dcsimg

Comprehensive Description

provided by Smithsonian Contributions to Zoology
Aedes (Ochlerotatus) taeniorhynchus (Wiedemann)

This is a widely distributed species, occurring from Massachusetts to Brazil and California to Peru, and throughout the Antilles and Galapagos Islands. The larvae are usually found in salt marshes although they may occur in adjacent freshwater pools, and they may be found far inland where there are brackish pools. Very large populations may build up on the seacoast under conditions of high tide and heavy rains and the adults fly considerable distances from their breeding places. They are persistent biters, feeding at any time of the day out of doors. Aedes taeniorhynchus is one of the major pest species in coastal areas.

DOMINICA RECORD. —Cabrits Swamp, 23 February 1965, light trap (Wirth) 8 ♀ .
license
cc-by-nc-sa-3.0
bibliographic citation
Stone, Alan. 1969. "Bredin-Archbold-Smithsonian biological survey of Dominica: the mosquitoes of Dominica (Diptera: Culicidae)." Smithsonian Contributions to Zoology. 1-8. https://doi.org/10.5479/si.00810282.16

Aedes taeniorhynchus ( German )

provided by wikipedia DE

Aedes taeniorhynchus (Syn.: Ochlerotatus taeniorhynchus), auf Deutsch auch Schwarze Salzwiesenmücke (engl. Black Salt Marsh Mosquito) genannt, ist eine in Amerika beheimatete Stechmückenart. Innerhalb der Sammelgattung Aedes gehört diese Art zur Untergattung Ochlerotatus.[1]

Vorkommen

Aedes taeniorhynchus kommt auf Salzwasserwiesen der Küstenebenen von Massachusetts bis Texas vor. Sie leben ebenfalls auf den Inseln des Atlantic Intracoastal Waterways.[2] Ein weiteres Verbreitungsgebiet ist Mittelamerika und der karibische Raum bis an die Atlantikküste Kolumbiens und Venezuelas. Feuchtwarmes Tropenklima begünstigt die Ausbreitung von Aedes taeniorhynchus.[2]

Beschreibung

Adulte Exemplare der Schwarzen Salzwiesenmücke sind dunkelfarben. Der Rücken ist schwarz und die Seiten sowie die Abdominalsegmente besitzen weiße Streifen.[2]

Taxonomie

Aedes taeniorhynchus gehört innerhalb der Gattung Aedes zur Untergattung Ochlerotatus. Ochlerotatus wurde im Jahr 2000 von John F. Reinert als eigene Gattung aus der Gattung Aedes herausgelöst,[3] aber 2015 von anderen Autoren wieder mit dieser vereinigt. Die Gruppe der Stechmücken, die zuvor der Gattung Ochlerotatus angehört hatten, wird nun wieder in die Untergattung Ochlerotatus gestellt. Daher ist für die Schwarze Salzwiesenmücke auch der Name Aedes (Ochlerotatus) taeniorhynchus geläufig.[1][4]

Lebensweise

Aedes taeniorhynchus lebt häufig in Gemeinschaft und im selben Habitat zusammen mit der Östlichen Salzwiesenmücke (Aedes sollicitans). Die Art tritt auch zusammen mit Anopheles bradleyi, Anopheles crucians und Anopheles atropos auf.[2] Diese Stechmückenart bewohnt die unteren Regionen der Salzwassermarschwiesen, wo Distichlis spicata und Spartina patens vorkommen. Im südlichen Verbreitungsgebiet findet man die Mücken in den Mangrovensümpfen, und an Wuchsorten von Salicornia und des Kreuzblütlers Batis maritima. O. taeniorhynchus. Die Weibchen sind in der Lage 100 bis 200 Eier entlang der Wasserlinie in Senken, regenwasserbestandenen Niederungen, Salzwassermarschen oder Mangrovensümpfen abzulegen. Die Entwicklung der Mücken wird vom unregelmäßigen Wasserstand sowie von Wind und Tide beeinflusst. Obwohl die Art im Salzwasserlebensraum lebt, ist ihre Entwicklung vom Süßwasser abhängig.[5] Unter günstigen Umweltbedingungen schlüpfen die Insekten nach sechs Tagen. Die Tiere sind bereits zwei Tage nach dem Schlüpfen geschlechtsreif und bilden in der Dämmerung Schwärme über Bäumen und Sträuchern. Der Lebenszyklus dieser Stechmückenart wird von Regen- und Trockenzeiten bestimmt. Aedes taeniorhynchus hat ein enormes Reproduktionspotential. Ein Weibchen legt in der Regel in seiner Lebenszeit 100 Eier ab, davon schlüpfen etwa 50 % weibliche Tiere. Geht man davon aus, dass die daraus schlüpfenden Weibchen wiederum 100 Eier ablegen, dann entstehen daraus bereits 5000 Mosquitos. Es ist somit möglich, dass innerhalb von nur zwei Generationen 250.000 Stechmücken entstehen.[6] Wanderbewegungen von Aedes taeniorhynchus sind mit Windgeschwindigkeit, Windrichtung, Landschaftstopographie und dem Vorkommen von Blütennektar korreliert. Es wurde gemessen, dass Weibchen zwei bis fünf Meilen weit fliegen können, mit unterstützendem Wind können auch 30 Meilen und mehr erreicht werden.[2]

Nahrungsverhalten

Für die Eiablage benötigen die Weibchen Blut. Im Tageslicht verbergen sich die Tiere meist in dichter Vegetation. Sie beginnen mit der aktiven Nahrungssuche in der Abenddämmerung und beenden diese im Morgengrauen. Während des Tages kommt es zu Stichen meist nur, wenn sich Menschen in unmittelbarer Nähe der Weibchen aufhalten.[2] In anderen Zonen kann es zu jeder Tageszeit zu Stichen kommen.[6] Gestochen werden Vögel und Säugetiere.[2] In den Populationen der Stechmücke in Florida wurde ein gewisser Grad an „Autogenie“ beobachtet, d. h. Weibchen sind dort in der Lage auch ohne Blutaufnahme Eier zu bilden. In nördlichen Breitengraden ihres Verbreitungsgebietes können die Eier abhängig von Tageslänge und Wassertemperatur in eine Diapause treten. Im Süden erfolgt der Reproduktionszyklus hingegen das ganze Jahr.[2]

Beziehung zu Menschen

Die Weibchen von Aedes taeniorhynchus sind zu bestimmten Tageszeiten für ihr penetrantes Stechverhalten bekannt und gelten bei Menschen und Nutztieren von North Carolina bis Florida und im Karibischen Raum als Schadinsekten. Unkontrollierte Mückenpopulationen können zur Plage werden, wenn sie in sehr großen Schwärmen auftreten. Sie haben gute Flugeigenschaften und können in Massen in bewohnten Gebieten auftreten.[6] Aedes taeniorhynchus wurde als Überträger bestimmter Krankheiten wie Enzephalitis, EEE-Virus (Eastern Equine Encephalomyelitis Virus),[7] Dirofilaria immitis und anderen identifiziert. 1989 nach dem Hurrikan Hugo wurde Aedes taeniorhynchus zur dominierenden Stechmückenspezies in der Karibik.[6]

Biologische Kontrolle

Die Entwicklung der Larven der Schwarzen Salzwiesenmücke wurde ursprünglich durch das Ausbringen von Mineralöl auf die Wasseroberfläche bekämpft. In einigen Gegenden der USA (z. B. Louisiana) werden großflächig Insektizide appliziert. Mittlerweile sind einige natürliche Antagonisten wie Bacillus thuringiensis, Nematoden und einige Pilzarten identifiziert, die zu einer biologischen Kontrolle der Stechmücken verwendet werden können.[8][9]

Anmerkungen und Einzelnachweise

  1. a b Richard C. Wilkerson, Yvonne-Marie Linton, Dina M. Fonseca, Ted R. Schultz, Dana C. Price, Daniel A. Strickman: Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships. PLoS ONE 10, 7, e0133602, Juli 2015 doi:10.1371/journal.pone.0133602
  2. a b c d e f g h Charles Apperson: The Black Salt Marsh Mosquito, Aedes taeniorhynchus. rutgers.edu (Memento vom 6. Februar 2012 im Internet Archive)
  3. John F. Reinert, Ralph E. Harbach & Ian A. Kitching: Phylogeny and classification of Aedini (Diptera: Culicidae), based on morphological characters of all life stages. Zoological Journal of the Linnean Society, 142, 3, S. 289–368, 2004
  4. mosquitocatalog.org (Memento vom 18. Mai 2015 im Internet Archive) (PDF)
  5. Maurice W. Provost: The Occurrence of Salt Marsh Mosquitoes in the Interior of Florida. In: The Florida Entomologist, The Florida Entomological Society, 1951
  6. a b c d Biologie von Ochlerotatus taeniorhynchus (Memento vom 11. Juli 2011 im Internet Archive) (PDF; 34 kB) Mosquito Control Files
  7. Isolation of EEE virus from Ochlerotatus taeniorhynchus and Culiseta melanura in coastal South Carolina (Memento vom 14. April 2013 im Webarchiv archive.today)
  8. T. G. Floore, J. L. Petersen, K. R. Shaffer: Efficacy studies of Vectobac® 12AS and Teknar® HP-D larvicides against 3rd-instar Ochlerotatus taeniorhynchus and Culex quinquefasciatus in small plot field studies. In: Journal oft the American Mosquito Control Association, 2004
  9. Alberto Santamarina Mijares, Israel García Avila, José Rivera Rosales and Angel Solís Montero: Release of Romanomermis iyengari (Nematoda: Mermithidae) to control Aedes taeniorhynchus (Diptera: Culicidae) in Punta del Este, Isla de la Juventud, Cuba. In: Journal of Medical Entomology, 1996

Literatur

  • S. J. Carpenter, W. J. LaCasse: Mosquitoes of North America (North of Mexico). University of California Press, Berkeley 1955.
  • L.L. Coffey, S.C. Weaver: Susceptibility of Ochlerotatus taeniorhynchus and Culex nigripalpus for Eeverglades virus. In: American Journal of Tropical Medicine Hyg., 2005, PMID 16014824.
  • P. Manrique-Saide, M. Bolio-González, C. Sauri-Arceo, S. Dzib-Florez S, A. Zapata-Peniche: Ochlerotatus taeniorhynchus: a probable vector of Dirofilaria immitis in coastal areas of Yucatan, Mexic. In: Journal of Medicinal Entomoly, 2008, PMID 18283960

Weblinks

 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Aedes taeniorhynchus: Brief Summary ( German )

provided by wikipedia DE

Aedes taeniorhynchus (Syn.: Ochlerotatus taeniorhynchus), auf Deutsch auch Schwarze Salzwiesenmücke (engl. Black Salt Marsh Mosquito) genannt, ist eine in Amerika beheimatete Stechmückenart. Innerhalb der Sammelgattung Aedes gehört diese Art zur Untergattung Ochlerotatus.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Aedes taeniorhynchus

provided by wikipedia EN

Aedes taeniorhynchus, or the black salt marsh mosquito, is a mosquito in the family Culicidae. It is a carrier for encephalitic viruses including Venezuelan equine encephalitis[3] and can transmit Dirofilaria immitis.[4] It resides in the Americas and is known to bite mammals, reptiles, and birds. Like other mosquitoes, Ae. taeniorhynchus adults survive on a combination diet of blood and sugar, with females generally requiring a blood meal before laying eggs.[5]

This mosquito has been studied to investigate its development, physiological markers, and behavioral patterns, including periodic cycles for biting, flight, and swarming. This species is noted for developing in periodic cycles, with high sensitivity to light and flight patterns that result in specific wingbeat frequencies that allow for both species detection and sex distinction.[6][7]

Ae. taeniorhynchus is known to be a pest to humans and mechanisms for controlling Ae. taeniorhynchus populations have been developed. The United States has spent millions of dollars to control and contain Ae. taeniorhynchus.[8]

Taxonomy

German entomologist Christian Rudolph Wilhelm Wiedemann described Ae. (Ochlerotatus) taeniorhynchus in 1821. Alternate namings for the species include Culex taeniorhynchus (Wiedemann, 1821), Ochlerotatus taeniorhynchus (Wiedemann, 1821), and Culex damnosus (Say 1823).[9][10]

Aedes niger, also known as Aedes portoricensis, is a subspecies of Ae. taeniorhynchus.[11] It can be identified by its last posterior tarsal joint, which is mostly black rather than banded in white.[11] It resides in Florida and can migrate as far as 95 mi (153 km).[11]

Analysis of microsatellite data on the genes of Ae. taeniorhynchus living in the Galapagos Islands show genetic differentiation between coastal and highland mosquito populations.[12] Data indicates minimal gene flow between the populations that only occurs during periods of heightened rainfall.[12] Genetic differences suggest that habitat differences led to driving adaptation and divergence in the species, eventually leading to future speciation.[12] Highland mosquitoes have population features characteristic of a founder effect due to low genetic diversity manifesting as low heterozygosity and low allelic richness, which may have resulted from egg dormancy during periods of dryness.[12]

Description

Aedes taeniorhynchus adult wing
Aedes taeniorhynchus adult wing
Aedes taeniorhynchus adult proboscis

Ae. taeniorhynchus adults are mostly black with areas of white banding. A single white band appears at the center of the proboscis, multiple white bands span the distal ends of the legs following the leg joints, and the last hind leg joints are completely colored white.[11] Ae. taeniorhynchus wings are long and narrow with scaled wing veins.[13] Experimental investigation of evolutionary coloration of Ae. taeniorhynchus yielded negative results.[14] Mosquitoes reared in conditions of darkness, backgrounds colored black, white, or green, and lighting conditions of fluorescent light or sunlight, showed no color changes in the fat body nor in the head capsule, saddle, or siphon.[14] This lack of cryptic coloring is suggested to be due to a lack of threat to the species; because the species habitat is a temporary water source used for larval growth, this temporary environment has few predators and relatively little danger.[14]

Males and females can be distinguished based on their antennae: males have plumose (feather-like) antennae while females antennae are sparsely haired.[13]

Noise detection

Ae. taeniorhynchus swarms can be detected through sound. Noises with frequencies between 0.3 and 3.4 kHz at sound level 21 dB are detectable across 10–50 m in distance. An individual mosquito can be heard across 2–5 cm in distance when sound level rises to 22-25 dB.[7] Male and female mosquitoes can also be distinguished by their wingbeat frequencies, which are 700–800 Hz for males and 400–500 Hz for females.[7] As a result, flight sounds are used to determine flight activity and distinguish sex of groups.

Microbiome

Aedes mosquitoes have a characteristic microbiome that modulate the effects of diet.[15] Microbiome makeup is reported to differ between males and females in Aedes mosquitoes, such as Aedes albopictus[16] and Aedes aegypti.[17] Namely, in Aedes albopictus, males feed on nectar to acquire Actinomycetota while females contain Pseudomonadota (such as Enterobacteriaceae) that mediate levels of redox stress caused by feeding on blood-meals.[16]

Similar species

Aedes taeniorhynchus adult abdomen
Aedes taeniorhynchus adult abdomen

The main physical distinctions between Ae. taeniorhynchus and other species come from the white banding that covers several body parts along Ae. taeniorhynchus. The species, like other Aedes mosquitoes, exhibits basal banding of the abdomen, but Ae. taeniorhynchus also uniquely exhibits white-tipped palps and a central white ring on the proboscis.[13]

This species looks similar to Aedes sollicitans, except for subtle differences in the larval and adult stages. In the larval stage, Ae. taeniorhynchus has a shorter breathing tube, its scale patches are rounded instead of pointed at the tips, and spines that line the edges of each scale patch are smaller near the scale patch base.[11] In the adult stage, Ae. taeniorhynchus is smaller and mostly black while Ae. sollicitans is golden brown.[11]

The species also bears similarity to Aedes jacobinae, which falls within the Taeniorhynchus subgenus due to its particular hypopygium structure, but it is considered a distinct species because it does not have leg markings.[18] Similarly, this species can also be distinguished from Aedes albopictus, commonly known as the Asian Tiger Mosquito, as Ae. taeniorhynchus, unlike Ae. albopictus, does not have markings on its back.[19]

Distribution

Ae. taeniorhynchus is widely distributed across North and South America, though more highly concentrated in southern regions.[20][21] At the time of the fly's initial discovery the species resided in coastal regions, and then gradually moved towards the interior of the Americas.[18] Gene flow analysis derived from microsatellite data indicated that mosquitoes located in the Galapagos Island in the Pacific Island frequently migrate between islands on an isolation by distance basis.[22] Incidence of ports was a strong factor contributing to migration, suggesting human-aided transport contributed to inter-island migration.[22]

Habitat

Example of mangrove habitat

Ae. taeniorhynchus resides in habitats with a temporary water source, making mangrove and salt marshes or other areas with moist soil popular locations for egg laying and immature growth.[23] These habitats are highly variable but often have high salinity with an observed soluble salt content in soil of at least 1644 ppm.[24]

In the case of environmental conditions of dryness and low temperatures which are unfavorable for egg hatching, eggs can remain dormant for years.[25] Factors controlling the scale of A. taeniorhynchus growth during pre-emergence depend on environmental conditions matching moisture level and temperature. In Southern Florida, the main factors are tide height and amount of rainfall,[26] while sites in California rely on tide height alone.[27] In Virginia, these factors are limited to levels of rainfall and temperature.[28] Generally favorable factors can turn negative at extreme values, causing survival rate to decline. Excess water washes mosquito eggs away[26] and extremely high temperatures can lead to water source evaporation.[27]

This species exhibits sensitivity to temperature, with differences found for constant, split, and alternating temperatures.[29] At constant temperatures of 22, 27, and 32 °C, life span increased with temperature, but at split temperatures, mosquitoes were also split between life and death.[29] At different temperatures, the rate of aging was independent in males, but higher for females living at 22 and 27 °C.[29] At alternating temperatures, life spans were temperature independent for all sexes and temperatures, except for favoring of alternation between 22 and 27 °C by females.[29]

Mating sites for Aedes taeniorhynchus are often in contact with Distichlis spicata

Breeding locations for Ae. taeniorhynchus are often in contact with vegetation such as Distichlis spicata (spike grass) and Spartina patens (salt meadow hay) in grass salt marshes and Batis maritima (saltwort) and species from the Salicornia genus (glassworts) in mangroves.[21] This species of mosquito is found in close proximity to other mosquitoes that reside in marches. These include Aedes sollicitans (eastern salt marsh mosquito), Anopheles bradleyi, and A. atropos.[21]

Life history

According to observational field studies, Ae. taeniorhynchus carries out several behavioral trends at different stages of life. Growth and pupation of this species were found to be affected by environmental factors of nutrition, population density, salinity, light-dark, and temperature.[30]

Eggs

Females lay eggs on dry ground, and egg hatching is triggered by the presence of water, such as rain or flooding.[31] Egg laying yield from females, an indicator of fecundity, differs based on diet: in populations of low autogeny, rare autogenous females each laid less than 30 eggs, while egg yield was significantly higher in populations with majority autogenous females.[25] Eggs laid in the right temperature and humidity conditions undergo embryogenesis, then stay dormant until hatching.[30]

Aedes taeniorhynchus 4th larval instar
4th larval instar
Aedes taeniorhynchus Pupa
Pupa
Adult male Aedes taeniorhynchus
Adult male
Aedes taeniorhynchus stages in life cycle

Larval in-stars

Upon hatching, the species progresses through 4 larval instars: the first 3 instars are affected primarily by temperature, with minor effects by salinity; the fourth instar is affected by all environmental factors.[30] In the fourth instar, increased food sped up development time while crowding and salinity stunted growth.[30]

Preferred temperature for all 4 instars is between 30 °C and 38 °C but average preferred temperature increases with age.[32] The first instar prefers an average temperature of 31.8 °C and the early fourth instar prefers a temperature of 34.6°.[32] The late fourth instar, however, has a lower preferred temperature than the early fourth instar, at 33.0°.[32] Starved larvae were found to have a wider preferred temperature range that is centered around lower temperatures.[32] Laboratory larval colonies cultured for years 27.0 °C were found to prefer consistently lower temperatures.[32]

Fourth-instar larvae were noted to drink sea water (100 nL/h) and secrete hyperosmotic fluid through the rectum.[33] This fluid is similar to seawater but with 18-fold higher potassium levels.[33] Because the secreted fluid does not allow for osmotic balance with the ingested fluid, studies suggest that the anal papillae aid in salt secretion.[33]

Pupa

All environmental factors affect pupation regarding the insect's diurnal rhythm, which has a period of 21.5 hours.[30] Factors leading to an increased pupa period include erase of light-dark cycles with all dark or all light conditions, increased salinity, and crowding. These trends continued to adhere to a preference for temperatures close to 27 °C or 32 °C.[30] Pupa also exhibit differential aggregation formation due to these environmental factors. Cluster type aggregations form alongside temporary crowding and excess of food while ball type aggregations may manifest out of temporary crowding but lack of food.[34] At lower constant temperatures of 22 °C and 25 °C, cluster type aggregations may form but higher temperatures of 30° and 32 °C inhibit aggregation formation.[34] Aggregations produced pupa with slightly heavier dry body weights and promoted developmental synchronization in ecdysis and greater likelihood of migration at emergence.[34]

Adult stages

Males and females mosquitoes emerge from their egg sites in similar ways. They remain in their sources of water for 12–24 hours.[23] Adults then migrate away from the egg laying ground over the course of 1–4 days.[8] Different sexes exhibit differential migration, with most females traveling at least 20 mi (32 km), and most males traveling no farther than 2 mi (3.2 km).[8] Female migration follows a random pattern with no limitation on migration direction and migration occurring along a 5-day cycle.[8] Males initially travel with females until they hit a 1–2 mi (1.6–3.2 km) stopping point, where they replace migration with swarming.[8]

Flight patterns become established in the adult stage and are not affected by behavioral patterns from earlier stages of life.[6] Adults begin biting at day 4 and follow a 5-day cycle until death. Between the sexes, peak biting intensity occurs in females at ages 4, 9, and 14 days.[23] Adult female mosquitoes continue living and laying eggs for 3–4 weeks before dying.[23] Those that survive longer continue to bite but stop laying eggs.[23]

Food resources

Blood

Adult female Aedes taeniorhynchus
Adult female Aedes taeniorhynchus

Ae. taeniorhynchus eggs can mature both autogenously and anautogenously, with autogenous eggs feeding on sugar and anautogenous eggs requiring a blood meal.[35] These food sources promote maturation by producing hormones from the corpora allata (CA) and medial neurosecretory cell perikarya (MNCA), of which only MNCA hormone release is responsible for anautogenous maturation.[35] Larval dependence on a blood meal can be influenced to make mosquitoes less autogenous, by not allowing females to feed on sugar and imposing other dietary changes.[36]

Aedes taeniorhynchus is an ectoparasite of waved albatrosses

Adult mosquitoes feed on a combination diet of blood and sugar, with the optimal diet consisting of sugar for males and both blood and sugar for females.[5] Most Ae. taeniorhynchus rely on mammals and birds for blood meals, especially depending on bovine, rabbits, and armadillos.[37] Mosquitoes in the Galapagos Islands feed on mammals and reptiles, with equal preference but feed little on birds.[38] Since this differs from the typical feeding of Ae. taeniorhynchus on birds, studies suggest the species is an opportunistic feeder, in which it feeds more on the most readily available, easily accessible organisms.[38] Ae. taeniorhynchus acts as an ectoparasite to Diomedea irrorata, known as waved albatrosses.[39] Mosquitoes bite the waved albatrosses, directly leading to or transmitting diseases that cause nestling mortality, colony migration, or egg desertion in albatrosses.[39]

Experimental studies show that both sexes can survive on a sugar-only diet for 2–3 months, but females require blood meals for egg production.[40] In females, supplementation of a blood meal in autogenous mosquitoes increased both egg production and lifespan.[40] Additional observational studies of Ae. taeniorhynchus in nature showed that habitat impacts the effect of the meal source: females inhabiting mangrove swamps could produce eggs even without blood meals, but those from a grassy salt marsh environment could not.[41] Females from both habitats, however, were still able to produce eggs when given blood meals.[41]

Sugar

Studies observing unrestricted sugar intake of females correlated sucrose intake level with maximum accumulation of stored energy reserves.[42] In contrast, sucrose intake level does not correlate with decreased activity or changes in senescence.[42]

Carbohydrate feedings of female mosquitoes in a laboratory setting indicated that carbohydrates glucose, fructose, mannose, galactose, sucrose, trehalose, melibiose, maltose, raffinose, melizitose, dextrin, mannitol, and sorbitol are most effective to aid survival; arabinose, rhamnose, fucose, sorbose, lactose, cellobiose, inulin, a-methyl mannoside, dulcitol, and inositol are not used by the species; xylose, glycogen, a-methyl glucoside, and glycerol are used but at a slow metabolic rate; and sorbose could not be metabolized.[43] Feeding with glucose allowed for maximum flight speed while other carbohydrates, such as all pentoses, sorbose, lactose, cellobiose, glycogen, inulin, a-methyl mannoside, dulcitol, and inositol were insufficient to allow flight, indicated by a delay in flight after feeding.[29]

Nectar

If emergence occurs at a location with flowers, both sexes feed on nectar prior to migration.[44] Analysis of fructose and glycogen content indicate that mosquitoes often feed on nectar soon after dark and feed sparingly on nectar during the day.[45]

Behavior

Mating

Males become sexually mature about 2 days after emergence, and females become sexually mature at an age of 12 days, with plans to mate only once.[21]

Observational studies of mating interactions both in a laboratory setting and field setting noted copulation between mosquitoes occurring after sunset. Results noted that copulation depends on age of females, with insemination occurring with females of ages 30–40 hours.[46] In both settings studied, females are capable of mating without inducing insemination, as only 1% of females contained sperm after 2 notes of potential mating.[46] Mating not only provides an opportunity for insemination but also contributes to vitellogenin synthesis in females, as experimental injections of male accessory gland fluid (MAGF) has been shown to cause release of corpus cardiacum (CC) stimulating factor in the ovaries, which spurs research of egg development neurosecretory hormone (EDNH).[47]

Other laboratory studies of the species noted an age dependence in both females and males for successful copulation and insemination.[48] Copulation is initiated by males and only occurs when the male first disengages its legs, interlocks the male and female genitalia in an end-to-end position, and then hangs from the female for a short duration of time.[48] Insemination can only result from copulation.[48] If copulation is successful, the mosquitoes pair in flight, then land and remain together for a few seconds.[48] To end copulation, the male flies away or the female flies while carrying the male until it falls.[48]

Most young females rejected copulation attempts (unreceptive), and many of those that copulated rejected insemination attempts (refractory), with acceptance of copulation and insemination (receptive) both increasing with female age when exposed to an older male cohort.[48] Unreceptive females avoided males by flying away with sudden increases in speed or sharp turns.[48]

During mating, males can transfer substances produced from their accessory glands that affect female physiology and behavior.[49] These accessory gland substances can limit or improve female reproductive activities.[49] Limitations include temporarily prevention of future female mating, oviposition stimulation, and reduced host-seeking while improvements involve changes to female circadian rhythm and metabolic priorities that cause higher chance of reproduction.[49]

Parental care

Females are known to practice oviposition, with preference for high moisture soils, with water saturation greater than 70%.[50] Female clutch sizes are 100-200 eggs, with at least one clutch laid per female.[21]

In experimental studies with ovariectomized female mosquitoes, females were unable to synthesize vitellogenin, a yolk-protein precursor, unless given a donor ovary from a sugar-fed or blood-fed mosquito.[51] Vitellogenin synthesis still occurred when the donor ovary came from Ae. aegypti, and ovary derivation from a blood-fed mosquito caused corpus cardiacum stimulating factor production, indicating that the hormonal processes for oviposition are not species specific.[51]

In a study of eggs laid in Rhizophora mangle L. (red mangrove) and Avicennia germinans L. (black mangrove) forest basins, egg occurrence was correlated with elevation and detritus level.[52] Oviposition was directed from black mangrove basins to red mangrove basins, possibly due to reduced detritus and reduced organic content in the soil caused by black mangrove grazing by Melampus coffeus L., a snail.[52] Because eggshells and eggs share the same habitat, it is suggested that oviposition may be delineated using eggshells.[52] Eggshell sampling analysis from 34 mangrove forest sites indicated that all mangrove basin forests can yield successful Ae. taeniorhynchus production, regardless of forest geomorphology, soil, and vegetation but recently flooded sites are most optimal.[53]

Additionally, sulfates and other salts were deemed favorable to ovipositing females in a laboratory setting but sulfate concentrations in the field may be too low for this effect to be significant.[54] Substrate texture was also determined to be a factor contributing to oviposition, with studies of egg laying on sand particle size indicating a preference for sand particles sized from 0.33 to 0.62 mm.[55]

Flight cycles

Adult female mosquitoes ready to lay eggs differ from other adult females in many important behaviors. They perform a special flight at ages 7, 12, and 17, following a 5-day cycle.[23] Changes in diet have effects on flight in males and females: males fed sugar alone exhibited changes in flight patterns that resembled cyclic swarming, females fed sugar alone exhibited consistent flight patterns consisting of a 4-week cycle of flight 40 minutes during dark and 20 minutes during light, females fed sugar and blood experienced reduced flight after 2 weeks, and females fed blood alone flew no more than 10 days.[40] Starved females later fed blood stayed sedentary for 8 hours before returning to flight.[40] Flights are occur with the purpose of acquiring nectar, with flight distance depending on wind speed, direction, landscape, and nectar availability.[21] Females typically fly 2–5 miles in search of nectar, but flights ranging 30 miles have been recorded as a result of other flight factors.[21] Adults searching for a blood meal may also fly up to 25 miles.[19]

Flight patterns are these mosquitoes are closely related to light sensitivity, as flight patterns increase with strength of moonlight: females increase flight activity from 95% at quarter moon to 546% at full moon.[56] Male and female adult mosquitoes are repelled by light,[31] allowing mosquitoes to be caught with light traps.[8][57] However, females ready to lay eggs to not exhibit this behavior.[23] In an experimental setting, mosquitoes raised under conditions of 12 hr light : 12 hr dark were found to exhibit flight activity at both light-off and light-on periods in a bimodal alternans pattern. Mosquitoes adjusted to new light conditions within 24–36 hours, in which a delayed light-off resets the pattern but an early light-off does not.[6]

Adult males begin forming top-swarms beginning at an age of 4 days and lasting until 2–3 weeks of age.[23] These swarms form every evening and morning at a fixed location and time[23] and last for a maximum of 30 minutes.[21] In field observations of Ae. taeniorhynchus in Florida, morning and evening swarms were typically halfway finished by the time point of 4 minutes before and after twilight, respectively.[23] The initial stimulus for swarming behavior is unknown, but time spent swarming depends on sensitivity of individual males to the swarming driving force and swarm size, with small swarms lasting for 12 minutes and large swarms lasting for 27 minutes.[23] These swarms are characterized as transient passage swarms, where males participate in the swarm for 1.5 minutes at a time rather than the full-time.[23] Despite the act of males forming top-swarms, mating has not been observed to coincide with swarming.[23]

Parasites

Parasites of this species include Amblyospora polykarya, a species of Microspora that lasts for a single generation on Ae. taeniorhynchus,[58] and Goelomomyces psorophorae, a fungus impacting mosquito ovaries that stops egg maturity and kills all larvae.[59]

Blood meal analysis and PCR-based parasite screening of mosquitoes in the Galapagos Islands suggested relationships between the species and Hepatozoon parasites infecting reptiles in the area.[38] The occurrence of a mixed Hepatozoon population in the reptile host suggests that Ae. taeniorhynchus caused a breakdown of the host-species relationship between some Heptazoon parasties and native reptiles.[38] In a topological analysis of parasitism in the food web, Ae. taeniorhynchus, along with Culex tarsalis, was found the most significant organisms within a predator-parasite sub-web, meaning they have the most food web connections among organisms mapped.

Disease transmission

West Nile Virus

Ae. taeniorhynchus is a carrier for West Nile Virus, mosquito iridescent virus,[60] the eastern and western type of equine encephalomyelitis,[61] Venezuelan equine encephalomyelitis virus,[3] and yellow fever virus.[62] Experimental studies also established that the species is capable of mechanical transmission of Bacillus anthracis.[63] Experimental studies regarding Rift Valley fever virus showed that infectivity is independent of temperature, but viral dissemination and transmission is faster at higher temperatures.[64]

This species can transmit Dirofilaria immitis, a filarial worm that can cause heartworm in dogs.[4] Infection by D. immitis occurs through parasite establishment in the Ae. taeniorhynchus Malpighian tubules in a process that changes the microvillar border to impede fluid transport.[65] The parasite takes up to 48 hrs to establish itself in its host; establishment may not occur if the host is resistant.[65] This parasite was also seen to spread to flightless cormorants in the Galapagos, with gene flow analysis correlating parasitic infection with Ae. taeniorhynchus migration patterns and suggesting that Ae. taeniorhynchus is the likely vector for transmission.[22]

Interactions with humans

This species of mosquito is considered a pest among humans, with Florida districts attempting to control the mosquitoes since 1927 and having spent US$1.5 million on insect control in 1951.[8] Copper acetoarsenite, known as Paris green, is used as an insecticide for Ae. taeniorhynchus larvae at the species breeding site, since the substance acts as a toxic stomach poison.[66] DDT, another insecticide, was also deemed to be effective against the salt marsh mosquitoes and has been used for Ae. taeniorhynchus treatment in the past.[67] Trap-bait combinations tested against the species indicate that CDC-type traps with carbon dioxide, octenol, and heat as bait increase the trapping success of Ae. taeniorhynchus.[68]

Humans have also tried to limit biting from Ae. taeniorhynchus because it flies very fast, and they start the blood extraction quickly, compared to the average mosquito, by wearing chemically treated protective clothing. Clothing treated with permethrin [(3-phenoxyphenyl)methyl (±) cis/trans 3-(2-dichloroethenyl)2, 2-dimethylcyclopropanecarboxylate] alongside application of deet (N,N-diethyl-m-toluamide) to the skin were shown to be extremely effective in reducing mosquito bites compared to usage of only one form of protection or no protection.[69] The Off! Clip-on Mosquito Repellent device, which releases pyrethroid insecticide metofluthrin in vapor form, was also evaluated against Ae. taeniorhynchus in two Florida field location and was found to provide 79% protection from mosquito bites for 3 hrs.[70]

Other toxins have been identified against Ae. taeniorhynchus. Bacillus thuringiensis var. kurstaki (HD-1) can produce a parasporal crystal in the form of a toxic inclusion body.[71] Proteins isolated from a parasporal crystal, yielded two distinct proteins of types k-1 and k-73, of which only k-1, a 65 kD protein, was found to be toxic to Ae. taeniorhynchus larvae.[71]

See also

References

  1. ^ "Ochlerotatus taeniorhynchus (Black salt marsh mosquito) (Aedes taeniorhynchus)".
  2. ^ "ITIS - Report: Aedes taeniorhynchus".
  3. ^ a b Turell, Michael J.; Ludwig, George V.; Beaman, Joseph R. (1992-01-01). "Transmission of Venezuelan Equine Encephalomyelitis Virus by Aedes sollicitans and Aedes taeniorhynchus (Diptera: Culicidae)". Journal of Medical Entomology. 29 (1): 62–65. doi:10.1093/jmedent/29.1.62. ISSN 0022-2585. PMID 1552530.
  4. ^ a b Connelly, J. K. Nayar and C. R. (2017-02-03). "Mosquito-Borne Dog Heartworm Disease". edis.ifas.ufl.edu. Retrieved 2019-09-29.
  5. ^ a b Briegel, Hans; Kaiser, Claire (1973). "Life-Span of Mosquitoes (Culicidae, Diptera) under Laboratory Conditions". Gerontology. 19 (4): 240–249. doi:10.1159/000211976. ISSN 0304-324X. PMID 4775101.
  6. ^ a b c Nayar, J. K.; Sauerman, D. M. (1971-06-01). "The Effect of Light Regimes on the Circadian Rhythm of Flight Activity in the Mosquito Aedes Taeniorhynchus". Journal of Experimental Biology. 54 (3): 745–756. doi:10.1242/jeb.54.3.745. ISSN 0022-0949. PMID 5090100.
  7. ^ a b c Mankin, R.W. (1994). "Acoustic detection of Aedes taeniorhynchus swarms and emergence exoduses in remote salt marshes" (PDF). Journal of the American Mosquito Control Association. 10 (2): 302–308.
  8. ^ a b c d e f g Provost, Maurice W. (September 1952). "The Dispersal of Aedes taeniorhynchus. 1. Preliminary Studies" (PDF). Mosquito News. 12: 174–90.
  9. ^ "Taxonomy - Ochlerotatus taeniorhynchus (Black salt marsh mosquito) (Aedes taeniorhynchus)". UniProt. Retrieved 20 November 2019.
  10. ^ "ITIS Standard Report Page: Aedes taeniorhynchus". www.itis.gov. Retrieved 2020-02-05.
  11. ^ a b c d e f Komp, W. H. W. (1923). "Guide to Mosquito Identification for Field Workers Engaged in Malaria Control in the United States". Public Health Reports. 38 (20): 1061–1080. doi:10.2307/4576745. ISSN 0094-6214. JSTOR 4576745.
  12. ^ a b c d Bataille, Arnaud; Cunningham, Andrew A.; Cruz, Marilyn; Cedeno, Virna; Goodman, Simon J. (2010). "Seasonal effects and fine-scale population dynamics of Aedes taeniorhynchus, a major disease vector in the Galapagos Islands". Molecular Ecology. 19 (20): 4491–4504. doi:10.1111/j.1365-294X.2010.04843.x. ISSN 1365-294X. PMID 20875066. S2CID 31607384.
  13. ^ a b c Agramonte, Natasha Marie; Connelly, C. Roxanne (April 2014). "Black Salt Marsh Mosquito - Aedes taeniorhynchus (Wiedemann)". University of Florida Entomology and Nematology Department. Retrieved 2019-11-20.
  14. ^ a b c Benedict, M. Q.; Seawright, J. A. (1987-01-01). "Changes in Pigmentation in Mosquitoes (Diptera: Culicidae) in Response to Color of Environment". Annals of the Entomological Society of America. 80 (1): 55–61. doi:10.1093/aesa/80.1.55. ISSN 0013-8746.
  15. ^ Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George (November 2014). "The Insect Microbiome Modulates Vector Competence for Arboviruses". Viruses. 6 (11): 4294–4313. doi:10.3390/v6114294. PMC 4246223. PMID 25393895.
  16. ^ a b Valiente Moro, Claire; Tran, Florence Hélène; Raharimalala, Fara Nantenaina; Ravelonandro, Pierre; Mavingui, Patrick (2013-03-27). "Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus". BMC Microbiology. 13: 70. doi:10.1186/1471-2180-13-70. ISSN 1471-2180. PMC 3617993. PMID 23537168.
  17. ^ Terenius, Olle; Lindh, Jenny M.; Eriksson-Gonzales, Karolina; Bussière, Luc; Laugen, Ane T.; Bergquist, Helen; Titanji, Kehmia; Faye, Ingrid (June 2012). "Midgut bacterial dynamics in Aedes aegypti". FEMS Microbiology Ecology. 80 (3): 556–565. doi:10.1111/j.1574-6941.2012.01317.x. ISSN 1574-6941. PMID 22283178.
  18. ^ a b Serafim, Jose; Davis, Nelson C. (1933-03-01). "Distribution of AËdes (Taeniorhynchus) Taeniorhynchus (Wiedemann). Aedes (Taeniorhynchus) Jacobinae, New Species". Annals of the Entomological Society of America. 26 (1): 13–19. doi:10.1093/aesa/26.1.13. ISSN 0013-8746.
  19. ^ a b "Aedes taeniorhynchus". www.coj.net. Archived from the original on June 14, 2013. Retrieved 2019-10-02.
  20. ^ "WRBU: Aedes taeniorhynchus". www.wrbu.org. Retrieved 2019-09-29.
  21. ^ a b c d e f g h "New Jersey Mosquito Species: Rutgers Center for Vector Biology". vectorbio.rutgers.edu. Retrieved 2019-10-02.
  22. ^ a b c Bataille, Arnaud; Cunningham, Andrew A.; Cruz, Marilyn; Cedeño, Virna; Goodman, Simon J. (2011-12-01). "Adaptation, isolation by distance and human-mediated transport determine patterns of gene flow among populations of the disease vector Aedes taeniorhynchus in the Galapagos Islands". Infection, Genetics and Evolution. 11 (8): 1996–2003. doi:10.1016/j.meegid.2011.09.009. ISSN 1567-1348. PMID 21968211.
  23. ^ a b c d e f g h i j k l m Nielsen, Erik Tetens; Nielsen, Astrid Tetens (1953). "Field Observations on the Habits of Aedes Taeniorhynchus". Ecology. 34 (1): 141–156. doi:10.2307/1930314. ISSN 0012-9658. JSTOR 1930314.
  24. ^ Knight, Kenneth L. (June 1965). "Some Physical and Chemical Characteristics of Coastal Soils Underlying Mosquito Breeding Areas" (PDF). Mosquito News. 25: 154–159.
  25. ^ a b O'meara, George F.; Edman, John D. (1975-10-01). "Autogenous egg production in the salt-marsh mosquito, aedes taeniorhynchus". The Biological Bulletin. 149 (2): 384–396. doi:10.2307/1540534. ISSN 0006-3185. JSTOR 1540534. PMID 1239308.
  26. ^ a b Ritchie, Scott A.; Montague, Clay L. (1995-02-01). "Simulated populations of the black salt march mosquito (Aedes taeniorhynchus) in a Florida mangrove forest". Ecological Modelling. 77 (2): 123–141. doi:10.1016/0304-3800(93)E0083-F. ISSN 0304-3800.
  27. ^ a b Lang, James D. (July 2003). "Factors affecting immatures of Ochlerotatus taeniorhynchus (Diptera: Culicidae) in San Diego County, California". Journal of Medical Entomology. 40 (4): 387–394. doi:10.1603/0022-2585-40.4.387. ISSN 0022-2585. PMID 14680101. S2CID 20639393.
  28. ^ Ailes, M. C. (May 1998). "Failure to predict abundance of saltmarsh mosquitoes Aedes sollicitans and A. taeniorhynchus (Diptera: Culicidae) by using variables of tide and weather". Journal of Medical Entomology. 35 (3): 200–204. doi:10.1093/jmedent/35.3.200. ISSN 0022-2585. PMID 9615534.
  29. ^ a b c d e Nayar, J. K. (1972-07-01). "Effects of constant and fluctuating temperatures on life span of Aedes taeniorhynchus adults". Journal of Insect Physiology. 18 (7): 1303–1313. doi:10.1016/0022-1910(72)90259-4. ISSN 0022-1910. PMID 5039260.
  30. ^ a b c d e f Nayar, J. K. (1967-09-15). "The Pupation Rhythm in Aedes taeniorhynchus (Diptera: Culicidae). II. Ontogenetic Timing, Rate of Development, and Endogenous Diurnal Rhythm of Pupation". Annals of the Entomological Society of America. 60 (5): 946–971. doi:10.1093/aesa/60.5.946. ISSN 0013-8746. PMID 6077388.
  31. ^ a b New Jersey Agricultural Experiment Station.; Station, New Jersey Agricultural Experiment; Smith, John Bernhard (1904). Report of the New Jersey state agricultural experiment station upon the mosquitoes occurring within the state, their habits, life history, &c. Trenton, N. J.: MacCrellish & Quigley, state printers.
  32. ^ a b c d e Linley, J. R.; Evans, D. G. (1971). "Behavior of Aedes Taeniorhynchus Larvae and Pupae in a Temperature Gradient". Entomologia Experimentalis et Applicata. 14 (3): 319–332. doi:10.1111/j.1570-7458.1971.tb00170.x. ISSN 1570-7458. S2CID 86533634.
  33. ^ a b c Bradley, T. J.; Phillips, J. E. (1975-10-01). "The secretion of hyperosmotic fluid by the rectum of a saline-water mosquito larva, Aedes taeniorhynchus". Journal of Experimental Biology. 63 (2): 331–342. doi:10.1242/jeb.63.2.331. ISSN 0022-0949. PMID 1202126.
  34. ^ a b c Nayar, J. K.; Sauerman, D. M. (1968). "Larval Aggregation Formation and Population Density Interrelations in Aedes Taeniorhynchus1, Their Effects on Pupal Ecdysis and Adult Characteristics at Emergence". Entomologia Experimentalis et Applicata. 11 (4): 423–442. doi:10.1111/j.1570-7458.1968.tb02071.x. ISSN 1570-7458. S2CID 86306401.
  35. ^ a b Lea, Arden O. (1970-09-01). "Endocrinology of egg maturation in autogenous and anautogenous Aedes taeniorhynchus". Journal of Insect Physiology. 16 (9): 1689–1696. doi:10.1016/0022-1910(70)90268-4. ISSN 0022-1910. PMID 5529179.
  36. ^ Lea, Arden O. (10 April 1964). "Studies on the Dietary and Endocrine Regulation of Autogenous Reproduction in Aedes Taeniorhynchus (Wied". Journal of Medical Entomology. 1: 40–44. doi:10.1093/jmedent/1.1.40. PMID 14188823.
  37. ^ Edman, J. D. (1971-12-30). "Host-feeding patterns of Florida mosquitoes. I. Aedes, Anopheles, Coquillettidia, Mansonia and Psorophora". Journal of Medical Entomology. 8 (6): 687–695. doi:10.1093/jmedent/8.6.687. ISSN 0022-2585. PMID 4403447.
  38. ^ a b c d Bataille, Arnaud; Fournié, Guillaume; Cruz, Marilyn; Cedeño, Virna; Parker, Patricia G.; Cunningham, Andrew A.; Goodman, Simon J. (2012-12-01). "Host selection and parasite infection in Aedes taeniorhynchus, endemic disease vector in the Galápagos Islands". Infection, Genetics and Evolution. 12 (8): 1831–1841. doi:10.1016/j.meegid.2012.07.019. ISSN 1567-1348. PMID 22921730.
  39. ^ a b Anderson, David J.; Fortner, Sharon (1988). "Waved Albatross Egg Neglect and Associated Mosquito Ectoparasitism". The Condor. 90 (3): 727–729. doi:10.2307/1368369. ISSN 0010-5422. JSTOR 1368369.
  40. ^ a b c d Nayar, J. K.; Sauerman, D. M. (1971-12-15). "The Effects of Diet on Life-Span, Fecundity and Flight Potential of Aedes Taeniorhynchus Adults". Journal of Medical Entomology. 8 (5): 506–513. doi:10.1093/jmedent/8.5.506. ISSN 0022-2585. PMID 5160252.
  41. ^ a b O'Meara, George F.; Evans, David G. (1973-06-22). "Blood-Feeding Requirements of the Mosquito: Geographical Variation in Aedes taeniorhynchus". Science. 180 (4092): 1291–1293. Bibcode:1973Sci...180.1291O. doi:10.1126/science.180.4092.1291. ISSN 0036-8075. PMID 4145305. S2CID 19715718.
  42. ^ a b Nayar, J. K.; Sauerman, D. M. (1974-07-01). "Long-term regulation of sucrose intake by the female mosquito, Aedes taeniorhynchus". Journal of Insect Physiology. 20 (7): 1203–1208. doi:10.1016/0022-1910(74)90226-1. ISSN 0022-1910. PMID 4853040.
  43. ^ Nayar, J. K.; Sauerman, D. M. (1971-11-01). "Physiological effects of carbohydrates on survival, metabolism, and flight potential of female Aedes taeniorhynchus". Journal of Insect Physiology. 17 (11): 2221–2233. doi:10.1016/0022-1910(71)90180-6. ISSN 0022-1910. PMID 5158362.
  44. ^ Haeger, J. S. (1960). "Behavior preceding migration in the salt-marsh mosquito, Aedes taeniorhynchus (Wiedemann)". Mosquito News. 20: 136–147.
  45. ^ Van, E. Handel; Day, J. F. (June 1990). "Nectar-feeding habits of Aedes taeniorhynchus". Journal of the American Mosquito Control Association. 6 (2): 270–273. ISSN 8756-971X. PMID 2370536.
  46. ^ a b Edman, J. D.; Haeger, J. S.; Bidlingmayer, W. L.; Dow, R. P.; Nayar, J. K.; Provost, M. W. (1972-07-17). "Sexual Behavior of Mosquitoes. 4. Field Observations on Mating and Insemination of Marked Broods of Aedes taeniorhynchus". Annals of the Entomological Society of America. 65 (4): 848–852. doi:10.1093/aesa/65.4.848. ISSN 0013-8746.
  47. ^ Borovsky, Dov (1985). "The role of the male accessory gland fluid in stimulating vitellogenesis in Aedes taeniorhynchus". Archives of Insect Biochemistry and Physiology. 2 (4): 405–413. doi:10.1002/arch.940020408. ISSN 1520-6327.
  48. ^ a b c d e f g Lea, Arden O.; Evans, D. G. (1972-03-15). "Sexual Behavior of Mosquitoes. 1. Age Dependence of Copulation and Insemination in the Culex pipiens Complex and Aedes taeniorhynchus in the Laboratory". Annals of the Entomological Society of America. 65 (2): 285–289. doi:10.1093/aesa/65.2.285. ISSN 0013-8746.
  49. ^ a b c Klowden, Marc J. (1999). "The check is in the male: male mosquitoes affect female physiology and behavior" (PDF). Journal of the American Mosquito Control Association. 15 (2): 213–220. PMID 10412116.
  50. ^ Knight, K. L.; Baker, T. E. (1962). "The role of the substrate moisture content in the selection of oviposition sites by Aedes taeniorhynchus (Wied.) and A. sollicitans (Walk.)". Mosquito News. 22: 247–254.
  51. ^ a b Borovsky, Dov (1982-01-01). "Release of egg development neurosecretory hormone in Aedes aegypti and Aedes taeniorhynchus induced by an ovarian factor". Journal of Insect Physiology. 28 (4): 311–316. doi:10.1016/0022-1910(82)90042-7. ISSN 0022-1910.
  52. ^ a b c Ritchie, Scott A.; Johnson, Eric S. (1991-07-01). "Aedes taeniorhynchus (Diptera: Culicidae) Oviposition Patterns in a Florida Mangrove Forest". Journal of Medical Entomology. 28 (4): 496–500. doi:10.1093/jmedent/28.4.496. ISSN 0022-2585. PMID 1941908.
  53. ^ Ritchie, Scott A.; Addison, David S. (1992-08-01). "Oviposition Preferences of Aedes taeniorhynchus (Diptera: Culicidae) in Florida Mangrove Forests". Environmental Entomology. 21 (4): 737–744. doi:10.1093/ee/21.4.737. ISSN 0046-225X.
  54. ^ McGaughey, William Horton (1967). "Role of salts in oviposition site selection by the black salt-marsh mosquito, Aedes taeniorhynchus (Wiedemann)". Iowa State University Capstones, Theses and Dissertations: 1–79.
  55. ^ Russo, Raymond (1978-11-07). "Substrate Texture as an Oviposition Stimulus for Aedes Vexans (Diptera: Culicidae)". Journal of Medical Entomology. 15 (1): 17–20. doi:10.1093/jmedent/15.1.17. ISSN 0022-2585.
  56. ^ Bidlingmayer, W. L. (1964). "The Effect of Moonlight on the Flight Activity of Mosquitoes". Ecology. 45 (1): 87–94. doi:10.2307/1937110. ISSN 0012-9658. JSTOR 1937110.
  57. ^ Fisk, F. W.; Le Van, J. H. (1940-06-01). "Mosquito Collections at Charleston, South Carolina, using the New Jersey Light Trap". Journal of Economic Entomology. 33 (3): 578–585. doi:10.1093/jee/33.3.578. ISSN 0022-0493.
  58. ^ Lord, Jeffrey C.; Hall, Donald W.; Ellis, E. Ann (1981-01-01). "Life cycle of a new species of Amblyospora (Microspora: Amblyosporidae) in the mosquito Aedes taeniorhynchus". Journal of Invertebrate Pathology. 37 (1): 66–72. doi:10.1016/0022-2011(81)90056-2. ISSN 0022-2011.
  59. ^ LuM, P. T. M. (1963). "The infection of Aedes taeniorhynchus (Wiedemann) and Psorophora howardii Coquillett by the fungus Goelomomyces". Journal of Insect Pathology. 5 (2): 157–166.
  60. ^ Clark, Truman B.; Kellen, William R.; Lum, Patrick T. M. (1965-12-01). "A mosquito iridescent virus (MIV) from Aedes taeniorhynchus (Wiedemann)". Journal of Invertebrate Pathology. 7 (4): 519–521. doi:10.1016/0022-2011(65)90133-3. ISSN 0022-2011. PMID 5848799.
  61. ^ Kelser, R.A. (1937). "Transmission of the Virus of Equine Encephalomy-elîtis by Aëdes taeniorhynchus". www.cabdirect.org. Retrieved 2019-09-29.
  62. ^ Davis, Nelson C.; Shannon, Raymond C. (1931-01-01). "Studies on Yellow Fever in South America1". The American Journal of Tropical Medicine and Hygiene. s1-11 (1): 21–29. doi:10.4269/ajtmh.1931.s1-11.21. ISSN 0002-9637.
  63. ^ Turell, M. J.; Knudson, G. B. (1987-08-01). "Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus)". Infection and Immunity. 55 (8): 1859–1861. doi:10.1128/IAI.55.8.1859-1861.1987. ISSN 0019-9567. PMC 260614. PMID 3112013.
  64. ^ Turell, Michael J.; Rossi, Cynthia A.; Bailey, Charles L. (1985-11-01). "Effect of Extrinsic Incubation Temperature on the Ability of Aedes Taeniorhynchus and Culex Pipiens to Transmit Rift Valley Fever Virus". The American Journal of Tropical Medicine and Hygiene. 34 (6): 1211–1218. doi:10.4269/ajtmh.1985.34.1211. ISSN 0002-9637. PMID 3834803.
  65. ^ a b Bradley, Timothy J.; Donald M. Sauerman, Jr.; Nayar, Jai K. (1984). "Early Cellular Responses in the Malpighian Tubules of the Mosquito Aedes taeniorhynchus to Infection with Dirofilaria immitis (Nematoda)". The Journal of Parasitology. 70 (1): 82–88. doi:10.2307/3281929. ISSN 0022-3395. JSTOR 3281929. PMID 6737175.
  66. ^ King, W.V.; McNeel, T. E. (September 17, 1937). "Experiments with Paris Green and Calcium Arsenite as Larvicides for Culicine Mosquitoes". Journal of Economic Entomology. 31: 85–86. doi:10.1093/jee/31.1.85.
  67. ^ Lindquist, Arthur W.; Madden, A. H.; Husman, C. N.; Travis, B. V. (1945-10-01). "DDT Dispersed from Airplanes for Control of Adult Mosquitoes". Journal of Economic Entomology. 38 (5): 541–544. doi:10.1093/jee/38.5.541. ISSN 0022-0493. PMID 21008220.
  68. ^ Kline, Daniel (1995). "Field evaluation of heat as an added attractant to traps baited with carbon dioxide and octenol for Aedes taeniorhynchus" (PDF). Journal of the American Mosquito Control Association. 11 (4): 454–456. PMID 8825507.
  69. ^ Gouck, H. K.; Godwin, D. R.; Schreck, C. E.; Smith, Nelson (1967-10-01). "Field Tests with Repellent-Treated Netting Against Black Salt-Marsh Mosquitoes". Journal of Economic Entomology. 60 (5): 1451–1452. doi:10.1093/jee/60.5.1451. ISSN 0022-0493. PMID 6054448.
  70. ^ Xue, Rui-De; Qualls, Whitney A.; Smith, Michael L.; Gaines, Marcia K.; Weaver, James H.; Debboun, Mustapha (2012-05-01). "Field Evaluation of the Off! Clip-On Mosquito Repellent (Metofluthrin) Against Aedes albopictus and Aedes taeniorhynchus (Diptera: Culicidae) in Northeastern Florida". Journal of Medical Entomology. 49 (3): 652–655. doi:10.1603/ME10227. ISSN 0022-2585. PMID 22679874. S2CID 26815971.
  71. ^ a b Yamamoto, Takashi; McLaughlin, Roy E. (1981-11-30). "Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var, kurstaki toxic to the mosquito larva, Aedes taeniorhynchus". Biochemical and Biophysical Research Communications. 103 (2): 414–421. doi:10.1016/0006-291X(81)90468-X. ISSN 0006-291X. PMID 7332548.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Aedes taeniorhynchus: Brief Summary

provided by wikipedia EN

Aedes taeniorhynchus, or the black salt marsh mosquito, is a mosquito in the family Culicidae. It is a carrier for encephalitic viruses including Venezuelan equine encephalitis and can transmit Dirofilaria immitis. It resides in the Americas and is known to bite mammals, reptiles, and birds. Like other mosquitoes, Ae. taeniorhynchus adults survive on a combination diet of blood and sugar, with females generally requiring a blood meal before laying eggs.

This mosquito has been studied to investigate its development, physiological markers, and behavioral patterns, including periodic cycles for biting, flight, and swarming. This species is noted for developing in periodic cycles, with high sensitivity to light and flight patterns that result in specific wingbeat frequencies that allow for both species detection and sex distinction.

Ae. taeniorhynchus is known to be a pest to humans and mechanisms for controlling Ae. taeniorhynchus populations have been developed. The United States has spent millions of dollars to control and contain Ae. taeniorhynchus.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Aedes taeniorhynchus ( Spanish; Castilian )

provided by wikipedia ES

Aedes taeniorhynchus, o el mosquito negro de las marismas es un mosquito de la familia Culicidae. Es portador del virus encefalíticos, incluida la encefalitis equina venezolana y transmite la Dirofilaria immitis. Reside en América y es conocido por picar mamíferos, reptiles y aves. Como otros mosquitos, Aedes taeniorhynchus. Los adultos de taeniorhynchus sobreviven con una dieta combinada de sangre y azúcar, y las hembras generalmente requieren una ingestión de sangre antes de poner huevos.[3][4][5]

Este mosquito ha sido estudiado para investigar su desarrollo, marcadores fisiológicos y patrones de comportamiento, incluidos los ciclos periódicos de picadura, vuelo y enjambre. Esta especie se caracteriza por desarrollarse en ciclos periódicos, con alta sensibilidad a la luz y los patrones de vuelo que dan como resultado frecuencias específicas de aleteo que permiten tanto la detección de especies como la distinción de sexos.[6][7]

Aedes taeniorhynchus es conocido por ser una plaga para los humanos y los mecanismos para controlar Ae. Se han desarrollado poblaciones de taeniorhynchus. Estados Unidos ha gastado millones de dólares para controlar y contener Ae. taeniorhynchus.[8]

Taxonomía

El entomólogo alemán Christian Rudolph Wilhelm Wiedemann describió al Aedes taeniorhynchus. (Ochlerotatus) en 1821. Los nombres alternativos de la especie incluyen Culex taeniorhynchus (Wiedemann, 1821), Ochlerotatus taeniorhynchus (Wiedemann, 1821) y Culex damnosus (Say 1823). Aedes niger, también conocida como Aedes portoricensis, es una subespecie de Ae. taeniorhynchus. Se puede identificar por su última articulación tarsiana posterior, que es mayoritariamente negra en lugar de bandas blancas. Reside en Florida y puede migrar hasta 95 millas (153 km). El análisis de datos de microsatélites sobre los genes de Ae. taeniorhynchus que vive en las Islas Galápagos muestra una diferenciación genética entre las poblaciones de mosquitos costeros y de las tierras altas. Los datos indican un flujo mínimo de genes entre las poblaciones que solo ocurre durante los períodos de mayor precipitación. Las diferencias genéticas sugieren que las diferencias de hábitat llevaron a impulsar la adaptación y la divergencia en las especies, lo que eventualmente condujo a una futura especiación. Los mosquitos de las tierras altas tienen características poblacionales características de un efecto fundador debido a una baja diversidad genética que se manifiesta como una baja heterocigosidad y una baja riqueza alélica, que puede haber resultado de la latencia de los huevos durante los períodos de sequía.[9][10]

Descripción

Aedes taeniorhynchus adult wing
Aedes taeniorhynchus ala adulta
 src=
Aedes taeniorhynchus probóscide adulto

Los adultos de aedes taeniorhynchus son en su mayoría negros con áreas de bandas blancas. Aparece una sola banda blanca en el centro de la probóscide, varias bandas blancas abarcan los extremos distales de las patas siguiendo las articulaciones de las patas y las últimas articulaciones de las patas traseras están completamente coloreadas de blanco. Las alas de taeniorhynchus son largas y estrechas con venas escamosas. La investigación experimental de la coloración evolutiva de Ae. taeniorhynchus arrojó resultados negativos. Los mosquitos criados en condiciones de oscuridad, fondos de color negro, blanco o verde y condiciones de iluminación de luz fluorescente o luz solar, no mostraron cambios de color en el cuerpo graso ni en la cápsula de la cabeza, silla de montar o sifón. Se sugiere que esta falta de coloración críptica se debe a la falta de amenaza para la especie; debido a que el hábitat de la especie es una fuente de agua temporal utilizada para el crecimiento de las larvas, este entorno temporal tiene pocos depredadores y relativamente poco peligro.

Los machos y las hembras se pueden distinguir en función de sus antenas: los machos tienen antenas plumosas (parecidas a plumas) mientras que las antenas de las hembras tienen escaso pelo.[11][12][13]

Detección de ruido

Los enjambres del aedes taeniorhynchus pueden detectarse a través del sonido. Los ruidos con frecuencias entre 0,3-3,4 kHz a un nivel de sonido de 21 dB se pueden detectar a una distancia de 10 a 50 m. Se puede escuchar un mosquito individual a una distancia de 2 a 5 cm cuando el nivel de sonido aumenta a 22-25 dB. Los mosquitos machos y hembras también se pueden distinguir por sus frecuencias de aleteo, que son de 700 a 800 Hz para los machos y de 400 a 500 Hz para las hembras. Como resultado, los sonidos de vuelo se utilizan para determinar la actividad de vuelo y distinguir el sexo de los grupos.

Microbioma

Los mosquitos aedes tienen un microbioma característico que modula los efectos de la dieta. Se informa que la composición del microbioma difiere entre machos y hembras en los mosquitos aedes, como aedes albopictus y aedes aegypti. Es decir, en un aedes albopictus, los machos se alimentan de néctar para adquirir actinobacteria, mientras que las hembras contienen proteobacteria (como enterobacteriaceae) que median los niveles de estrés redox causado por la ingesta de sangre.[14]

Especies similares

Aedes taeniorhynchus adult abdomen
El abdomen adulto del Aedes taeniorhynchus

Las principales distinciones físicas entre aedes taeniorhynchus y otras especies provienen de las bandas blancas que cubren varias partes del cuerpo a lo largo de aedes taeniorhynchus. La especie, como otros mosquitos aedes, exhibe bandas basales del abdomen, pero el aedes taeniorhynchus también exhibe palpos de punta blanca y un anillo central blanco en la probóscide.

Esta especie se parece a aedes sollicitans, excepto por sutiles diferencias en las etapas larvaria y adulta. En la etapa larvaria, Ae. taeniorhynchus tiene un tubo de respiración más corto, sus parches de escamas son redondeados en lugar de puntiagudos en las puntas, y las espinas que recubren los bordes de cada parche de escamas son más pequeñas cerca de la base del parche de escamas. En la etapa adulta, Ae. taeniorhynchus es más pequeño y mayormente negro, mientras que Ae. sollicitans es de color marrón dorado. La especie también tiene similitud con Aedes jacobinae, que cae dentro del subgénero Taeniorhynchus debido a su estructura particular de hipopigio, pero se considera una especie distinta porque no tiene marcas en las patas. De manera similar, esta especie también se puede distinguir del Aedes albopictus, comúnmente conocido como mosquito tigre asiático, como aedes taeniorhynchus, a diferencia de aedes albopictus, no tiene marcas en su espalda.[15]

Distribución

El aedes taeniorhynchus se distribuye ampliamente en América del Norte y del Sur, aunque está más concentrado en las regiones del sur. En el momento del descubrimiento inicial de la mosca, la especie residía en regiones costeras y luego se trasladó gradualmente hacia el resto del continente americano. El análisis del flujo de genes derivado de los datos de microsatélites indicó que los mosquitos ubicados en las Islas Galápagos en la Isla del Pacífico con frecuencia migran entre islas en forma aislada por distancia. La incidencia de los puertos fue un factor importante que contribuyó a la migración, lo que sugiere que el transporte con ayuda humana contribuyó a la migración entre islas.[16][17][18][19]

Hábitat

El aedes taeniorhynchus reside en hábitats con una fuente de agua temporal, lo que hace que los manglares y las marismas saladas u otras áreas con suelo húmedo sean lugares populares para la puesta de huevos y el crecimiento inmaduro. Estos hábitats son muy variables, pero a menudo tienen una alta salinidad con un contenido de sal soluble observado en el suelo de al menos 1644 ppm. En el caso de condiciones ambientales de sequedad y bajas temperaturas que son desfavorables para la eclosión de los huevos, los huevos pueden permanecer inactivos durante años. Los factores que controlan la escala del crecimiento de A. taeniorhynchus durante la preemergencia dependen de las condiciones ambientales que coincidan con el nivel de humedad y la temperatura. En el sur de Florida, los factores principales son la altura de la marea y la cantidad de lluvia, mientras que los sitios en California dependen únicamente de la altura de la marea. En Virginia, estos factores se limitan a los niveles de lluvia y temperatura. Los factores generalmente favorables pueden volverse negativos en valores extremos, lo que hace que la tasa de supervivencia disminuya. El exceso de agua elimina los huevos de los mosquitos y las temperaturas extremadamente altas pueden provocar la evaporación de la fuente de agua.[20][21]

 src=
Los sitios de apareamiento de Aedes taeniorhynchus suelen estar en contacto con Distichlis spicata

Los lugares de reproducción de aedes taeniorhynchus a menudo están en contacto con vegetación como Distichlis spicata (hierba de púas) y Spartina patens (heno de pradera salada) en las marismas y Batis maritima (saltwort) y especies del género Salicornia (glassworts) en los manglares. Esta especie de mosquito se encuentra muy cerca de otros mosquitos que residen en marchas. Estos incluyen Aedes sollicitans (mosquito de las marismas del este), Anopheles bradleyi y A. atropos.[17]

Ciclo de vida

Según estudios de campo de observación, aedes taeniorhynchus lleva a cabo varias tendencias de comportamiento en diferentes etapas de la vida. Se encontró que el crecimiento y la pupación de esta especie se ven afectados por factores ambientales de nutrición, densidad de población, salinidad, luz-oscuridad y temperatura.[22]

Huevos

Las hembras ponen huevos en tierra seca y la eclosión de los huevos es provocada por la presencia de agua, como lluvia o inundaciones. El rendimiento de la puesta de huevos de las hembras, un indicador de fecundidad, difiere según la dieta: en poblaciones de baja autogenia, las hembras autógenas raras cada una pusieron menos de 30 huevos, mientras que el rendimiento de huevos fue significativamente mayor en poblaciones con mayoría de hembras autógenas. Los huevos puestos en las condiciones adecuadas de temperatura y humedad se someten a embriogénesis y luego permanecen inactivos hasta la eclosión.[23][24][22]

Larvas

Tras la eclosión, la especie progresa a través de 4 estadios larvarios: los primeros 3 estadios se ven afectados principalmente por la temperatura, con efectos menores por la salinidad; el cuarto estadio se ve afectado por todos los factores ambientales. En el cuarto estadio, el aumento de alimentos aceleró el tiempo de desarrollo, mientras que el hacinamiento y la salinidad retrasaron el crecimiento. La temperatura preferida para los 4 estadios está entre 30 ° C y 38 ° C, pero la temperatura promedio preferida aumenta con la edad. El primer estadio prefiere una temperatura promedio de 31,8 ° C y el cuarto estadio temprano prefiere una temperatura de 34,6 °.El cuarto estadio tardío, sin embargo, tiene una temperatura preferida más baja que el cuarto estadio temprano, a 33.0 °. Se encontró que las larvas hambrientas tienen un rango de temperatura preferido más amplio que se centra en temperaturas más bajas. Se encontró que las colonias de larvas de laboratorio cultivadas durante años a 27.0 ° C prefieren temperaturas consistentemente más bajas. Se observó que las larvas del cuarto estadio beben agua de mar (100 nL / h) y secretan líquido hiperosmótico a través del recto. Ete líquido es similar al agua de mar pero con niveles de potasio 18 veces más altos. Debido a que el líquido secretado no permite el equilibrio osmótico con el líquido ingerido, los estudios sugieren que las papilas anales ayudan en la secreción de sal.[22]

Pupa

Todos los factores ambientales afectan la pupación con respecto al ritmo diurno del insecto, que tiene un período de 21,5 horas. Los factores que conducen a un mayor período de pupa incluyen la eliminación de los ciclos de luz y oscuridad con condiciones de oscuridad total o luz, aumento de la salinidad y hacinamiento. Estas tendencias continuaron adhiriéndose a una preferencia por temperaturas cercanas a 27 ° C o 32 ° C. Las pupas también exhiben formación de agregación diferencial debido a estos factores ambientales. Las agregaciones de tipo racimo se forman junto con el apiñamiento temporal y el exceso de comida, mientras que las agregaciones de tipo bola pueden manifestarse por amontonamiento temporal pero falta de alimento. A temperaturas constantes más bajas de 22 ° C y 25 ° C, pueden formarse agregaciones de tipo racimo, pero temperaturas más altas de 30 ° y 32 ° C inhiben la formación de agregaciones. Las agregaciones produjeron pupas con pesos corporales secos ligeramente más pesados y promovieron la sincronización del desarrollo en la ecdisis y una mayor probabilidad de migración en la emergencia.[22][25]

Etapas de adulto

Los mosquitos machos y hembras emergen de sus sitios de huevos de manera similar. Permanecen en sus fuentes de agua durante 12-24 horas. Luego, los adultos migran lejos del terreno de puesta de huevos en el transcurso de 1 a 4 días. Los diferentes sexos exhiben una migración diferencial, con la mayoría de las hembras viajando al menos 20 millas (32 km) y la mayoría de los machos viajando no más de 2 millas (3,2 km). La migración femenina sigue un patrón aleatorio sin limitación en la dirección de la migración y la migración ocurre a lo largo de un ciclo de 5 días. Los machos inicialmente viajan con las hembras hasta que llegan a un punto de parada de 1 a 2 millas (1,6 a 3,2 km), donde reemplazan la migración con enjambres.[20][8]

Los patrones de vuelo se establecen en la etapa adulta y no se ven afectados por patrones de comportamiento de etapas anteriores de la vida. Los adultos comienzan a morder el día 4 y siguen un ciclo de 5 días hasta la muerte. Entre los sexos, la intensidad máxima de las picaduras se produce en las hembras a los 4, 9 y 14 días de edad. Las hembras adultas de mosquitos siguen viviendo y poniendo huevos durante 3 a 4 semanas antes de morir. Aquellos que sobreviven por más tiempo continúan mordiendo pero dejan de poner huevos.[6][20]

Transmisión de enfermedades

 src=
Virus del Nilo Occidental

El aedes taeniorhynchus es portador del virus del Nilo Occidental, virus iridiscente del mosquito,[26]​ el tipo oriental y occidental de encefalomielitis equina,[27]​ Virus de la encefalomielitis equina venezolana,[28]​ y fiebre amarilla virus.[29]​ Los estudios experimentales también establecieron que la especie es capaz de transmisión mecánica de Bacillus anthracis.[30]​ Los estudios experimentales sobre virus de la fiebre del Valle del Rift mostraron que infectividad es independiente de la temperatura, pero la diseminación y transmisión viral es más rápida a temperaturas más altas.[31]

Esta especie puede transmitir Dirofilaria immitis, un gusano filarial que puede causar gusano del corazón en perros [3]​ Infección por D. immitis que ocurre a través del establecimiento de parásitos en el aedes taeniorhynchus Túbulos de Malpighi en un proceso que cambia el borde microvillar para impedir el transporte de líquidos.[32]​ El parásito tarda hasta 48 horas en establecerse en su huésped; el establecimiento puede no ocurrir si el huésped es resistente.[32]​ También se observó que este parásito se propagaba a los cormoranes no voladores en las Galápagos, y el análisis de flujo genético correlacionó la infección parasitaria con aedes taeniorhynchus patrones de migración y sugiriendo que aedes taeniorhynchu es el vector probable de transmisión.[19]

Véase también

Referencias

  1. https://www.uniprot.org/taxonomy/329105
  2. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=126381#null
  3. a b Connelly, J. K. Nayar and C. R. (3 de febrero de 2017). «Mosquito-Borne Dog Heartworm Disease». edis.ifas.ufl.edu (en inglés). Consultado el 29 de septiembre de 2019.
  4. Briegel, Hans; Kaiser, Claire (1973). «Life-Span of Mosquitoes (Culicidae, Diptera) under Laboratory Conditions». Gerontology (en inglés) 19 (4): 240-249. ISSN 0304-324X. PMID 4775101. doi:10.1159/000211976.
  5. Turell, Michael J.; Ludwig, George V.; Beaman, Joseph R. (1 de enero de 1992). «Transmission of Venezuelan Equine Encephalomyelitis Virus by Aedes sollicitans and Aedes taeniorhynchus (Diptera: Culicidae)». Journal of Medical Entomology (en inglés) 29 (1): 62-65. ISSN 0022-2585. doi:10.1093/jmedent/29.1.62. Consultado el 19 de septiembre de 2020.
  6. a b Nayar, J. K.; Sauerman, D. M. (1 de junio de 1971). «The Effect of Light Regimes on the Circadian Rhythm of Flight Activity in the Mosquito Aedes Taeniorhynchus». Journal of Experimental Biology (en inglés) 54 (3): 745-756. ISSN 0022-0949. PMID 5090100.
  7. Mankin, R.W. (1994). «Acoustic detection of Aedes taeniorhynchus swarms and emergence exoduses in remote salt marshes». Journal of the American Mosquito Control Association 10 (2): 302-308.
  8. a b Provost, Maurice W. (September 1952). «The Dispersal of Aedes taeniorhynchus. 1. Preliminary Studies». Mosquito News 12: 174-90.
  9. «Taxonomy - Ochlerotatus taeniorhynchus (Black salt marsh mosquito) (Aedes taeniorhynchus)». UniProt. Consultado el 20 de noviembre de 2019.
  10. «ITIS Standard Report Page: Aedes taeniorhynchus». www.itis.gov. Consultado el 5 de febrero de 2020.
  11. Komp, W. H. W. (1923). «Guide to Mosquito Identification for Field Workers Engaged in Malaria Control in the United States». Public Health Reports 38 (20): 1061-1080. ISSN 0094-6214. doi:10.2307/4576745.
  12. Agramonte, Natasha Marie (April 2014). «Black Salt Marsh Mosquito - Aedes taeniorhynchus (Wiedemann)». University of Florida Entomology and Nematology Department. Consultado el 20 de noviembre de 2019.
  13. Benedict, M. Q.; Seawright, J. A. (1 de enero de 1987). «Changes in Pigmentation in Mosquitoes (Diptera: Culicidae) in Response to Color of Environment». Annals of the Entomological Society of America (en inglés) 80 (1): 55-61. ISSN 0013-8746. doi:10.1093/aesa/80.1.55.
  14. Valiente Moro, Claire; Tran, Florence Hélène; Nantenaina Raharimalala, Fara; Ravelonandro, Pierre; Mavingui, Patrick (27 de marzo de 2013). «Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus». BMC Microbiology 13: 70. ISSN 1471-2180. PMC 3617993. PMID 23537168. doi:10.1186/1471-2180-13-70. Consultado el 19 de septiembre de 2020.
  15. «https://www.coj.net/departments/neighborhoods/mosquito-control/aedes-taeniorhynchus.aspx».
  16. «WRBU: Aedes taeniorhynchus». www.wrbu.org. Consultado el 29 de septiembre de 2019.
  17. a b «New Jersey Mosquito Species: Rutgers Center for Vector Biology». vectorbio.rutgers.edu. Consultado el 2 de octubre de 2019.
  18. Serafim, Jose; Davis, Nelson C. (1 de marzo de 1933). «Distribution of AËdes (Taeniorhynchus) Taeniorhynchus (Wiedemann). Aedes (Taeniorhynchus) Jacobinae, New Species.». Annals of the Entomological Society of America (en inglés) 26 (1): 13-19. ISSN 0013-8746. doi:10.1093/aesa/26.1.13.
  19. a b Bataille, Arnaud; Cunningham, Andrew A.; Cruz, Marilyn; Cedeño, Virna; Goodman, Simon J. (1 de diciembre de 2011). «Adaptation, isolation by distance and human-mediated transport determine patterns of gene flow among populations of the disease vector Aedes taeniorhynchus in the Galapagos Islands». Infection, Genetics and Evolution 11 (8): 1996-2003. ISSN 1567-1348. PMID 21968211. doi:10.1016/j.meegid.2011.09.009.
  20. a b c Nielsen, Erik Tetens; Nielsen, Astrid Tetens (1953). «Field Observations on the Habits of Aedes Taeniorhynchus». Ecology 34 (1): 141-156. ISSN 0012-9658. doi:10.2307/1930314.
  21. Knight, Kenneth L. (June 1965). «Some Physical and Chemical Characteristics of Coastal Soils Underlying Mosquito Breeding Areas». Mosquito News 25: 154-159.
  22. a b c d Nayar, J. K. (15 de septiembre de 1967). «The Pupation Rhythm in Aedes taeniorhynchus (Diptera: Culicidae). II. Ontogenetic Timing, Rate of Development, and Endogenous Diurnal Rhythm of Pupation». Annals of the Entomological Society of America (en inglés) 60 (5): 946-971. ISSN 0013-8746. PMID 6077388. doi:10.1093/aesa/60.5.946.
  23. New Jersey Agricultural Experiment Station.; Station, New Jersey Agricultural Experiment; Smith, John Bernhard (1904). Report of the New Jersey state agricultural experiment station upon the mosquitoes occurring within the state, their habits, life history, &c.. Trenton, N. J.: MacCrellish & Quigley, state printers.
  24. O'meara, George F.; Edman, John D. (1 de octubre de 1975). «Autogenous egg production in the salt-marsh mosquito, aedes taeniorhynchus». The Biological Bulletin 149 (2): 384-396. ISSN 0006-3185. PMID 1239308. doi:10.2307/1540534.
  25. Nayar, J. K.; Sauerman, D. M. (1968). «Larval Aggregation Formation and Population Density Interrelations in Aedes Taeniorhynchus1, Their Effects on Pupal Ecdysis and Adult Characteristics at Emergence». Entomologia Experimentalis et Applicata (en inglés) 11 (4): 423-442. ISSN 1570-7458. doi:10.1111/j.1570-7458.1968.tb02071.x.
  26. Clark, Truman B.; Kellen, William R.; Lum, Patrick T. M. (1 de diciembre de 1965). «A mosquito iridescent virus (MIV) from Aedes taeniorhynchus (Wiedemann)». Journal of Invertebrate Pathology 7 (4): 519-521. ISSN 0022-2011. PMID 5848799. doi:10.1016/0022-2011(65)90133-3.
  27. Kelser, R.A. (1937). «Transmission of the Virus of Equine Encephalomy-elîtis by Aëdes taeniorhynchus». www.cabdirect.org. Consultado el 29 de septiembre de 2019.
  28. Turell, Michael J.; Ludwig, George V.; Beaman, Joseph R. (1 de enero de 1992). «Transmission of Venezuelan Equine Encephalomyelitis Virus by Aedes sollicitans and Aedes taeniorhynchus (Diptera: Culicidae)». Journal of Medical Entomology (en inglés) 29 (1): 62-65. ISSN 0022-2585. PMID 1552530. doi:10.1093/jmedent/29.1.62.
  29. Davis, Nelson C.; Shannon, Raymond C. (1 de enero de 1931). «Studies on Yellow Fever in South America1». The American Journal of Tropical Medicine and Hygiene (en inglés). s1-11 (1): 21-29. ISSN 0002-9637. doi:10.4269/ajtmh.1931.s1-11.21.
  30. Turell, M. J.; Knudson, G. B. (1 de agosto de 1987). «Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus).». Infection and Immunity (en inglés) 55 (8): 1859-1861. ISSN 0019-9567. PMC 260614. PMID 3112013. doi:10.1128/IAI.55.8.1859-1861.1987.
  31. Turell, Michael J.; Rossi, Cynthia A.; Bailey, Charles L. (1 de noviembre de 1985). «Effect of Extrinsic Incubation Temperature on the Ability of Aedes Taeniorhynchus and Culex Pipiens to Transmit Rift Valley Fever Virus». The American Journal of Tropical Medicine and Hygiene (en inglés) 34 (6): 1211-1218. ISSN 0002-9637. PMID 3834803. doi:10.4269/ajtmh.1985.34.1211.
  32. a b Bradley, Timothy J.; Donald M. Sauerman, Jr.; Nayar, Jai K. (1984). «Early Cellular Responses in the Malpighian Tubules of the Mosquito Aedes taeniorhynchus to Infection with Dirofilaria immitis (Nematoda)». The Journal of Parasitology 70 (1): 82-88. ISSN 0022-3395. JSTOR 3281929. PMID 6737175. doi:10.2307/3281929.
 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Aedes taeniorhynchus: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Aedes taeniorhynchus, o el mosquito negro de las marismas es un mosquito de la familia Culicidae. Es portador del virus encefalíticos, incluida la encefalitis equina venezolana y transmite la Dirofilaria immitis. Reside en América y es conocido por picar mamíferos, reptiles y aves. Como otros mosquitos, Aedes taeniorhynchus. Los adultos de taeniorhynchus sobreviven con una dieta combinada de sangre y azúcar, y las hembras generalmente requieren una ingestión de sangre antes de poner huevos.​​​

Este mosquito ha sido estudiado para investigar su desarrollo, marcadores fisiológicos y patrones de comportamiento, incluidos los ciclos periódicos de picadura, vuelo y enjambre. Esta especie se caracteriza por desarrollarse en ciclos periódicos, con alta sensibilidad a la luz y los patrones de vuelo que dan como resultado frecuencias específicas de aleteo que permiten tanto la detección de especies como la distinción de sexos.​​

Aedes taeniorhynchus es conocido por ser una plaga para los humanos y los mecanismos para controlar Ae. Se han desarrollado poblaciones de taeniorhynchus. Estados Unidos ha gastado millones de dólares para controlar y contener Ae. taeniorhynchus.​

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Aedes taeniorhynchus ( Minangkabau )

provided by wikipedia MIN

Aedes taeniorhynchus adolah saikua rangik dari famili Culicidae. Spesies ko juo marupokan bagian dari ordo Diptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia.

Spesies iko mahisok darah dari vertebrata hiduik.

Rujuakan


license
cc-by-sa-3.0
copyright
En
original
visit source
partner site
wikipedia MIN

Aedes taeniorhynchus: Brief Summary ( Minangkabau )

provided by wikipedia MIN

Aedes taeniorhynchus adolah saikua rangik dari famili Culicidae. Spesies ko juo marupokan bagian dari ordo Diptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia.

Spesies iko mahisok darah dari vertebrata hiduik.

license
cc-by-sa-3.0
copyright
En
original
visit source
partner site
wikipedia MIN

Aedes taeniorhynchus ( Dutch; Flemish )

provided by wikipedia NL

Insecten

Aedes taeniorhynchus is een muggensoort uit de familie van de steekmuggen (Culicidae).[1] De wetenschappelijke naam van de soort is voor het eerst geldig gepubliceerd in 1821 door Wiedemann.

Bronnen, noten en/of referenties
  1. Knight and Stone, 1977, Catalog of the Mosquitoes of the World, p. 145.
Geplaatst op:
20-06-2013
Dit artikel is een beginnetje over biologie. U wordt uitgenodigd om op bewerken te klikken om uw kennis aan dit artikel toe te voegen. Beginnetje
license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Aedes taeniorhynchus ( Portuguese )

provided by wikipedia PT

Aedes taeniorhynchus é um espécie de mosquito do Género Aedes, pertencente à família Culicidae. Presentes em Galápagos, ao conrários de outros mosquitos, que usualmente sugam o sangue de mamíferos e aves, essa espécie habitualmente suga o sangue de répteis.[1]

Referências

 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Aedes taeniorhynchus: Brief Summary ( Portuguese )

provided by wikipedia PT

Aedes taeniorhynchus é um espécie de mosquito do Género Aedes, pertencente à família Culicidae. Presentes em Galápagos, ao conrários de outros mosquitos, que usualmente sugam o sangue de mamíferos e aves, essa espécie habitualmente suga o sangue de répteis.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT