Vitreoscilla is a genus of Gram-negative aerobic bacterium.[1] The bacterial haemoglobin (VHb) was first discovered from Vitreoscilla, and VHb is found to have a wide range of biological and biotechnological applications including promotion of cell growth, protein synthesis, metabolite productivity, respiration, cellular detoxification, fermentation, and biodegradation.[2]
The generic name is derived from the Latin adjective vitreus, which means clear or transparent; and the noun oscillum, meaning a swing. Thus Vitreoscilla is used to describe the bacterium as the transparent swing or oscillator, the way it exhibits locomotion.
There are three valid species under the genus, namely[3]
Members of Vitreoscilla are obligate aerobic bacteria, which are morphologically colourless filaments that contain cells with diameters of 1-3 μm and 1-12 μm long. Each filament may contain from 1 to 40 cells. Locomotion is by gliding, and no special locomotor organelles are present. The cell walls are composed of the amino acids alanine, glutamate, and diaminopimelic acid, with approximate molar ratios of 2:1:1.[4][5]
Vitreoscilla bacteria have a unique property in that they produces a type of haemoglobin, VHb. This molecule unlike classic haemoglobin is composed only of a single globin molecule.[6] VHb is known to have a wide variety of functions including improving cell growth, protein synthesis, enhanced metabolism, nitric oxide detoxification, increase respiration and production of ethanol.[2] Some of these properties have been exploited as potential benefits in biotechnology and industry.[7][8]
Vitreoscilla is a genus of Gram-negative aerobic bacterium. The bacterial haemoglobin (VHb) was first discovered from Vitreoscilla, and VHb is found to have a wide range of biological and biotechnological applications including promotion of cell growth, protein synthesis, metabolite productivity, respiration, cellular detoxification, fermentation, and biodegradation.