dcsimg
Image of wheatgrass
Creatures » » Plants » » Dicotyledons » » True Grasses »

Crested Wheatgrass

Agropyron cristatum (L.) Gaertn.

Comments

provided by eFloras
This species provides good forage.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 22: 438, 439 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Description

provided by eFloras
Culms laxly tufted, 20–60(–80) cm tall, usually puberulent, rarely glabrous. Leaf sheath hairy or glabrous; leaf blade involute or flat, 5–15(–20) × 0.2–0.5(–0.9) cm, abaxial surface glabrous, adaxial surface moderately pubescent. Spike oblong-ovoid or ovoid-lanceolate, very dense, 2–6 × 0.8–2.5 cm; rachis internodes ca. 1 mm. Spikelets pectinately arranged, diverging at wide angle from rachis, 6–18 mm, with (3–)5–11 florets. Glumes lanceolate or ovate-lanceolate, pilose or glabrous, rarely laxly spinescent hairy, usually awned; awn ± equaling glume body; proximal glume 2–3 mm; distal glume 3–4 mm. Lemma pilose, densely so, or glabrous, rarely laxly spinescent hairy, usually awned; awn 2–4 mm. Palea ciliate along keels, apex 2-toothed. Anthers ca. 4 mm. Fl. and fr. Jun–Sep. 2n = 28*.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 22: 438, 439 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Habitat & Distribution

provided by eFloras
Dry mountain slopes, dry meadows, steppes, stony steppe slopes. Gansu, Hebei, Heilongjiang, Nei Mongol, Ningxia, Qinghai, Xinjiang [Japan, Korea, Mongolia, Pakistan, Russia; SW Asia, Europe; introduced in North America].
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 22: 438, 439 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Common Names

provided by Fire Effects Information System Plants
crested wheatgrass

Fairway crested wheatgrass

Fairway wheatgrass
license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Cover Value

provided by Fire Effects Information System Plants
More info for the terms: cover, density, grassland, habitat type, shrub

Seeding of historically sagebrush-dominated communities with crested wheatgrass may replace the shrub habitat necessary for many passerine birds [116]. In southeastern Idaho, Reynolds [100] found fewer nesting species and fewer individual birds on crested wheatgrass plantations than in the native sagebrush habitat. However, grassland bird species may respond favorably to seeded stands of crested wheatgrass that replace brush habitats, except when the area is heavily grazed. In Nevada, ground-nesting bird species comprised 91% of nesting birds in an established crested wheatgrass stand, whereas an unconverted sagebrush habitat with 21% shrub cover supported only 30% ground nesters [87].

In southeastern Idaho, deer mice, montane voles, Ord's kangaroo rats, and Townsend's ground squirrels all frequently use the crested wheatgrass habitat type for food and cover [72]. However, another study in southeastern Idaho reported fewer deer mice, least chipmunks, and northern grasshopper mice in crested wheatgrass stands than in the original sagebrush community. Numbers of western harvest mice were higher in ungrazed crested wheatgrass than in the native sagebrush community but were not increased in the domestic sheep-grazed crested wheatgrass treatment. The authors concluded that conversion to crested wheatgrass and grazing decreased small mammal density and had synergistic negative effects on the mice [101].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Description

provided by Fire Effects Information System Plants
More info for the terms: cool-season, diploid

Crested wheatgrass is a cool-season, medium-height, exotic perennial bunchgrass. The plant is drought- and cold-resistant and long-lived, enabling it to establish in recognizable monocultures [105]. Crested wheatgrass culms are 10 to 40 inches (25-100 cm) tall [30] and widely spaced. The deep, finely branched fibrous roots of crested wheatgrass penetrate to a maximum depth of 8 feet (2.4 m), with most roots extending to a depth of 3.3 feet (1 m) [80]. Crested wheatgrass is common in the Northern Great Plains and in Canada [105], while desert wheatgrass is more common throughout the western United States. Desert wheatgrass is tall and coarse, while crested wheatgrass is smaller, leafier, and has broader seedheads. Crested wheatgrass is a diploid species, which differentiates it genetically from desert wheatgrass, a tetraploid [34].

Crested wheatgrass remains productive for more than 30 years. Stand mortality is virtually unknown, except in cases of extreme drought during critical phenological stages [51].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Distribution

provided by Fire Effects Information System Plants
More info for the term: seed

Crested wheatgrass is an introduced species, originally from Russian and Siberian steppe habitats. It has been planted from Alaska south to California, throughout western Canada, east in the United States to Ohio, and south to Texas. It was first successfully established in the United States between 1907 and 1913 [35]. Crested wheatgrass and desert wheatgrass were considered distinct species upon their first introduction to the United States in 1906, but since, the two species have often been referred to and treated as one [34]. Crested and desert wheatgrass became prevalent in the United States in the 1930s when they were used to seed abandoned cropland. Crested wheatgrass is most common in the northern Great Plains, especially North and South Dakota, eastern Montana and Wyoming, and in southern Saskatchewan and southeastern Alberta. The grass is used throughout the arid and semi-arid regions of the West [105]. Crested and desert wheatgrass seedings have been established on 10 million acres (3.2 million ha) [5] and, by some accounts, as much as 26 million acres (10.4 ha) in North America [78].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Fire Ecology

provided by Fire Effects Information System Plants

Crested wheatgrass burns quickly and is therefore less susceptible to fire damage than some bunchgrass species [32]. In especially thick bunchgrasses, the fire may stay longer in the culms, resulting in heat transfer to the ground and the death of the plant. In crested wheatgrass, there is usually little heat transfer into the soil, so the tillers and root system are usually undamaged [107].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Fire Management Considerations

provided by Fire Effects Information System Plants
More info for the term: seed

Haws and Bohart [53] studied infestation of monoculture crested wheatgrass stands with black grass bugs in Utah. They conclude that the bugs decrease regeneration by eating the grass seed, but that since the grass bug eggs are inserted in the stem of the grass, they can easily be destroyed by burning. Burning in the fall destroyed most eggs and depressed the bug population for several years.

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Growth Form (according to Raunkiær Life-form classification)

provided by Fire Effects Information System Plants
More info on this topic.

