dcsimg

Associations ( anglais )

fourni par BioImages, the virtual fieldguide, UK
Animal / pathogen
Conidiobolus thromboides infects live adult of Aphidoidea

Animal / pathogen
Conidiobolus thromboides infects live adult of Diptera

Animal / pathogen
Conidiobolus thromboides infects live adult of Lepidoptera

In Great Britain and/or Ireland:
Animal / pathogen
Conidiobolus thromboides infects Insecta

licence
cc-by-nc-sa-3.0
droit d’auteur
BioImages
projet
BioImages

General Ecology ( anglais )

fourni par EOL authors

Conidiobolus thromboidesis an entomopathogenic (Figure 3) and saprophytic fungus (can live in dead organic matter). It is one of the four most common fungal pathogens found on soybeans aphids, Aphis glycines Matsumurain. In the United States this fungus causes natural epizootic (outbreak of the disease) among the aphid populations (Nielsen and Hajek 2005). Soybean aphids have spread throughout the USA and Canada and being a major pest makes their control by this fungus important (Ragsdale et al., 2007).

C. thromboides has been found in Europe, North America, Asia, Australia and North and South Africa in soil detritus and on dead aphids and other insects. This fungus is considered a major pathogen of sap sucking aphids in natural ecosystems and the only pathogen that can affect their populations (Barta et al., 2006).

http://www.google.com/imgres?imgurl=http://cricket.inhs.uiuc.edu/edwipweb/aphidfull.gif&imgrefurl=http://cricket.inhs.uiuc.edu/edwipweb/edwip_photos.htm&h=401&w=268&tbnid=P4Cjb3ZK8zkYnM:&docid=AiBuHXo67Gv7bM&ei=Jg8cVp7eB8Wre4mMqcAB&tbm=isch&ved=0CB0QMygAMABqFQoTCJ6JnrHavcgCFcXVHgodCUYKGA (Figure 3)

licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

Taxonomy ( anglais )

fourni par EOL authors

Conidiobolus thromboides Drechsler, (formerly Entomophthora virulenta) (Kirk, 2013) is an entomopathogenic fungus able to infect insect and this genus has 21 different species including some species able to cause infections in humans.

The species belongs to the order Entomophthorales within the new phylum Entomophthoromycota (previously classified in the phylum Zygomycota) (Humber, 2012).

Humber (1989) recognized in the phylum Entomophthoromycota (formerly Zygomycota) as divided into three classes, Basidiobolomycetes, Neozygitomycetes and Entomophthoromycetes. Conidiobolus belongs to Entomophthoromycetes class in the order Entomophthorales (Table 1)

Phylum: Entomophthoromycota Humber

Class: Entomophthoromycetes Humber

Order: Entomophthorales G. Winter

Family: AncylistaceaeJ. Schröt

Genus: Conidiobolus

Specie: thromboides

Table 1. Phylogenetically based classification of entomophthoroid fungi (Humber 2012)

licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

Evolution ( anglais )

fourni par EOL authors

James (2006) showed in a multi-gene phylogenetic study that Zygomycota was a non monophyletic group and later in 2013 Gryganskyi et al. demonstrated that the phylum Entomophthoromycota was an early diverging terrestrial fungi and constitutes a monophyletic branch (formerly in the Zygomycota phylum) been one of the largest groups (Figure 1).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734969/bin/per-30-94-g001.jpg(Figure 1)

The order Entomophthorales belongs to a unique non-aquatic fungal lineage, is a monophylogenetic group not closely related to any flagellate fungal. The Entomophthorales includes the Conidiobolus genus, which is represented by saprophytes and facultative pathogens of vertebrates and invertebrates (Gryganskyi et al., 2012).

Molecular analysis showed that Conidiobolus is a polyphyletic genus and species of the genus Macrobiotophthora (nematode and parasitic genus) belong to the C. thromboides clade (in the codiniobolus lineage). Morphology and structure of the species in this genus are relatively similar sharing the most features with an Entomophthoromycota common ancestor, suggesting that the ancestors of this phylum evolved as decomposers or weak, facultative pathogens (Gryganskyi et al., 2012).

C. thromboides was first described as a saprophytic fungus from plant debris in the United States (Drechsler, 1953) and in 1957 was found on the aphid Therioaphis maculata in California, but it was called Entomophthora virulenta as a new fungus by Hall and Dunn. A few years later it was demonstrated through morphological, biochemical and pathogenicity evaluations that these two species were synonymous.

licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

Morphology ( anglais )

fourni par EOL authors

Conidiobolus thromboides produces pyriform primary conidia with prominent basal papilla. The primary conidia germinate and develop secondary conidia, prior to the development of resting spores with a double thickened wall (Figure 2).

http://genome.jgi.doe.gov/public/Conth1/1(Figure 2)

licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

Life Cycle ( anglais )

fourni par EOL authors

Conidia of C. thromboides are discharged forcibly from conidiphores increasing their spread and potential interaction with the host. If the conidia of this fungus land on the host (mainly aphids) and conditions are favorable, conidia germinate (Brobyn and Wilding, 1977) and at the end of the germ tube an appressorium will form and penetrate the insect cuticle. However, in some species the appressorium is not needed to penetrate the host causing deadly infections, followed by sporulation from the host (Butt et al., 1990).

Once the fungus is inside the aphid it can grow and the hyphal body develops thick walled spores (resting spores) inside the dead host. These spores allow the fungus to survive when conditions are not favorable (Papierok& Hajek , 1997).These resting spores are binucleate and once the spores activated by the right conditions the number of nuclei is reduced and just before germination nuclear division results in the formation of a multinucleate germ tube (McCabe et al., 1984). The life cycle of C. thromboides can be affected by several environmental factors such as humidity (the most important factor for germination) and temperature (high temperatures decrease germination and the production of conidia) (Oduor et al. 1996).

licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

Benefits ( anglais )

fourni par EOL authors

C. thromboides contain enzymes such as chitinases, proteases and lipases which facilitate the penetration through the cuticle of aphids (Ishikawa et al., 1981). The fungus has been used as a bio-pesticides to control the population of aphids in crops such as potato, small grain, cotton and soybeans (Feng et al., 1990, Tan 2010).

An epizootic can be induced through introduction of inoculum such as cadavers of aphids killed by the fungus or power of the cadavers, in-vitro cultured mycelium (Soper et al., 1975) and lately a novel method was created with pellets made from short hyphae using a pressurized air-extrusion device producing significantly more amount of conidia that cadavers of aphids, this method could be reliable for the management of aphids (Chen et al., 2014).

Soper et al. (1975) produced a significant number of resting spores using media containing egg yolk. These were successfully stored at 4°C for one year with no change in germination capacity providing an easy and fast production strategy for resting spores of C. thromboides in vitro. Rapid production of resting spores makes this species amenable as a biological control agent.

Aphids are economically important pests of cereal crops. However, the extensive use of pesticides and herbicides in crops has been problematic for management of aphids through biological control since their use affects the germination of conidia and the viability of these fungi that have also been targeted for biocontrol (Poprawski et al., 1995).

Tyrrel in 1967 reported that C. thromboides is one of two species of these genus able to accumulate significant amount of a very long chain of polyunsaturated fatty acids (VLCPUFAs). These fatty acids are also being found in marine fish and fish oil but since the population of marine fish are decreasing the study of these fungi has become important for human health, because VLCPUFAs have many benefits to maintain the structure and function of various organs such as heart, brain, eyes and nervous system (Lee et al., 2009).

licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

Identification Resources ( anglais )

