dcsimg

Synechocystis ( German )

provided by wikipedia DE
 src=
Synechocystis aquatilis
 src=
Synechocystis aquatilis

Synechocystis ist eine Gattung einzelliger Süßwasser-Cyanobakterien aus der Familie der Merismopediaceae. Sie umfasst eine (unbenannte) Spezies, Synechocystis sp. PCC 6803,[2] die ein gut untersuchter Modellorganismus ist.

Evolution

Cyanobakterien sind photosynthetische Bakterien, die seit schätzungsweise 2,7 Milliarden Jahren auf der Erde existieren. Die Fähigkeit der Cyanobakterien, Sauerstoff zu produzieren, leitete den Übergang von einem Planeten mit hohem Kohlendioxidgehalt und wenig Sauerstoff zu einer Phase, die als Große Sauerstoffkatastrophe (Great Oxygenation Event) bezeichnet wird, in der große Mengen an Sauerstoff produziert wurden.[3] Cyanobakterien haben eine große Vielfalt an Lebensräumen besiedelt, darunter Süß- und Salzwasser-Ökosysteme und die meisten terrestrischen Umgebungen.[4]

Phylogenetisch gesehen verzweigt sich Synechocystis später im evolutionären Stammbaum der Cyanobakterien, weit weg von der basalen Spezies Gloeobacter violaceus (ancestral root, „Urwurzel“).[5] Synechocystis ist nicht diazotroph (Stickstoff-fixierend), aber eng mit einem anderen Modellorganismus, Cyanothece ATCC 51442, verwandt, welches diazotroph ist.[6] Daher wird vermutet, dass Synechocystis ursprünglich die Fähigkeit besaß, Stickstoffgas zu fixieren, aber später die Gene verloren hat, die erforderlich sind für ein voll funktionsfähiges Gencluster zur Stickstofffixierung (nif, nitrogen fixation).[7]

Systematik

  • Spezies: Synechocystis aquatilis Sauvageau 1892
  • Spezies: „S. bourrellyiKomarek 1976[Anm. 1]
  • Spezies: „S. fuscopigmentosaKovacik 1988[Anm. 1]
  • Spezies: „S. limneticaPopovskaja 1968[Anm. 1]
  • Spezies: „S. minusculaWoronichin 1926[Anm. 1]
  • Spezies: „S. nigrescens[Anm. 1][Anm. 2]
  • Spezies: S. pevalekii Ercegovic 1925
  • Spezies: S. salina Wislouch 1924
  • Spezies: S. trididemni Lafargue & Duclaux 1979
  • Spezies: Synechocystis sp. PCC 6301[10]
  • Spezies: Synechocystis sp. PCC 6803[2]

Die Spezies Synechocystis didemni Lewin 1975 wird heute in die Gattung Prochloron (ex Lewin 1977) Florenzano et al. 1986[14][15] gestellt mit gültigem Namen Prochloron didemni (ex Lewin 1977) Florenzano et al. 1986.[8]

Neben dem Referenzstamm von Synechocystis sp. PCC 6803 wurden weitere Modifikationen dieses Elternstamms geschaffen, wie z. B. ein Unterstamm apcE-, dem das Photosystem I (PS1, auf dem apcE-Gen) fehlt.[16] Ein anderer weit verbreiteter Unterstamm von S. sp. PCC 6803 ist ein glukosetoleranter Stamm mit Bezeichnung ATCC 27184 – der Elternstamm PCC 6803 kann keine externe Glukose verwerten.[11]

Synechocystis sp. PCC 6803

 src=
Synechocystis sp. PCC 6803 im J-Phänom[Anm. 4]
 src=
Optischer Schnitt durch Zellen von Synechocystis sp. PCC 6803. Kantenlänge etwa 10 × 10 µm
 src=
Synechocystis sp. PCC 6803
 src=
Synechocystis sp. PCC 6803

Eine ganze Reihe von Cyanobakterien sind Modellmikroorganismen für die Untersuchung der Photosynthese, der Kohlenstoff- und Stickstoffassimilation, der Evolution von Plastiden (Chloroplasten etc.) und der Anpassungsfähigkeit an Umweltstress. Synechocystis sp. PCC 6803 ist eine Linie einzelliger Süßwasser-Cyanobakterien der Gattung Synechocystis und wird vom NCBI als Spezies gelistet.[2] S. sp. PCC 6803 ist eine der am besten untersuchten Arten von Cyanobakterien, denn diese Cyanobakterien sind sowohl zu autotrophem (phototrophem Wachstum durch Photosynthese während der Lichtperioden) als auch zu heterotrophem Wachstum durch Glykolyse und oxidative Phosphorylierung während der Dunkelperioden fähig (Mixotrophie).[17] Der Photosyntheseapparat selbst ist dem von Landpflanzen sehr ähnlich. Der Organismus zeigt auch eine phototaktische Bewegung. Die Genexpression wird durch eine zirkadiane Uhr (circadian clock) reguliert, und der Organismus kann sich Übergänge zwischen den Licht- und Dunkelphasen effektiv einstellen.[18] S. sp. PCC 6803 kann leicht exogene DNA aufnehmen, zusätzlich zur Aufnahme von DNA durch Elektroporation, Ultraschalltransformation und Konjugation.[19]

Fundort

Die Linie wurde 1968 aus einem Süßwassersee isoliert und wächst am besten zwischen 32 und 38 °C.[20]

Kultivierung

Synechocystis sp. PCC 6803 kann entweder auf Agarplatten oder in Flüssigkultur kultiviert werden. Das am weitesten verbreitete Kulturmedium ist eine BG-11-Salzlösung,[21] wie es auch für Synechococcus elongatus[22] und Gloeomargarita lithophora[23] Verwendung findet. Der ideale pH-Wert liegt zwischen 7 und 8,5; eine Lichtintensität von 50 μmol Photonen m−2 s−1 (pro Quadratmeter und Sekunde) führt zu bestem Wachstum. Das Sprudeln mit kohlendioxidangereicherter Luft (1-2 % CO2) kann die Wachstumsrate erhöhen, erfordert aber möglicherweise zusätzliche Puffer zur Aufrechterhaltung des pH-Werts.[17]

Die Selektion erfolgt typischerweise über Antibiotikaresistenzgene. Heidorn et al. 2011 ermittelten in S. sp. PCC 6803 experimentell die idealen Konzentrationen von Kanamycin, Spectinomycin, Streptomycin, Chloramphenicol, Erythromycin und Gentamicin.[17] Die Kulturen können für ca. 2 Wochen auf Agarplatten aufbewahrt und unbegrenzt nachgestreut werden.[21] Für die Langzeitlagerung sollten flüssige Zellkulturen in einer 15%igen Glycerinlösung bei −80 °C gelagert werden.[21]

Synthetische Biology und Gentechnik

Synechocystis sp. PCC 6803 ist ein Modellorganismus, dennoch gibt es nur wenige synthetische Teile, die für die Gentechnik verwendet werden können. Da Cyanobakterien im Allgemeinen im Vergleich zu vielen pathogenen Bakterien langsame Verdopplungszeiten haben (4,5 bis 5 h bei S. sp. PCC 6301[10]), ist es effizienter, stattdessen möglichst viel DNA-Klonierung in einem schnell wachsenden Wirt wie Escherichia coli durchzuführen. Um Plasmide (stabile, sich replizierende zirkuläre DNA-Fragmente) – zu erzeugen, die erfolgreich in mehreren Spezies funktionieren, wird ein Shuttle-Plasmid (shuttle vector) mit einem breiten Wirtsspektrum benötigt.[17][24][25][26][27]

Produktion von Biotreibstoff

Cyanobakterien wurden auf verschiedene Weise zur Herstellung von erneuerbarem Biokraftstoff verwendet. Die ursprüngliche Methode bestand darin, Cyanobakterien für die Biomasse zu züchten um diese durch Verflüssigung in Flüssigkraftstoff umzuwandeln. Schätzungen legen nahe, dass die Biokraftstoffproduktion aus (unveränderten) Cyanobakterien nicht realisierbar ist, da der Erntefaktor EROEI (Energy Return on Energy Invested) ungünstig ist. Dies liegt daran, dass zahlreiche große, in sich geschlossene Bioreaktoren mit idealen Wachstumsbedingungen (Sonnenlicht, Düngemittel, konzentriertes Kohlendioxid, Sauerstoff) gebaut und betrieben werden müssen, was fossile Brennstoffe verbraucht. Außerdem ist eine weitere Nachbearbeitung der Cyanobakterienprodukte notwendig, was zusätzliche fossile Brennstoffe erfordert.[28]

Synechocystis sp. PCC 6803 wurde aber als Modell verwendet, um die Energieausbeute von Cyanobakterien durch gentechnische Eingriffe zu erhöhen:

Es ist allerdings noch nicht klar, ob cyanobakterielle Biokraftstoffe in Zukunft eine brauchbare Alternative zu nicht-erneuerbaren fossilen Kraftstoffen sein werden.

Genom

Das Genom von Synechocystis sp. PCC 6803 befindet sich in etwa 12 Kopien eines einzelnen DNA-Moleküls (Chromosoms) mit 3,57 Mbp (Megabasenpaare) Länge; drei kleinen Plasmiden: pCC5.2 mit 5,2 kbp (Kilobasenpaare), pCA2.4 mit 2,4 kbp und pCB2.4 mit 2,4 kbp; und vier großen Plasmiden: pSYSM mit 120 kbp, pSYSX mit 106 kbp, pSYSA mit 103 kbp und pSYSG mit 44 kbp.[34][35]

Licht-induzierte Heterotrophie

 src=
Schematische Darstellung von Synechocystis, die die Organisation der photosynthetischen Thylakoid- und äußeren Membranen zeigt

Der Glukose-tolerante Unterstamm ATCC 27184 von S. sp. PCC 6803 kann heterotroph im Dunkeln auf der Kohlenstoffquelle Glukose leben, benötigt aber aus noch unbekannten Gründen ein Minimum von 5 bis 15 Minuten (blaues) Licht pro Tag. Diese regulatorische Rolle des Lichts ist sowohl bei PS1- als auch bei PS2-defizienten Stämmen intakt.[36]

Einige glykolytische Gene werden durch das Gen sll1330 unter Licht- und Glukose-supplementierten Bedingungen reguliert. Eines der wichtigsten glykolytischen Gene ist das für Fructose-1,6-Bisphosphat-Aldolase (fbaA). Der mRNA-Spiegel von fbaA ist unter Licht- und Glukose-supplementierten Bedingungen erhöht.[37]

Natives CRISPR-Cas-System

Das CRISPR-Cas-System (Clustered Regularly Interspaced Short Palindrome Repeats / CRISPR-associated proteins) sorgt für adaptive Immunität in Archaeen und Bakterien. Synechocystis sp. PCC 6803 enthält drei verschiedene CRISPR-Cas-Systeme: Typ I-D und zwei Versionen von Typ III. Alle drei CRISPR-Cas-Systeme sind auf dem pSYSA-Plasmid lokalisiert. Das Typ-II-System, das bei vielen Spezies für gentechnische Zwecke adaptiert wurde, fehlt generell bei Cyanobakterien.[38]

Natürliche Genetische Transformation

Synechocystis sp. PCC 6803 ist zu einer natürlichen Genetischen Transformation fähig.[39] Damit eine Transformation stattfinden kann, müssen sich die Empfängerbakterien in einem kompetenten Zustand befinden. Es konnte gezeigt werden, dass das Gen comF an der Kompetenzentwicklung in S. sp. PCC 6803 beteiligt ist.[40]

Siehe auch

Anmerkungen

  1. a b c d e nur bei NCBI, nicht in der LPSN
  2. 'Nom. inval.' (= nomen invalidum, = invalid name)
  3. a b GT: Glucose-tolerant
  4. Ein Phänom ist die Gesamtheit aller Phänotypen, die von einer Zelle, einem Gewebe, einem Organ, einem Organismus oder einer Spezies ausgedrückt werden. Analoge Bildung zu Genom, Proteom, Mitogenom/Chondriom, Plastom etc. Siehe Phänom, auf: spektrum.de, Lexikon der Biologie.

Einzelnachweise

  1. a b J. Komárek, J. Kaštovský, J. Mareš, J. R. Johansen: Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. In: Preslia. 86, 2014, S. 295–335.
  2. a b c NCBI: Synechocystis sp. PCC 6803 – tree und Synechocystis sp. PCC 6803 – detail (species)
  3. Wang M, Jiang YY, Kim KM, Qu G, Ji HF, Mittenthal JE, Zhang HY, Caetano-Anollés G: A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. In: Molecular Biology and Evolution. 28, Nr. 1, Januar 2011, S. 567–582. doi:10.1093/molbev/msq232. PMID 20805191.
  4. B. A. Whitton, M. Potts: Introduction to the Cyanobacteria. In: Ecology of Cyanobacteria II 2012, ISBN 978-94-007-3854-6, S. 1–13, doi:10.1007/978-94-007-3855-3_1.
  5. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA: Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. In: Proceedings of the National Academy of Sciences of the United States of America. 110, Nr. 3, Januar 2013, S. 1053–1058. bibcode:2013PNAS..110.1053S. doi:10.1073/pnas.1217107110. PMID 23277585. PMC 3549136 (freier Volltext).
  6. Bandyopadhyay A, Elvitigala T, Welsh E, Stöckel J, Liberton M, Min H, Sherman LA, Pakrasi HB: Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece. In: mBio. 2, Nr. 5, 4. Oktober 2011, S. e00214–11–e00214–11. doi:10.1128/mBio.00214-11. PMID 21972240. PMC 3187577 (freier Volltext).
  7. S. Turner, T. C. Huang, S. M. Chaw: Molecular phylogeny of nitrogen-fixing unicellular cyanobacteria. In: Botanical Bulletin of Academia Sinica. 42, 2001, S. 181–186.
  8. a b LPSN: Genus Synechocystis
  9. NCBI: Synechocystis Sauvageau 1892 (genus); graphisch: Synechocystis, auf: Lifemap, NCBI Version.
  10. a b Toshio Sakamoto, Donald A. Bryant: Nitrate transport and not photoinhibition limits growth of the freshwater Cyanobacterium synechococcus species PCC 6301 at low temperature. In: Plant Physiology. 119, Nr. 2, Februar 1999, S. 785–794. doi:10.1104/pp.119.2.785. PMID 9952475. PMC 32156 (freier Volltext).
  11. a b Hsin-Ho Huang, Peter Lindblad: Wide-dynamic-range promoters engineered for cyanobacteria. In: Journal of Biological Engineering. 7, Nr. 1, 22. April 2013, S. 10. doi:10.1186/1754-1611-7-10. PMID 23607865. PMC 3724501 (freier Volltext).
  12. Y. Kanesaki,, Y. Shiwa, N. Tajima, M. Suzuki, S. Watanabe, N. Sato, M. Ikeuchi, H. Yoshikawa: Identification of substrain-specific mutations by massively parallel whole-genome resequencing of Synechocystis sp. PCC 6803, in: DNA Res Band 19, Nr. 1, S. 67-79, 2012, PMID 22193367
  13. Naoyuki Tajima, Shusei Sato, Fumito Maruyama, Takakazu Kaneko, Naobumi V. Sasaki, Ken Kurokawa, Hiroyuki Ohta, Yu Kanesaki, Hirofumi Yoshikawa, Satoshi Tabata, Masahiko Ikeuchi, Naoki Sato: Genomic structure of the cyanobacterium Synechocystis sp. PCC 6803 strain GT-S, in: DNA Res Band 18, Nr. 5, S. 393-399, Oktober 2011, doi:10.1093/dnares/dsr026, Epub 29. Juli 2011
  14. LPSN: Genus Prochloron (ex Lewin 1977) Florenzano et al. 1986, Genus Prochloron Lewin 1977
  15. NCBI: Prochloron (ex Lewin 1977) Florenzano et al. 1986 (genus); graphisch: Prochloron, auf: Lifemap, NCBI Version.
  16. Gaozhong Shen, Sammy Boussib, Wim F. J. Vermaas: Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function. In: The Plant Cell. 5, Nr. 12, Dezember 1993, S. 1853–1863. doi:10.1105/tpc.5.12.1853. PMID 8305875. PMC 160410 (freier Volltext). PDF
  17. a b c d T. Heidorn, D. Camsund, H. H. Huang, P. Lindberg, P. Oliveira, K. Stensjö, P. Lindblad: Synthetic biology in cyanobacteria engineering and analyzing novel functions. In: Methods in Enzymology. 497, 2011, S. 539–579. doi:10.1016/B978-0-12-385075-1.00024-X. PMID 21601103.
  18. G. Dong G, S. S. Golden: How a cyanobacterium tells time. In: Current Opinion in Microbiology. 11, Nr. 6, Dezember 2008, S. 541–546. doi:10.1016/j.mib.2008.10.003. PMID 18983934. PMC 2692899 (freier Volltext).
  19. P. Marraccini, S. Bulteau, C. Cassier-Chauvat, P. Mermet-Bouvier, F. Chauvat: A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis. In: Plant Molecular Biology. 23, Nr. 4, November 1993, S. 905–909. doi:10.1007/BF00021546. PMID 8251644.
  20. J. Červený, M. A. Sinetova, T. Zavřel, D. A. Los: Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34. In: Life. 5, Nr. 1, März 2015, S. 676–699. doi:10.3390/life5010676. PMID 25738257. PMC 4390874 (freier Volltext).
  21. a b c V. G. Williams: Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. In: Methods in Enzymology. 167, 1988, S. 766–778. doi:10.1016/0076-6879(88)67088-1.
  22. Justin Ungerer, Po-Cheng Lin, Hui-Yuan Chen, Himadri B. Pakrasi: Adjustments to Photosystem Stoichiometry and Electron Transfer Proteins Are Key to the Remarkably Fast Growth of the Cyanobacterium Synechococcus elongatus UTEX 2973. In: mBio. 9, Nr. 1, 7. März 2018, . doi:10.1128/mBio.02327-17. PMID 29437923.
  23. David Moreira, Rosaluz Tavera, Karim Benzerara, Fériel Skouri-Panet, Estelle Couradeau, Emmanuelle Gérard, Céline Loussert Fonta, Eberto Novela, Yvan Zivanovic, Purificación López-García: Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov.. In: International Journal of Systematic and Evolutionary Microbiology. 67, Nr. 3, 1. April 2017, S. 653–658. doi:10.1099/ijsem.0.001679. PMID 27902306. PMC 5669459 (freier Volltext).
  24. Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E: Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. In: Gene. 75, Nr. 2, Februar 1989, S. 271–288. doi:10.1016/0378-1119(89)90273-4. PMID 2653965.
  25. Promoters/Catalog/Anderson. In: Registry of Standard Biological Parts.
  26. D. Camsund, P. Lindblad: Engineered transcriptional systems for cyanobacterial biotechnology. In: Frontiers in Bioengineering and Biotechnology. 2, 1. Oktober 2014, S. 40. doi:10.3389/fbioe.2014.00040. PMID 25325057. PMC 4181335 (freier Volltext).
  27. L. Peca: Characterization of the activity of heavy metal-responsive promoters in the cyanobacterium Synechocystis PCC 6803. In: Acta Biologica Hungarica. 58, 2007, S. 11–22. doi:10.1556/ABiol.58.2007.Suppl.2. PMID 18297791.
  28. a b Cotton CA, Douglass JS, De Causmaecker S, Brinkert K, Cardona T, Fantuzzi A, Rutherford AW, Murray JW: Photosynthetic constraints on fuel from microbes. In: Frontiers in Bioengineering and Biotechnology. 3, 18. März 2015, S. 36. doi:10.3389/fbioe.2015.00036. PMID 25853129. PMC 4364286 (freier Volltext).
  29. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. In: Science. 332, Nr. 6031, Mai 2011, S. 805–809. bibcode:2011Sci...332..805B. doi:10.1126/science.1200165. PMID 21566184.
  30. Y. Nakajima, R. Ueda: Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. In: Hydrobiologia. 9, Nr. 6, 1997, S. 503–510. doi:10.1023/A:1007920025419.
  31. Kamennaya NA, Ahn S, Park H, Bartal R, Sasaki KA, Holman HY, Jansson C: Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC 6803 enhances biomass production. In: Metabolic Engineering. 29, Mai 2015, S. 76–85. doi:10.1016/j.ymben.2015.03.002. PMID 25769289.
  32. Durão P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M: Opposing effects of folding and assembly chaperones on evolvability of Rubisco. In: Nature Chemical Biology. 11, Nr. 2, Februar 2015, S. 148–155. doi:10.1038/nchembio.1715. PMID 25558973.
  33. J. W. Oliver, I. M. Machado, H. Yoneda, S. Atsumi: Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. In: Proceedings of the National Academy of Sciences of the United States of America. 110, Nr. 4, Januar 2013, S. 1249–54. bibcode:2013PNAS..110.1249O. doi:10.1073/pnas.1213024110. PMID 23297225. PMC 3557092 (freier Volltext).
  34. J. Labarre, F. Chauvat, P. Thuriaux: Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. In: Journal of Bacteriology. 171, Nr. 6, Juni 1989, S. 3449–3457. doi:10.1128/jb.171.6.3449-3457.1989. PMID 2498291. PMC 210070 (freier Volltext).
  35. T. Kaneko, Y. Nakamura, S. Sasamoto, A. Watanabe, M. Kohara, M. Matsumoto, S. Shimpo, M. Yamada, S. Tabata: Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. In: DNA Research. 10, Nr. 5, Oktober 2003, S. 221–228. doi:10.1093/dnares/10.5.221. PMID 14686584.
  36. S. L. Anderson, L. McIntosh: Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. In: Journal of Bacteriology. 173, Nr. 9, Mai 1991, S. 2761–2767. doi:10.1128/jb.173.9.2761-2767.1991. PMID 1902208. PMC 207855 (freier Volltext).
  37. Y. Tabei, K. Okada, M. Tsuzuki: Sll1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803. In: Biochemical and Biophysical Research Communications. 355, Nr. 4, April 2007, S. 1045–1050. doi:10.1016/j.bbrc.2007.02.065. PMID 17331473.
  38. Scholz I, Lange SJ, Hein S, Hess WR, Backofen R: CRISPR-Cas systems in the cyanobacterium Synechocystis sp. PCC 6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein. In: PLOS ONE. 8, Nr. 2, 18. Februar 2013, S. e56470. bibcode:2013PLoSO...856470S. doi:10.1371/journal.pone.0056470. PMID 23441196. PMC 3575380 (freier Volltext).
  39. Grigorieva G, Shestakov S. Transformation in the cyanobacterium Synechocystis sp. 6803 FEMS Microbiology Letters 13 (1982) 367-370 Published by Elsevier Biomedical Press doi:10.1111/j.1574-6968.1982.tb08289.x
  40. K. Nakasugi, C. J. Svenson, B. A. Neilan: The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. In: Microbiology. 152, Nr. Pt 12, Dezember 2006, S. 3623–3631. doi:10.1099/mic.0.29189-0. PMID 17159215.
 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Synechocystis: Brief Summary ( German )

provided by wikipedia DE
 src= Synechocystis aquatilis  src= Synechocystis aquatilis

Synechocystis ist eine Gattung einzelliger Süßwasser-Cyanobakterien aus der Familie der Merismopediaceae. Sie umfasst eine (unbenannte) Spezies, Synechocystis sp. PCC 6803, die ein gut untersuchter Modellorganismus ist.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Synechocystis

provided by wikipedia EN

Synechocystis is a genus of unicellular, freshwater cyanobacteria in the family Merismopediaceae. It includes a strain, Synechocystis sp. PCC 6803, which is a well studied model organism.

Synechocystis

Like all cyanobacteria, Synechocystis branches on the evolutionary tree from its ancestral root, Gloeobacter violaceus.[2] Synechocystis is not diazotrophic, and is closely related to another model organism, Cyanothece ATCC 51442.[3] It has been suggested that originally Synechocystis possessed the ability to fix atmospheric nitrogen, but lost the genes required for the process.[4]

See also

References

  1. ^ Komárek J, Kaštovský J, Mareš J, Johansen JR (2014). "Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach" (PDF). Preslia. 86: 295–335.
  2. ^ Shih, P. M.; Wu, D.; Latifi, A.; Axen, S. D.; Fewer, D. P.; Talla, E.; Calteau, A.; Cai, F.; Tandeau De Marsac, N.; Rippka, R.; Herdman, M.; Sivonen, K.; Coursin, T.; Laurent, T.; Goodwin, L.; Nolan, M.; Davenport, K. W.; Han, C. S.; Rubin, E. M.; Eisen, J. A.; Woyke, T.; Gugger, M.; Kerfeld, C. A. (2013). "Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing". Proceedings of the National Academy of Sciences. 110 (3): 1053–1058. Bibcode:2013PNAS..110.1053S. doi:10.1073/pnas.1217107110. PMC 3549136. PMID 23277585.
  3. ^ Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B. (2011). "Novel Metabolic Attributes of the Genus Cyanothece , Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria". mBio. 2 (5). doi:10.1128/mBio.00214-11. PMC 3187577. PMID 21972240.
  4. ^ Whitton, Brian A.; Potts, Malcolm (2012). "Introduction to the Cyanobacteria". Ecology of Cyanobacteria II. pp. 1–13. doi:10.1007/978-94-007-3855-3_1. ISBN 978-94-007-3854-6.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Synechocystis: Brief Summary

provided by wikipedia EN

Synechocystis is a genus of unicellular, freshwater cyanobacteria in the family Merismopediaceae. It includes a strain, Synechocystis sp. PCC 6803, which is a well studied model organism.

Synechocystis

Like all cyanobacteria, Synechocystis branches on the evolutionary tree from its ancestral root, Gloeobacter violaceus. Synechocystis is not diazotrophic, and is closely related to another model organism, Cyanothece ATCC 51442. It has been suggested that originally Synechocystis possessed the ability to fix atmospheric nitrogen, but lost the genes required for the process.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Synechocystis ( Spanish; Castilian )

provided by wikipedia ES

Synechocystis es un género de cianobacterias de agua dulce, representado principalmente por la cepa Synechocystis sp. PCC6803. Synechocystis sp. PCC6803 es capaz de crecer tanto en condiciones de luminosidad, realizando la fotosíntesis oxigénica (fototrofia), como en oscuridad, mediante glucólisis y fosforilación oxidativa (heterotrofia).[1]​ La expresión genética está regulada por un reloj circadiano, por lo que el organismo puede anticipar eficazmente las transiciones entre las fases de luz y oscuridad.[2]

Historia evolutiva

Las cianobacterias son unos procariontes fotosintéticos que han existido en la tierra desde hace 2700 millones de años aproximadamente. La capacidad de las cianobacterias para producir oxígeno fue la causa de la Gran Oxidación.[3]​ Las cianobacterias han colonizado una amplia diversidad de hábitats, incluyendo ecosistemas de agua dulce y salada, y la mayoría de los ambientes terrestres.[4]Filogenéticamente, Synechocystis se ramifica del árbol evolutivo de las cianobacterias a partir de la raíz ancestral (Gloeobacter violaceus).[5]Synechocystis, que no es diazótrofo, está íntimamente relacionado con otro organismo modelo, Cyanothece ATCC 51442, que sí lo es.[6]​ Por tanto, se ha propuesto que originalmente Synechocystis poseía la habilidad de fijar nitrógeno atmosférico, pero perdió los genes requeridos para el proceso.[7]

Crecimiento y uso como organismo modelo

Las cianobacterias son organismos modelo utilizados en el estudio de la fotosíntesis, de la asimilación de carbono y nitrógeno, de la evolución de los plastos vegetales y de la adaptabilidad al estrés del entorno. Synechocystis sp. PCC6803 es uno de los tipos de cianobacterias más estudiados pues puede crecer tanto autotrófica como heterotróficamente, si no se dan condiciones de luminosidad. Fue aislada del agua dulce de un lago en 1968 y su temperatura óptima de crecimiento se sitúa entre los 32 y los 38 °C.[8]

Synechocystis sp. PCC6803 puede tomar fácilmente ADN exógeno, via electroporación, transformación ultrasónica y conjugación.[9]​ El sistema fotosintético es muy similar al encontrado en las plantas terrestres. Los organismos de este género, además, exhiben movimiento fototáctico.

Synechocystis sp. PCC6803 puede crecer tanto en placas de agar como en cultivo líquido. El medio de cultivo más ampliamente utilizado es una solución salina BG-11.[10]​ ElpH ideal se sitúa entre 7 y 8.5.[1]​ Una intensidad luminosa de 50 μmol photons m−2 s−1 resulta en un mejor crecimiento.[1]​ El burbujeo del medio con aire enriquecido con dióxido de carbono (1–2% CO2) puede aumentar la tasa de crecimiento, pero requiere tamponamiento adicional a fin de mantener el pH.[1]

Normalmente la selección de las especies de Synechocystis se efectúa empleando la resistencia a antibióticos como factor diferencial. Heidorn et al. determinaron experimentalmente en 2011 las concentraciones ideales de kanamicina, espectinomicina, estreptomicina, cloranfenicol, eritromicina, ygentamicina para la cepaSynechocystis sp. PCC6803.[1]​ Los cultivos pueden ser mantenidos en placas de agar durante dos semanas aproximadamente, y siendo resembrados, ser mantenidos indefinidamente.[10]​ Para el almacenaje a largo plazo, el cultivo líquido de células debe mantenerse en una solución de glicerol al 15% a -80 °C.[10]

Genoma

El genoma de Synechocystis sp. PCC6803 está contenido en 12 copias de un solo cromosoma (3.57 megabases); tres plásmidos pequeños: pCC5.2 (5.2 kb) pCA2.4 (2.4 kb), y pCB2.4 (2.4 kb); y cuatro plásmidos grandes: pSYSM (120 kb), pSYSX (106 kb), pSYSA (103kb), y pSYSG (44 kb).[11][12]

Cepas adicionales

La cepa principal de Synechocystis sp. es PCC6803. Se han creado modificaciones de la cepa PCC6803 original, como una subcepa carente del fotosistema 1 (PSI).[13]​ Otra sub-cepa ampliamente utilizada de Synechocystis sp. es ATCC 27184, tolerante a la glucosa, puesto que PCC6803 no puede utilizar la glucosa del medio.[14]

Heterotrofía dependiente de luz

La subcepa ATCC 27184 de Synechocystis sp. PCC6803, puede vivir heterotróficamente en condiciones de oscuridad utilizando la glucosa como fuente de carbono, pero por razones aún desconocidas requiere un mínimo de 5-15 minutos de luz azul al día. Este mecanismo regulador de la luz se mantiene inalterado en los mutantes sin PSI y PSII.[15]

Algunos genes glucolíticos están regulados por el gen sll1330 en medios luminosos y con glucosa. Uno de los genes más importantes de la glucólisis es el de la fructosa-1,6-bifosfato aldolasa (fbaA). Los niveles de ARNm de fbaA se incrementan en condiciones de luminosidad y suplementación de glucosa.[16]

Sistema CRISPR-Cas nativo

El sistema CRISPR-Cas provee de inmunidad adaptativa a bacterias y arqueas. Synechocystis sp. PCC6803 contiene tres sistemas CRISPR-Cas diferentes: el tipo I-D, y dos versiones del tipo III. Todos estos sistemas se encuentran en el plásmido pSYSA. Las cianobacterias en su totalidad, carecen del sistema de tipo II (el cual ha sido recientemente adaptado como herramienta de ingeniería genética.[17]

Referencias

  1. a b c d e Heidorn, T.; Camsund, D.; Huang, H.; Lindberg, P.; Oliveria, P.; Stensjo, K.; Lindblad, P. (2011). «Chapter Twenty-Four - Synthetic Biology in Cyanobacteria: Engineering and Analyzing Novel Functions». Methods in Enzymology (Academic Press) 497: 539-579. doi:10.1016/B978-0-12-385075-1.00024-X.
  2. Dong, Guogang; Golden, Susan S (diciembre de 2008). «How a cyanobacterium tells time». Current Opinion in Microbiology 11 (6): 541-546. PMC 2692899. PMID 18983934. doi:10.1016/j.mib.2008.10.003.
  3. Wang, M.; Jiang, Y.-Y.; Kim, K. M.; Qu, G.; Ji, H.-F.; Mittenthal, J. E.; Zhang, H.-Y.; Caetano-Anolles, G. (30 de agosto de 2010). «A Universal Molecular Clock of Protein Folds and Its Power in Tracing the Early History of Aerobic Metabolism and Planet Oxygenation». Molecular Biology and Evolution 28 (1): 567-582. doi:10.1093/molbev/msq232.
  4. Whitton, B.A.; Potts, M. (2012). Ecology of Cyanobacteria II. pp. 1-13.
  5. Shih, P. M.; Wu, D.; Latifi, A.; Axen, S. D.; Fewer, D. P.; Talla, E.; Calteau, A.; Cai, F.; Tandeau de Marsac, N.; Rippka, R.; Herdman, M.; Sivonen, K.; Coursin, T.; Laurent, T.; Goodwin, L.; Nolan, M.; Davenport, K. W.; Han, C. S.; Rubin, E. M.; Eisen, J. A.; Woyke, T.; Gugger, M.; Kerfeld, C. A. (2012). «Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing». Proceedings of the National Academy of Sciences 110 (3): 1053-1058. ISSN 0027-8424. doi:10.1073/pnas.1217107110.
  6. Bandyopadhyay, A.; Elvitigala, T.; Welsh, E.; Stockel, J.; Liberton, M.; Min, H.; Sherman, L. A.; Pakrasi, H. B. (4 de octubre de 2011). «Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria». mBio 2 (5): e00214-11-e00214-11. doi:10.1128/mBio.00214-11.
  7. Turner, S.; Huang, T-C.; Chaw, S-M. (2001). «Molecular phylogeny of nitrogen-fixing unicellular cyanobacteria». Botanical Bulletin of Academia Sinica 42: 181-186.
  8. Červený, Jan; Sinetova, Maria; Zavřel, Tomáš; Los, Dmitry (2 de marzo de 2015). «Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34». Life 5 (1): 676-699. doi:10.3390/life5010676.
  9. Marraccini, Pierre; Bulteau, St�phane; Cassier-Chauvat, Corinne; Mermet-Bouvier, Pierre; Chauvat, Franck (noviembre de 1993). «A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis». Plant Molecular Biology 23 (4): 905-909. doi:10.1007/BF00021546.
  10. a b c Williams, J.G.K. (1988). «Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803». Methods in Enzymology (Academic Press) 167: 766-778. doi:10.1016/0076-6879(88)67088-1.
  11. Labarre, J.; Chauvat, F.; Thuriaux, P. (1989). «Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803». Journal of Bacteriology 171: 3449-3457.
  12. Kaneko, T. (1 de enero de 2003). «Structural Analysis of Four Large Plasmids Harboring in a Unicellular Cyanobacterium, Synechocystis sp. PCC 6803». DNA Research 10 (5): 221-228. doi:10.1093/dnares/10.5.221.
  13. Shen, G.; Boussiba, S.; Vermaas, W.F. (1993). «Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function». The Plant Cell 5 (12): 1853-1863. doi:10.1105/tpc.5.12.1853.
  14. Huang, Hsin-Ho; Lindblad, Peter (2013). «Wide-dynamic-range promoters engineered for cyanobacteria». Journal of Biological Engineering 7 (1): 10. doi:10.1186/1754-1611-7-10.
  15. Anderson SL and McIntosh L (mayo de 1991). «Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process». J Bacteriol 173 (9): 2761-2767. PMC 207855. PMID 1902208.
  16. Yusuke Tabei, Katsuhiko Okada and Mikio Tsuzuki (abril de 2007). «Sll1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803». Biochem. Biophys. Res. Commun. 355 (4): 1045-1050. PMID 17331473. doi:10.1016/j.bbrc.2007.02.065.
  17. Scholz, Ingeborg; Lange, Sita J.; Hein, Stephanie; Hess, Wolfgang R.; Backofen, Rolf; de Crécy-Lagard, Valerie (18 de febrero de 2013). «CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein». PLoS ONE 8 (2): e56470. doi:10.1371/journal.pone.0056470.
 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Synechocystis: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Synechocystis es un género de cianobacterias de agua dulce, representado principalmente por la cepa Synechocystis sp. PCC6803. Synechocystis sp. PCC6803 es capaz de crecer tanto en condiciones de luminosidad, realizando la fotosíntesis oxigénica (fototrofia), como en oscuridad, mediante glucólisis y fosforilación oxidativa (heterotrofia).​ La expresión genética está regulada por un reloj circadiano, por lo que el organismo puede anticipar eficazmente las transiciones entre las fases de luz y oscuridad.​

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Synechocystis ( French )

provided by wikipedia FR

Synechocystis est un genre de cyanobactéries (autrefois appelées algues bleues) représentées en premier lieu par la souche Synechocystis sp. PCC6803. Cette dernière vit dans l'eau douce et est capable de se développer à la fois de façon phototrophe par photosynthèse oxygénique et de façon hétérotrophe par glycolyse et phosphorylation oxydative. Elle est capable d'anticiper les transitions jour-nuit à l'aide d'une horloge circadienne.

Les cyanobactéries sont des microorganismes très étudiés du point de vue de la photosynthèse, de la fixation du carbone, de la fixation de l'azote, de l'évolution des plastes des plantes et de l'adaptation au stress environnemental. Synechocystis sp. PCC6803 est l'une des espèces de cyanobactéries les plus étudiées, car elle peut pousser à la fois de façon autotrophe et hétérotrophe en l'absence de lumière. Elle a été isolée d'un lac d'eau douce en 1968 et est aisément modifiable par l'ADN exogène. Son génome est réparti sur un chromosome de 3,57 Mb, quatre grands plasmides de 120 106 103 et 44 kbp et trois petits plasmides de 5.2.2.4 et 2,3 kbp[3].

L'appareil photosynthétique de Synechocystis sp. PCC6803 est très semblable à celui des plantes. Cet organisme est également capable de mouvements phototactiques. Il peut vivre dans l'obscurité de façon entièrement hétérotrophe mais, pour une raison encore inconnue, il nécessite d'être exposé à un minimum de 5 à 15 minutes de lumière bleue par jour. Ce rôle régulateur de la lumière demeure inchangé chez les souches dépourvues de photosystème I et de photosystème II[4].

Liste d'espèces

Selon ITIS (29 mars 2018)[1] :

Selon NCBI (29 mars 2018)[2] :

Selon World Register of Marine Species (29 mars 2018)[5] :

Notes et références

  1. a et b Integrated Taxonomic Information System (ITIS), www.itis.gov, CC0 https://doi.org/10.5066/F7KH0KBK, consulté le 29 mars 2018
  2. a et b NCBI, consulté le 29 mars 2018
  3. (en) Takakazu Kaneko, Yasukazu Nakamura, Shigemi Sasamoto, Akiko Watanabe, Mitsuyo Kohara, Midori Matsumoto, Sayaka Shimpo, Manabu Yamada et Satoshi Tabata, « Structural Analysis of Four Large Plasmids Harboring in a Unicellular Cyanobacterium, Synechocystis sp. PCC 6803 », DNA Research, vol. 10, no 5,‎ 2003, p. 221-228 (lire en ligne) ; PMID 14686584
  4. (en) S. L. Anderson et L. McIntosh, « Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process », Journal of Bacteriology, vol. 173, no 9,‎ mai 1991, p. 2761-2767 (PMCID , lire en ligne) PMID 1902208
  5. World Register of Marine Species, consulté le 29 mars 2018

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Synechocystis: Brief Summary ( French )

provided by wikipedia FR

Synechocystis est un genre de cyanobactéries (autrefois appelées algues bleues) représentées en premier lieu par la souche Synechocystis sp. PCC6803. Cette dernière vit dans l'eau douce et est capable de se développer à la fois de façon phototrophe par photosynthèse oxygénique et de façon hétérotrophe par glycolyse et phosphorylation oxydative. Elle est capable d'anticiper les transitions jour-nuit à l'aide d'une horloge circadienne.

Les cyanobactéries sont des microorganismes très étudiés du point de vue de la photosynthèse, de la fixation du carbone, de la fixation de l'azote, de l'évolution des plastes des plantes et de l'adaptation au stress environnemental. Synechocystis sp. PCC6803 est l'une des espèces de cyanobactéries les plus étudiées, car elle peut pousser à la fois de façon autotrophe et hétérotrophe en l'absence de lumière. Elle a été isolée d'un lac d'eau douce en 1968 et est aisément modifiable par l'ADN exogène. Son génome est réparti sur un chromosome de 3,57 Mb, quatre grands plasmides de 120 106 103 et 44 kbp et trois petits plasmides de 5.2.2.4 et 2,3 kbp.

L'appareil photosynthétique de Synechocystis sp. PCC6803 est très semblable à celui des plantes. Cet organisme est également capable de mouvements phototactiques. Il peut vivre dans l'obscurité de façon entièrement hétérotrophe mais, pour une raison encore inconnue, il nécessite d'être exposé à un minimum de 5 à 15 minutes de lumière bleue par jour. Ce rôle régulateur de la lumière demeure inchangé chez les souches dépourvues de photosystème I et de photosystème II.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Synechocystis ( Italian )

provided by wikipedia IT

Synechocystis è un genere di cianobatterio di acqua dolce, rappresentato principalmente dal ceppo "Synechocystis" sp. PCC6803, in grado di crescere sia in condizioni luminose, eseguendo la fotosintesi ossigenata (fototrofia), sia nell'oscurità, mediante glicolisi e fosforilazione ossidativa (eterotrofia).[1] L'espressione genetica è regolata da un orologio circadiano, quindi l'organismo può effettivamente anticipare le transizioni tra le fasi della luce e dell'oscurità.[2]

Storia evolutiva

I cianobatteri sono procarioti fotosintetici che esistono sulla terra da circa 2700 milioni di anni. La capacità dei cianobatteri di produrre ossigeno è stata la causa della Catastrofe dell'ossigeno.[3] I cianobatteri hanno colonizzato un'ampia varietà di habitat, compresi gli ecosistemi di acqua dolce e salata e la maggior parte degli ambienti terrestri.[4] Filogeneticamente, il Synechocystis si ramifica dall'albero evolutivo dei cianobatteri a partire dalla radice ancestrale (Gloeobacter violaceus).[5] Il Synechocystis, che non è un diazotrofo, è strettamente correlato a un altro organismo modello, il Cyanothece ATCC 51442, che invece lo è.[6] Pertanto, è stato proposto che il Synechocystis originariamente possedesse la capacità di fissare l'azoto atmosferico, ma abbia perso i geni necessari per il processo.[7]

Crescita e utilizzo come organismo modello

I cianobatteri sono degli organismi modello utilizzati nello studio della fotosintesi, dell'assimilazione di carbonio e azoto, dell'evoluzione dei plastidi vegetali e dell'adattabilità allo stress ambientale. Il Synechocystis sp. PCC6803 è uno dei tipi più studiati di cianobatteri perché può crescere sia autotroficamente che eterotroficamente, se non si verificano condizioni di luce. È stato isolato dall'acqua dolce di un lago nel 1968 e la sua temperatura di crescita ottimale è compresa tra 32 e 38 °C.[8]

Il Synechocystis sp. PCC6803 puoi facilmente assumere DNA esogeno, tramite elettroporazione, trasformazione ultrasonica e coniugazione.[9] Il sistema fotosintetico è molto simile a quello presente nelle piante terrestri. Organismi di questo genere esibiscono anche movimento fototattico.

Il Synechocystis sp. PCC6803 può crescere sia in piastre di agar che in coltura liquida. Il mezzo di coltura più utilizzato è una soluzione salina BG-11.[10] L'ideale pH è compreso tra 7 e 8,5.[1] Una intensità luminosa die 50 µmol fotoni m−2 s−1 risulta la migliore per la crescita.[1] Il gorgogliamento del mezzo con aria arricchita con anidride carbonica (1-2% di CO2) può aumentare il tasso di crescita, ma richiede un buffering aggiuntivo per mantenere il pH.[1]

Normalmente la selezione delle specie "Synechocystis" viene effettuata utilizzando la resistenza agli antibiotici come fattore differenziale. Heidorn et al. nel 2011 determinarono sperimentalmente le concentrazioni ideali di kanamicina, spectinomicina, streptomicina, cloramfenicolo, eritromicina e gentamicina per il ceppo Synechocystis sp. PCC6803.[1] Le colture possono essere mantenute su piastre di agar per circa due settimane e possono essere ridimensionate o mantenute a tempo indeterminato.[10] Per la conservazione a lungo termine, la coltura cellulare liquida deve essere mantenuta in una soluzione di glicerolo al 15% a -80 °C.[10]

Genoma

Il genoma del Synechocystis sp. PCC6803 è contenuto in 12 copie di un solo cromosoma (3.57 megabasi); tre plasmidi piccoli: pCC5.2 (5.2 kb) pCA2.4 (2.4 kb), y pCB2.4 (2.4 kb); e quattro plasmidi grandi: pSYSM (120 kb), pSYSX (106 kb), pSYSA (103kb), y pSYSG (44 kb).[11][12]

Ceppi addizionali

Il ceppo principale di "Synechocystis" sp. è PCC6803. Sono state create modifiche al ceppo PCC6803 originale, in quanto carente di un sub-ceppo fotosistema 1 (PSI).[13] Altro sub-ceppo ampiamente utilizzato del Synechocystis sp. è ATCC 27184, tollerante al glucosio, poiché il PCC6803 non può usare il glucosio.[14]

Eterotrofia dipendente dalla luce

Il sub-ceppo ATCC 27184 di "Synechocystis" sp. PCC6803, può vivere eterotroficamente in condizioni di oscurità utilizzando il glucosio come fonte di carbonio, ma per ragioni ancora sconosciute richiede un minimo di 5-15 minuti di luce blu al giorno. Questo meccanismo di regolazione della luce rimane invariato nei mutanti senza PSI e PSII.[15]

Alcuni geni glicolitici sono regolati dal gene sll1330 nei mezzi luminosi e con glucosio. Uno dei più importanti geni della glicolisi è quello del fruttosio-bifosfato aldolasi (fbaA). I livelli di MRNA di "fbaA" si incrementano in condizioni di luminosità e integrazione di glucosio.[16]

Sistema CRISPR-Cas nativo

Il sistema CRISPR-Cas fornisce immunità adattativa a batteri e archaea. Lo Synechocystis sp. PCC6803 contiene tre diversi sistemi CRISPR-Cas: tipo I-D e due versioni di tipo III. Tutti questi sistemi si trovano nel plasmide pSYSA. I cianobatteri nel loro insieme mancano del sistema di tipo II (che è stato recentemente adattato come strumento di ingegneria genetica.[17]

Note

  1. ^ a b c d e (EN) T. Heidorn, D. Camsund, H. Huang, P. Lindberg, P. Oliveria, K. Stensjo e P. Lindblad, Chapter Twenty-Four - Synthetic Biology in Cyanobacteria: Engineering and Analyzing Novel Functions, in Methods in Enzymology, vol. 497, Academic Press, 2011, p. 539–579, DOI:10.1016/B978-0-12-385075-1.00024-X.
  2. ^ (EN) Guogang Dong e Susan S Golden, How a cyanobacterium tells time, in Current Opinion in Microbiology, vol. 11, n. 6, dicembre 2008, p. 541–546, DOI:10.1016/j.mib.2008.10.003, PMC 2692899, PMID 18983934.
  3. ^ (EN) M. Wang, Y.-Y. Jiang, K. M. Kim, G. Qu, H.-F. Ji, J. E. Mittenthal, H.-Y. Zhang e G. Caetano-Anolles, A Universal Molecular Clock of Protein Folds and Its Power in Tracing the Early History of Aerobic Metabolism and Planet Oxygenation, in Molecular Biology and Evolution, vol. 28, n. 1, 30 agosto 2010, p. 567–582, DOI:10.1093/molbev/msq232.
  4. ^ (EN) B.A. Whitton e M. Potts, Ecology of Cyanobacteria II, 2012, p. 1–13.
  5. ^ (EN) P. M. Shih, D. Wu, A. Latifi, S. D. Axen, D. P. Fewer, E. Talla, A. Calteau, F. Cai, N. Tandeau de Marsac, R. Rippka, M. Herdman, K. Sivonen, T. Coursin, T. Laurent, L. Goodwin, M. Nolan, K. W. Davenport, C. S. Han, E. M. Rubin, J. A. Eisen, T. Woyke, M. Gugger e C. A. Kerfeld, Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing, in Proceedings of the National Academy of Sciences, vol. 110, n. 3, 2012, p. 1053–1058, DOI:10.1073/pnas.1217107110, ISSN 0027-8424.
  6. ^ (EN) A. Bandyopadhyay, T. Elvitigala, E. Welsh, J. Stockel, M. Liberton, H. Min, L. A. Sherman e H. B. Pakrasi, Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria, in mBio, vol. 2, n. 5, 4 ottobre 2011, p. e00214-11–e00214-11, DOI:10.1128/mBio.00214-11.
  7. ^ (EN) S. Turner, T-C. Huang e S-M. Chaw, Molecular phylogeny of nitrogen-fixing unicellular cyanobacteria, in Botanical Bulletin of Academia Sinica, vol. 42, 2001, p. 181–186.
  8. ^ (EN) Jan Červený, Maria Sinetova, Tomáš Zavřel e Dmitry Los, Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34, in Life, vol. 5, n. 1, 2 marzo 2015, p. 676–699, DOI:10.3390/life5010676.
  9. ^ (EN) Pierre Marraccini, Stephane Bulteau, Corinne Cassier-Chauvat, Pierre Mermet-Bouvier e Franck Chauvat, A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis, in Plant Molecular Biology, vol. 23, n. 4, novembre 1993, p. 905–909, DOI:10.1007/BF00021546.
  10. ^ a b c (EN) J.G.K. Williams, Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803, in Methods in Enzymology, vol. 167, Academic Press, 1988, p. 766–778, DOI:10.1016/0076-6879(88)67088-1.
  11. ^ (EN) J. Labarre, F. Chauvat e P. Thuriaux, Insertional mutagenesis by random cloning of antimicrobial resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803, in Journal of Bacteriology, vol. 171, 1989, p. 3449–3457.
  12. ^ (EN) T. Kaneko, Structural Analysis of Four Large Plasmids Harboring in a Unicellular Cyanobacterium, Synechocystis sp. PCC 6803, in DNA Research, vol. 10, n. 5, 1º gennaio 2003, p. 221–228, DOI:10.1093/dnares/10.5.221.
  13. ^ (EN) G. Shen, S. Boussiba e W.F. Vermaas, Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function, in The Plant Cell, vol. 5, n. 12, 1993, p. 1853–1863, DOI:10.1105/tpc.5.12.1853.
  14. ^ (EN) Hsin-Ho Huang e Peter Lindblad, Wide-dynamic-range promoters engineered for cyanobacteria, in Journal of Biological Engineering, vol. 7, n. 1, 2013, p. 10, DOI:10.1186/1754-1611-7-10.
  15. ^ (EN) Anderson SL and McIntosh L, Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process, in J Bacteriol, vol. 173, n. 9, maggioo de 1991, p. 2761–2767, PMC 207855, PMID 1902208.
  16. ^ (EN) Yusuke Tabei, Katsuhiko Okada e Mikio Tsuzuki, Sll1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803, in Biochem. Biophys. Res. Commun., vol. 355, n. 4, aprile 2007, p. 1045–1050, DOI:10.1016/j.bbrc.2007.02.065, PMID 17331473.
  17. ^ (EN) Ingeborg Scholz, Sita J. Lange, Stephanie Hein, Wolfgang R. Hess, Rolf Backofen e Valerie de Crécy-Lagard, CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein, in PLoS ONE, vol. 8, n. 2, 18 febbraio 2013, p. e56470, DOI:10.1371/journal.pone.0056470.
 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Synechocystis: Brief Summary ( Italian )

provided by wikipedia IT

Synechocystis è un genere di cianobatterio di acqua dolce, rappresentato principalmente dal ceppo "Synechocystis" sp. PCC6803, in grado di crescere sia in condizioni luminose, eseguendo la fotosintesi ossigenata (fototrofia), sia nell'oscurità, mediante glicolisi e fosforilazione ossidativa (eterotrofia). L'espressione genetica è regolata da un orologio circadiano, quindi l'organismo può effettivamente anticipare le transizioni tra le fasi della luce e dell'oscurità.

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT