[70]

One of the main functions of the replicase-transcriptase complex is to transcribe the viral genome. RdRp directly mediates the synthesis of negative-sense subgenomic RNA molecules from the positive-sense genomic RNA. This is followed by the transcription of these negative-sense subgenomic RNA molecules to their corresponding positive-sense mRNAs.[71]

The other important function of the replicase-transcriptase complex is to replicate the viral genome. RdRp directly mediates the synthesis of negative-sense genomic RNA from the positive-sense genomic RNA. This is followed by the replication of positive-sense genomic RNA from the negative-sense genomic RNA.[71]

The replicated positive-sense genomic RNA becomes the genome of the progeny viruses. The various smaller mRNAs are transcripts from the last third of the virus genome which follows the reading frames ORF1a and ORF1b. These mRNAs are translated into the four structural proteins (S, E, M, and N) that will become part of the progeny virus particles and also eight other accessory proteins (orf3 to orf9b) which assist the virus.[72]

Recombination

When two SARS-CoV genomes are present in a host cell, they may interact with each other to form recombinant genomes that can be transmitted to progeny viruses. Recombination likely occurs during genome replication when the RNA polymerase switches from one template to another (copy choice recombination).[73] Human SARS-CoV appears to have had a complex history of recombination between ancestral coronaviruses that were hosted in several different animal groups.[73][74]

Assembly and release

RNA translation occurs inside the endoplasmic reticulum. The viral structural proteins S, E and M move along the secretory pathway into the Golgi intermediate compartment. There, the M proteins direct most protein-protein interactions required for assembly of viruses following its binding to the nucleocapsid.[75]

Progeny viruses are released from the host cell by exocytosis through secretory vesicles.[75]

See also

Notes

  1. ^ The terms SARSr-CoV and SARS-CoV are sometimes used interchangeably, especially prior to the discovery of SARS-CoV-2. This may cause confusion when some publications refer to SARS-CoV-1 as SARS-CoV.

References

  1. ^ "ICTV Taxonomy history: Severe acute respiratory syndrome-related coronavirus". International Committee on Taxonomy of Viruses (ICTV). Retrieved 27 January 2019.
  2. ^ Branswell H (9 November 2015). "SARS-like virus in bats shows potential to infect humans, study finds". Stat News. Retrieved 20 February 2020.
  3. ^ Wong AC, Li X, Lau SK, Woo PC (February 2019). "Global Epidemiology of Bat Coronaviruses". Viruses. 11 (2): 174. doi:10.3390/v11020174. PMC 6409556. PMID 30791586. Most notably, horseshoe bats were found to be the reservoir of SARS-like CoVs, while palm civet cats are considered to be the intermediate host for SARS-CoVs [43,44,45].
  4. ^ a b c Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. (November 2013). "Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor". Nature. 503 (7477): 535–8. Bibcode:2013Natur.503..535G. doi:10.1038/nature12711. PMC 5389864. PMID 24172901.
  5. ^ "Virus Taxonomy: 2018 Release". International Committee on Taxonomy of Viruses (ICTV). October 2018. Retrieved 13 January 2019.
  6. ^ Woo PC, Huang Y, Lau SK, Yuen KY (August 2010). "Coronavirus genomics and bioinformatics analysis". Viruses. 2 (8): 1804–20. doi:10.3390/v2081803. PMC 3185738. PMID 21994708. Figure 2. Phylogenetic analysis of RNA-dependent RNA polymerases (Pol) of coronaviruses with complete genome sequences available. The tree was constructed by the neighbor-joining method and rooted using Breda virus polyprotein.
  7. ^ a b c Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (March 2020). "The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2". Nature Microbiology. 5 (4): 536–544. doi:10.1038/s41564-020-0695-z. PMC 7095448. PMID 32123347.
  8. ^ Kohen, Jon; Kupferschmidth, Kai (28 February 2020). "Strategies shift as coronavirus pandemic looms". Science. 367 (6481): 962–963. Bibcode:2020Sci...367..962C. doi:10.1126/science.367.6481.962. PMID 32108093.
  9. ^ Lau SK, Li KS, Huang Y, Shek CT, Tse H, Wang M, et al. (March 2010). "Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events". Journal of Virology. 84 (6): 2808–19. doi:10.1128/JVI.02219-09. PMC 2826035. PMID 20071579.
  10. ^ Kieny M. "After Ebola, a Blueprint Emerges to Jump-Start R&D". Scientific American Blog Network. Archived from the original on 20 December 2016. Retrieved 13 December 2016.
  11. ^ "LIST OF PATHOGENS". World Health Organization. Archived from the original on 20 December 2016. Retrieved 13 December 2016.
  12. ^ Wong AC, Li X, Lau SK, Woo PC (February 2019). "Global Epidemiology of Bat Coronaviruses". Viruses. 11 (2): 174. doi:10.3390/v11020174. PMC 6409556. PMID 30791586. See Figure 1.
  13. ^ Woo PC, Huang Y, Lau SK, Yuen KY (August 2010). "Coronavirus genomics and bioinformatics analysis". Viruses. 2 (8): 1804–20. doi:10.3390/v2081803. PMC 3185738. PMID 21994708. See Figure 1.
  14. ^ Woo PC, Huang Y, Lau SK, Yuen KY (August 2010). "Coronavirus genomics and bioinformatics analysis". Viruses. 2 (8): 1804–20. doi:10.3390/v2081803. PMC 3185738. PMID 21994708. Furthermore, subsequent phylogenetic analysis using both complete genome sequence and proteomic approaches, it was concluded that SARSr-CoV is probably an early split-off from the Betacoronavirus lineage [1]; See Figure 2.
  15. ^ "Coronaviridae - Figures - Positive Sense RNA Viruses - Positive Sense RNA Viruses (2011)". International Committee on Taxonomy of Viruses (ICTV). Archived from the original on 3 April 2020. Retrieved 6 March 2020. See Figure 2.
  16. ^ Gouilh MA, Puechmaille SJ, Gonzalez JP, Teeling E, Kittayapong P, Manuguerra JC (October 2011). "SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory". Infection, Genetics and Evolution. 11 (7): 1690–702. doi:10.1016/j.meegid.2011.06.021. PMC 7106191. PMID 21763784. Betacoronaviruses-b ancestors, meaning SARSr-CoVs ancestors, could have been historically hosted by the common ancestor of the Rhinolophidae and Hipposideridae and could have later evolved independently in the lineages leading towards Rhinolophidae and Hipposideridae betacoronaviruses.
  17. ^ Cui J, Han N, Streicker D, Li G, Tang X, Shi Z, et al. (October 2007). "Evolutionary relationships between bat coronaviruses and their hosts". Emerging Infectious Diseases. 13 (10): 1526–32. doi:10.3201/eid1310.070448. PMC 2851503. PMID 18258002.
  18. ^ a b c Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. (August 2003). "Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage". Journal of Molecular Biology. 331 (5): 991–1004. doi:10.1016/S0022-2836(03)00865-9. PMC 7159028. PMID 12927536. The SARS-CoV genome is ∼29.7 kb long and contains 14 open reading frames (ORFs) flanked by 5′ and 3′-untranslated regions of 265 and 342 nucleotides, respectively (Figure 1).
  19. ^ a b Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466.
  20. ^ Fehr AR, Perlman S (2015). Maier HJ, Bickerton E, Britton P (eds.). An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466.
  21. ^ McBride R, Fielding BC (November 2012). "The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis". Viruses. 4 (11): 2902–23. doi:10.3390/v4112902. PMC 3509677. PMID 23202509. See Table 1.
  22. ^ Tang X, Li G, Vasilakis N, Zhang Y, Shi Z, Zhong Y, Wang LF, Zhang S (March 2009). "Differential stepwise evolution of SARS coronavirus functional proteins in different host species". BMC Evolutionary Biology. 9: 52. doi:10.1186/1471-2148-9-52. PMC 2676248. PMID 19261195.
  23. ^ Narayanan, Krishna; Huang, Cheng; Makino, Shinji (April 2008). "SARS coronavirus Accessory Proteins". Virus Research. 133 (1): 113–121. doi:10.1016/j.virusres.2007.10.009. ISSN 0168-1702. PMC 2720074. PMID 18045721. See Table 1.
  24. ^ Redondo, Natalia; Zaldívar-López, Sara; Garrido, Juan J.; Montoya, Maria (7 July 2021). "SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns". Frontiers in Immunology. 12: 708264. doi:10.3389/fimmu.2021.708264. PMC 8293742. PMID 34305949.
  25. ^ a b McBride R, Fielding BC (November 2012). "The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis". Viruses. 4 (11): 2902–23. doi:10.3390/v4112902. PMC 3509677. PMID 23202509.
  26. ^ Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. (August 2003). "Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage". Journal of Molecular Biology. 331 (5): 991–1004. doi:10.1016/S0022-2836(03)00865-9. PMC 7159028. PMID 12927536. See Figure 1.
  27. ^ Kaina, Bernd (2021). "On the Origin of SARS-CoV-2: Did Cell Culture Experiments Lead to Increased Virulence of the Progenitor Virus for Humans?". In Vivo. 35 (3): 1313–1326. doi:10.21873/invivo.12384. PMC 8193286. PMID 33910809.
  28. ^ Lu R, Zhao X, Li J, Niu P, Yang B, Wu H; et al. (2020). "Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding". Lancet. 395 (10224): 565–574. doi:10.1016/S0140-6736(20)30251-8. PMC 7159086. PMID 32007145.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020). "The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2". Nat Microbiol. 5 (4): 536–544. doi:10.1038/s41564-020-0695-z. PMC 7095448. PMID 32123347.
  30. ^ Kim, Yongkwan; Son, Kidong; Kim, Young-Sik; Lee, Sook-Young; Jheong, Weonhwa; Oem, Jae-Ku (2019). "Complete genome analysis of a SARS-like bat coronavirus identified in the Republic of Korea". Virus Genes. 55 (4): 545–549. doi:10.1007/s11262-019-01668-w. PMC 7089380. PMID 31076983.
  31. ^ Xu, L; Zhang, F; Yang, W; Jiang, T; Lu, G; He, B; Li, X; Hu, T; Chen, G; Feng, Y; Zhang, Y; Fan, Q; Feng, J; Zhang, H; Tu, C (February 2016). "Detection and characterization of diverse alpha- and betacoronaviruses from bats in China". Virologica Sinica. 31 (1): 69–77. doi:10.1007/s12250-016-3727-3. PMC 7090707. PMID 26847648.
  32. ^ a b Li, W. (2005). "Bats Are Natural Reservoirs of SARS-Like Coronaviruses". Science. 310 (5748): 676–679. Bibcode:2005Sci...310..676L. doi:10.1126/science.1118391. ISSN 0036-8075. PMID 16195424. S2CID 2971923.
  33. ^ a b Xing‐Yi Ge, Ben Hu, and Zheng‐Li Shi (2015). "BAT CORONAVIRUSES". In Lin-Fa Wang and Christopher Cowled (ed.). Bats and Viruses: A New Frontier of Emerging Infectious Diseases (First ed.). John Wiley & Sons. pp. 127–155. doi:10.1002/9781118818824.ch5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  34. ^ He, Biao; Zhang, Yuzhen; Xu, Lin; Yang, Weihong; Yang, Fanli; Feng, Yun; et al. (2014). "Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China". J Virol. 88 (12): 7070–82. doi:10.1128/JVI.00631-14. PMC 4054348. PMID 24719429.
  35. ^ a b Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; et al. (2015). "Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination". Journal of Virology. 89 (20): 10532–10547. doi:10.1128/JVI.01048-15. ISSN 0022-538X. PMC 4580176. PMID 26269185.
  36. ^ a b Xing-Yi Ge; Jia-Lu Li; Xing-Lou Yang; et al. (2013). "Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor". Nature. 503 (7477): 535–8. Bibcode:2013Natur.503..535G. doi:10.1038/nature12711. PMC 5389864. PMID 24172901.
  37. ^ Yang, Xing-Lou; Hu, Ben; Wang, Bo; Wang, Mei-Niang; Zhang, Qian; Zhang, Wei; et al. (2016). "Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus". Journal of Virology. 90 (6): 3253–6. doi:10.1128/JVI.02582-15. PMC 4810638. PMID 26719272.
  38. ^ Ben, Hu; Hua, Guo; Peng, Zhou; Zheng-Li, Shi (2020). "Characteristics of SARS-CoV-2 and COVID-19". Nature Reviews Microbiology. 19 (3): 141–154. doi:10.1038/s41579-020-00459-7. PMC 7537588. PMID 33024307.
  39. ^ a b Zhou H, Ji J, Chen X, Bi Y, Li J, Wang Q, et al. (August 2021). "Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses". Cell. 184 (17): 4380–4391.e14. doi:10.1016/j.cell.2021.06.008. PMC 8188299. PMID 34147139.
  40. ^ a b Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. (February 2021). "Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia". Nature Communications. 12 (1): 972. Bibcode:2021NatCo..12..972W. doi:10.1038/s41467-021-21240-1. PMC 7873279. PMID 33563978.
  41. ^ Murakami S, Kitamura T, Suzuki J, Sato R, Aoi T, Fujii M, et al. (December 2020). "Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan". Emerging Infectious Diseases. 26 (12): 3025–3029. doi:10.3201/eid2612.203386. PMC 7706965. PMID 33219796.
  42. ^ a b Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, et al. (June 2020). "A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein". Current Biology. 30 (11): 2196–2203.e3. doi:10.1016/j.cub.2020.05.023. PMC 7211627. PMID 32416074.
  43. ^ Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al. (July 2020). "Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins". Nature. 583 (7815): 282–285. Bibcode:2020Natur.583..282L. doi:10.1038/s41586-020-2169-0. PMID 32218527. S2CID 214683303.
  44. ^ Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. (July 2020). "Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins". Nature. 583 (7815): 286–289. Bibcode:2020Natur.583..286X. doi:10.1038/s41586-020-2313-x. PMID 32380510. S2CID 256822274.
  45. ^ a b Delaune D, Hul V, Karlsson EA, Hassanin A, Ou TP, Baidaliuk A, et al. (November 2021). "A novel SARS-CoV-2 related coronavirus in bats from Cambodia". Nature Communications. 12 (1): 6563. Bibcode:2021NatCo..12.6563D. doi:10.1038/s41467-021-26809-4. PMC 8578604. PMID 34753934.
  46. ^ Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, et al. (June 2020). "A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein". Current Biology. 30 (11): 2196–2203.e3. doi:10.1016/j.cub.2020.05.023. PMC 7211627. PMID 32416074.
  47. ^ Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. (March 2020). "A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 579 (7798): 270–273. Bibcode:2020Natur.579..270Z. doi:10.1038/s41586-020-2012-7. PMC 7095418. PMID 32015507.
  48. ^ Temmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M, Regnault B, et al. (April 2022). "Bat coronaviruses related to SARS-CoV-2 and infectious for human cells". Nature. 604 (7905): 330–336. Bibcode:2022Natur.604..330T. doi:10.1038/s41586-022-04532-4. PMID 35172323. S2CID 246902858.
  49. ^ Sonnevend, Julia (December 2020). Alexander, Jeffrey C.; Jacobs, Ronald N.; Smith, Philip (eds.). "A virus as an icon: the 2020 pandemic in images" (PDF). American Journal of Cultural Sociology. Basingstoke: Palgrave Macmillan. 8 (3: The COVID Crisis and Cultural Sociology: Alone Together): 451–461. doi:10.1057/s41290-020-00118-7. eISSN 2049-7121. ISSN 2049-7113. PMC 7537773. PMID 33042541.
  50. ^ Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, et al. (February 2004). "Ultrastructural characterization of SARS coronavirus". Emerging Infectious Diseases. 10 (2): 320–6. doi:10.3201/eid1002.030913. PMC 3322934. PMID 15030705. Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A).
  51. ^ Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. (August 2006). "Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy". Journal of Virology. 80 (16): 7918–28. doi:10.1128/JVI.00645-06. PMC 1563832. PMID 16873249. Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure 1 for double shell.
  52. ^ Lai MM, Cavanagh D (1997). "The molecular biology of coronaviruses". Advances in Virus Research. 48: 1–100. doi:10.1016/S0065-3527(08)60286-9. ISBN 9780120398485. PMC 7130985. PMID 9233431.
  53. ^ Masters PS (1 January 2006). The molecular biology of coronaviruses. Advances in Virus Research. Vol. 66. Academic Press. pp. 193–292. doi:10.1016/S0065-3527(06)66005-3. ISBN 9780120398690. PMC 7112330. PMID 16877062. Nevertheless, the interaction between S protein and receptor remains the principal, if not sole, determinant of coronavirus host species range and tissue tropism.
  54. ^ Cui J, Li F, Shi ZL (March 2019). "Origin and evolution of pathogenic coronaviruses". Nature Reviews. Microbiology. 17 (3): 181–192. doi:10.1038/s41579-018-0118-9. PMC 7097006. PMID 30531947. Different SARS-CoV strains isolated from several hosts vary in their binding affinities for human ACE2 and consequently in their infectivity of human cells76,78 (Fig. 6b)
  55. ^ Fehr AR, Perlman S (2015). Maier HJ, Bickerton E, Britton P (eds.). An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See section: Virion Structure.
  56. ^ Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH (March 2014). "The SARS coronavirus nucleocapsid protein--forms and functions". Antiviral Research. 103: 39–50. doi:10.1016/j.antiviral.2013.12.009. PMC 7113676. PMID 24418573. See Figure 4c.
  57. ^ Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. (April 2011). "A structural analysis of M protein in coronavirus assembly and morphology". Journal of Structural Biology. 174 (1): 11–22. doi:10.1016/j.jsb.2010.11.021. PMC 4486061. PMID 21130884. See Figure 10.
  58. ^ Lal SK, ed. (2010). Molecular Biology of the SARS-Coronavirus. doi:10.1007/978-3-642-03683-5. ISBN 978-3-642-03682-8.
  59. ^ a b Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See section: Coronavirus Life Cycle – Attachment and Entry
  60. ^ a b Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S (December 2013). "Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research". Antiviral Research. 100 (3): 605–14. doi:10.1016/j.antiviral.2013.09.028. PMC 3889862. PMID 24121034. See Figure 2.
  61. ^ Starr, Tyler N.; Zepeda, Samantha K.; Walls, Alexandra C.; Greaney, Allison J.; Alkhovsky, Sergey; Veesler, David; Bloom, Jesse D. (1 March 2022). "ACE2 binding is an ancestral and evolvable trait of sarbecoviruses". Nature. 603 (7903): 913–918. Bibcode:2022Natur.603..913S. doi:10.1038/s41586-022-04464-z. ISSN 1476-4687. PMC 8967715. PMID 35114688.
  62. ^ Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S (January 2014). "TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein". Journal of Virology. 88 (2): 1293–307. doi:10.1128/JVI.02202-13. PMC 3911672. PMID 24227843. The SARS-CoV can hijack two cellular proteolytic systems to ensure the adequate processing of its S protein. Cleavage of SARS-S can be facilitated by cathepsin L, a pH-dependent endo-/lysosomal host cell protease, upon uptake of virions into target cell endosomes (25). Alternatively, the type II transmembrane serine proteases (TTSPs) TMPRSS2 and HAT can activate SARS-S, presumably by cleavage of SARS-S at or close to the cell surface, and activation of SARS-S by TMPRSS2 allows for cathepsin L-independent cellular entry (26,–28).
  63. ^ Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY (May 2016). "Coronaviruses - drug discovery and therapeutic options". Nature Reviews. Drug Discovery. 15 (5): 327–47. doi:10.1038/nrd.2015.37. PMC 7097181. PMID 26868298. S is activated and cleaved into the S1 and S2 subunits by other host proteases, such as transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, which enables cell surface non-endosomal virus entry at the plasma membrane.
  64. ^ Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, et al. (October 2019). "The human coronavirus HCoV-229E S-protein structure and receptor binding". eLife. 8. doi:10.7554/eLife.51230. PMC 6970540. PMID 31650956.
  65. ^ a b c Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See Table 2.
  66. ^ Rao, S; Hoskins, I; Tonn, T; Garcia, PD; Ozadam, H; Sarinay Cenik, E; Cenik, C (September 2021). "Genes with 5' terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein". RNA. 27 (9): 1025–1045. doi:10.1261/rna.078661.120. PMC 8370740. PMID 34127534.
  67. ^ Masters PS (1 January 2006). "The molecular biology of coronaviruses". Advances in Virus Research. Academic Press. 66: 193–292. doi:10.1016/S0065-3527(06)66005-3. ISBN 9780120398690. PMC 7112330. PMID 16877062. See Figure 8.
  68. ^ a b c Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See section: Replicase Protein Expression
  69. ^ Mehdi Moustaqil (5 June 2020). "SARS-CoV-2 proteases cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species and the search for reservoir hosts". bioRxiv: 2020.06.05.135699. doi:10.1101/2020.06.05.135699. S2CID 219604020.
  70. ^ Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR (August 2016). "Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens". Journal of Virology. 90 (16): 7415–28. doi:10.1128/JVI.00080-16. PMC 4984655. PMID 27279608. Finally, these results, combined with those from previous work (33, 44), suggest that CoVs encode at least three proteins involved in fidelity (nsp12-RdRp, nsp14-ExoN, and nsp10), supporting the assembly of a multiprotein replicase-fidelity complex, as described previously (38).
  71. ^ a b Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See section: Corona Life Cycle – Replication and Transcription
  72. ^ Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See Figure 1.
  73. ^ a b Zhang XW, Yap YL, Danchin A. Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus. Arch Virol. 2005 Jan;150(1):1-20. Epub 2004 Oct 11. PMID 15480857
  74. ^ Stanhope MJ, Brown JR, Amrine-Madsen H. Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV. Infect Genet Evol. 2004 Mar;4(1):15-9. PMID 15019585
  75. ^ a b Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See section: Coronavirus Life Cycle – Assembly and Release
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia EN

SARS-related coronavirus: Brief Summary ( İngilizce )

wikipedia EN tarafından sağlandı

Severe acute respiratory syndrome–related coronavirus (SARSr-CoV or SARS-CoV) is a species of virus consisting of many known strains phylogenetically related to severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) that have been shown to possess the capability to infect humans, bats, and certain other mammals. These enveloped, positive-sense single-stranded RNA viruses enter host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. The SARSr-CoV species is a member of the genus Betacoronavirus and of the subgenus Sarbecovirus (SARS Betacoronavirus).

Two strains of the virus have caused outbreaks of severe respiratory diseases in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV or SARS-CoV-1), which caused the 2002–2004 outbreak of severe acute respiratory syndrome (SARS), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing pandemic of COVID-19. There are hundreds of other strains of SARSr-CoV, which are only known to infect non-human species: bats are a major reservoir of many strains of SARSr-CoV; several strains have been identified in Himalayan palm civets, which were likely ancestors of SARS-CoV-1.

The SARS-related coronavirus was one of several viruses identified by the World Health Organization (WHO) in 2016 as a likely cause of a future epidemic in a new plan developed after the Ebola epidemic for urgent research and development before and during an epidemic towards diagnostic tests, vaccines and medicines. This prediction came to pass with the COVID-19 pandemic.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia authors and editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia EN

Coronavirus lié au syndrome respiratoire aigu sévère ( Fransızca )

wikipedia FR tarafından sağlandı

SARSr-CoV

SARSr-CoV (acronyme anglais de severe acute respiratory syndrome-related coronavirus)[note 1] est le nom scientifique officiel de l'espèce[note 2] de coronavirus liés au syndrome respiratoire aigu sévère (soit également SL-CoV, pour SARS-like coronavirus). Ce sont, par exemple, le virus du SRAS de 2003 ou celui du Covid-19. Les différentes formes de ces coronavirus infectent les humains, les chauves-souris et d'autres mammifères[3]. Il s'agit d'un virus à ARN simple brin de sens positif enveloppé qui pénètre dans sa cellule hôte en se liant au récepteur ACE2[4]. Il est membre du genre Betacoronavirus et du sous-genre Sarbecovirus[5],[6], différent de celui du coronavirus causant le MERS.

Deux souches de SARSr-CoV ont provoqué des flambées de maladies respiratoires graves chez l'humain : le SARS-CoV, qui a provoqué une flambée de syndrome respiratoire aigu sévère (SRAS) entre 2002 et 2003, et le SARS-CoV-2, qui depuis fin 2019 a provoqué une pandémie de maladie à coronavirus 2019 (COVID-19)[7],[8]. Il existe des centaines d'autres souches de SARSr-CoV, qui sont connues pour n'infecter que des espèces non humaines : les chauves-souris sont un réservoir majeur de nombreuses souches de SARSr-CoV, et plusieurs souches ont été identifiées dans les civettes de palmier, qui étaient les ancêtres probables du SARS-CoV[9].

Le SARSr-CoV était l'une des nombreuses espèces virales identifiées par l'Organisation mondiale de la santé (OMS) en 2016 comme une cause probable d'une future épidémie dans un nouveau plan élaboré après l'épidémie d'Ebola pour la recherche et le développement urgents de tests de dépistage, vaccins et médicaments. La prédiction s'est réalisée avec la pandémie de Covid-19[10],[11].

Classification phylogénétique

L'espèce virale Severe acute respiratory syndrome-related coronavirus est membre du genre Betacoronavirus et du sous-genre Sarbecovirus (sous-groupe B)[12] dans la famille Coronaviridae et la sous-famille Orthocoronavirinae. Les sarbecovirus, contrairement aux embécovirus ou aux alphacoronavirus, n'ont qu'une seule protéinase de type papaïne (PLpro) au lieu de deux dans le cadre de lecture ouvert ORF1[13]. SARSr-CoV a été déterminée comme une séparation précoce des bétacoronavirus sur la base d'un ensemble de domaines conservés qu'il partage avec le groupe[14],[15].

Les chauves-souris constituent le principal hôte réservoir du SARSr-CoV. Le virus a co-évolué dans le réservoir hôte des chauves-souris sur une longue période de temps[16]. Ce n'est que récemment que des souches de SARSr-CoV ont évolué et sont passées aux humains, comme dans le cas des souches SARS-CoV et SARS-CoV-2[17],[4]. Ces deux souches issues d'un seul ancêtre ont effectué leur passage aux humains séparément : SARS-CoV-2 n'est pas un descendant direct de SARS-CoV[7].

L'arbre phylogénétique des souches de coronavirus de l'espèce SARSr-CoV est le suivant :



Bat CoV BtKY72[18]



Bat CoV BM48-31[19]



Bat CoV RhGB01[20]






SARSr-CoV JL2012 et Rf4092[2]




SARSr-CoV YN2013, Rp3, HKU3 etc.[2]




SARSr-CoV LYRa11[21]





SARSr-CoV WIV1



SARSr-CoV RsSHC014




SARS-CoV-1 (agent infectieux du SRAS)








Rc-o319, Rhinolophus cornutus, Iwate, Japon[22]





SL-ZXC21, Rhinolophus pusillus, Zhoushan, Zhejiang[23]



SL-ZC45, Rhinolophus pusillus, Zhoushan, Zhejiang[23]





SARSr-CoV-GX, Manis javanica, Asie du Sud-Est[24]




SARSr-CoV-GD, Manis javanica, Asie du Sud-Est[25]





RshSTT182, Rhinolophus shameli, Stoeng Treng, Cambodge[26]



RshSTT200, Rhinolophus shameli, Stoeng Treng, Cambodge[26]





RacCS203, Rhinolophus acuminatus, Chachoengsao, Thaïlande[27]



RmYN02, Rhinolophus malayanus, Mengla, Yunnan[28]





RaTG13, Rhinolophus affinis, Mojiang, Yunnan[29]



SARS-CoV-2 (agent infectieux de la Covid-19)









Génome

 src=
Organisation du génome du SARS-CoV

SARSr-CoV est un virus à ARN simple brin enveloppé, de polarité positive. Son génome est d'environ 30 kb, l'un des plus grands parmi les virus à ARN. Il a 14 cadres ouverts de lecture (ORF) dont certains se chevauchent[30]. Le génome a une coiffe à son extrémité 5' et une queue polyadénylée à son extrémité 3'[31]. Il y a 265 nucléotides dans le 5'UTR et 342 nucléotides dans le 3'UTR.

La coiffe et la queue polyadénylée permettent au génome d'ARN d'être directement traduit par le ribosome de la cellule hôte[32]. SARSr-CoV est similaire à d'autres coronavirus en ce que son expression génomique commence par la traduction par les ribosomes de la cellule hôte de ses deux grands ORF, 1a et 1b, qui produisent tous deux des polyprotéines[30].

Les fonctions de plusieurs des protéines virales sont connues[36]. Les ORF 1a et 1b codent pour la réplicase/transcriptase et les ORF 2, 4, 5 et 9a codent, respectivement, pour les quatre principales protéines structurales : spike, enveloppe, membrane et nucléocapside[37]. Les derniers ORF codent également pour huit protéines uniques (orf3a à orf9b), connues sous le nom de protéines accessoires, sans homologues connus. Les différentes fonctions des protéines accessoires ne sont pas bien comprises.

Morphologie

 src=
Micrographie de SARS-CoV

La morphologie du SARSr-CoV est caractéristique des coronavirus dans son ensemble. Les virions sont de grosses particules sphériques pléomorphes avec des projections de surface bulbeuses, les péplomères, qui forment une couronne autour des particules sur des micrographies électroniques[38]. Cette apparence en couronne a donné leur nom aux coronavirus. La taille des particules virales se situe entre 80 et 90 nm.

L'enveloppe virale est constituée d'une bicouche lipidique où les protéines de la membrane (M), de l'enveloppe (E) et en pointe (S, Spike) sont ancrées[39]. La protéine S est aussi appelée péplomère ou protéine spiculaire. L'interaction de la protéine S avec le récepteur cellulaire est centrale pour déterminer le tropisme tissulaire, l'infectiosité et la gamme d'espèces du virus[40],[41] ; il constitue donc une clé importante de l'adaptation à l'espèce humaine.

À l'intérieur de l'enveloppe, il y a la nucléocapside, qui est formée de plusieurs copies de la protéine N, liées au génome ARN dans une conformation de type « billes sur une chaîne » continue[42],[43]. L'enveloppe bicouche lipidique, les protéines membranaires et la nucléocapside protègent le virus lorsqu'il est à l'extérieur de l'hôte[44]. Ces protections sont sensibles aux détergents, au savon et à l'alcool.

Cycle de vie

SARSr-CoV suit la stratégie de réplication typique de tous les coronavirus[31],[45],[46],[47],[48].

Fixation et entrée dans la cellule

 src=
Cycle de réplication du coronavirus

La fixation du virion de SARSr-CoV à la cellule hôte est déterminée par la protéine S et son récepteur[49]. Le domaine de liaison au récepteur de la protéine S (Receptor-Binding Domain, RBD) reconnaît et se fixe au récepteur de l'enzyme de conversion de l'angiotensine 2 (ACE2)[4]. Après l'attachement, le virus peut pénétrer dans la cellule hôte par deux chemins différents, selon la protéase hôte disponible pour cliver et activer la protéine Spike attachée au récepteur[50].

La première voie que le virus peut emprunter pour pénétrer dans la cellule hôte est l'endocytose et l'absorption dans un endosome. La protéine S attachée au récepteur est ensuite activée par la cathepsine L, protéase à cystéine dépendante du potentiel hydrogène de l'hôte. L'activation de la protéine S attachée au récepteur provoque un changement de conformation et la fusion de l'enveloppe virale avec la paroi endosomale[50].

Alternativement, le virus peut pénétrer directement dans la cellule hôte par clivage protéolytique de la protéine S attachée au récepteur par les protéases à sérine de l'hôte TMPRSS2 ou TMPRSS11D[51],[52].

Traduction du génome

Après la fusion, la nucléocapside passe dans le cytoplasme, où le génome viral est libéré[49]. Le génome agit comme un ARN messager, dont le ribosome traduit les deux tiers correspondant au cadre de lecture ouvert ORF1a/ORF1b, en deux grandes polyprotéines qui se chevauchent, pp1a et pp1ab.

La plus grande polyprotéine, pp1ab, est le résultat d'un décalage de phase de lecture de -1 provoqué par une séquence glissante (UUUAAAC) et un pseudonoeud d'ARN en aval du cadre de lecture ouvert ORF1a[53]. Le décalage de phase de lecture permet la traduction continue de ORF1a suivie par ORF1b[54].

Les polyprotéines contiennent leurs propres protéases, PLpro et 3CLpro, qui clivent les polyprotéines en différents sites spécifiques. Le clivage de la polyprotéine pp1ab donne 16 protéines non structurales (nsp1 à nsp16). Ces protéines comprennent diverses protéines de réplication telles que l'ARN polymérase ARN dépendante (RdRp), l'ARN hélicase et l'exoribonucléase (ExoN)[54],[47].

Réplication et transcription

 src=
Modèle du complexe réplicase-transcriptase d'un coronavirus (SARS-CoV). RdRp pour la réplication (rouge), ExoN pour la relecture (bleu foncé), cofacteur ExoN (jaune), RBP pour éviter la structure secondaire (bleu clair), pince coulissante ARN pour la processivité et domaine primase pour l'amorçage (vert / orange), et une hélicase pour dérouler l'ARN (en aval).

Un certain nombre de protéines de réplication non structurales fusionnent pour former un complexe multi-protéique réplicase-transcriptase (Replicase-Transcriptase Complex, RTC)[54]. La principale protéine réplicase-transcriptase est l'ARN polymérase ARN dépendante (RdRp). Il est directement impliqué dans la réplication et la transcription de l'ARN à partir d'un brin d'ARN. Les autres protéines non structurales du complexe aident au processus de réplication et de transcription[55].

La protéine nsp14 est une exoribonucléase 3'-5' qui offre une fidélité supplémentaire au processus de réplication. L'exoribonucléase fournit une fonction de relecture au complexe qui manque à la RdRp. De même, les protéines nsp7 et nsp8 forment une « pince coulissante » ARN hexadécamérique faisant partie du complexe, ce qui augmente considérablement la processivité de la RdRp[55]. Les coronavirus nécessitent une fidélité et une processivité accrues pendant la synthèse d'ARN en raison de la grande taille de leur génome par rapport aux autres virus à ARN[56].

L'une des principales fonctions du complexe RTC est de transcrire le génome viral. La RdRp intervient directement dans la synthèse des molécules d'ARN subgénomique de sens négatif à partir de l'ARN génomique de sens positif. Ceci est suivi par la transcription de ces molécules d'ARN subgénomique de sens négatif en leurs ARNm de sens positif correspondants[57].

L'autre fonction importante du complexe RTC est de répliquer le génome viral. La RdRp intervient directement dans la synthèse de l'ARN génomique de sens négatif à partir de l'ARN génomique de sens positif. Ceci est suivi par la réplication de l'ARN génomique de sens positif à partir de l'ARN génomique de sens négatif[57].

L'ARN génomique de sens positif répliqué devient le génome des virus de la descendance. Les différents petits ARNm sont des transcrits du dernier tiers du génome, qui suit les cadres de lecture ORF1a et ORF1b. Ces ARNm sont traduits dans les quatre protéines structurales (S, E, M et N) qui feront partie des virions de la descendance et également huit autres protéines accessoires (orf3 à orf9b)[58].

Assemblage et libération

La traduction de l'ARN se produit à l'intérieur du réticulum endoplasmique. Les protéines structurales virales S, E et M se déplacent le long de la voie de sécrétion dans le compartiment intermédiaire de Golgi. Là, les protéines M dirigent la plupart des interactions protéine-protéine nécessaires à l'assemblage des virus après sa liaison à la nucléocapside[59].

Les virions sont libérés de la cellule hôte par exocytose à travers des vésicules sécrétoires[59].

Notes et références

Notes

  1. Les termes SARSr-CoV et SARS-CoV sont parfois utilisés de manière interchangeable, surtout avant l'émergence de SARS-CoV-2 en 2019.
  2. Les noms scientifiques d'espèces virales ne sont pas des binômes latins mais de courtes descriptions en anglais, incluant le genre viral et écrits en italiques; voir (en) « The ICTV code », sur International Committee on Taxonomy of Viruses (ICTV), octobre 2018 (consulté le 27 mars 2020)

Références

  1. (en) « Virus Taxonomy: 2018b Release », ICTV, juillet 2018 (consulté le 14 septembre 2019).
  2. a b et c
  3. « Global Epidemiology of Bat Coronaviruses », Viruses, vol. 11, no 2,‎ février 2019, p. 174 (PMID , PMCID , DOI ) :

    « Most notably, horseshoe bats were found to be the reservoir of SARS-like CoVs, while palm civet cats are considered to be the intermediate host for SARS-CoVs [43,44,45]. »

  4. a b et c « Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor », Nature, vol. 503, no 7477,‎ novembre 2013, p. 535–8 (PMID , PMCID , DOI , Bibcode )
  5. (en) « Virus Taxonomy: 2018 Release », International Committee on Taxonomy of Viruses (ICTV), octobre 2018 (consulté le 13 janvier 2019)
  6. « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ août 2010, p. 1804–20 (PMID , PMCID , DOI ) :

    « Figure 2. Phylogenetic analysis of RNA-dependent RNA polymerases (Pol) of coronaviruses with complete genome sequences available. The tree was constructed by the neighbor-joining method and rooted using Breda virus polyprotein. »

  7. a et b Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, « The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 », Nature Microbiology,‎ mars 2020 (PMID , DOI )
  8. Kohen et Kupferschmidth, « Strategies shift as coronavirus pandemic looms », Science, vol. 367, no 6481,‎ 28 février 2020, p. 962–963 (PMID , DOI )
  9. « Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events », Journal of Virology, vol. 84, no 6,‎ mars 2010, p. 2808–19 (PMID , PMCID , DOI )
  10. Kieny, « After Ebola, a Blueprint Emerges to Jump-Start R&D » , Scientific American Blog Network (consulté le 13 décembre 2016)
  11. « LIST OF PATHOGENS » , World Health Organization (consulté le 13 décembre 2016)
  12. « Global Epidemiology of Bat Coronaviruses », Viruses, vol. 11, no 2,‎ février 2019, p. 174 (PMID , PMCID , DOI ) :

    « See Figure 1. »

  13. « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ août 2010, p. 1804–20 (PMID , PMCID , DOI ) :

    « See Figure 1. »

  14. « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ août 2010, p. 1804–20 (PMID , PMCID , DOI ) :

    « Furthermore, subsequent phylogenetic analysis using both complete genome sequence and proteomic approaches, it was concluded that SARSr-CoV is probably an early split-off from the Betacoronavirus lineage [1]; See Figure 2. »

  15. (en) « Coronaviridae - Figures - Positive Sense RNA Viruses - Positive Sense RNA Viruses (2011) », International Committee on Taxonomy of Viruses (ICTV) (consulté le 6 mars 2020) : « See Figure 2. »
  16. « SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory », Infection, Genetics and Evolution, vol. 11, no 7,‎ octobre 2011, p. 1690–702 (PMID , DOI ) :

    « Betacoronaviruses-b ancestors, meaning SARSr-CoVs ancestors, could have been historically hosted by the common ancestor of the Rhinolophidae and Hipposideridae and could have later evolved independently in the lineages leading towards Rhinolophidae and Hipposideridae betacoronaviruses. »

  17. « Evolutionary relationships between bat coronaviruses and their hosts », Emerging Infectious Diseases, vol. 13, no 10,‎ octobre 2007, p. 1526–32 (PMID , PMCID , DOI )
  18. Shin Murakami, Tomoya Kitamura, Jin Suzuki, Ryouta Sato, Toshiki Aoi, Marina Fujii, Hiromichi Matsugo, Haruhiko Kamiki, Hiroho Ishida, Akiko Takenaka-Uema, Masayuki Shimojima et Taisuke Horimoto, « Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan », Emerging Infectious Diseases, vol. 26, no 12,‎ décembre 2020, p. 3025–3029 (DOI )
  19. a et b Hong Zhou, Xing Chen, Tao Hu, Juan Li, Hao Song, Yanran Liu, Peihan Wang, Di Liu, Jing Yang, Edward C. Holmes, Alice C. Hughes, Yuhai Bi et Weifeng Shi, « A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein », Current Biology, vol. 30, no 11,‎ juin 2020, p. 2196–2203.e3 (DOI )
  20. Tommy Tsan-Yuk Lam, Na Jia, Ya-Wei Zhang, Marcus Ho-Hin Shum, Jia-Fu Jiang, Hua-Chen Zhu, Yi-Gang Tong, Yong-Xia Shi, Xue-Bing Ni, Yun-Shi Liao, Wen-Juan Li, Bao-Gui Jiang, Wei Wei, Ting-Ting Yuan, Kui Zheng, Xiao-Ming Cui, Jie Li, Guang-Qian Pei, Xin Qiang, William Yiu-Man Cheung, Lian-Feng Li, Fang-Fang Sun, Si Qin, Ji-Cheng Huang, Gabriel M. Leung, Edward C. Holmes, Yan-Ling Hu, Yi Guan et Wu-Chun Cao, « Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins », Nature, vol. 583, no 7815,‎ 9 juillet 2020, p. 282–285 (DOI )
  21. Ping Liu, Jing-Zhe Jiang, Xiu-Feng Wan, Yan Hua, Linmiao Li, Jiabin Zhou, Xiaohu Wang, Fanghui Hou, Jing Chen, Jiejian Zou et Jinping Chen, « Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? », PLOS Pathogens, vol. 16, no 5,‎ 14 mai 2020, e1008421 (DOI )
  22. a et b (en) Vibol Hul, Deborah Delaune, Erik A. Karlsson, Alexandre Hassanin, Putita Ou Tey, Artem Baidaliuk, Fabiana Gámbaro, Vuong Tan Tu, Lucy Keatts, Jonna Mazet, Christine Johnson, Philippe Buchy, Philippe Dussart, Tracey Goldstein, Etienne Simon-Lorière et Veasna Duong, « A novel SARS-CoV-2 related coronavirus in bats from Cambodia », sur bioRxiv, 26 janvier 2021 (DOI ), p. 2021.01.26.428212
  23. S Wacharapluesadee, CW Tan, P Maneeorn, P Duengkae, F Zhu, Y Joyjinda, T Kaewpom, WN Chia, W Ampoot, BL Lim, K Worachotsueptrakun, VC Chen, N Sirichan, C Ruchisrisarod, A Rodpan, K Noradechanon, T Phaichana, N Jantarat, B Thongnumchaima, C Tu, G Crameri, MM Stokes, T Hemachudha et LF Wang, « Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. », Nature Communications, vol. 12, no 1,‎ 9 février 2021, p. 972 (PMID , PMCID , DOI )
  24. H Zhou, X Chen, T Hu, J Li, H Song, Y Liu, P Wang, D Liu, J Yang, EC Holmes, AC Hughes, Y Bi et W Shi, « A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. », Current biology : CB, vol. 30, no 11,‎ 8 juin 2020, p. 2196-2203.e3 (PMID , DOI )
  25. « Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin », Nature, vol. 588, no 7836,‎ décembre 2020, E6 (PMID , DOI , lire en ligne)
  26. a et b « Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage », Journal of Molecular Biology, vol. 331, no 5,‎ août 2003, p. 991–1004 (PMID , DOI ) :

    « The SARS-CoV genome is ∼29.7 kb long and contains 14 open reading frames (ORFs) flanked by 5′ and 3′-untranslated regions of 265 and 342 nucleotides, respectively (Figure 1). »

  27. a et b Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », 2015, 1–23 p. (ISBN 978-1-4939-2438-7, PMID , DOI ), « Coronaviruses: an overview of their replication and pathogenesis »
  28. « An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization », Methods in Molecular Biology, Springer, vol. 1282,‎ 2015, p. 1–23 (ISBN 978-1-4939-2438-7, PMID , PMCID , DOI )
  29. « The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis », Viruses, vol. 4, no 11,‎ novembre 2012, p. 2902–23 (PMID , PMCID , DOI ) :

    « See Table 1. »

  30. « Differential stepwise evolution of SARS coronavirus functional proteins in different host species », BMC Evolutionary Biology, vol. 9,‎ mars 2009, p. 52 (PMID , PMCID , DOI )
  31. Narayanan, Huang et Makino, « SARS coronavirus Accessory Proteins », Virus Research, vol. 133, no 1,‎ avril 2008, p. 113–121 (ISSN , PMID , PMCID , DOI ) :

    « See Table 1. »

  32. « The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis », Viruses, vol. 4, no 11,‎ novembre 2012, p. 2902–23 (PMID , PMCID , DOI )
  33. « Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage », Journal of Molecular Biology, vol. 331, no 5,‎ août 2003, p. 991–1004 (PMID , DOI ) :

    « See Figure 1. »

  34. « Ultrastructural characterization of SARS coronavirus », Emerging Infectious Diseases, vol. 10, no 2,‎ février 2004, p. 320–6 (PMID , PMCID , DOI ) :

    « Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A) »

  35. « The molecular biology of coronaviruses », Advances in Virus Research, vol. 48,‎ 1997, p. 1–100 (ISBN 9780120398485, PMID , DOI )
  36. The molecular biology of coronaviruses, vol. 66, Academic Press, coll. « Advances in Virus Research », 1er janvier 2006, 193–292 p. (ISBN 9780120398690, PMID , DOI ) :

    « Nevertheless, the interaction between S protein and receptor remains the principal, if not sole, determinant of coronavirus host species range and tissue tropism. »

  37. « Origin and evolution of pathogenic coronaviruses », Nature Reviews. Microbiology, vol. 17, no 3,‎ mars 2019, p. 181–192 (PMID , DOI ) :

    « Different SARS-CoV strains isolated from several hosts vary in their binding affinities for human ACE2 and consequently in their infectivity of human cells76,78 (Fig. 6b) »

  38. « An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization », Methods in Molecular Biology, Springer, vol. 1282,‎ 2015, p. 1–23 (ISBN 978-1-4939-2438-7, PMID , PMCID , DOI ) :

    « See section: Virion Structure. »

  39. « The SARS coronavirus nucleocapsid protein--forms and functions », Antiviral Research, vol. 103,‎ mars 2014, p. 39–50 (PMID , DOI ) :

    « See Figure 4c. »

  40. « A structural analysis of M protein in coronavirus assembly and morphology », Journal of Structural Biology, vol. 174, no 1,‎ avril 2011, p. 11–22 (PMID , PMCID , DOI ) :

    « See Figure 10. »

  41. « Structures and Functions of Coronavirus Proteins: Molecular Modeling of Viral Nucleoprotein. »
  42. Molecular Biology of the SARS-Coronavirus, 2010 (ISBN 978-3-642-03682-8, DOI )
  43. a et b « Structural genomics and interactomics of 2019 Wuhan novel coronavirus, 2019-nCoV, indicate evolutionary conserved functional regions of viral proteins. », bioRxiv,‎ janvier 2020 (DOI )
  44. « Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. », bioRxiv,‎ janvier 2020 (DOI )
  45. a et b Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », 2015, 1–23 p. (ISBN 978-1-4939-2438-7, PMID , DOI ), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Coronavirus Life Cycle – Attachment and Entry »

  46. a et b « Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research », Antiviral Research, vol. 100, no 3,‎ décembre 2013, p. 605–14 (PMID , PMCID , DOI ) :

    « See Figure 2 »

  47. « TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein », Journal of Virology, vol. 88, no 2,‎ janvier 2014, p. 1293–307 (PMID , PMCID , DOI ) :

    « The SARS-CoV can hijack two cellular proteolytic systems to ensure the adequate processing of its S protein. Cleavage of SARS-S can be facilitated by cathepsin L, a pH-dependent endo-/lysosomal host cell protease, upon uptake of virions into target cell endosomes (25). Alternatively, the type II transmembrane serine proteases (TTSPs) TMPRSS2 and HAT can activate SARS-S, presumably by cleavage of SARS-S at or close to the cell surface, and activation of SARS-S by TMPRSS2 allows for cathepsin L-independent cellular entry (26,–28). »

  48. « Coronaviruses - drug discovery and therapeutic options », Nature Reviews. Drug Discovery, vol. 15, no 5,‎ mai 2016, p. 327–47 (PMID , DOI ) :

    « S is activated and cleaved into the S1 and S2 subunits by other host proteases, such as transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, which enables cell surface non-endosomal virus entry at the plasma membrane. »

  49. « The molecular biology of coronaviruses », Advances in Virus Research, Academic Press, vol. 66,‎ 1er janvier 2006, p. 193–292 (ISBN 9780120398690, PMID , DOI ) :

    « See Figure 8. »

  50. a b et c Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », 2015, 1–23 p. (ISBN 978-1-4939-2438-7, PMID , DOI ), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Replicase Protein Expression »

  51. a et b Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », 2015, 1–23 p. (ISBN 978-1-4939-2438-7, PMID , DOI ), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See Table 2. »

  52. « Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens », Journal of Virology, vol. 90, no 16,‎ août 2016, p. 7415–28 (PMID , PMCID , DOI ) :

    « Finally, these results, combined with those from previous work (33, 44), suggest that CoVs encode at least three proteins involved in fidelity (nsp12-RdRp, nsp14-ExoN, and nsp10), supporting the assembly of a multiprotein replicase-fidelity complex, as described previously (38) »

  53. a et b Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », 2015, 1–23 p. (ISBN 978-1-4939-2438-7, PMID , DOI ), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Corona Life Cycle – Replication and Transcription »

  54. Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », 2015, 1–23 p. (ISBN 978-1-4939-2438-7, PMID , DOI ), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See Figure 1. »

  55. a et b Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », 2015, 1–23 p. (ISBN 978-1-4939-2438-7, PMID , DOI ), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Coronavirus Life Cycle – Assembly and Release »

Voir aussi

lisans
cc-by-sa-3.0
telif hakkı
Auteurs et éditeurs de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia FR

Coronavirus lié au syndrome respiratoire aigu sévère: Brief Summary ( Fransızca )

wikipedia FR tarafından sağlandı

SARSr-CoV

SARSr-CoV (acronyme anglais de severe acute respiratory syndrome-related coronavirus) est le nom scientifique officiel de l'espèce de coronavirus liés au syndrome respiratoire aigu sévère (soit également SL-CoV, pour SARS-like coronavirus). Ce sont, par exemple, le virus du SRAS de 2003 ou celui du Covid-19. Les différentes formes de ces coronavirus infectent les humains, les chauves-souris et d'autres mammifères. Il s'agit d'un virus à ARN simple brin de sens positif enveloppé qui pénètre dans sa cellule hôte en se liant au récepteur ACE2. Il est membre du genre Betacoronavirus et du sous-genre Sarbecovirus,, différent de celui du coronavirus causant le MERS.

Deux souches de SARSr-CoV ont provoqué des flambées de maladies respiratoires graves chez l'humain : le SARS-CoV, qui a provoqué une flambée de syndrome respiratoire aigu sévère (SRAS) entre 2002 et 2003, et le SARS-CoV-2, qui depuis fin 2019 a provoqué une pandémie de maladie à coronavirus 2019 (COVID-19),. Il existe des centaines d'autres souches de SARSr-CoV, qui sont connues pour n'infecter que des espèces non humaines : les chauves-souris sont un réservoir majeur de nombreuses souches de SARSr-CoV, et plusieurs souches ont été identifiées dans les civettes de palmier, qui étaient les ancêtres probables du SARS-CoV.

Le SARSr-CoV était l'une des nombreuses espèces virales identifiées par l'Organisation mondiale de la santé (OMS) en 2016 comme une cause probable d'une future épidémie dans un nouveau plan élaboré après l'épidémie d'Ebola pour la recherche et le développement urgents de tests de dépistage, vaccins et médicaments. La prédiction s'est réalisée avec la pandémie de Covid-19,.

lisans
cc-by-sa-3.0
telif hakkı
Auteurs et éditeurs de Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia FR

Coronavirus correlato alla SARS ( İtalyanca )

wikipedia IT tarafından sağlandı

Il coronavirus correlato alla SARS, o SARSr-CoV, (dall'inglese: SARS-related coronavirus) è una specie di coronavirus che infetta l'uomo, i pipistrelli e alcuni altri mammiferi, membro del genere Betacoronavirus, sottogenere Sarbecovirus.[1][2][3] I termini SARSr-CoV e SARS-CoV sono stati talvolta usati in modo intercambiabile, soprattutto prima della scoperta di SARS-CoV-2.

È un virus a RNA a singolo filamento avvolto in senso positivo che entra nella sua cellula ospite legandosi al recettore ACE2 tramite le spinule proteiche che sporgendo dalla membrana gli conferiscono la classica forma a corona al microscopio elettronico.[4]

Due ceppi del virus hanno causato focolai di gravi malattie respiratorie nell'uomo: SARS-CoV, che ha causato un'epidemia di SARS tra il 2002 e il 2003, e SARS-CoV-2, che ha causato la pandemia di COVID-19 del 2019-2021.[5][6]

Esistono centinaia di altri ceppi di SARSr-CoV, tutti noti solo per infettare specie non umane: i pipistrelli sono un serbatoio importante di molti ceppi di coronavirus correlato alla SARS; numerosi altri ceppi, probabili antenati di SARS-CoV, sono stati identificati in alcuni esemplari del genere Paradoxurus.[5][7]

Il coronavirus correlato alla SARS era uno dei numerosi virus che furono identificati nel 2016 dall'Organizzazione mondiale della sanità come probabile causa di una futura epidemia, in un nuovo piano sviluppato, dopo l'ultima epidemia di Ebola, per la ricerca e lo sviluppo urgenti di test diagnostici, vaccini e medicinali.[8] La previsione si è avverata con la pandemia di coronavirus del 2019-2020.[9]

Tassonomia

  • Coronavirus correlato alla SARS
    • SARS-CoV
      • TW7; TWH; TW8; TW9; TWS; Sino1_11; TW2; GZ50; GZ0401; civet020; PC4_227; PC4_136; civet010
    • SARS-CoV-2
      • Wuhan-Hu-1/2019; Wuhan/IVDC-HB-01/2019; Wuhan/WIV04/2019; Wuhan/IPBCAMS-WH-01/2019; Wuhan/IVDC-HB-04/2020
    • SL-CoV
      • Rs4874; Rs3367; WIV1; Rs4084; RsSHC014; Rs9401; Rs7327; Rs4237; Rs4247; As6526; Rs4255; Rs4081; Rs672; Rf4092; YNLF_34C; LYRa11; HKU3_1; HKU3_2; bat/Yunnan/RaTG13/2013; bat_SL_CoVZC45; bat_SL_CoVZXC21

Note

  1. ^ (EN) SARS-like virus in bats shows potential to infect humans, su STAT, 9 novembre 2015. URL consultato il 30 marzo 2020.
  2. ^ (EN) Antonio C. P. Wong, Xin Li e Susanna K. P. Lau, Global Epidemiology of Bat Coronaviruses, in Viruses, vol. 11, n. 2, 2019/2, p. 174, DOI:10.3390/v11020174. URL consultato il 30 marzo 2020.
  3. ^ Patrick C. Y. Woo, Yi Huang e Susanna K. P. Lau, Coronavirus Genomics and Bioinformatics Analysis, in Viruses, vol. 2, n. 8, 24 agosto 2010, pp. 1804-1820, DOI:10.3390/v2081803. URL consultato il 30 marzo 2020.
  4. ^ Xing-Yi Ge, Jia-Lu Li e Xing-Lou Yang, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor, in Nature, vol. 503, n. 7477, 2013, pp. 535-538, DOI:10.1038/nature12711. URL consultato il 30 marzo 2020.
  5. ^ a b (EN) Alexander E. Gorbalenya, Susan C. Baker e Ralph S. Baric, The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2, in Nature Microbiology, vol. 5, n. 4, 2020-04, pp. 536-544, DOI:10.1038/s41564-020-0695-z. URL consultato il 30 marzo 2020.
  6. ^ (EN) Jon Cohen e Kai Kupferschmidt, Strategies shift as coronavirus pandemic looms, in Science, vol. 367, n. 6481, 28 febbraio 2020, pp. 962-963, DOI:10.1126/science.367.6481.962. URL consultato il 30 marzo 2020.
  7. ^ Susanna K. P. Lau, Kenneth S. M. Li e Yi Huang, Ecoepidemiology and Complete Genome Comparison of Different Strains of Severe Acute Respiratory Syndrome-Related Rhinolophus Bat Coronavirus in China Reveal Bats as a Reservoir for Acute, Self-Limiting Infection That Allows Recombination Events, in Journal of Virology, vol. 84, n. 6, 2010-3, pp. 2808-2819, DOI:10.1128/JVI.02219-09. URL consultato il 30 marzo 2020.
  8. ^ WHO | A research and development Blueprint for action to prevent epidemics, su WHO. URL consultato il 30 marzo 2020.
  9. ^ (EN) Marie-Paule Kieny, After Ebola, a Blueprint Emerges to Jump-Start R&D, su Scientific American Blog Network. URL consultato il 30 marzo 2020.

 title=
lisans
cc-by-sa-3.0
telif hakkı
Autori e redattori di Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia IT

Coronavirus correlato alla SARS: Brief Summary ( İtalyanca )

wikipedia IT tarafından sağlandı

Il coronavirus correlato alla SARS, o SARSr-CoV, (dall'inglese: SARS-related coronavirus) è una specie di coronavirus che infetta l'uomo, i pipistrelli e alcuni altri mammiferi, membro del genere Betacoronavirus, sottogenere Sarbecovirus. I termini SARSr-CoV e SARS-CoV sono stati talvolta usati in modo intercambiabile, soprattutto prima della scoperta di SARS-CoV-2.

È un virus a RNA a singolo filamento avvolto in senso positivo che entra nella sua cellula ospite legandosi al recettore ACE2 tramite le spinule proteiche che sporgendo dalla membrana gli conferiscono la classica forma a corona al microscopio elettronico.

Due ceppi del virus hanno causato focolai di gravi malattie respiratorie nell'uomo: SARS-CoV, che ha causato un'epidemia di SARS tra il 2002 e il 2003, e SARS-CoV-2, che ha causato la pandemia di COVID-19 del 2019-2021.

Esistono centinaia di altri ceppi di SARSr-CoV, tutti noti solo per infettare specie non umane: i pipistrelli sono un serbatoio importante di molti ceppi di coronavirus correlato alla SARS; numerosi altri ceppi, probabili antenati di SARS-CoV, sono stati identificati in alcuni esemplari del genere Paradoxurus.

Il coronavirus correlato alla SARS era uno dei numerosi virus che furono identificati nel 2016 dall'Organizzazione mondiale della sanità come probabile causa di una futura epidemia, in un nuovo piano sviluppato, dopo l'ultima epidemia di Ebola, per la ricerca e lo sviluppo urgenti di test diagnostici, vaccini e medicinali. La previsione si è avverata con la pandemia di coronavirus del 2019-2020.

lisans
cc-by-sa-3.0
telif hakkı
Autori e redattori di Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia IT

Koronavirus berkaitan sindrom pernafasan yang teruk ( Malayca )

wikipedia MS tarafından sağlandı

SARS-CoV atau SARSr-CoV (Koronavirus berkaitan sindrom pernafasan yang teruk) ialah virus yang menyebabkan sindrom pernafasan akut teruk (SARS).[2] Pada 16 April 2003, setelah SARS merebak di Asia dan kes kedua di tempat lainnya di serata dunia, Pertubuhan Kesihatan Sedunia (WHO) mengeluarkan kenyataan media yang menyatakan bahawa koronavirus yang dikenalpasti oleh beberapa makmal, ialah sebagai penyebab rasmi SARS. Sampel virus tersebut disimpan di makmal Bandar Raya New York, San Francisco, Manila, Hong Kong, dan Toronto

Pada 12 April 2003, ahli sains yang bekerja di Pusat Sains Genom Michael Smith di Vancouver selesai memetakan urutan genetik virus korona yang diyakini berkaitan dengan SARS. Pasukan ini diketuai oleh Dr. Marco Marra, berkolaborasi dengan Pusat Kawalan Penyakit dan Makmal Mikrobiologi Kebangsaan British Columbia di Winnipeg, Manitoba, menggunakan sampel dari pesakit yang dijgkiti di Toronto. Peta tersebut, dipuji oleh WHO sebagai langkah maju yang penting dalam memerangi SARS, dibahagikan kepada para ilmuwan di seluruh dunia melalui laman web GSC. Dr. Donald Low dari Hospital Mount Sinai di Toronto menggambarkan penemuan tersebut dibuat dengan "kecepatan yang belum pernah terjadi sebelumnya".[3] Sejak itu urutan koronavirus SARS telah disahkan oleh kumpulan bebas yang lain.

Koronavirus SARS ialah salah satu dari beberapa virus yang dikenalpasti oleh WHO sebagai kemungkinan penyebab wabak di masa depan setelah wabak Ebola, sehingga penyelidikan dan pembangunan diperlukan secepat mungkin, sebelum dan selepas wabak terhadap ujian diagnostik, vaksin, dan ubat-ubatan.[4][5]

Rujukan

  1. ^ "ICTV Taxonomy history: Severe acute respiratory syndrome-related coronavirus" (html). International Committee on Taxonomy of Viruses (ICTV) (dalam bahasa Inggeris). Dicapai 27 January 2019.
  2. ^ Thiel V (editor). (2007). Coronaviruses: Molecular and Cellular Biology (edisi 1st). Caister Academic Press. ISBN 978-1-904455-16-5.
  3. ^ "B.C. lab cracks suspected SARS code". CBCNews, Canada. April 2003. Diarkibkan daripada asal pada 2007-11-26.
  4. ^ Kieny, Marie-Paule. "After Ebola, a Blueprint Emerges to Jump-Start R&D". Scientific American Blog Network. Diarkibkan daripada asal pada 20 December 2016. Dicapai 13 December 2016.
  5. ^ "LIST OF PATHOGENS". World Health Organization. Diarkibkan daripada asal pada 20 December 2016. Dicapai 13 December 2016.

Sumber

Pautan luar

lisans
cc-by-sa-3.0
telif hakkı
Pengarang dan editor Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia MS

Koronavirus berkaitan sindrom pernafasan yang teruk: Brief Summary ( Malayca )

wikipedia MS tarafından sağlandı

SARS-CoV atau SARSr-CoV (Koronavirus berkaitan sindrom pernafasan yang teruk) ialah virus yang menyebabkan sindrom pernafasan akut teruk (SARS). Pada 16 April 2003, setelah SARS merebak di Asia dan kes kedua di tempat lainnya di serata dunia, Pertubuhan Kesihatan Sedunia (WHO) mengeluarkan kenyataan media yang menyatakan bahawa koronavirus yang dikenalpasti oleh beberapa makmal, ialah sebagai penyebab rasmi SARS. Sampel virus tersebut disimpan di makmal Bandar Raya New York, San Francisco, Manila, Hong Kong, dan Toronto

Pada 12 April 2003, ahli sains yang bekerja di Pusat Sains Genom Michael Smith di Vancouver selesai memetakan urutan genetik virus korona yang diyakini berkaitan dengan SARS. Pasukan ini diketuai oleh Dr. Marco Marra, berkolaborasi dengan Pusat Kawalan Penyakit dan Makmal Mikrobiologi Kebangsaan British Columbia di Winnipeg, Manitoba, menggunakan sampel dari pesakit yang dijgkiti di Toronto. Peta tersebut, dipuji oleh WHO sebagai langkah maju yang penting dalam memerangi SARS, dibahagikan kepada para ilmuwan di seluruh dunia melalui laman web GSC. Dr. Donald Low dari Hospital Mount Sinai di Toronto menggambarkan penemuan tersebut dibuat dengan "kecepatan yang belum pernah terjadi sebelumnya". Sejak itu urutan koronavirus SARS telah disahkan oleh kumpulan bebas yang lain.

Koronavirus SARS ialah salah satu dari beberapa virus yang dikenalpasti oleh WHO sebagai kemungkinan penyebab wabak di masa depan setelah wabak Ebola, sehingga penyelidikan dan pembangunan diperlukan secepat mungkin, sebelum dan selepas wabak terhadap ujian diagnostik, vaksin, dan ubat-ubatan.

lisans
cc-by-sa-3.0
telif hakkı
Pengarang dan editor Wikipedia
orijinal
kaynağı ziyaret et
ortak site
wikipedia MS

SARS-virus ( Felemenkçe; Flemish )

wikipedia NL tarafından sağlandı

Het SARS-virus is een coronavirus dat de ziekte SARS veroorzaakt. Het gaat om een virus dat vóór de uitbraak van SARS nog niet eerder bij mensen was aangetroffen.

De definitieve identificatie van het SARS-virus werd op 16 april 2003 bekendgemaakt door de Wereldgezondheidsorganisatie (WHO). De naam SARS-virus werd bepaald door de WHO en de laboratoria die participeerden in het onderzoek.

Op 24 september 2012 werd voor het eerst het verwante MERS-virus beschreven.

Externe links

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia-auteurs en -editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia NL

SARS-virus: Brief Summary ( Felemenkçe; Flemish )

wikipedia NL tarafından sağlandı

Het SARS-virus is een coronavirus dat de ziekte SARS veroorzaakt. Het gaat om een virus dat vóór de uitbraak van SARS nog niet eerder bij mensen was aangetroffen.

De definitieve identificatie van het SARS-virus werd op 16 april 2003 bekendgemaakt door de Wereldgezondheidsorganisatie (WHO). De naam SARS-virus werd bepaald door de WHO en de laboratoria die participeerden in het onderzoek.

Op 24 september 2012 werd voor het eerst het verwante MERS-virus beschreven.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia-auteurs en -editors
orijinal
kaynağı ziyaret et
ortak site
wikipedia NL

Wirus SARS ( Lehçe )

wikipedia POL tarafından sağlandı
Coronaviruses 004 lores.jpg Systematyka Grupa Grupa IV ((+)ssRNA) Rząd Nidowirusy Rodzina Koronawirusy Rodzaj Betakoronawirus Cechy wiralne Skrót SARS-CoV Wywoływane choroby Zespół ostrej ciężkiej niewydolności oddechowej Galeria zdjęć w Wikimedia Commons Galeria zdjęć w Wikimedia Commons Wikidane Systematyka królestwo (Regnum) wirusy (Virus) rząd (ordo) Nidovirales podrząd (subordo) Cornidovirineae rodzina (Familia) Coronaviridae podrodzina (subfamilia) Coronavirinae rodzaj (genus) Betacoronavirus podrodzaj (Subgenere) Sarbecovirus gatunek (species) Wirus SARS (Severe acute respiratory syndrome-related coronavirus)

Wirus SARS – czynnik etiologiczny ciężkiego ostrego zespołu oddechowego (SARS od ang. Severe acute respiratory syndrome)[1].

Jest to RNA wirus należący do koronawirusów. Średnica cząsteczki wirusa wynosi 70-100 nm, a genom zawiera 29751 lub 29727 nukleotydów (w zależności od szczepu) i jest to największy znany RNA-wirus. Ponieważ cały genom wirusa został odczytany, wiemy, że w 50-60% jest on identyczny z innymi koronawirusami.

Pierwsze zachorowania wystąpiły w listopadzie 2002 roku w mieście Foshan w prowincji Guangdong w Chinach. Stopniowo doszło do rozprzestrzenienia choroby na inne rejony Chin, inne kraje Azji, a potem, drogą podróży lotniczych, inne kraje świata. Przypuszcza się, że do pierwotnego zachorowania doszło w wyniku kontaktu ze zwierzętami trzymanymi w klatkach na targu. Stwierdzono zakażenie cywet, fretek i kotów wirusem SARS.

Do lipca 2003 roku zanotowano na świecie 8439 zachorowań, z czego u 812 chorych zakończyły się one śmiercią. 16 kwietnia 2003 roku WHO (Światowa Organizacja Zdrowia) ogłosiła, że czynnikiem chorobotwórczym wywołującym SARS, jest wirus należący do koronawirusów – wirus SARS.

Różnice w budowie i innych cechach morfologicznych, a także klinicznym przebiegu zachorowań, pozwalają stwierdzić, że jest to nowy wirus, odmienny od dotychczas znanych koronawirusów, które u człowieka powodują łagodnie przebiegające infekcje dróg oddechowych i przewodu pokarmowego. Przypuszcza się, że do powstania nowego wirusa mogło dojść w wyniku transdukcji obcych genów lub rekombinacji z innymi koronawirusami.

Czas wylęgania: 2-10 dni, maksymalnie do 14-20 dni.

Wirusa wyhodowano z wydzielin z dróg oddechowych, w ślinie może się znajdować 100 mln cząstek wirusa w 1 ml. Niewielkie ilości wirusa można stwierdzić w moczu i surowicy.

Przeciwciała przeciwwirusowe w klasie IgG zaczynają się pojawiać w surowicy ok. 9-10 dnia od zakażenia. Do celów diagnostycznych zaleca się oznaczanie w surowicy w 21. i 28. dniu od początku choroby.

Do zakażenia dochodzi najczęściej drogą kropelkową, a także przez kontakt zakaźnego materiału z błonami śluzowymi. Udowodniona jest możliwość zakażenia przez kontakt z kałem osoby chorej. Ponieważ przy wykonywaniu procedur medycznych istnieje większa możliwość kontaktu z wydzielinami chorego, stosunkowo często dochodzi do zakażeń wśród personelu medycznego.

Przypisy

  1. Thiel V (editor).: Coronaviruses: Molecular and Cellular Biology. Wyd. 1st ed.. Caister Academic Press, 2007. ISBN 978-1-904455-16-5 .
lisans
cc-by-sa-3.0
telif hakkı
Autorzy i redaktorzy Wikipedii
orijinal
kaynağı ziyaret et
ortak site
wikipedia POL

Wirus SARS: Brief Summary ( Lehçe )

wikipedia POL tarafından sağlandı

Wirus SARS – czynnik etiologiczny ciężkiego ostrego zespołu oddechowego (SARS od ang. Severe acute respiratory syndrome).

Jest to RNA wirus należący do koronawirusów. Średnica cząsteczki wirusa wynosi 70-100 nm, a genom zawiera 29751 lub 29727 nukleotydów (w zależności od szczepu) i jest to największy znany RNA-wirus. Ponieważ cały genom wirusa został odczytany, wiemy, że w 50-60% jest on identyczny z innymi koronawirusami.

Pierwsze zachorowania wystąpiły w listopadzie 2002 roku w mieście Foshan w prowincji Guangdong w Chinach. Stopniowo doszło do rozprzestrzenienia choroby na inne rejony Chin, inne kraje Azji, a potem, drogą podróży lotniczych, inne kraje świata. Przypuszcza się, że do pierwotnego zachorowania doszło w wyniku kontaktu ze zwierzętami trzymanymi w klatkach na targu. Stwierdzono zakażenie cywet, fretek i kotów wirusem SARS.

Do lipca 2003 roku zanotowano na świecie 8439 zachorowań, z czego u 812 chorych zakończyły się one śmiercią. 16 kwietnia 2003 roku WHO (Światowa Organizacja Zdrowia) ogłosiła, że czynnikiem chorobotwórczym wywołującym SARS, jest wirus należący do koronawirusów – wirus SARS.

Różnice w budowie i innych cechach morfologicznych, a także klinicznym przebiegu zachorowań, pozwalają stwierdzić, że jest to nowy wirus, odmienny od dotychczas znanych koronawirusów, które u człowieka powodują łagodnie przebiegające infekcje dróg oddechowych i przewodu pokarmowego. Przypuszcza się, że do powstania nowego wirusa mogło dojść w wyniku transdukcji obcych genów lub rekombinacji z innymi koronawirusami.

Czas wylęgania: 2-10 dni, maksymalnie do 14-20 dni.

Wirusa wyhodowano z wydzielin z dróg oddechowych, w ślinie może się znajdować 100 mln cząstek wirusa w 1 ml. Niewielkie ilości wirusa można stwierdzić w moczu i surowicy.

Przeciwciała przeciwwirusowe w klasie IgG zaczynają się pojawiać w surowicy ok. 9-10 dnia od zakażenia. Do celów diagnostycznych zaleca się oznaczanie w surowicy w 21. i 28. dniu od początku choroby.

Do zakażenia dochodzi najczęściej drogą kropelkową, a także przez kontakt zakaźnego materiału z błonami śluzowymi. Udowodniona jest możliwość zakażenia przez kontakt z kałem osoby chorej. Ponieważ przy wykonywaniu procedur medycznych istnieje większa możliwość kontaktu z wydzielinami chorego, stosunkowo często dochodzi do zakażeń wśród personelu medycznego.

lisans
cc-by-sa-3.0
telif hakkı
Autorzy i redaktorzy Wikipedii
orijinal
kaynağı ziyaret et
ortak site
wikipedia POL

Virus SARS ( Vietnamca )

wikipedia VI tarafından sağlandı

Vi rút SARS, đôi khi được rút ngắn thành SARS-CoV, là vi rút gây ra hội chứng hô hấp cấp tính nặng (SARS).[1] Vào ngày 16 tháng 4 năm 2003, sau khi dịch SARS bùng phát ở châu Á và các trường hợp thứ phát ở nơi khác trên thế giới, Tổ chức Y tế Thế giới (WHO) đã đưa ra một thông cáo báo chí nói rằng coronavirus được xác định bởi một số phòng thí nghiệm là nguyên nhân chính thức của SARS. Các mẫu virus đang được giữ trong các phòng thí nghiệm ở thành phố New York, San Francisco, Manila, Hồng KôngToronto.

Vào ngày 12 tháng 4 năm 2003, các nhà khoa học làm việc tại Trung tâm Khoa học bộ gen Michael Smith ở Vancouver, British Columbia đã hoàn thành việc lập bản đồ trình tự gen của một coronavirus được cho là có liên quan đến SARS. Nhóm nghiên cứu được dẫn dắt bởi Tiến sĩ Marco Marra và hợp tác với Trung tâm Kiểm soát Bệnh tật British Columbia và Phòng thí nghiệm Vi sinh Quốc gia ở Winnipeg, Manitoba, sử dụng các mẫu từ các bệnh nhân bị nhiễm bệnh ở Toronto. Bản đồ, được WHO ca ngợi là một bước tiến quan trọng trong việc chống lại SARS, được chia sẻ với các nhà khoa học trên toàn thế giới thông qua trang web của GSC (xem bên dưới). Bác sĩ Donald Low của Bệnh viện Mount Sinai ở Toronto mô tả khám phá này được thực hiện với "tốc độ chưa từng thấy".[2] Trình tự của SARS coronavirus đã được xác nhận bởi các nhóm độc lập khác.

SARS coronavirus là một trong một số loại virus được WHO xác định là nguyên nhân có thể gây ra dịch bệnh trong tương lai trong kế hoạch mới được phát triển sau dịch Ebola để nghiên cứu và phát triển khẩn cấp trước và trong khi dịch sang các xét nghiệm chẩn đoán, vắc-xin và thuốc mới.[3][4]

Tham khảo

  1. ^ Thiel V (editor). (2007). Coronaviruses: Molecular and Cellular Biology (ấn bản 1). Caister Academic Press. ISBN 978-1-904455-16-5.
  2. ^ “B.C. lab cracks suspected SARS code”. CBCNews, Canada. Tháng 4 năm 2003. Bản gốc lưu trữ ngày 26 tháng 11 năm 2007.
  3. ^ Kieny, Marie-Paule. “After Ebola, a Blueprint Emerges to Jump-Start R&D”. Scientific American Blog Network. Bản gốc lưu trữ ngày 20 tháng 12 năm 2016. Truy cập ngày 13 tháng 12 năm 2016.
  4. ^ “LIST OF PATHOGENS”. World Health Organization. Bản gốc lưu trữ ngày 20 tháng 12 năm 2016. Truy cập ngày 13 tháng 12 năm 2016.

Liên kết ngoài

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia tác giả và biên tập viên
orijinal
kaynağı ziyaret et
ortak site
wikipedia VI

Virus SARS: Brief Summary ( Vietnamca )

wikipedia VI tarafından sağlandı

Vi rút SARS, đôi khi được rút ngắn thành SARS-CoV, là vi rút gây ra hội chứng hô hấp cấp tính nặng (SARS). Vào ngày 16 tháng 4 năm 2003, sau khi dịch SARS bùng phát ở châu Á và các trường hợp thứ phát ở nơi khác trên thế giới, Tổ chức Y tế Thế giới (WHO) đã đưa ra một thông cáo báo chí nói rằng coronavirus được xác định bởi một số phòng thí nghiệm là nguyên nhân chính thức của SARS. Các mẫu virus đang được giữ trong các phòng thí nghiệm ở thành phố New York, San Francisco, Manila, Hồng KôngToronto.

Vào ngày 12 tháng 4 năm 2003, các nhà khoa học làm việc tại Trung tâm Khoa học bộ gen Michael Smith ở Vancouver, British Columbia đã hoàn thành việc lập bản đồ trình tự gen của một coronavirus được cho là có liên quan đến SARS. Nhóm nghiên cứu được dẫn dắt bởi Tiến sĩ Marco Marra và hợp tác với Trung tâm Kiểm soát Bệnh tật British Columbia và Phòng thí nghiệm Vi sinh Quốc gia ở Winnipeg, Manitoba, sử dụng các mẫu từ các bệnh nhân bị nhiễm bệnh ở Toronto. Bản đồ, được WHO ca ngợi là một bước tiến quan trọng trong việc chống lại SARS, được chia sẻ với các nhà khoa học trên toàn thế giới thông qua trang web của GSC (xem bên dưới). Bác sĩ Donald Low của Bệnh viện Mount Sinai ở Toronto mô tả khám phá này được thực hiện với "tốc độ chưa từng thấy". Trình tự của SARS coronavirus đã được xác nhận bởi các nhóm độc lập khác.

SARS coronavirus là một trong một số loại virus được WHO xác định là nguyên nhân có thể gây ra dịch bệnh trong tương lai trong kế hoạch mới được phát triển sau dịch Ebola để nghiên cứu và phát triển khẩn cấp trước và trong khi dịch sang các xét nghiệm chẩn đoán, vắc-xin và thuốc mới.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia tác giả và biên tập viên
orijinal
kaynağı ziyaret et
ortak site
wikipedia VI

嚴重急性呼吸系統綜合症冠狀病毒 ( Çince )

wikipedia 中文维基百科 tarafından sağlandı

嚴重急性呼吸道綜合症冠狀病毒英文簡稱:SARS-CoV)是一種可以致嚴重急性呼吸系統綜合症冠狀病毒。冠狀病毒可分為很多種類,其中包括可能導致輕微疾病的病毒如傷風,它亦可引致嚴重的疾病,如嚴重急性呼吸系統綜合症 (沙士)。冠狀病毒有三種主要類別,包括:alpha (α), beta (β) 和gamma (γ),而此病毒屬於beta 類別。[1]是通过菊头蝠传播到人类的[2]

參考資料

  1. ^ Thiel V (editor). Coronaviruses: Molecular and Cellular Biology 1st. Caister Academic Press. 2007. ISBN 978-1-904455-16-5.
  2. ^ Hu, Ben; Zeng, Lei-Ping; Yang, Xing-Lou; Ge, Xing-Yi; Zhang, Wei; Li, Bei; Xie, Jia-Zheng; Shen, Xu-Rui; Zhang, Yun-Zhi; Wang, Ning; Luo, Dong-Sheng; Zheng, Xiao-Shuang; Wang, Mei-Niang; Daszak, Peter; Wang, Lin-Fa; Cui, Jie; Shi, Zheng-Li; Drosten, Christian. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathogens. 2017-11-30, 13 (11): e1006698. doi:10.1371/journal.ppat.1006698.
lisans
cc-by-sa-3.0
telif hakkı
维基百科作者和编辑

嚴重急性呼吸系統綜合症冠狀病毒: Brief Summary ( Çince )

wikipedia 中文维基百科 tarafından sağlandı

嚴重急性呼吸道綜合症冠狀病毒(英文簡稱:SARS-CoV)是一種可以致嚴重急性呼吸系統綜合症冠狀病毒。冠狀病毒可分為很多種類,其中包括可能導致輕微疾病的病毒如傷風,它亦可引致嚴重的疾病,如嚴重急性呼吸系統綜合症 (沙士)。冠狀病毒有三種主要類別,包括:alpha (α), beta (β) 和gamma (γ),而此病毒屬於beta 類別。是通过菊头蝠传播到人类的。

lisans
cc-by-sa-3.0
telif hakkı
维基百科作者和编辑

SARSコロナウイルス ( Japonca )

wikipedia 日本語 tarafından sağlandı
Question book-4.svg
この記事は検証可能参考文献や出典が全く示されていないか、不十分です。
出典を追加して記事の信頼性向上にご協力ください。2013年6月
SARSコロナウイルス Coronaviruses 004 lores.jpg
SARSコロナウイルスの電子顕微鏡写真
分類(ウイルス) : 第4群(1本鎖RNA +鎖) : ニドウイルス目
Nidovirales : コロナウイルス科
Coronaviridae 亜科 : コロナウイルス亜科
Coronavirinae : ベータコロナウイルス属
(Betacoronavirus) : SARSコロナウイルス
SARS coronavirus

SARSコロナウイルス(サーズコロナウイルス)(: SARS coronavirus,SARS-CoV)は、重症急性呼吸器症候群 (Severe Acute Respiratory Syndrome, SARS) の病原体として同定されたコロナウイルスである。通称SARSウイルス飛沫感染により広がるとみられている。

状況推移[編集]

  • 中国広東省を起点とし、2003年3月頃から大流行の兆しを見せ始めたSARSの原因が新種のウイルスにある可能性は、2002年頃から指摘されていた。
  • 3月下旬、台湾のテレビ報道で謎の新病発生と報道される。
  • 3月27日香港大学の研究チームがSARSの原因が新種のコロナウイルスと特定したと発表。(コッホの四原則に適合)
  • 4月1日世界保健機関 (WHO) はコロナウイルスが主な原因との見解を公表。
  • 4月10日、SARS患者から検出されたコロナウイルスの遺伝子配列が、既知の種のものとは大きく異なっているとのベルンハルト・ノッホ研究所(ドイツ)等による解析結果が発表された。
  • 米疾病対策センター (CDC) は、世界各地のSARS患者からほぼ同じ遺伝子配列のコロナウイルスを検出し、これが原因である可能性が高いことを発表した。
  • エラスムス大学(オランダ)の研究チームが、SARS患者から分離された新コロナウイルスをサルに投与するなどの方法で、SARSの原因であることを検証した。
  • 4月16日、WHOはSARSの原因が新種のコロナウイルスと確認されたと発表、これをSARSコロナウイルスと命名した。

脚注[編集]

[ヘルプ] [icon]
この節の加筆が望まれています。
主に: 脚注形式での参照ページ番号の明記 2016年7月

参考文献[編集]

[icon]
この節の加筆が望まれています。 2016年7月

関連資料[編集]

関連項目[編集]

 src= ウィキメディア・コモンズには、SARSコロナウイルスに関連するカテゴリがあります。  src= ウィキスピーシーズにSARSコロナウイルスに関する情報があります。 執筆の途中です この項目は、生物学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますプロジェクト:生命科学Portal:生物学)。
 title=
lisans
cc-by-sa-3.0
telif hakkı
ウィキペディアの著者と編集者

SARSコロナウイルス: Brief Summary ( Japonca )

wikipedia 日本語 tarafından sağlandı

SARSコロナウイルス(サーズコロナウイルス)(: SARS coronavirus,SARS-CoV)は、重症急性呼吸器症候群 (Severe Acute Respiratory Syndrome, SARS) の病原体として同定されたコロナウイルスである。通称SARSウイルス。飛沫感染により広がるとみられている。

lisans
cc-by-sa-3.0
telif hakkı
ウィキペディアの著者と編集者

SARS 관련 코로나바이러스 ( Korece )

wikipedia 한국어 위키백과 tarafından sağlandı

SARS 관련 코로나바이러스(영어: Severe acute respiratory syndrome–related coronavirus, SARSr-CoV, SARS-CoV)는 인간과 박쥐를 비롯한 포유류에 감염시키는 코로나바이러스의 한 종류이다.[1][2] 두 바이러스가 인간에게 질병을 일으키는 것으로 잘 알려져있다. SARS-CoV는 2002년부터 2004년에 걸쳐 중증급성호흡기증후군 (SARS)의 발발 원인이 되었으며, SARS-CoV-2는 2019년 말부터 COVID-19의 대유행을 일으켰다.

각주

  1. Branswell H (2015년 11월 9일). “SARS-like virus in bats shows potential to infect humans, study finds”. 《Stat News》. 2020년 2월 20일에 확인함.
  2. Wong AC, Li X, Lau SK, Woo PC (February 2019). “Global Epidemiology of Bat Coronaviruses”. 《Viruses》 11 (2): 174. doi:10.3390/v11020174. PMC 6409556. PMID 30791586. Most notably, horseshoe bats were found to be the reservoir of SARS-like CoVs, while palm civet cats are considered to be the intermediate host for SARS-CoVs [43,44,45].
lisans
cc-by-sa-3.0
telif hakkı
Wikipedia 작가 및 편집자

SARS 관련 코로나바이러스: Brief Summary ( Korece )

wikipedia 한국어 위키백과 tarafından sağlandı

SARS 관련 코로나바이러스(영어: Severe acute respiratory syndrome–related coronavirus, SARSr-CoV, SARS-CoV)는 인간과 박쥐를 비롯한 포유류에 감염시키는 코로나바이러스의 한 종류이다. 두 바이러스가 인간에게 질병을 일으키는 것으로 잘 알려져있다. SARS-CoV는 2002년부터 2004년에 걸쳐 중증급성호흡기증후군 (SARS)의 발발 원인이 되었으며, SARS-CoV-2는 2019년 말부터 COVID-19의 대유행을 일으켰다.

lisans
cc-by-sa-3.0
telif hakkı
Wikipedia 작가 및 편집자