fourni par EOL authors
• Barta, M. (2006). Aphid-pathogenic entomophthorales (their taxonomy, biology and ecology). Biologia, 61(21), S543-S616. • Brobyn, P. J., & Wilding, N. (1977). Invasive and developmental processes of Entomophthora species infecting aphids. Transactions of the British Mycological Society, 69(3), 349-366. • Butt, T. M., Beckett, A., & Wilding, N. (1990). A histological study of the invasive and developmental processes of the aphid pathogen Erynia neoaphidis (Zygomycotina: Entomophthorales) in the pea aphid Acyrthosiphon pisum.Canadian journal of botany, 68(10), 2153-2163. • Chen, C., Ye, S., Wang, D., Hatting, J. L., & Yu, X. (2014). Alginate embedding and subsequent sporulation of in vitro-produced Conidiobolus thromboides hyphae using a pressurised air-extrusion method. Biological Control, 69, 52-58. • Drechsler, C. (1953). Two new species of Conidiobolus occurring in leaf mold.American Journal of Botany, 104-115. • Feng, M. G., Johnson, J. B., & Kish, L. P. (1990). Survey of entomopathogenic fungi naturally infecting cereal aphids (Homoptera: Aphididae) of irrigated grain crops in southwestern Idaho. Environmental Entomology, 19(5), 1534-1542. • Gryganskyi, A. P., Humber, R. A., Smith, M. E., Miadlikovska, J., Wu, S., Voigt, K., ... & Vilgalys, R. (2012). Molecular phylogeny of the Entomophthoromycota. Molecular phylogenetics and evolution, 65(2), 682-694. • Hall, I. M., & Dunn, P. H. (1957). Entomophthorous fungi parasitic on the spotted alfalfa aphid. University of Calif.. • Humber, R. A. (1989). Synopsis of a revised classification for the Entomophthorales (Zygomycotina). Mycotaxon 34, 441–460 • Humber, R. A. (2012). Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi. Mycotaxon, 120(1), 477-492. • Ishikawa, F., Oishi, K., & Aida, K. (1981). Chitinase production by Conidiobolus lamprauges and other Conidiobolus species. Agricultural and Biological Chemistry, 45(10), 2361-2362. • Kirk, P. M. (2013). Species Fungorum. Digital resources at www. speciesfungorum. org/Names/Names. asp. Accessed, 15. • Lee, J. H., O'Keefe, J. H., Lavie, C. J., & Harris, W. S. (2009). Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nature Reviews Cardiology, 6(12), 753-758. • McCabe, D. E., Humber, R. A., & Soper, R. S. (1984). Observation and interpretation of nuclear reductions during maturation and germination of entomophthoralean resting spores. Mycologia, 1104-1107. • Nielsen, C., & Hajek, A. E. (2005). Control of invasive soybean aphid, Aphis glycines (Hemiptera: Aphididae), populations by existing natural enemies in New York State, with emphasis on entomopathogenic fungi. Environmental Entomology, 34(5), 1036-1047. • Oduor, G. I., de Moraes, G. J., van der Geest, L. P., & Yaninek, J. S. (1996). Production and germination of primary conidia ofNeozygites floridana (Zygomycetes: Entomophthorales) under constant temperatures, humidities, and photoperiods. Journal of Invertebrate Pathology, 68(3), 213-222. • Papierok, B. E. R. N. A. R. D., & Hajek, A. E. (1997). Fungi: entomophthorales.Manual of techniques in insect pathology, 187-212. • Poprawski, T. J., & Majchrowicz, I. (1995). Effects of herbicides on in vitro vegetative growth and sporulation of entomopathogenic fungi. Crop Protection,14(1), 81-87. • Ragsdale, D. W., Landis, D. A., Brodeur, J., Heimpel, G. E., & Desneux, N. (2011). Ecology and management of the soybean aphid in North America.Annual review of entomology, 56, 375-399. • Soper, R. S., Holbrook, F. R., Majchrowicz, I., & Gordon, C. C. (1975).Production of Entomophthora resting spores for biological control of aphids. Life Sciences and Agriculture Experiment Station, University of Maine at Orono. Life Sci. Agric. Exp.stn., Tech. Bull. 76: 15-36. • Tan, L. (2010). Cloning and functional analysis of the genes from entomopathogenic fungi involved in the biosynthesis of eicosatetraenoic acid (ETA) (Doctoral dissertation, University of Saskatchewan Saskatoon). • Tyrrell, D. (1967). The fatty acid compositions of 17 Entomophthora isolates.Canadian journal of microbiology, 13(7), 755-760.
licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

Brief Summary ( anglais )

fourni par EOL authors

Conidiobolus thromboidesoccurs commonly in soil and plant detritus but that is also known as a pathogen of aphids and other insects. This species grows well on a wide range of solid and liquid media (MEA, PDA, Sabouraud dextrose, etc.), and sporulates easy under laboratory conditions by developing forcibly discharged conidia and/or putatively sexual resting spores (zygospores). Conidia are discharged towards the strongest source of light, and can form dense "clouds" of deposited spores on the inner sides of petri plates. Conidia germinate to form either germ tubes that may lead to vegetative growth, or they can form a short conidiophore from which a secondary conidium is forcibly discharged. If any individual conidium continues to land on a substrate unsuitable for the development of a germ tube but still retains enough internal reserves, it may make and discharge still another forcibly discharged (tertiary) conidium. If the conidia of this fungus land on the cuticle of insects - mostly (but not exclusively) of aphids - the germ tube may penetrate the insect's cuticle, cause lethal infections and then sporulate from the surface of the host within a few days.Conidiobolus thromboideshas a significant potential for control of some pests of economically important crops such as cereals and orchard trees.Conidiobolus thromboideshas also been isolated from basidiomycete fruitbodies, such as those of black trumpet,Craterellus cornucopioides. (JGI-MycoCosm 2015)

Référence

Fueling the future with fungal genomics. Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE.(2011) , Mycology. 2(3):192-209. (Accessed site JGI-Mycosm 6-July 2015)

licence
cc-by-3.0
droit d’auteur
JGI-Joint Genome Institute, US Dept. of Energy
citation bibliographique
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I. (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42(1):D699-704. For JGI Fungal Program, please cite: Fueling the future with fungal genomics. Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE.(2011) , Mycology. 2(3):192-209.
auteur
C Robertson
original
visiter la source
site partenaire
EOL authors

Conidiobolus thromboides, Drechsler (1953) ( anglais )

fourni par EOL authors

Conidiobolus thromboides is an entomopathogenic (able to infect insects), saprophytic, facultative fungus found on plant debris and aphids, belongs to the order Entomophthorales, within the phylum Entomophthoromycota (formerly placed in the phylum Zygomycota).

These fungi produce conidia that are forcibly ejected and if they land on a host (aphid) and germinate they may or may not form appressoria.

·When it forms an appressorium and penetrates the host, the hyphae divides and the hyphal body form resting spores inside the dead body of the aphid. When the conditions are favorable these resting spores germinate, conidia are produced and are ejected again.

·When the appressorium doesn’t form, it also causes deadly infections in the aphid, followed by sporulation from the cuticle of host, completing the life cycle.

C. thromboides is a major pathogenic group for aphids, being able to cause epizootic (outbreak of the disease) and this makes it useful as biological control for aphid pests of crops such as potato, small grains, cotton and soybeans.

C thromboides is one of two species of this genus that is able to accumulate significant amounts of very long chain polyunsaturated fatty acids (VLCPUFAs) that benefits the structure and function of organs in humans such as the heart, eyes and nervous system. VLCPUFAs can be found in marine fish and fish oil, but since the population of fish has decreased the study of this fungus has become important for human health.

licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

REFERENCE ( anglais )

fourni par EOL authors

·Barta, M. (2006). Aphid-pathogenic entomophthorales (their taxonomy, biology and ecology).Biologia,61(21), S543-S616.

·Brobyn, P. J., & Wilding, N. (1977). Invasive and developmental processes of Entomophthora species infecting aphids.Transactions of the British Mycological Society,69(3), 349-366.

·Butt, T. M., Beckett, A., & Wilding, N. (1990). A histological study of the invasive and developmental processes of the aphid pathogen Erynia neoaphidis (Zygomycotina: Entomophthorales) in the pea aphid Acyrthosiphon pisum.Canadian journal of botany,68(10), 2153-2163.

·Chen, C., Ye, S., Wang, D., Hatting, J. L., & Yu, X. (2014). Alginate embedding and subsequent sporulation of in vitro-produced Conidiobolus thromboides hyphae using a pressurised air-extrusion method.Biological Control,69, 52-58.

·Drechsler, C. (1953). Two new species of Conidiobolus occurring in leaf mold.American Journal of Botany, 104-115.

·Feng, M. G., Johnson, J. B., & Kish, L. P. (1990). Survey of entomopathogenic fungi naturally infecting cereal aphids (Homoptera: Aphididae) of irrigated grain crops in southwestern Idaho.Environmental Entomology,19(5), 1534-1542.

·Gryganskyi, A. P., Humber, R. A., Smith, M. E., Miadlikovska, J., Wu, S., Voigt, K., ... & Vilgalys, R. (2012). Molecular phylogeny of the Entomophthoromycota. Molecular phylogenetics and evolution,65(2), 682-694.

·Hall, I. M., & Dunn, P. H. (1957).Entomophthorous fungi parasitic on the spotted alfalfa aphid. University of Calif..

·Humber, R. A. (1989). Synopsis of a revised classification for the Entomophthorales (Zygomycotina).Mycotaxon 34, 441–460

·Humber, R. A. (2012). Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi.Mycotaxon,120(1), 477-492.

·Ishikawa, F., Oishi, K., & Aida, K. (1981). Chitinase production by Conidiobolus lamprauges and other Conidiobolus species.Agricultural and Biological Chemistry,45(10), 2361-2362.

·Kirk, P. M. (2013). Species Fungorum.Digital resources at www. speciesfungorum. org/Names/Names. asp. Accessed,15.

·Lee, J. H., O'Keefe, J. H., Lavie, C. J., & Harris, W. S. (2009). Omega-3 fatty acids: cardiovascular benefits, sources and sustainability.Nature Reviews Cardiology,6(12), 753-758.

·McCabe, D. E., Humber, R. A., & Soper, R. S. (1984). Observation and interpretation of nuclear reductions during maturation and germination of entomophthoralean resting spores.Mycologia, 1104-1107.

·Nielsen, C., & Hajek, A. E. (2005). Control of invasive soybean aphid, Aphis glycines (Hemiptera: Aphididae), populations by existing natural enemies in New York State, with emphasis on entomopathogenic fungi.Environmental Entomology,34(5), 1036-1047.

·Oduor, G. I., de Moraes, G. J., van der Geest, L. P., & Yaninek, J. S. (1996). Production and germination of primary conidia ofNeozygites floridana (Zygomycetes: Entomophthorales) under constant temperatures, humidities, and photoperiods.Journal of Invertebrate Pathology,68(3), 213-222.

·Papierok, B. E. R. N. A. R. D., & Hajek, A. E. (1997). Fungi: entomophthorales.Manual of techniques in insect pathology, 187-212.

·Poprawski, T. J., & Majchrowicz, I. (1995). Effects of herbicides on in vitro vegetative growth and sporulation of entomopathogenic fungi.Crop Protection,14(1), 81-87.

·Ragsdale, D. W., Landis, D. A., Brodeur, J., Heimpel, G. E., & Desneux, N. (2011). Ecology and management of the soybean aphid in North America.Annual review of entomology,56, 375-399.

·Soper, R. S., Holbrook, F. R., Majchrowicz, I., & Gordon, C. C. (1975).Production of Entomophthora resting spores for biological control of aphids. Life Sciences and Agriculture Experiment Station, University of Maine at Orono. Life Sci. Agric. Exp.stn., Tech. Bull. 76: 15-36.

·Tan, L. (2010).Cloning and functional analysis of the genes from entomopathogenic fungi involved in the biosynthesis of eicosatetraenoic acid (ETA)(Doctoral dissertation, University of Saskatchewan Saskatoon).

·Tyrrell, D. (1967). The fatty acid compositions of 17 Entomophthora isolates.Canadian journal of microbiology,13(7), 755-760.

licence
cc-by-3.0
droit d’auteur
Claudia Paez
original
visiter la source
site partenaire
EOL authors

Conidiobolus thromboides ( Szl )

fourni par wikipedia SZL

Conidiobolus thromboides je grzib[3], co go ôpisoł Drechsler 1953. Conidiobolus thromboides nŏleży do zorty Conidiobolus i familije Ancylistaceae.[4][5] Żŏdne podgatōnki niy sōm wymianowane we Catalogue of Life.[4]

Przipisy

  1. A. Batko (1964), In: Bull. Acad. Polon. Sci., Math. et Nat., Sér. B 12:404
  2. I.M. Hall & P.H. Dunn (1957), In: Hilgardia 27:164
  3. Drechsler (1953), In: J. Wash. Acad. Sci. 43:38
  4. 4,0 4,1 Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglinawan L.E., Bailly N., Kirk P.M., Bourgoin T., Baillargeon G., Ouvrard D. (red.): Species 2000 & ITIS Catalogue of Life: 2019 Annual Checklist.. Species 2000: Naturalis, Leiden, the Netherlands., 2019. [dostymp 2019-09-18].
  5. Zygomycetes. Kirk P.M., 2010-11-23
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors
original
visiter la source
site partenaire
wikipedia SZL

Conidiobolus thromboides: Brief Summary ( Szl )

fourni par wikipedia SZL

Conidiobolus thromboides je grzib, co go ôpisoł Drechsler 1953. Conidiobolus thromboides nŏleży do zorty Conidiobolus i familije Ancylistaceae. Żŏdne podgatōnki niy sōm wymianowane we Catalogue of Life.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors
original
visiter la source
site partenaire
wikipedia SZL

块状耳霉 ( chinois )

fourni par wikipedia 中文维基百科
二名法 Conidiobolus thromboidos

块状耳霉学名Conidiobolus thromboidos)是属于虫霉目新月霉科耳霉属的一种真菌,寄生在蚜虫上。该种分布于中国日本以色列澳大利亚美国加拿大瑞典俄罗斯法国捷克波兰等地。[1]

参考文献

  1. ^ 李增智 (编). 《中国真菌志·第十三卷:虫霉目》. 科学出版社. 2000.
小作品圖示这是一篇與真菌類相關的小作品。你可以通过编辑或修订扩充其内容。
 title=
licence
cc-by-sa-3.0
droit d’auteur
维基百科作者和编辑

块状耳霉: Brief Summary ( chinois )

fourni par wikipedia 中文维基百科

块状耳霉(学名:Conidiobolus thromboidos)是属于虫霉目新月霉科耳霉属的一种真菌,寄生在蚜虫上。该种分布于中国日本以色列澳大利亚美国加拿大瑞典俄罗斯法国捷克波兰等地。

licence
cc-by-sa-3.0
droit d’auteur
维基百科作者和编辑