More info for the term: hemicryptophyte

Hemicryptophyte
license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Habitat characteristics

provided by Fire Effects Information System Plants
More info for the terms: mesic, xeric

Crested wheatgrass is tolerant of very cold and very dry conditions, typical of both its native habitat in Russia and some areas of the northern Great Plains [12,24, 66,103]. It grows best on medium-textured soils, from sandy loams to clay loams. Crested wheatgrass does not grow well in loose sandy soils, heavy clays, or saline soils [84,91]. Crusted soils impede crested wheatgrass seedling emergence [67].

Crested wheatgrass thrives at around 12 to 16 inches (305-406 mm) of precipitation and competes poorly with other grasses on moister sites [24,63,105]. In Utah, crested wheatgrass appears on sites with precipitation of at least 12 inches (300 mm) [115].

Crested wheatgrass appears in the following elevations: State Elevation, in feet (m) WY above 6,000 (1800) [13] UT 2,730 to 9,040 (910-2740) [115] CA 1,900 to 5,000 (600-1500) [54] CO 5,000 (1,500) [52] Crested wheatgrass is more competitive on mesic sites than desert wheatgrass, and desert wheatgrass competes better on more xeric sites than crested wheatgrass [38].  

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Habitat: Cover Types

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):




 42 Bur oak

 68 Mesquite

209 Bristlecone pine

210 Interior Douglas-fir

218 Lodgepole pine

219 Limber pine

220 Rocky Mountain juniper

233 Oregon white oak

236 Bur oak

237 Interior ponderosa pine

238 Western juniper

239 Pinyon-juniper

241 Western live oak

242 Mesquite

243 Sierra Nevada mixed conifer

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Habitat: Ecosystem

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

More info for the term: shrub




FRES21 Ponderosa pine

FRES29 Sagebrush

FRES31 Shinnery

FRES32 Texas savanna

FRES33 Southwestern shrub steppe

FRES34 Chaparral-mountain shrub

FRES35 Pinyon-juniper

FRES36 Mountain grasslands

FRES38 Plains grasslands

FRES39 Prairie

FRES40 Desert grasslands

FRES42 Annual grasslands

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Habitat: Rangeland Cover Types

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):

More info for the terms: association, grassland, shrubland, woodland




101 Bluebunch wheatgrass

102 Idaho fescue

103 Green fescue

104 Antelope bitterbrush-bluebunch wheatgrass

105 Antelope bitterbrush-Idaho fescue

106 Bluegrass scabland

107 Western juniper/big sagebrush/bluebunch wheatgrass

108 Alpine Idaho fescue

109 Ponderosa pine shrubland

110 Ponderosa pine-grassland

201 Blue oak woodland

206 Chamise chaparral

207 Scrub oak mixed chaparral

209 Montane shrubland

210 Bitterbrush

212 Blackbush

215 Valley grassland

301 Bluebunch wheatgrass-blue grama

302 Bluebunch wheatgrass-Sandberg bluegrass

303 Bluebunch wheatgrass-western wheatgrass

304 Idaho fescue-bluebunch wheatgrass

305 Idaho fescue-Richardson needlegrass

306 Idaho fescue-slender wheatgrass

309 Idaho fescue-western wheatgrass

310 Needle-and-thread-blue grama

311 Rough fescue-bluebunch wheatgrass

312 Rough fescue-Idaho fescue

314 Big sagebrush-bluebunch wheatgrass

315 Big sagebrush-Idaho fescue

316 Big sagebrush-rough fescue

317 Bitterbrush-bluebunch wheatgrass

318 Bitterbrush-Idaho fescue

319 Bitterbrush-rough fescue

320 Black sagebrush-bluebunch wheatgrass

321 Black sagebrush-Idaho fescue

322 Curlleaf mountain-mahogany-bluebunch wheatgrass

324 Threetip sagebrush-Idaho fescue

401 Basin big sagebrush

402 Mountain big sagebrush

403 Wyoming big sagebrush

404 Threetip sagebrush

405 Black sagebrush

406 Low sagebrush

407 Stiff sagebrush

408 Other sagebrush types

412 Juniper-pinyon woodland

413 Gambel oak

503 Arizona chaparral

504 Juniper-pinyon pine woodland

509 Transition between oak-juniper woodland and mahogany-oak association

601 Bluestem prairie

602 Bluestem-prairie sandreed

603 Prairie sandreed-needlegrass

604 Bluestem-grama prairie

605 Sandsage prairie

606 Wheatgrass-bluestem-needlegrass

607 Wheatgrass-needlegrass

608 Wheatgrass-grama-needlegrass

609 Wheatgrass-grama

610 Wheatgrass

611 Blue grama-buffalograss

612 Sagebrush-grass

613 Fescue grassland

614 Crested wheatgrass

703 Black grama-sideoats grama

704 Blue grama-western wheatgrass

705 Blue grama-galleta

707 Blue grama-sideoats grama-black grama

708 Bluestem-dropseed

709 Bluestem-grama

710 Bluestem prairie

711 Bluestem-sacahuista prairie

713 Grama-muhly-threeawn

714 Grama-bluestem

715 Grama-buffalograss

716 Grama-feathergrass

717 Little bluestem-Indiangrass-Texas wintergrass

718 Mesquite-grama

719 Mesquite-liveoak-seacoast bluestem

721 Sand bluestem-little bluestem (plains)

722 Sand sagebrush-mixed prairie

728 Mesquite-granjeno-acacia

733 Juniper-oak

734 Mesquite-oak

735 Sideoats grama-sumac-juniper

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Immediate Effect of Fire

provided by Fire Effects Information System Plants

Fire usually burns crested wheatgrass aboveground but underground parts survive [79].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Importance to Livestock and Wildlife

provided by Fire Effects Information System Plants
More info for the term: shrub

Crested wheatgrass and its close relative, desert wheatgrass, have been planted in millions of acres in the arid and semi-arid West to benefit livestock and wildlife. Native shrub habitats have been replanted with crested wheatgrass to increase range production. Crested wheatgrass has high yields and supplies green forage in both spring and fall [67,85], and can be important to livestock and wildlife when other preferred food sources are unavailable [112].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Key Plant Community Associations

provided by Fire Effects Information System Plants
More info for the terms: cover, cover type, grassland, mesic




Crested wheatgrass has been planted throughout North America in a variety of ecosystems; the appearance of the species within a specific cover type does not necessarily indicate that crested wheatgrass is particularly well adapted to those climatic conditions.



In the Great Basin in Nevada, crested wheatgrass thrives in mesic communities with big sagebrush (Artemisia tridentata), basin wildrye (Elymus cinereus), Sandburg bluegrass (Poa secunda), Columbia needlegrass (Achnatherum nelsonii ssp. dorei), and slender wheatgrass (E. trachycaulus) [38].



Vegetation typings describing communities dominated by crested wheatgrass follow.



Phyto-edaphic communities of the Upper Rio Puerco Watershed, New Mexico [43]

Plant associations of the Crooked River National Grassland [61]

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Life Form

provided by Fire Effects Information System Plants
More info for the term: graminoid

Graminoid
license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Management considerations

provided by Fire Effects Information System Plants
More info for the terms: competition, seed




The seeds of crested wheatgrass are relatively large and easy to process and plant, and its seedlings can withstand drought and cold conditions [6,67,105]. Crested wheatgrass is resilient under grazing pressure [67,89,76,102], easy to establish [63], and may compete successfully against exotic weeds.



Cheatgrass competition appears to reduce root growth in crested wheatgrass and thereby to lower long-term survival and competitiveness, most likely due to competition for water [1,42,55,62,71,103,104]. In a laboratory study, Hycrest wheatgrass grown with cheatgrass at planting ratios of 1:1 and 1:4 suffered reductions in leaf area of 46 and 76%, respectively. Researchers concluded, however, that crested wheatgrass competed more successfully with cheatgrass than did bluebunch wheatgrass (Pseudoroegneria spicata) [1]. Francis and Pyke [42] suggest that by seeding crested wheatgrass at lower than recommended densities in cheatgrass areas, crested wheatgrass is favored because greater spacing reduces within-species competition.



Light to moderate grazing (up to 70% utilization) invigorates a crested wheatgrass stand and extends its life [19,110]. Heavy grazing of crested wheatgrass stands may speed up the re-invasion of sagebrush or of weeds such as Russian thistle (Salsola kali). Above 88% use, production decreases, plants die, and stand quality suffers [19].



When crested wheatgrass is planted as part of a seed mix, it may outcompete and crowd out the other species in the mix, including native species [24,83]. Seeding a disturbed site with crested wheatgrass may prohibit the establishment of other species. Crested wheatgrass contributes heavily to the seedbank, and crested wheatgrass seeds may take advantage of openings in the canopy [83].



Crested wheatgrass seed shatters easily. Timing of seed harvest is crucial. Seed harvested too early, before the seed has matured, is far less likely to germinate. Seedling emergence declined in the field from 46% for mature seeds, to 33, 10, and 3% for dough, milk, and premilk stages, respectively. In cold storage (0 to 19? Fahrenheit (-18 to -7?C)), seed viability remained at 80 to 90% after 20 years [67].



Casterline [25] suggests the following conditions to germinate crested wheatgrass seeds: pre-chill days to break dormancy:  47oF for 7 days
days needed to break dormancy:  at least 5
temperature needed for germination:  41-86oF
days allowed for germination test:  14
total days to break dormancy and test germination:  21


Drilling is more successful than broadcasting seed [67]. Clark and McLean [26] found spring sowing resulted in better germination of crested wheatgrass than autumn sowing in interior British Columbia.



Concentration of cattle on seeded crested wheatgrass lower elevation sites may conserve native upland sites for use by wildlife [112].



Crested wheatgrass is a major host of the black grass bug (Labops hesperius), which can severely damage grass stands. Other insect pests of crested wheatgrass are leafhoppers, grubs, and mature click beetles and billbugs [53].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Nutritional Value

provided by Fire Effects Information System Plants
More info for the term: seed




Green crested wheatgrass can be a valuable addition to the browse-dominated diets of wild ungulates in winter [9,112]. In Central Oregon, crested wheatgrass consistently contained more than 20% crude protein during the winter and early spring, leading Urness [113] to conclude that it provided better forage value than native grass species for white-tailed deer.



At certain times during the year, crested wheatgrass lacks highly digestible protein [27]. In Alberta, crested wheatgrass was deficient in crude protein for pregnant ewes [83].
By mid-June, the nutritional value of crested wheatgrass can be too low for lactating cattle. By the end of the summer, crested wheatgrass has low total protein values and lacks adequate phosphorus for cattle [8].



Deer mice occupy moderately grazed crested wheatgrass range in Utah. Food in their caches on these sites was predominantly mature desert and crested wheatgrass seedheads. When livestock grazing exceeded 50% use, the deer mice population dropped by at least 20% [44].



Nutritional content (%) of crested wheatgrass in Alberta, Canada, was [85]: Stage of Sample Crude Crude Ether N-free Total Ca P
maturity date protein fiber extract extract ash

preflower 5/10 22.7 19.9 2.7 45.8 8.85 0.42 0.27
heading 6/8 13.9 29.2 1.6 48.0 7.45 0.29 0.24
flowering 6/29 11.7 33.1 1.8 46.3 7.12 0.32 0.19
seed ripe 7/30 8.5 32.5 1.9 51.1 5.92 0.33 0.14
seed shed 10/21 4.5 34.7 1.9 52.1 6.85 0.30 0.05

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Occurrence in North America

provided by Fire Effects Information System Plants




AK   AZ    AR   CA    CO   IA    ID     IL     IN   KS   MO    MT

NE   NV   NM   NY   ND   OH   OR   SD   TX   UT   WA    WY


AB   BC   SK

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Palatability

provided by Fire Effects Information System Plants
More info for the term: cover




Crested wheatgrass is highly palatable and a nutritious spring forage. It can be especially useful to ranchers in the Intermountain West, where spring forage shortages are common [13,60,67]. Crested wheatgrass can be grazed 2 or 3 weeks earlier than native grasses in Utah, Montana, and the Great Basin, and 3 to 4 weeks earlier in Colorado [57, 63,66,83]. Crested wheatgrass tends to become fibrous at maturity, and therefore palatability and nutritional quality of the plant decline after June or so [46,76,86]. Crested wheatgrass provides little summer grazing [10]. In some habitat types with sufficient soil moisture, crested wheatgrass continues to grow in fall after summer dormancy [85].



Reports conflict on the importance of crested wheatgrass to wild ungulates. In Oregon and Nevada, mule deer appear to prefer native grasses and cheatgrass (Bromus tectorum) to crested wheatgrass. Grass contributes less to the diets of pronghorn than to deer, and crested wheatgrass is minimally used by pronghorn in the Great Basin and Intermountain West [112].



Wildlife use of crested wheatgrass is detailed in the following table [8,9,13,16,19,39,56,64,65,68,69,71,73,73,79,83,86,104,116]:
Alberta Montana Idaho Oregon Utah
Cattle ---- high high high high
Domestic sheep high ---- ---- ---- high
Elk high spring use spring use ---- spring use
Mule Deer low-none low medium medium low-none
Bighorn sheep high medium ---- ---- ----
Pronghorn ---- low-none low low-none low-none
Moose medium ---- ---- ---- ----
Small mammals ----- ---- low-none ---- ----


Little information is available about the role of crested wheatgrass in the diets of elk, bighorn sheep, and mountain sheep in the Great Basin, but Urness [112] concludes from anecdotal information that given an abundant supply, these three species would eat crested wheatgrass. A 1983 study in south-central Utah found bison diets to be dominated by Agropyron spp., presumably mostly crested wheatgrass.



Crested wheatgrass is highly palatable to and good cover for black-tailed jackrabbits [47,57]. Reynolds [100] says black-tailed jackrabbits appear to be the only hare species to maintain population levels in southeastern Idaho in crested wheatgrass stands that have replaced native sagebrush habitat.



Mule deer seasonal use of crested wheatgrass in the Great Basin was as follows.
Data are means and 1 standard error [9].
time Percentage of diet
late fall (Nov.) 51.1 (30.3)
early winter (Dec.) 1.9 (2.0)
mid-winter (Jan.-Feb.) 2.5 (0.8)
late winter (1-20 March) 37.9 (16.9)
early spring (21 March-10 April) 89.7 (5.3)
mid-spring (11-30 April) 57.2 (17.6)


Grasshoppers (especially Auloara elliotti) prefer crested wheatgrass stands to native vegetation in Idaho. Grasshopper can compete with cattle for available forage during periodic infestations [41].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Phenology

provided by Fire Effects Information System Plants
More info on this topic.

More info for the term: seed

Crested wheatgrass greens up 2 to 4 weeks earlier than native bunchgrass species. It goes dormant in the summer, but if soil moisture is available, it will grow again in the fall. In Alberta, at the northern end of the plant's range, seasonal development was as follows [85]: stage of maturity sample date preflower 5/10 heading 6/8 flowering 6/29 seed ripe 7/30 seed shed 10/21

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Plant Response to Fire

provided by Fire Effects Information System Plants
More info for the terms: grassland, litter, prescribed fire, wildfire

Researchers characterize crested wheatgrass as "slightly damaged" [97] or "undamaged" by prescribed fire [93,119], since coarse stems and sparse leafy parts inhibit heat transfer down into the culms or soil. Young [119] says postfire recovery is rapid.

Crested wheatgrass in eastern Idaho and western Wyoming occurs in low flammability growth habitats, and its deep underground tillers help it to survive fire. Crested wheatgrass growth may be favored by late summer fire, but spring fire can decrease yields for several years [21].

Crested wheatgrass can be used as a "greenstrip" or fuelbreak in semi-arid rangelands to help control wildfire [49]. It is moderately flammable, produces moderate litter, has an extensive range, competes well, and is a good sprouter. A mature stand of crested wheatgrass can help control annual grassland fires like those found in sites now invaded by cheatgrass throughout the arid West, particularly in sagebrush-steppe habitats [90,94].

A study at Experimental Farm, Swift Current, Saskatchewan, investigated the effects of spring and fall burns on crested wheatgrass pastures. The spring burn occurred while the grass was growing vigorously, and forage yield and domestic sheep consumption on the pasture were reduced for the following 2 years. The grass was dormant during the fall burn, which took place during November. Although forage yield was reduced in the following year, sheep consumption was not. Lodge [79] concluded the fall burning of crested wheatgrass reinvigorated the stand.

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Post-fire Regeneration

provided by Fire Effects Information System Plants
More info for the term: tussock

Tussock graminoid

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Regeneration Processes

provided by Fire Effects Information System Plants
More info for the terms: presence, seed

Crested wheatgrass reproduces by seed or vegetatively and is self-sterile [35]. Crested wheatgrass seedlings are very hardy, vigorous, and easily established [67]. The seeds of crested wheatgrass germinate well throughout a range of temperatures [7], allowing the plant to spread rapidly [62]. Crested wheatgrass produces tillers, and its ability to spread vegetatively contributes to its presence at higher elevations, where the growing season may not be long enough each year to produce seed [51]. However, in drier habitats, the ability of rhizomatous native grasses to propagate without setting seed allows them to compete well with crested wheatgrass [85]. Crested wheatgrass is able to emerge from a relatively deep soil depth, which allows it to escape the more extreme environmental soil conditions closer to the surface. Crested wheatgrass shoots have long, numerous, and quick-growing roots, which may explain strong seedling establishment [67].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Regional Distribution in the Western United States

provided by Fire Effects Information System Plants
More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):




 3 Southern Pacific Border

 4 Sierra Mountains

 5 Columbia Plateau

 6 Upper Basin and Range

 7 Lower Basin and Range

 8 Northern Rocky Mountains

 9 Middle Rocky Mountains

10 Wyoming Basin

11 Southern Rocky Mountains

12 Colorado Plateau

13 Rocky Mountain Piedmont

14 Great Plains

15 Black Hills Uplift

16 Upper Missouri Basin and Broken Lands

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Successional Status

provided by Fire Effects Information System Plants
More info on this topic.

More info for the terms: radicle, shrub

Due to the broad range of habitat types in which crested wheatgrass has been planted, reports conflict on the plant's persistence. Crested wheatgrass is persistent and allows little establishment of native species in some habitat types, especially in arid and heavily grazed areas [2]. A crested wheatgrass community in southeastern Alberta was determined to be over 40 years old, and in central North Dakota, northern Arizona, and southern Idaho, stands over 30 years old have been identified [68].

However, shrub re-invasion of crested wheatgrass occurs in the Intermountain West, especially in wet years. Unkilled mature sagebrush in the seeded area is a source of reinvasion [87]. In the arid shadscale (Atriplex spp.) zone of Utah and Nevada, stands of crested wheatgrass appear to be shorter lived, with an estimated 10-year life span [18]. Anderson and Marlette [4] point out that the age of these stands may reflect the available data, and not the potential for stand longevity. They suggest that crested wheatgrass may inhibit or preclude the re-establishment of native species on disturbed sites and may become the dominant species.

In laboratory trials, volatile substances and aqueous extracts from the leaves of big sagebrush exhibited allelopathic, inhibitory effects on germination and shoot and radicle growth of crested wheatgrass seedlings [50]. However, simultaneous establishment of both sagebrush and crested wheatgrass favors the grass [17].

Crested wheatgrass has limited ability to invade undisturbed shortgrass communities in northeastern Colorado and was an unimportant component in the recovery, after 53 years, of old fields [28].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Taxonomy

provided by Fire Effects Information System Plants





The scientific name of crested wheatgrass is Agropyron cristatum (L.) Gaertn. (Poaceae) [30,56]. Wheatgrasses (Triticeae), including crested wheatgrass, frequently hybridize and often produce fertile crosses [11,33,115]. Crested wheatgrass readily crosses with desert wheatgrass (A. desertorum) to produce fertile hybrids, the most common of which is called 'Hycrest.' Some systematists do not consider crested and desert wheatgrass to be distinct species [54].

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Value for rehabilitation of disturbed sites

provided by Fire Effects Information System Plants
More info for the terms: competition, mesic, reclamation, seed

Crested wheatgrass has been used extensively to seed unused cropland and to revegetate burns and degraded areas, including mine spoils [3,6,31,99,105,109].

If crested wheatgrass is used to reclaim disturbed sites, a grass monoculture may prohibit the return of predisturbance animal and plant diversity [92,117]. Dusek [37] reviewed a mining reclamation site in southeastern Montana that was seeded with crested wheatgrass. Crested wheatgrass established easily, but the resulting community lacked diversity and sufficient forage quality to support mule deer. As a result, Dusek concluded that managers should not use ease of establishment as the primary characteristic for choosing revegetation species [37].

Crested wheatgrass has lower belowground productivity than native bunchgrass species. Over time, this difference can result in higher soil bulk densities, less organic material in the soil, and poorer nutrient relations in crested wheatgrass than in native grass habitats [36,78].

Crested wheatgrass is used for erosion control [2,22,23]. However, wide row spacing, recommended to increase plant productivity, may persist for years following establishment of the stand. These gaps leave the areas between rows susceptible to erosion, especially if the competitiveness of crested wheatgrass prohibits the establishment of other plants [36,75,78].

Land managers have had some success preventing the spread of exotic weeds like halogeton (Halogeton glomeratus) by seeding unused land with crested wheatgrass [2]. However, heavy grazing appears to neutralize this benefit [45]. Crested wheatgrass' ability to prevent the spread of weeds may also depend on climatic conditions. In northwestern Utah, Cook [29] studied grass seedling competition with halogeton. He concluded that crested wheatgrass is better adapted to low rainfall habitats and competes better with halogeton than do native tall (Elytrigia elongata) and intermediate (E. intermedia) wheatgrasses. Near Cache Creek, British Columbia, established crested wheatgrass stands inhibited the spread of diffuse knapweed (Centaurea diffusa) on arid study plots that received 8 inches (20 cm) annual precipitation. In areas of the study plots with higher soil moisture and in more mesic climatic areas, crested wheatgrass did not exclude diffuse knapweed as successfully, leading the authors to conclude that soil moisture competition during key growth stages caused knapweed failure [15].

Popovich and Pyke [96] concluded that seeding a wildfire-burned area in south-central Idaho to crested wheatgrass did not significantly reduce reproduction potential of Picabo milkvetch (Astragalus oniciformis), a sensitive plant endemic to the north-central Snake River Plain.

license
cc-publicdomain
bibliographic citation
Zlatnik, Elena. 1999. Agropyron cristatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us /database/feis/plants/graminoid/agrcri/all.html

Physical Description

provided by USDA PLANTS text
Perennials, Terrestrial, n ot aquatic, Stems nodes swollen or brittle, Stems erect or ascending, Stems caespitose, tufted, or clustered, Stems terete, round in cross section, or polygonal, Stem internodes hollow, Stems with inflorescence less than 1 m tall, Stems, culms, or scapes exceeding basal leaves, Leaves mostly basal, below middle of stem, Leaves mostly cauline, Leaves conspicuously 2-ranked, distichous, Leaves sheathing at base, Leaf sheath mostly open, or loose, Leaf sheath smooth, glabrous, Leaf sheath hairy, hispid or prickly, Leaf sheath and blade differentiated, Leaf blades linear, Leaf blade auriculate, Leaf blades very narrow or filiform, less than 2 mm wide, Leaf blades 2-10 mm wide, Leaf blade margins folded, involute, or conduplicate, Leaf blades mostly glabrous, Leaf blades more or less hairy, Leaf blades scabrous, roughened, or wrinkled, Ligule present, Ligule an unfringed eciliate membrane, Inflorescence terminal, Inflorescence racemose, Inflorescence simple spikes, Inflorescence a dense slender spike-like panicle or raceme, branches contracted, Inflorescence solitary, with 1 spike, fascicle, glomerule, head, or cluster per stem or culm, Inflorescence lax, widely spreading, branches drooping, pendulous, Inflorescence spike ovoid, lanceolate, or oblong, not more than twice as long as wide, Inflorescence single raceme, fascicle or spike, Inflorescence spikelets arranged in a terminal bilateral spike, Flowers bisexual, Spikelets pedicellate, Spikelets laterally compressed, Spikelet 3-10 mm wide, Spikelet less than 3 mm wide, Spikelets with 3-7 florets, Spikelets solitary at rachis nodes, Spikelets distichously arranged, Spikelets all alike and fertille, Spikelets bisexual, Spikelets disarticulating above the glumes, glumes persistent, Spikelets disarticulating beneath or between the florets, Rachilla or pedicel hairy, Rachilla or pedicel glabrous, Glumes present, empty bracts, Glumes 2 clearly present, Glumes equal or subequal, Glumes shorter than ad jacent lemma, Glumes awned, awn 1-5 mm or longer, Glumes keeled or winged, Glumes 1 nerved, Glumes 3 nerved, Lemma 1 nerved, Lemma 3 nerved, Lemma glabrous, Lemma apex acute or acuminate, Lemma mucronate, very shortly beaked or awned, less than 1-2 mm, Lemma distinctly awned, more than 2-3 mm, Lemma with 1 awn, Lemma awn less than 1 cm long, Lemma awned from tip, Lemma awns straight or curved to base, Lemma margins thin, lying flat, Lemma straight, Palea present, well developed, Palea membranous, hyaline, Palea about equal to lemma, Stamens 3, Styles 2-fid, deeply 2-branched, Stigmas 2, Fruit - caryopsis, Caryopsis ellipsoid, longitudinally grooved, hilum long-linear, Caryopsis hairy at apex.
license
cc-by-nc-sa-3.0
compiler
Dr. David Bogler
source
Missouri Botanical Garden
source
USDA NRCS NPDC
original
visit source
partner site
USDA PLANTS text

Agropyron cristatum

provided by wikipedia EN

Agropyron cristatum, the crested wheat grass, crested wheatgrass, fairway crested wheat grass, is a species in the family Poaceae. This plant is often used as forage and erosion control. It is well known as a widespread introduced species on the prairies of the United States and Canada.

History

Agropyron cristatum is one of several closely related grass species referred to as crested wheatgrass. It is unable to hybridize with its similar relatives, as it is a diploid species, whereas its closest relative, Agropyron desertorum, is a tetraploid species.[1] It was introduced from Russia and Siberia to North America in the first half of the twentieth century, and widely used to reseed abandoned marginal cropland undergoing varying degrees of soil erosion and secondary succession.[2] A. cristatum is very long lived, with stands often remaining productive for 30 years or more.[3]

Agropyron cristatum inflorescence

Description

Agropyron cristatum is a densely tufted grass, with culms ranging from 30–50 cm high at maturity. Its sheaths are scabrous or the lowest ones pubescent. Its blades are up to 8 mm wide and scabrous to pubescent above. Its spikes are flat and range from 2–7 cm long, with spikelets ranging from 8–15 mm long, being 3–5-flowered, densely crowded, and spreading to ascending. Its glumes are 4–6 mm long, awn-tipped, and its lemmas are 6–8 mm long and either awnless or awn-tipped.[4]

Agropyron cristatum is known among other grasses and wheats for its relatively high granivory. Granivory, or granivores, describe the interaction between animals and seeds. Agropyron cristatum's high granivory indicates that animals feed on the seeds of the plant as their primary, or even exclusive, food source. Although this raises concerns about the plant's continued ability to reproduce if its seeds are all being consumed, the high granivory of this species does indicate that Agropyron cristatum is an important food source.[5]

Habitat

Agropyron cristatum is best adapted to dry rangeland conditions and is most frequently found in such circumstances. It prefers from 23 to 38 cm of precipitation per year,[6] but can tolerate more moisture on favourable sites, extending its range into tundra and taiga conditions[7] and elevations up to 2000 m above sea level in the southern portions of its adapted area.[8] It prefers well drained, deep, loamy soils[9] of medium and moderately coarse texture, including Chernozemic, Solonetzic, Regosolic,[10] Brunisolic and Luvisolic soils.[11] A. cristatum can tolerate salinity in the range of 5 to 15 mS/cm[12] and prefers moderately alkaline conditions.[10] It has low to medium fertility requirements.[13] It will not tolerate prolonged flooding.[1]

Agropyron cristatum is the most shade-tolerant of the crested wheatgrasses, but does best in open conditions.[11] A. cristatum is extremely drought tolerant.[14] It achieves this drought tolerance by starting growth very early in the season, then going dormant from seed set until fall when it will exhibit vegetative regrowth if moisture is sufficient.[2]

A recent study has shown that invasive populations of Agropyron cristatum have spread across the upper U.S. as well as southern Canada, and the invading Agropyron cristatum populations have been found to have a higher granivory than native grasslands and they maintain dominance even when native grassland species are reintroduced.[5] This current study indicated that the increased granivory of Agropyron cristatum did not contribute to its competitive success. The study did show that although A. cristatum was found to have higher granivory, after 2 years the difference between A. cristatum's granivory and that of native species lessens, and that there was no apparent preference among the animals for either wheat.[5] Therefore, the factors responsible for Agropyron cristatum's high granivore content are still relatively unknown.

Agropyron cristatum is very tolerant of grazing,[8] although under dry conditions new stands should be protected from grazing for at least two years as the seedling are slow to develop. A. cristatum can be damaged by several fungi, including leaf and stripe rusts,[10] snow mold and some arthropods including black grass bugs (Labops sp.) in pure plantings.

Uses

Agropyron cristatum has been bred into many cultivars selected for attributes ranging from forage yield to drought tolerance to turf types that will exhibit more pronounced degrees of rhizomatous growth habit.[10] It has been and continues to be, widely used in both agricultural and industrial reclamation activities.[10]

Agropyron cristatum is known among other grasses and wheats for its relatively high granivory. Granivory describe the interaction between animals and seeds. Agropyron cristatum's high granivory indicates that animals feed on the seeds of the plant as their primary, or even exclusive, food source. Although this raises concerns about the plant's continued ability to reproduce if its seeds are all being consumed, the high granivory of this species does indicate that Agropyron cristatum is an important food source. Studies have been conducted in search of the cause of Agropyron cristatum's increased granivory, but as of yet a high relative granivory has not been proven to be a unique characteristic of A. cristatum, and could actually be attributed to factors other than the plant's genome, such as environmental conditions.[5]

One promising factor that could lead to, and be responsible for, increased granivore in Agropyron cristatum is a certain genetic difference found on chromosome 6 of plants with a higher granivore content.[15] Plants with a translocation on chromosome 6P yield wheat of greater weight and longer spike length than those without the mutation.[15] Agropyron cristatum possesses higher tiller number, higher floret numbers, and greater resistance to various pathogens such as wheat rusts, powdery mildew, and barley yellow dwarf virus than many of its close wheat relatives.[15] It has been used to cross-breed with other species of grass and wheat to transfer a greater disease resistance to them, as well as enhance their properties as a food source.[15] This cross-breeding involves the transferring of the chromosome 6P translocation to the species it is cross-breeding with.[15] Chromosome 6P of A. cristatum has also been proven to play an important role in regulating fertile tiller number and it possesses positive and negative regulators of tiller number.[16] These regulators were specifically found to be on the 6PS and 6PL chromosome arms.[16] High floret numbers and number of kernals per spike is controlled by genes located on chromosome 6P of Agropyron cristatum.[17] Agropyron cristatum’s genes can be used to instill leaf resistance in other species of wheat.[17] Three backcrosses between Agropyron cristatum and Aegilops tauschii produces a number stable, fertile lines of Aegilops tauschii that then has resistance to leaf rust.[17] Also, multi-spike cultivars of A. cristatum have been found to be more stable agronomically and achieve higher yields than cultivars with large-spike type.[16]

It is an easy grass to establish by seed, having both high germination rates and high seedling vigour.[18] It also establishes rapidly relative to many other grasses.[10] Under non-irrigated conditions in low precipitation areas, Crested Wheatgrasses are consistently some of, if not the, highest yielding and persistent of domestic forage grasses. However, A. cristatum is lower yielding, although it is slightly more palatable, relative to other Crested Wheatgrasses.[7]

Agropyron cristatum shows an immense toughness to a wide range of environmental conditions. Agropyron cristatum can be grown in cold temperatures, drought conditions, and relatively high amounts of salinity.[19] It also has a resistance to barley yellow dwarf, wheat streak mosaic viruses, and leaf rust disease as well as containing high protein content.[19]

Agropyron cristatum is a highly competitive and persistent plant in drier areas, and has a moderate ability to spread by seed. As such, its use in and adjacent to remaining natural grassland communities within its adapted areas in outside its native Eurasian distribution has come under criticism as a factor in natural grassland biodiversity loss, although the subject is still being studied.[20] One such fear is that its seedlings' emergence does not decrease under herbicide treatment.[21]

Agropyron cristatum, a non-native grass species seeded on a mountaintop fireline in central Washington

Tenacity

The importance of Agropyron cristatum is often undermined, as the plant has not been domesticated for modern agricultural use. Agropyron cristatum’s ability to withstand various environmental and biological blighting makes it a truly unique and valuable organism. Recent studies highlight the importance of A. cristatum in future agricultural development because it exhibits several desirable traits for the improvement of domesticated wheat.[22] While some of these traits may be related to yield production of the wheat, other significant traits include biotic and abiotic stress resistance genes that enable A. cristatum to grow proficiently. The importance of this knowledge is that researchers can use this genetic information regarding stress resistance genes to introduce new desirable traits in other domesticated wheat species that aid their growth in harsh environments. Ultimately, this leads to better yields for more human consumption.

The phenotypic success that Agropyron cristatum experiences is primarily due to the success of its root system. Recent studies show how root development contributes to the competitiveness of A. cristatum by testing its ability to flourish over other forms of vegetation in grassland environments.[23] These studies provide data on how long the roots grow and how concentrated soil volume becomes with roots of A. cristatum.[23][24] The results shows that A. cristatum typically allocates more of its biomass in its roots than its shoots when compared to other grassland species. Interpretation of this data suggests that because A. cristatum has a better foundation, it can outcompete other species for resources.[23][24] These reports give significant insights into why A. cristatum is so competitive and why the development of this species could be a valuable asset to the food production as a perennial plant that is very competitive with its roots.[24] In addition to this data, new research implies that whatever genes are enabling the roots to beat out the competition are homogeneous in nature (therefore more easily passed down through generations) and is the reason the species is as dominant.[23] Once these genes become identified, agriculturalists can seek to implement them into genetically modified versions of wheat species to create a more durable and successful domesticated wheat species in our limited environment.

Today, researchers can annotate important functional genes that may be valuable for human use in the field of agriculture. This can be accomplished by utilizing next-generation sequencing techniques to analyze transcriptomes and genomes.[22] Studies show that A. cristatum contains an abundance of protein family domains including nucleotide-binding domain-ARC (NB-ARC), AP2 domains, Myb family transcription factors (Myb), and late embryogenesis abundant (LEA) proteins that are all stress resistance genes.[22] Specifically, NB-ARC proteins deal with general immune resistances, AP2 domains relate to cold temperature and drought resistance, Myb proteins also aid in drought resistance but also help in salinity stress, and LEA genes generally involve resistance from other abiotic stresses.[22] With this information, the next step is to actually introduce versions of these desirable genes into domesticated species. The results from a 2013 study displays the effects of introducing translocations between those desirable traits from A. cristatum to modern wheat species.[25] Using the method of intergenic translocations, the research shows that successful integrations have been completed and that those plants do in fact grow normally as well.[25] Another method from a successful 2015 study involves the use of intergenic hybridization to introduce resistance genes associated with leaf rust.[26] To sum up, the numerous biotic and abiotic resistance genes that A. cristatum presents leads to the success of the species which could and can be applied to modern day food production of the wheat domesticated species.

Notes

  1. ^ a b Hanson, A.A. 1972. Grass varieties in the United States. USDA Agricultural Handbook No.170
  2. ^ a b Rosiere, R.E. Publication year unknown. Introduced Forages. Tarleton State University, Stephenville, Texas. Retrieved 14 November 2011 from http://www.tarleton.edu/Departments/range/Grasslands/Introduced%20Forages/introducedforages.htm
  3. ^ McLean, A., and A.L. van Ryswyk. 1973. Mortality in crested wheatgrass and Russian wildrye. J. Range Manage. 26(6): 431-433.
  4. ^ Agriculture Canada- Agri-Food Canada. 2001. Grass key bio 164., Lethbridge, Alberta: Lethbridge Community College. 85 p.
  5. ^ a b c d Radtke TM, and Wilson SD (2015). A limited role for apparent competition via granivory in the persistence of a grassland invader. Journal of Vegetation Science 26: 995-1004.
  6. ^ USDA, Soil Conservation Service. 1979. Plant materials for use on surface mined lands in western United States. Denver, Colo.
  7. ^ a b Moss, E.H. 1983. Flora of Alberta (2nd edition). University of Toronto Press. Toronto, Ont
  8. ^ a b Plummer, A.P., D.R. Christenson, and S.B. Monsen. 1968. Restoring big-game range in Utah. Utah Division of Fish and Game. Publication No. 68-3.
  9. ^ Granite Seed. 1989. 1989-90 wholesale seed catalog. Granite Seed, Lehi, Utah. 32 pp.
  10. ^ a b c d e f Hafenrichter, A.L., J.L. Schwendiman, H.L. Harris, R.S. MacLauchlan, and H.W. Miller. 1968. Grasses and legumes for soil conservation in the Pacific northwest and great basin states. USDA Soil Conservation Service, Agriculture Handbook No. 339.
  11. ^ a b Elliott, C.R., and M.E. Hiltz. 1974. Forage introductions. Northern research Group, Canada Agriculture Research Branch, Publication No. NRG 74-16.
  12. ^ Laidlaw, T.F. 1977. The Camrose-Ryley project proposal (1975): a preliminary assessment of the surface reclamation potential on the Dodds-Roundhill coal field. Staff Report, Environment Conservation Authority. Edmonton, AB.
  13. ^ Buckerfield’s Ltd. 1980. Seeds for revegetating disturbed land: descriptive manual. Buckerfield’s Seed Division. Vancouver, B.C.
  14. ^ Plummer, A.P., A.C. Hull, Jr., G. Stewart, and J.H. Robertson. 1955. Seeding rangelands in Utah, Nevada, southern Idaho and western Wyoming. USDA Forest Service, Agriculture Handbook No. 71.
  15. ^ a b c d e Zhang J, Zhang JP, Liu WH, Han HM, Lu YQ, Yang XM, Li XQ, Li LH (2015). Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theoretical and Applied Genetics 128: 1827-1837
  16. ^ a b c Ye XL, Lu YQ, Liu WH, Chen GY, Han HM, Zhang JP, Yang XM, Li XQ, Gao AN, Li LH (2015). The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theoretical and Applied Genetics 128: 797-811.
  17. ^ a b c Ochoa, V; Madrid, E; Said, M; Rubiales, D; and Cabrera, A (2015). Molecular and cytogenetic characterization of a common wheat- Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201: 89-95.
  18. ^ Plummer, A.P. 1977. Revegetation of disturbed intermountain area sites. Pages 302-339 IN: J.L. Thomas, ed. Reclamation and use of disturbed land in the southwest. The University of Arizona Press. Tucson, Ariz.
  19. ^ a b Zhang JP, Liu WH, Han HM, Song LQ, Bai L, Gao ZH, Zhang Y, Yang XM, Li XQ, Gao AN, Li LH (2015). De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106: 129-136.
  20. ^ Henderson, D.C., Naeth, A.M.. 2010. Multi-scale impacts of crested wheatgrass invasion in mixed grass prairie. Biological Invasions 7(4):639-650. Retrieved 14 November 2011 from JSTOR database.
  21. ^ Ambrose, Lisa (March 2003). "Emergence of the Introduced Grass Agropyron cristatum and the Native Grass Bouteloua gracilis in a Mixed-grass Prairie Restoration". Restoration Ecology. 11: 110–115. doi:10.1046/j.1526-100X.2003.00020.x.
  22. ^ a b c d Zhang J, Liu W, Han H, Song L, Bai L, Gao Z, Zhang Y, Yang X, Li X, Gao A, & Li L (2015). De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106(2):129-136.
  23. ^ a b c d Vaness BM, Wilson SD, & MacDougall AS (2014). Decreased root heterogeneity and increased root length following grassland invasion. Functional Ecology 28(5): 1266-1273.
  24. ^ a b c Bakker J & Wilson S (2001). Competitive Abilities of Introduced and Native Grasses. Plant Ecology 157(2): 119–127.
  25. ^ a b Song L, Jiang L, Han H, Gao A, Yang X, Li L, & Liu W (2013). Efficient Induction of Wheat-Agropyron cristatum 6P Translocation Lines and GISH Detection. PLoS ONE 8(7): e69501.
  26. ^ Ochoa V, Said M, Cabrera A, Madrid E, & Rubiales D (2015). Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201(1): 89-95.

References

  • Agriculture Canada- Agri-Food Canada. 2001. Grass key bio 164., Lethbridge, Alberta: Lethbridge Community College. 85 p.
  • Bleak, A.T., and W. Keller. 1973. Differential tolerance of some arid-range wheatgrasses to snow mold. J. Range. Manage. 2696): 434-435.
  • Buckerfield’s Ltd. 1980. Seeds for revegetating disturbed land: descriptive manual. Buckerfield’s Seed Division. Vancouver, B.C.
  • Elliott, C.R., and M.E. Hiltz. 1974. Forage introductions. Northern research Group, Canada Agriculture Research Branch, Publication No. NRG 74-16.
  • Granite Seed. 1989. 1989-90 wholesale seed catalog. Granite Seed, Lehi, Utah. 32 pp.
  • Hafenrichter, A.L., J.L. Schwendiman, H.L. Harris, R.S. MacLauchlan, and H.W. Miller. 1968. Grasses and legumes for soil conservation in the Pacific northwest and great basin states. USDA Soil Conservation Service, Agriculture Handbook No. 339.
  • Hanson, A.A. 1972. Grass varieties in the United States. USDA Agricultural Handbook No.170
  • Henderson, D.C., Naeth, A.M.. 2010. Multi-scale impacts of crested wheatgrass invasion in mixed grass prairie. Biological Invasions 7(4):639-650. Retrieved 14 November 2011 from JSTOR database.
  • Laidlaw, T.F. 1977. The Camrose-Ryley project proposal (1975): a preliminary assessment of the surface reclamation potential on the Dodds-Roundhill coal field. Staff Report, Environment Conservation Authority. Edmonton, AB.
  • McLean, A., and A.L. van Ryswyk. 1973. Mortality in crested wheatgrass and Russian wildrye. J. Range Manage. 26(6): 431-433.
  • Moss, E.H. 1983. Flora of Alberta (2nd edition). University of Toronto Press. Toronto, Ont.
  • Plummer, A.P., A.C. Hull Jr., G. Stewart, and J.H. Robertson. 1955. Seeding rangelands in Utah, Nevada, southern Idaho and western Wyoming. USDA Forest Service, Agriculture Handbook No. 71.
  • Plummer, A.P., D.R. Christenson, and S.B. Monsen. 1968. Restoring big-game range in Utah. Utah Division of Fish and Game. Publication No. 68-3.
  • Plummer, A.P. 1977. Revegetation of disturbed intermountain area sites. Pages 302-339 IN: J.L. Thomas, ed. Reclamation and use of disturbed land in the southwest. The University of Arizona Press. Tucson, Ariz.
  • Rosiere, R.E. Publication year unknown. Introduced Forages. Tarleton State University, Stephenville, Texas. Retrieved 14 November 2011 from http://www.tarleton.edu/Departments/range/Grasslands/Introduced%20Forages/introducedforages.htm
  • USDA, Soil Conservation Service. 1979. Plant materials for use on surface mined lands in western United States. Denver, Colo.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Agropyron cristatum: Brief Summary

provided by wikipedia EN

Agropyron cristatum, the crested wheat grass, crested wheatgrass, fairway crested wheat grass, is a species in the family Poaceae. This plant is often used as forage and erosion control. It is well known as a widespread introduced species on the prairies of the United States and Canada.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN