dcsimg

Orthocoronavirinae ( German )

provided by wikipedia DE
 src=
Dieser Artikel behandelt die Unterfamilie der Orthocoronaviren. Für das aktuelle Krankheitsgeschehen eines dieser Viren siehe: COVID-19, zur Ausbreitung der Krankheit: COVID-19-Pandemie, und zu ihrer Ursache: SARS-CoV-2.

Orthocoronavirinae ist eine Virusunterfamilie innerhalb der Familie Coronaviridae, die weitestgehend mit dieser übereinstimmt. Die Viren innerhalb dieser Unterfamilie werden (fach)umgangssprachlich Orthocoronaviren und veraltet und zweideutig auch bloß Coronaviren genannt.

Auch alle Coronaviren, die den Menschen infizieren, gehören zu den Orthocoronaviren. Darunter auch SARS-CoV-2, das Virus, das für die aktuelle COVID-19-Pandemie verantwortlich ist.

Beschreibung

Hauptartikel: Coronaviridae

Bis heute (Stand 2020) entspricht die Beschreibung der Unterfamilie Orthocoronavirinae nahezu vollständig der der übergeordneten Familie Coronaviridae. Das liegt daran, dass die einzige Schwestergruppe – die Unterfamilie der Letoviren (Letovirinae) – nur wenig erforscht ist und nur eine einzige Art – Microhyla letovirus 1 – enthält. Neben strukturellen und statistischen Unterschieden im Virusgenom bei computergestützten Analysen (vgl. Bioinformatik) besteht der wesentlichste Unterschied zwischen den beiden Unterfamilien Orthocoronavirinae und Letovirinae vor allem darin, dass die Letoviren die ersten Coronaviren sind, die Amphibien infizieren.[2][3]

Benennung

Etymologie

Der Name der Unterfamilie Orthocoronavirinae setzt sich aus dem Vorsatz „Ortho-“ (griechisch ὀρθός orthós, deutsch ‚recht, richtig, aufrecht‘) und dem früheren Namen dieser Unterfamilie Coronavirinae zusammen. „Orthocoronaviren“ bedeutet soviel wie: „richtige, eigentliche, klassische oder echte Coronaviren“. Das entspricht der zuvor gebrauchten umgangssprachlichen Bezeichnung: „echte Coronaviren“ (englisch true coronaviruses[4]), für die Viren dieser Gruppe bevor die Gruppe den jetzigen Namen erhielt.

Diese Virengruppe wurde zunächst als Gattung unter dem Namen Coronavirus geführt (bis 2008). Durch den Aufstieg in den Rang einer Unterfamilie wurde die Endung in „-virinae“ geändert.[4] Die Herkunft des Namensbestandteils „corona“ wird genauer im Abschnitt Etymologie im Artikel zur Familie Coronaviridae erläutert.

Die Namenserweiterung „Ortho-“ beendete 2018 gewisse Mehrdeutigkeiten, die innerhalb der Familie Coronaviridae aufgrund dessen bestanden, dass der gleiche Wortstamm „Corona-“ für mehrere ineinanderliegende Gruppen verwendet worden war.[5] Näheres unter Taxonomische Hintergründe.

Verwendete Namen

Aus dem Taxonnamen Orthocoronavirinae ergibt sich systematisch die Sammelbezeichnung (englisch collective name[6]) „Orthocoronaviren“ für Viren dieser Unterfamilie.[7][8] Besonders im Englischen wird diese Art der Sammelbezeichnung auch „Vernakularname“ (englisch vernacular name) genannt.[5]

Die Sammelbezeichnung „Orthocoronaviren“ ist noch verhältnismäßig jung im Vergleich zum seit den 1960er Jahren gebrauchten Namen „Coronaviren“.[9] Obwohl der ältere Name „Coronaviren“ zweideutig sowohl die Viren der ganzen Familie[10] als auch nur der Unterfamilie (früher: Gattung[4]) bezeichnet, ist er weiter auch für nur die Viren der Unterfamilie im Gebrauch.[11][12][13][14][15]

Aus diesen Gründen existieren grundsätzlich immer noch zwei Vernakularnamen für die Viren dieser Gruppe. Einmal der doppeldeutige Name „Coronaviren“ (englisch coronaviruses). Dieser findet sich in Literatur bis 2018[16] und häufig auch noch nach 2018. Und dann der eindeutige Name „Orthocoronaviren“ als taxonomische Sammelbezeichnung seit 2018. Der eigentlich korrekte und eindeutige englische Vernakularname "coronavirids" findet allerdings auch heute noch nur gelegentlich Verwendung,[17] dieser ist analog der Bezeichnung nanovirids des ICTV[18] für die Familie Nanoviridae, sowie hominids bzw. camelids[19] für die Familien der Hominiden respektive Cameliden gebildet.[Anm. 1]

Wegen der Namensähnlichkeit zwischen Familie und Unterfamilie kommt es allenthalben auch zur Falschschreibung des Unterfamiliennamens in der Form: Orthocoronaviridae.[20]

Systematik

Hauptartikel: Coronaviridae: Systematik

Äußere Systematik

Die Unterfamilie Orthocoronavirinae besitzt aktuell nur eine Schwester-Unterfamilie in der Familie Coronaviridae. Diese heißt Letovirinae und ersetzte 2018 die damalige Schwester-Unterfamilie Torovirinae (heute Familie Tobaniviridae mit der neuen(!) Unterfamilie Torovirinae).[2]

Familie Unterfamilie Coronaviridae Letovirinae Orthocoronavirinae

Innere Systematik

Auszug aus der systematischen Darstellung nach ICTV. Eine ausführlichere Darstellung findet sich im Artikel über die Familie Coronaviridae im Abschnitt über die innere Systematik.

Unterfamilie Orthocoronavirinae
Gattung Alphacoronavirus
Untergattung Colacovirus
Spezies Bat coronavirus CDPHE15
Untergattung Decacovirus
Spezies Bat coronavirus HKU10
Spezies Rhinolophus ferrumequinum alphacoronavirus HuB-2013
Untergattung Duvinacovirus
Spezies Human coronavirus 229E
Untergattung Luchacovirus
Spezies Lucheng Rn rat coronavirus
Untergattung Minacovirus
Spezies Mink coronavirus 1
Untergattung Minunacovirus
Spezies Miniopterus bat coronavirus 1
Spezies Miniopterus bat coronavirus HKU8
Untergattung Myotacovirus
Spezies Myotis ricketti alphacoronavirus Sax-2011
Untergattung Nyctacovirus
Spezies Nyctalus velutinus alphacoronavirus SC-2013
Spezies Pipistrellus kuhlii coronavirus 3398
Untergattung Pedacovirus
Spezies Porcine epidemic diarrhea virus
Spezies Scotophilus bat coronavirus 512
Untergattung Rhinacovirus
Spezies Rhinolophus bat coronavirus HKU2 (mit Stamm Enterisches Schweine-Alphacoronavirus, SADS-CoV)
 src=
Virionen von NL63
Untergattung Setracovirus
Spezies Human coronavirus NL63
Spezies NL63-related bat coronavirus strain BtKYNL63-9b
Untergattung Soracovirus
Spezies Sorex araneus coronavirus T14
Untergattung Sunacovirus
Spezies Suncus murinus coronavirus X74
Untergattung Tegacovirus
Spezies Alphacoronavirus 1 (*)
Gattung Betacoronavirus
 src=
Virionen von Betacoronavirus 1 (hier OC43)
Untergattung Embecovirus
Spezies Betacoronavirus 1 (mit Stamm Humanes Coronavirus OC43)
Spezies China Rattus coronavirus HKU24
Spezies Human coronavirus HKU1
Spezies Murine coronavirus (*)
Spezies Myodes coronavirus 2JL14
Untergattung Hibecovirus
Spezies Bat Hp-betacoronavirus Zhejiang2013
 src=
Virionen von MERS-CoV
Untergattung Merbecovirus
Spezies Hedgehog coronavirus 1
Spezies Middle East respiratory syndrome-related coronavirus (MERS-CoV)
Spezies Pipistrellus bat coronavirus HKU5
Spezies Tylonycteris bat coronavirus HKU4
Untergattung Nobecovirus
Spezies Eidolon bat coronavirus C704
Spezies Rousettus bat coronavirus GCCDC1
Spezies Rousettus bat coronavirus HKU9
 src=
Virionen von SARS-CoV-2
Untergattung Sarbecovirus
Spezies Severe acute respiratory syndrome-related coronavirus (mit SARS-CoV-2)
Gattung Gammacoronavirus
Untergattung Brangacovirus
Spezies Goose coronavirus CB17
Untergattung Cegacovirus
Spezies Beluga whale coronavirus SW1
 src=
Virionen von Avian coronavirus (hier IBV)
Untergattung Igacovirus
Spezies Avian coronavirus (*, mit Stamm Infectious bronchitis virus, IBV)
Spezies Avian coronavirus 9203
Spezies Duck coronavirus 2714
Gattung Deltacoronavirus
Untergattung Andecovirus
Spezies Wigeon coronavirus HKU20
Untergattung Buldecovirus
Spezies Bulbul coronavirus HKU11 (*)
Spezies Common moorhen coronavirus HKU21
Spezies Coronavirus HKU15
Spezies Munia coronavirus HKU13
Spezies White-eye coronavirus HKU16
Untergattung Herdecovirus
Spezies Night heron coronavirus HKU19

Taxonomische Hintergründe

Die taxonomische Benennung und Einordnung der Orthocoronaviren fand immer vor dem Hintergrund der taxonomischen Gesamtorganisation der Virenfamilie Coronaviridae statt und kann dort nachgelesen werden.

Anmerkungen

  1. Das ICTV benutzt diese Konstruktion dort zur Unterscheidung von den "nanoviruses", d. h. den Mitgliedern der Gattung Nanovirus innerhalb dieser Familie. Ähnlich findet man "geminivirids" und "genomovirids" für die Geminiviridae respektive Genomoviridae im ICTV-akzeptierten Vorschlag 2019.012DA.v1 (ZIP: docx, xlsx) von Krupovic et al. (2019) zum Phylum Cressdnaviricota.

Einzelnachweise

  1. a b c d e f g h ICTV Master Species List 2019.v1. In: International Committee on Taxonomy of Viruses (Hrsg.): ICTV Files. Revision 2019. EC 51, Berlin Juli 2019, MSL #35 (englisch, Volltext [XLSX; 629 kB; abgerufen am 7. August 2020]).
  2. a b J. Ziebuhr, R.S. Baric, S. Baker, R.J. de Groot, C. Drosten, A. Gulyaeva, B.L. Haagmans, B.W. Neuman, S. Perlman, L.L.M. Poon, I. Sola, A.E. Gorbalenya: 2017.012_015S.A.v1.Nidovirales. In: Virus Taxonomy. History. Revision 2018a, Juli. International Committee on Taxonomy of Viruses (ICTV), 18. Februar 2017, Proposal-Code 2017.012_015S (ictvonline.org [ZIP; 5,1 MB; abgerufen am 7. Mai 2020]).
  3. Khulud Bukhari, Geraldine Mulley, Anastasia A. Gulyaeva, Lanying Zhao, Guocheng Shu, Jianping Jiang, Benjamin W. Neuman: Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus. In: Virology. Band 524, Ausgabe November 2018, S. 160–171. Elsevier, 7. September 2018, doi:10.1016/j.virol.2018.08.010, PMID 30199753, PMC 7112036 (freier Volltext) – (englisch, Volltext [PDF; 3,3 MB; abgerufen am 18. Mai 2020] „Coronavirinae“: heute „Orthocoronavirinae“.).
  4. a b c Raoul J. de Groot, John Ziebuhr, Leo L. Poon, Patrick C.Woo, Pierre Talbot, Peter J.M. Rottier, Kathryn V. Holmes, Ralph Baric, Stanley Perlman, Luis Enjuanes, Alexander E. Gorbalenya: Revision of the family Coronaviridae. Proposal. In: Virus Taxonomy. History. Revision 2009, Juni. International Committee on Taxonomy of Viruses (ICTV), 2008, Proposal-Code 2008.085-126V (englisch, ictvonline.org [PDF; 175 kB; abgerufen am 5. Mai 2020]).
  5. a b H. J. Vetten, A.-L. Haenni: Taxon-specific suffixes for vernacular names. In: Virology Division of the International Union of Microbiological Societies (Hrsg.): Archives of Virology (= International Committee on Taxonomy of Viruses [Hrsg.]: Virology Division News). Band 151, Juni 2006. Springer-Verlag, 23. März 2006, ISSN 0304-8608, S. 1249–1250, doi:10.1007/s00705-006-0743-x, PMID 16721512, PMC 7086949 (freier Volltext) – (englisch, Volltext [PDF; 134 kB; abgerufen am 18. Juni 2020]).
  6. How to write virus and species names? In: ICTV-Homepage. International Committee on Taxonomy of Viruses (ICTV), 6. April 2020, abgerufen am 8. August 2020 (englisch).
  7. Gideon J. Mordecai, Ian Hewson (Verf.); Emily S. Bailey, Alexander Culley (Gutachter): Coronaviruses in the Sea. Mini Review. In: Andrew S. Lang (Hrsg.): Frontiers in Microbiology. Band 11, Ausgabe Juli 2020, Artikelnr. 1795, 24. Juli 2020, S. 2, doi:10.3389/fmicb.2020.01795 (englisch, Volltext [PDF; 804 kB; abgerufen am 7. August 2020] Vernakularname „Orthocoronavirus“.): “Orthocoronavirus-like sequences”
  8. Jamie A. Mawhinney, Catherine Wilcock, Hasan Haboubi, Shahbaz Roshanzamir: Neurotropism of SARS-CoV-2: COVID-19 presenting with an acute manic episode. Case report. In: BMJ Case Reports. Band 13, Nr. 6, Ausgabe Juni 2020, Artikelnr. e236123, 14. Juni 2020, doi:10.1136/bcr-2020-236123, PMID 32540882, PMC 7298665 (freier Volltext) – (englisch, Volltext [PDF; 201 kB; abgerufen am 7. August 2020] Vernakularname „Orthocoronavirus“.): “the orthocoronavirus subfamily”
  9. Virology: Coronaviruses. In: Nature. Band 220, 16. November 1968, ISSN 1476-4687, S. 650, doi:10.1038/220650b0 (englisch, Volltext [PDF; 1,8 MB; abgerufen am 18. Juni 2020] Erstmeldung über Entdeckung der Coronaviren).
  10. Yosra A. Helmy, Mohamed Fawzy, Ahmed Elaswad, Ahmed Sobieh, Scott P. Kenney, Awad A. Shehata: The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. Review. In: Journal of Clinical Medicine. Band 9, Nr. 4, Ausgabe April 2020, Artikelnr. 1225. MDPI, 24. April 2020, doi:10.3390/jcm9041225, PMID 32344679, PMC 7230578 (freier Volltext) – (englisch, 29 S., Volltext [PDF; 2,4 MB; abgerufen am 8. August 2020]).
  11. Sarah Young: Orthocoronavirinae: What does it mean and which other viruses are in the subfamily? In: The Independent. 18. Juni 2020, abgerufen am 7. August 2020 (englisch, doppeldeutige Wortverwendung, Familie vs. Unterfamilie): „Each of the coronaviruses belong to an overarching sub-family […] called "orthocoronavirinae" […]. The term "orthocoronavirinae" represents a "sub-family" of the [family of the] coronaviruses […].“
  12. Hayder M. Al-Kuraishy, Ali I. Al-Gareeb: From SARS-CoV to nCoV-2019: Ruction and Argument. Brief Report. In: Archives of Clinical Infectious Diseases. Band 15 (COVID-19), Ausgabe April 2020, Artikelnr. e102624, 1. April 2020, Abstract und 1. Background, doi:10.5812/archcid.102624 (englisch, Volltext [PDF; 2,6 MB; abgerufen am 7. August 2020] Falsche Zuordnung aller Coronaviren nur zur Unterfamilie.): “Coronaviruses (CoVs) […]. CoVs constitute the subfamily Orthocoronavirinae, in the family Coronaviridae.”
  13. Ariane J. Brown, John J. Won, Rachel L. Graham, Kenneth H. Dinnon III., Amy C. Sims, Joy Y. Feng, Tomas Cihlar, Mark R. Denison, Ralph S. Baric, Timothy P. Sheahan: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. In: Antiviral Research. Band 169, Ausgabe September 2019, Artikelnr. 104541. Elsevier, 21. Juni 2019, ISSN 0166-3542, Abstract, doi:10.1016/j.antiviral.2019.104541, PMID 31233808, PMC 6699884 (freier Volltext) – (englisch, Volltext [PDF; 4,9 MB; abgerufen am 7. August 2020] Falsche Bezeichnung von Orthocoronavirinae als Familie, falsche Zuordnung von Abkürzung „CoV“ (gehört zur Familie, nicht Unterfamilie) usw.): “The […] Orthocoronavirinae (CoV) family […].”
  14. Antonio C. P. Wong, Xin Li, Susanna K. P. Lau, Patrick C. Y. Woo: Global Epidemiology of Bat Coronaviruses. Review. In: Viruses. Band 11, Nr. 2, Ausgabe Februar 2019, Artikelnr. 174. MDPI, 20. Februar 2019, doi:10.3390/v11020174, PMID 30791586, PMC 6409556 (freier Volltext) – (englisch, Volltext [PDF; 2,2 MB; abgerufen am 7. August 2020] Es wird die Unterfamilie beschrieben (= vier Gattungen etc.) und allen Coronaviren zugeordnet.): “Coronaviruses (CoVs) […]. CoVs are classified into four genera, Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus.
  15. Yi Fan, Kai Zhao, Zheng-Li Shi, Peng Zhou: Bat Coronaviruses in China. Review. In: Viruses. Band 11, Nr. 3, Ausgabe März 2019, Artikelnr. 210. MDPI, 2. März 2019, doi:10.3390/v11030210, PMID 30832341, PMC 6466186 (freier Volltext) – (englisch, Volltext [PDF; 1,9 MB; abgerufen am 7. August 2020] Falsche Zuordnung aller Coronaviren zur Unterfamilie.): Coronavirus Taxonomy[. …] Coronaviruses (CoVs) belong to the subfamily Orthocoronavirinae in the family Coronaviridae […].
  16. Khulud Bukhari, Geraldine Mulley, Anastasia A. Gulyaeva, Lanying Zhao, Guocheng Shu, Jianping Jiang, Benjamin W. Neuman: Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus. In: Virology. Band 524, Ausgabe November 2018, S. 160–171. Elsevier, 7. September 2018, doi:10.1016/j.virol.2018.08.010, PMID 30199753, PMC 7112036 (freier Volltext) – (englisch, Volltext [PDF; 3,3 MB; abgerufen am 18. Mai 2020] „Korrekte“ doppeldeutige Wortverwendung von „Coronaviren“ vor Existenz von Orthocoronavirinae.): “[…] a sister group to all known coronaviruses, but still within the Coronavirinae.”
  17. Ravi Shankar Singh, Abhishek Kumar Singh, Kamla Kant Shukla, Amit Kumar Tripathi: COVID-19 Pandemic: Evidences from Clinical Studies, in: J Comm Pub Health Nursing 6(4):251, 21. September 2020, ISSN 2471-9846
  18. Thomas, JE; Gronenborn, B; Harding, RM; Mandal, B; Grigoras, I; Randles, JW; Sano, Y; Timchenko, T; Vetten, HJ; Yeh, HH; Ziebell, H; ICTV Report Consortium: ICTV Virus Taxonomy Profile: Nanoviridae, in: The Journal of General Virology, 12. Januar 2021. doi:10.1099/jgv.0.001544, PMID 33433311
  19. How Llamas Wally and Winter Are Helping Scientists Find Effective COVID-19 Treatments, auf SciTechDaily vom 5. Mai 2021
  20. Yosra A. Helmy, Mohamed Fawzy, Ahmed Elaswad, Ahmed Sobieh, Scott P. Kenney, Awad A. Shehata: The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. Review. In: Journal of Clinical Medicine. Band 9, Nr. 4, Ausgabe April 2020, Artikelnr. 1225. MDPI, 24. April 2020, doi:10.3390/jcm9041225, PMID 32344679, PMC 7230578 (freier Volltext) – (englisch, 29 S., Volltext [PDF; 2,4 MB; abgerufen am 8. August 2020] Falschschreibung mit »d« statt »n«.): Coronaviridae is classified into two subfamilies, namely, Letovirinae and Orthocoronavirinae. […] Orthocoronaviridae is further classified […] (ICTV 2018).”
 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Orthocoronavirinae: Brief Summary ( German )

provided by wikipedia DE
 src= Dieser Artikel behandelt die Unterfamilie der Orthocoronaviren. Für das aktuelle Krankheitsgeschehen eines dieser Viren siehe: COVID-19, zur Ausbreitung der Krankheit: COVID-19-Pandemie, und zu ihrer Ursache: SARS-CoV-2.

Orthocoronavirinae ist eine Virusunterfamilie innerhalb der Familie Coronaviridae, die weitestgehend mit dieser übereinstimmt. Die Viren innerhalb dieser Unterfamilie werden (fach)umgangssprachlich Orthocoronaviren und veraltet und zweideutig auch bloß Coronaviren genannt.

Auch alle Coronaviren, die den Menschen infizieren, gehören zu den Orthocoronaviren. Darunter auch SARS-CoV-2, das Virus, das für die aktuelle COVID-19-Pandemie verantwortlich ist.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Coronavirus

provided by wikipedia EN

Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In humans and birds, they cause respiratory tract infections that can range from mild to lethal. Mild illnesses in humans include some cases of the common cold (which is also caused by other viruses, predominantly rhinoviruses), while more lethal varieties can cause SARS, MERS and COVID-19, which is causing the ongoing pandemic. In cows and pigs they cause diarrhea, while in mice they cause hepatitis and encephalomyelitis.

Coronaviruses constitute the subfamily Orthocoronavirinae, in the family Coronaviridae, order Nidovirales and realm Riboviria.[3][4] They are enveloped viruses with a positive-sense single-stranded RNA genome and a nucleocapsid of helical symmetry.[5] The genome size of coronaviruses ranges from approximately 26 to 32 kilobases, one of the largest among RNA viruses.[6] They have characteristic club-shaped spikes that project from their surface, which in electron micrographs create an image reminiscent of the stellar corona, from which their name derives.[7]

Etymology

The name "coronavirus" is derived from Latin corona, meaning "crown" or "wreath", itself a borrowing from Greek κορώνη korṓnē, "garland, wreath".[8][9] The name was coined by June Almeida and David Tyrrell who first observed and studied human coronaviruses.[10] The word was first used in print in 1968 by an informal group of virologists in the journal Nature to designate the new family of viruses.[7] The name refers to the characteristic appearance of virions (the infective form of the virus) by electron microscopy, which have a fringe of large, bulbous surface projections creating an image reminiscent of the solar corona or halo.[7][10] This morphology is created by the viral spike peplomers, which are proteins on the surface of the virus.[11]

The scientific name Coronavirus was accepted as a genus name by the International Committee for the Nomenclature of Viruses (later renamed International Committee on Taxonomy of Viruses) in 1971.[12] As the number of new species increased, the genus was split into four genera, namely Alphacoronavirus, Betacoronavirus, Deltacoronavirus, and Gammacoronavirus in 2009.[13] The common name coronavirus is used to refer to any member of the subfamily Orthocoronavirinae.[4] As of 2020, 45 species are officially recognised.[14]

History

Colorized transmission electron micrograph of coronavirus 229E

The earliest reports of a coronavirus infection in animals occurred in the late 1920s, when an acute respiratory infection of domesticated chickens emerged in North America.[15] Arthur Schalk and M.C. Hawn in 1931 made the first detailed report which described a new respiratory infection of chickens in North Dakota. The infection of new-born chicks was characterized by gasping and listlessness with high mortality rates of 40–90%.[16] Leland David Bushnell and Carl Alfred Brandly isolated the virus that caused the infection in 1933.[17] The virus was then known as infectious bronchitis virus (IBV). Charles D. Hudson and Fred Robert Beaudette cultivated the virus for the first time in 1937.[18] The specimen came to be known as the Beaudette strain. In the late 1940s, two more animal coronaviruses, JHM that causes brain disease (murine encephalitis) and mouse hepatitis virus (MHV) that causes hepatitis in mice were discovered.[19] It was not realized at the time that these three different viruses were related.[20][12]

Human coronaviruses were discovered in the 1960s[21][22] using two different methods in the United Kingdom and the United States.[23] E.C. Kendall, Malcolm Bynoe, and David Tyrrell working at the Common Cold Unit of the British Medical Research Council collected a unique common cold virus designated B814 in 1961.[24][25][26] The virus could not be cultivated using standard techniques which had successfully cultivated rhinoviruses, adenoviruses and other known common cold viruses. In 1965, Tyrrell and Bynoe successfully cultivated the novel virus by serially passing it through organ culture of human embryonic trachea.[27] The new cultivating method was introduced to the lab by Bertil Hoorn.[28] The isolated virus when intranasally inoculated into volunteers caused a cold and was inactivated by ether which indicated it had a lipid envelope.[24][29] Dorothy Hamre[30] and John Procknow at the University of Chicago isolated a novel cold from medical students in 1962. They isolated and grew the virus in kidney tissue culture, designating it 229E. The novel virus caused a cold in volunteers and, like B814, was inactivated by ether.[31]

Transmission electron micrograph of organ cultured coronavirus OC43

Scottish virologist June Almeida at St Thomas' Hospital in London, collaborating with Tyrrell, compared the structures of IBV, B814 and 229E in 1967.[32][33] Using electron microscopy the three viruses were shown to be morphologically related by their general shape and distinctive club-like spikes.[34] A research group at the National Institute of Health the same year was able to isolate another member of this new group of viruses using organ culture and named one of the samples OC43 (OC for organ culture).[35] Like B814, 229E, and IBV, the novel cold virus OC43 had distinctive club-like spikes when observed with the electron microscope.[36][37]

The IBV-like novel cold viruses were soon shown to be also morphologically related to the mouse hepatitis virus.[19] This new group of viruses were named coronaviruses after their distinctive morphological appearance.[7] Human coronavirus 229E and human coronavirus OC43 continued to be studied in subsequent decades.[38][39] The coronavirus strain B814 was lost. It is not known which present human coronavirus it was.[40] Other human coronaviruses have since been identified, including SARS-CoV in 2003, HCoV NL63 in 2003, HCoV HKU1 in 2004, MERS-CoV in 2013, and SARS-CoV-2 in 2019.[41] There have also been a large number of animal coronaviruses identified since the 1960s.[42]

Microbiology

Structure

Structure of a coronavirus

Coronaviruses are large, roughly spherical particles with unique surface projections.[43] Their size is highly variable with average diameters of 80 to 120 nm. Extreme sizes are known from 50 to 200 nm in diameter.[44] The total molecular mass is on average 40,000 kDa. They are enclosed in an envelope embedded with a number of protein molecules.[45] The lipid bilayer envelope, membrane proteins, and nucleocapsid protect the virus when it is outside the host cell.[46]

The viral envelope is made up of a lipid bilayer in which the membrane (M), envelope (E) and spike (S) structural proteins are anchored.[47] The molar ratio of E:S:M in the lipid bilayer is approximately 1:20:300.[48] The E and M protein are the structural proteins that combined with the lipid bilayer to shape the viral envelope and maintain its size.[49] S proteins are needed for interaction with the host cells. But human coronavirus NL63 is peculiar in that its M protein has the binding site for the host cell, and not its S protein.[50] The diameter of the envelope is 85 nm. The envelope of the virus in electron micrographs appears as a distinct pair of electron-dense shells (shells that are relatively opaque to the electron beam used to scan the virus particle).[51][49]

The M protein is the main structural protein of the envelope that provides the overall shape and is a type III membrane protein. It consists of 218 to 263 Amino acid residues and forms a layer 7.8 nm thick.[45] It has three domains, a short N-terminal ectodomain, a triple-spanning transmembrane domain, and a C-terminal endodomain. The C-terminal domain forms a matrix-like lattice that adds to the extra-thickness of the envelope. Different species can have either N- or O-linked glycans in their protein amino-terminal domain. The M protein is crucial during the assembly, budding, envelope formation, and pathogenesis stages of the virus lifecycle.[52]

The E proteins are minor structural proteins and highly variable in different species.[44] There are only about 20 copies of the E protein molecule in a coronavirus particle.[48] They are 8.4 to 12 kDa in size and are composed of 76 to 109 amino acids.[44] They are integral proteins (i.e. embedded in the lipid layer) and have two domains namely a transmembrane domain and an extramembrane C-terminal domain. They are almost fully α-helical, with a single α-helical transmembrane domain, and form pentameric (five-molecular) ion channels in the lipid bilayer. They are responsible for virion assembly, intracellular trafficking and morphogenesis (budding).[45]

Diagram of the genome and functional domains of the S protein for SARS-CoV and MERS-CoV

The spikes are the most distinguishing feature of coronaviruses and are responsible for the corona- or halo-like surface. On average a coronavirus particle has 74 surface spikes.[53] Each spike is about 20 nm long and is composed of a trimer of the S protein. The S protein is in turn composed of an S1 and S2 subunit. The homotrimeric S protein is a class I fusion protein which mediates the receptor binding and membrane fusion between the virus and host cell. The S1 subunit forms the head of the spike and has the receptor-binding domain (RBD). The S2 subunit forms the stem which anchors the spike in the viral envelope and on protease activation enables fusion. The two subunits remain noncovalently linked as they are exposed on the viral surface until they attach to the host cell membrane.[45] In a functionally active state, three S1 are attached to two S2 subunits. The subunit complex is split into individual subunits when the virus binds and fuses with the host cell under the action of proteases such as cathepsin family and transmembrane protease serine 2 (TMPRSS2) of the host cell.[54]

After binding of the ACE2 receptor, SARS-CoV spike is activated and cleaved at the S1/S2 level

S1 proteins are the most critical components in terms of infection. They are also the most variable components as they are responsible for host cell specificity. They possess two major domains named N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD), both of which serve as the receptor-binding domains. The NTDs recognize and bind sugars on the surface of the host cell. An exception is the MHV NTD that binds to a protein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). S1-CTDs are responsible for recognizing different protein receptors such as angiotensin-converting enzyme 2 (ACE2), aminopeptidase N (APN), and dipeptidyl peptidase 4 (DPP4).[45]

A subset of coronaviruses (specifically the members of betacoronavirus subgroup A) also has a shorter spike-like surface protein called hemagglutinin esterase (HE).[42] The HE proteins occur as homodimers composed of about 400 amino acid residues and are 40 to 50 kDa in size. They appear as tiny surface projections of 5 to 7 nm long embedded in between the spikes. They help in the attachment to and detachment from the host cell.[55]

Inside the envelope, there is the nucleocapsid, which is formed from multiple copies of the nucleocapsid (N) protein, which are bound to the positive-sense single-stranded RNA genome in a continuous beads-on-a-string type conformation.[49][56] N protein is a phosphoprotein of 43 to 50 kDa in size, and is divided into three conserved domains. The majority of the protein is made up of domains 1 and 2, which are typically rich in arginines and lysines. Domain 3 has a short carboxy terminal end and has a net negative charge due to excess of acidic over basic amino acid residues.[44]

Genome

SARS-CoV genome and proteins

Coronaviruses contain a positive-sense, single-stranded RNA genome. The genome size for coronaviruses ranges from 26.4 to 31.7 kilobases.[6] The genome size is one of the largest among RNA viruses. The genome has a 5′ methylated cap and a 3′ polyadenylated tail.[49]

The genome organization for a coronavirus is 5′-leader-UTR-replicase (ORF1ab)-spike (S)-envelope (E)-membrane (M)-nucleocapsid (N)-3′UTR-poly (A) tail. The open reading frames 1a and 1b, which occupy the first two-thirds of the genome, encode the replicase polyprotein (pp1ab). The replicase polyprotein self cleaves to form 16 nonstructural proteins (nsp1–nsp16).[49]

The later reading frames encode the four major structural proteins: spike, envelope, membrane, and nucleocapsid.[57] Interspersed between these reading frames are the reading frames for the accessory proteins. The number of accessory proteins and their function is unique depending on the specific coronavirus.[49]

Replication cycle

Cell entry

The life cycle of a coronavirus

Infection begins when the viral spike protein attaches to its complementary host cell receptor. After attachment, a protease of the host cell cleaves and activates the receptor-attached spike protein. Depending on the host cell protease available, cleavage and activation allows the virus to enter the host cell by endocytosis or direct fusion of the viral envelope with the host membrane.[58]

Coronaviruses can enter cells by either fusing to their lipid envelope with the cell membrane on the cell surface or by internalization via endocytosis.[59]

Genome translation

On entry into the host cell, the virus particle is uncoated, and its genome enters the cell cytoplasm. The coronavirus RNA genome has a 5′ methylated cap and a 3′ polyadenylated tail, which allows it to act like a messenger RNA and be directly translated by the host cell's ribosomes. The host ribosomes translate the initial overlapping open reading frames ORF1a and ORF1b of the virus genome into two large overlapping polyproteins, pp1a and pp1ab.[49]

The larger polyprotein pp1ab is a result of a -1 ribosomal frameshift caused by a slippery sequence (UUUAAAC) and a downstream RNA pseudoknot at the end of open reading frame ORF1a.[60] The ribosomal frameshift allows for the continuous translation of ORF1a followed by ORF1b.[49]

The polyproteins have their own proteases, PLpro (nsp3) and 3CLpro (nsp5), which cleave the polyproteins at different specific sites. The cleavage of polyprotein pp1ab yields 16 nonstructural proteins (nsp1 to nsp16). Product proteins include various replication proteins such as RNA-dependent RNA polymerase (nsp12), RNA helicase (nsp13), and exoribonuclease (nsp14).[49]

Replicase-transcriptase

Replicase-transcriptase complex

A number of the nonstructural proteins coalesce to form a multi-protein replicase-transcriptase complex (RTC). The main replicase-transcriptase protein is the RNA-dependent RNA polymerase (RdRp). It is directly involved in the replication and transcription of RNA from an RNA strand. The other nonstructural proteins in the complex assist in the replication and transcription process. The exoribonuclease nonstructural protein, for instance, provides extra fidelity to replication by providing a proofreading function which the RNA-dependent RNA polymerase lacks.[61]

Replication – One of the main functions of the complex is to replicate the viral genome. RdRp directly mediates the synthesis of negative-sense genomic RNA from the positive-sense genomic RNA. This is followed by the replication of positive-sense genomic RNA from the negative-sense genomic RNA.[49]

Transcription of nested mRNAs
Nested set of subgenomic mRNAs

Transcription – The other important function of the complex is to transcribe the viral genome. RdRp directly mediates the synthesis of negative-sense subgenomic RNA molecules from the positive-sense genomic RNA. This process is followed by the transcription of these negative-sense subgenomic RNA molecules to their corresponding positive-sense mRNAs.[49] The subgenomic mRNAs form a "nested set" which have a common 5'-head and partially duplicate 3'-end.[62]

Recombination – The replicase-transcriptase complex is also capable of genetic recombination when at least two viral genomes are present in the same infected cell.[62] RNA recombination appears to be a major driving force in determining genetic variability within a coronavirus species, the capability of a coronavirus species to jump from one host to another and, infrequently, in determining the emergence of novel coronaviruses.[63] The exact mechanism of recombination in coronaviruses is unclear, but likely involves template switching during genome replication.[63]

Assembly and release

The replicated positive-sense genomic RNA becomes the genome of the progeny viruses. The mRNAs are gene transcripts of the last third of the virus genome after the initial overlapping reading frame. These mRNAs are translated by the host's ribosomes into the structural proteins and many accessory proteins.[49] RNA translation occurs inside the endoplasmic reticulum. The viral structural proteins S, E, and M move along the secretory pathway into the Golgi intermediate compartment. There, the M proteins direct most protein-protein interactions required for the assembly of viruses following its binding to the nucleocapsid. Progeny viruses are then released from the host cell by exocytosis through secretory vesicles. Once released the viruses can infect other host cells.[64]

Transmission

Infected carriers are able to shed viruses into the environment. The interaction of the coronavirus spike protein with its complementary cell receptor is central in determining the tissue tropism, infectivity, and species range of the released virus.[65][66] Coronaviruses mainly target epithelial cells.[42] They are transmitted from one host to another host, depending on the coronavirus species, by either an aerosol, fomite, or fecal-oral route.[67]

Human coronaviruses infect the epithelial cells of the respiratory tract, while animal coronaviruses generally infect the epithelial cells of the digestive tract.[42] SARS coronavirus, for example, infects the human epithelial cells of the lungs via an aerosol route[68] by binding to the angiotensin-converting enzyme 2 (ACE2) receptor.[69] Transmissible gastroenteritis coronavirus (TGEV) infects the pig epithelial cells of the digestive tract via a fecal-oral route[67] by binding to the Alanine aminopeptidase (APN) receptor.[49]

Classification

Phylogenetic tree of coronaviruses

Coronaviruses form the subfamily Orthocoronavirinae,[2][3][4] which is one of two sub-families in the family Coronaviridae, order Nidovirales, and realm Riboviria.[42][70] They are divided into the four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. Alphacoronaviruses and betacoronaviruses infect mammals, while gammacoronaviruses and deltacoronaviruses primarily infect birds.[71][72]

Origin

Origins of human coronaviruses with possible intermediate hosts

The most recent common ancestor (MRCA) of all coronaviruses is estimated to have existed as recently as 8000 BCE, although some models place the common ancestor as far back as 55 million years or more, implying long term coevolution with bat and avian species.[73] The most recent common ancestor of the alphacoronavirus line has been placed at about 2400 BCE, of the betacoronavirus line at 3300 BCE, of the gammacoronavirus line at 2800 BCE, and the deltacoronavirus line at about 3000 BCE. Bats and birds, as warm-blooded flying vertebrates, are an ideal natural reservoir for the coronavirus gene pool (with bats the reservoir for alphacoronaviruses and betacoronavirus – and birds the reservoir for gammacoronaviruses and deltacoronaviruses). The large number and global range of bat and avian species that host viruses have enabled extensive evolution and dissemination of coronaviruses.[74]

Many human coronaviruses have their origin in bats.[75] The human coronavirus NL63 shared a common ancestor with a bat coronavirus (ARCoV.2) between 1190 and 1449 CE.[76] The human coronavirus 229E shared a common ancestor with a bat coronavirus (GhanaGrp1 Bt CoV) between 1686 and 1800 CE.[77] More recently, alpaca coronavirus and human coronavirus 229E diverged sometime before 1960.[78] MERS-CoV emerged in humans from bats through the intermediate host of camels.[79] MERS-CoV, although related to several bat coronavirus species, appears to have diverged from these several centuries ago.[80] The most closely related bat coronavirus and SARS-CoV diverged in 1986.[81] The ancestors of SARS-CoV first infected leaf-nose bats of the genus Hipposideridae; subsequently, they spread to horseshoe bats in the species Rhinolophidae, then to Asian palm civets, and finally to humans.[82][83]

Unlike other betacoronaviruses, bovine coronavirus of the species Betacoronavirus 1 and subgenus Embecovirus is thought to have originated in rodents and not in bats.[75][84] In the 1790s, equine coronavirus diverged from the bovine coronavirus after a cross-species jump.[85] Later in the 1890s, human coronavirus OC43 diverged from bovine coronavirus after another cross-species spillover event.[86][85] It is speculated that the flu pandemic of 1890 may have been caused by this spillover event, and not by the influenza virus, because of the related timing, neurological symptoms, and unknown causative agent of the pandemic.[87] Besides causing respiratory infections, human coronavirus OC43 is also suspected of playing a role in neurological diseases.[88] In the 1950s, the human coronavirus OC43 began to diverge into its present genotypes.[89] Phylogenetically, mouse hepatitis virus (Murine coronavirus), which infects the mouse's liver and central nervous system,[90] is related to human coronavirus OC43 and bovine coronavirus. Human coronavirus HKU1, like the aforementioned viruses, also has its origins in rodents.[75]

Infection in humans

Transmission and life-cycle of SARS-CoV-2 causing COVID-19

Coronaviruses vary significantly in risk factor. Some can kill more than 30% of those infected, such as MERS-CoV, and some are relatively harmless, such as the common cold.[49] Coronaviruses can cause colds with major symptoms, such as fever, and a sore throat from swollen adenoids.[91] Coronaviruses can cause pneumonia (either direct viral pneumonia or secondary bacterial pneumonia) and bronchitis (either direct viral bronchitis or secondary bacterial bronchitis).[92] The human coronavirus discovered in 2003, SARS-CoV, which causes severe acute respiratory syndrome (SARS), has a unique pathogenesis because it causes both upper and lower respiratory tract infections.[92]

Six species of human coronaviruses are known, with one species subdivided into two different strains, making seven strains of human coronaviruses altogether.

Seasonal distribution of HCoV-NL63 in Germany shows a preferential detection from November to March

Four human coronaviruses produce symptoms that are generally mild, even though it is contended they might have been more aggressive in the past:[93]

  1. Human coronavirus OC43 (HCoV-OC43), β-CoV
  2. Human coronavirus HKU1 (HCoV-HKU1), β-CoV
  3. Human coronavirus 229E (HCoV-229E), α-CoV
  4. Human coronavirus NL63 (HCoV-NL63), α-CoV–

Three human coronaviruses produce potentially severe symptoms:

  1. Severe acute respiratory syndrome coronavirus (SARS-CoV), β-CoV (identified in 2003)
  2. Middle East respiratory syndrome-related coronavirus (MERS-CoV), β-CoV (identified in 2012)
  3. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), β-CoV (identified in 2019)

These cause the diseases commonly called SARS, MERS, and COVID-19 respectively.

Common cold

Although the common cold is usually caused by rhinoviruses,[94] in about 15% of cases the cause is a coronavirus.[95] The human coronaviruses HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63 continually circulate in the human population in adults and children worldwide and produce the generally mild symptoms of the common cold.[88] The four mild coronaviruses have a seasonal incidence occurring in the winter months in temperate climates.[96][97] There is no preponderance in any season in tropical climates.[98]

Severe acute respiratory syndrome (SARS)

In 2003, following the outbreak of severe acute respiratory syndrome (SARS) which had begun the prior year in Asia, and secondary cases elsewhere in the world, the World Health Organization (WHO) issued a press release stating that a novel coronavirus identified by several laboratories was the causative agent for SARS. The virus was officially named the SARS coronavirus (SARS-CoV). More than 8,000 people from 29 countries and territories were infected, and at least 774 died.[108][69]

Middle East respiratory syndrome (MERS)

In September 2012, a new type of coronavirus was identified, initially called Novel Coronavirus 2012, and now officially named Middle East respiratory syndrome coronavirus (MERS-CoV).[109][110] The World Health Organization issued a global alert soon after.[111] The WHO update on 28 September 2012 said the virus did not seem to pass easily from person to person.[112] However, on 12 May 2013, a case of human-to-human transmission in France was confirmed by the French Ministry of Social Affairs and Health.[113] In addition, cases of human-to-human transmission were reported by the Ministry of Health in Tunisia. Two confirmed cases involved people who seemed to have caught the disease from their late father, who became ill after a visit to Qatar and Saudi Arabia. Despite this, it appears the virus had trouble spreading from human to human, as most individuals who are infected do not transmit the virus.[114] By 30 October 2013, there were 124 cases and 52 deaths in Saudi Arabia.[115]

After the Dutch Erasmus Medical Centre sequenced the virus, the virus was given a new name, Human Coronavirus–Erasmus Medical Centre (HCoV-EMC). The final name for the virus is Middle East respiratory syndrome coronavirus (MERS-CoV). The only U.S. cases (both survived) were recorded in May 2014.[116]

In May 2015, an outbreak of MERS-CoV occurred in the Republic of Korea, when a man who had traveled to the Middle East, visited four hospitals in the Seoul area to treat his illness. This caused one of the largest outbreaks of MERS-CoV outside the Middle East.[117] As of December 2019, 2,468 cases of MERS-CoV infection had been confirmed by laboratory tests, 851 of which were fatal, a mortality rate of approximately 34.5%.[118]

Coronavirus disease 2019 (COVID-19)

In December 2019, a pneumonia outbreak was reported in Wuhan, China.[119] On 31 December 2019, the outbreak was traced to a novel strain of coronavirus,[120] which was given the interim name 2019-nCoV by the World Health Organization,[121][122][123] later renamed SARS-CoV-2 by the International Committee on Taxonomy of Viruses.

As of 10 March 2023, there have been at least 6,881,955[104] confirmed deaths and more than 676,609,955[104] confirmed cases in the COVID-19 pandemic. The Wuhan strain has been identified as a new strain of Betacoronavirus from group 2B with approximately 70% genetic similarity to the SARS-CoV.[124] The virus has a 96% similarity to a bat coronavirus, so it is widely suspected to originate from bats as well.[125][126]

Coronavirus HuPn-2018

During a surveillance study of archived samples of Malaysian viral pneumonia patients, virologists identified a strain of canine coronavirus which has infected humans in 2018.

Infection in animals

Coronaviruses have been recognized as causing pathological conditions in veterinary medicine since the 1930s.[19] They infect a range of animals including swine, cattle, horses, camels, cats, dogs, rodents, birds and bats.[127] The majority of animal related coronaviruses infect the intestinal tract and are transmitted by a fecal-oral route.[128] Significant research efforts have been focused on elucidating the viral pathogenesis of these animal coronaviruses, especially by virologists interested in veterinary and zoonotic diseases.[129]

Farm animals

Coronaviruses infect domesticated birds.[130] Infectious bronchitis virus (IBV), a type of coronavirus, causes avian infectious bronchitis.[131] The virus is of concern to the poultry industry because of the high mortality from infection, its rapid spread, and its effect on production.[127] The virus affects both meat production and egg production and causes substantial economic loss.[132] In chickens, infectious bronchitis virus targets not only the respiratory tract but also the urogenital tract. The virus can spread to different organs throughout the chicken.[131] The virus is transmitted by aerosol and food contaminated by feces. Different vaccines against IBV exist and have helped to limit the spread of the virus and its variants.[127] Infectious bronchitis virus is one of a number of strains of the species Avian coronavirus.[133] Another strain of avian coronavirus is turkey coronavirus (TCV) which causes enteritis in turkeys.[127]

Coronaviruses also affect other branches of animal husbandry such as pig farming and the Cattle raising.[127] Swine acute diarrhea syndrome coronavirus (SADS-CoV), which is related to bat coronavirus HKU2, causes diarrhea in pigs.[134] Porcine epidemic diarrhea virus (PEDV) is a coronavirus that has recently emerged and similarly causes diarrhea in pigs.[135] Transmissible gastroenteritis virus (TGEV), which is a member of the species Alphacoronavirus 1,[136] is another coronavirus that causes diarrhea in young pigs.[137][138] In the cattle industry bovine coronavirus (BCV), which is a member of the species Betacoronavirus 1 and related to HCoV-OC43,[139] is responsible for severe profuse enteritis in young calves.[127]

Domestic pets

Coronaviruses infect domestic pets such as cats, dogs, and ferrets.[130] There are two forms of feline coronavirus which are both members of the species Alphacoronavirus 1.[136] Feline enteric coronavirus is a pathogen of minor clinical significance, but spontaneous mutation of this virus can result in feline infectious peritonitis (FIP), a disease with high mortality.[127] There are two different coronaviruses that infect dogs. Canine coronavirus (CCoV), which is a member of the species Alphacoronavirus 1,[136] causes mild gastrointestinal disease.[127] Canine respiratory coronavirus (CRCoV), which is a member of the species Betacoronavirus 1 and related to HCoV-OC43,[139] cause respiratory disease.[127] Similarly, there are two types of coronavirus that infect ferrets.[140] Ferret enteric coronavirus causes a gastrointestinal syndrome known as epizootic catarrhal enteritis (ECE), and a more lethal systemic version of the virus (like FIP in cats) known as ferret systemic coronavirus (FSC).[141][142]

Laboratory animals

Coronaviruses infect laboratory animals.[127] Mouse hepatitis virus (MHV), which is a member of the species Murine coronavirus,[143] causes an epidemic murine illness with high mortality, especially among colonies of laboratory mice.[144] Prior to the discovery of SARS-CoV, MHV was the best-studied coronavirus both in vivo and in vitro as well as at the molecular level. Some strains of MHV cause a progressive demyelinating encephalitis in mice which has been used as a murine model for multiple sclerosis.[129] Sialodacryoadenitis virus (SDAV), which is a strain of the species Murine coronavirus,[143] is highly infectious coronavirus of laboratory rats, which can be transmitted between individuals by direct contact and indirectly by aerosol. Rabbit enteric coronavirus causes acute gastrointestinal disease and diarrhea in young European rabbits.[127] Mortality rates are high.[145]

Prevention and treatment

A number of vaccines using different methods have been developed against human coronavirus SARS-CoV-2.[146][147] Antiviral targets against human coronaviruses have also been identified such as viral proteases, polymerases, and entry proteins. Drugs are in development which target these proteins and the different steps of viral replication.[148][147]

Vaccines are available for animal coronaviruses IBV, TGEV, and Canine CoV, although their effectiveness is limited. In the case of outbreaks of highly contagious animal coronaviruses, such as PEDV, measures such as destruction of entire herds of pigs may be used to prevent transmission to other herds.[49]

See also

References

  1. ^ "Virus Taxonomy: 2018b Release". International Committee on Taxonomy of Viruses (ICTV). March 2019. Archived from the original on 2018-03-04. Retrieved 2020-01-24.
  2. ^ a b "2017.012-015S" (xlsx). International Committee on Taxonomy of Viruses (ICTV). October 2018. Archived from the original on 2019-05-14. Retrieved 2020-01-24.
  3. ^ a b c "ICTV Taxonomy history: Orthocoronavirinae". International Committee on Taxonomy of Viruses (ICTV). Retrieved 2020-01-24.
  4. ^ a b c Fan Y, Zhao K, Shi ZL, Zhou P (March 2019). "Bat Coronaviruses in China". Viruses. 11 (3): 210. doi:10.3390/v11030210. PMC 6466186. PMID 30832341.
  5. ^ Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ (2017). Feigin and Cherry's Textbook of Pediatric Infectious Diseases. Elsevier Health Sciences. p. PT6615. ISBN 978-0-323-39281-5.
  6. ^ a b Woo PC, Huang Y, Lau SK, Yuen KY (August 2010). "Coronavirus genomics and bioinformatics analysis". Viruses. 2 (8): 1804–20. doi:10.3390/v2081803. PMC 3185738. PMID 21994708. Coronaviruses possess the largest genomes [26.4 kb (ThCoV HKU12) to 31.7 kb (SW1)] among all known RNA viruses (Figure 1) [2,13,16].
  7. ^ a b c d Almeida JD, Berry DM, Cunningham CH, Hamre D, Hofstad MS, Mallucci L, McIntosh K, Tyrrell DA (November 1968). "Virology: Coronaviruses". Nature. 220 (5168): 650. Bibcode:1968Natur.220..650.. doi:10.1038/220650b0. PMC 7086490. [T]here is also a characteristic "fringe" of projections 200 A long, which are rounded or petal shaped ... This appearance, recalling the solar corona, is shared by mouse hepatitis virus and several viruses recently recovered from man, namely strain B814, 229E and several others.
  8. ^ "Definition of Coronavirus by Merriam-Webster". Merriam-Webster. Archived from the original on 2020-03-23. Retrieved 2020-03-24.
  9. ^ "Definition of Corona by Merriam-Webster". Merriam-Webster. Archived from the original on 2020-03-24. Retrieved 2020-03-24.
  10. ^ a b Tyrrell DA, Fielder M (2002). Cold Wars: The Fight Against the Common Cold. Oxford University Press. p. 96. ISBN 978-0-19-263285-2. We looked more closely at the appearance of the new viruses and noticed that they had a kind of halo surrounding them. Recourse to a dictionary produced the Latin equivalent, corona, and so the name coronavirus was born.
  11. ^ Sturman LS, Holmes KV (1983-01-01). Lauffer MA, Maramorosch K (eds.). "The molecular biology of coronaviruses". Advances in Virus Research. 28: 35–112. doi:10.1016/s0065-3527(08)60721-6. ISBN 9780120398287. PMC 7131312. PMID 6362367. [T]hese viruses displayed a characteristic fringe of large, distinctive, petal-shaped peplomers or spikes which resembled a crown, like the corona spinarum in religious art; hence the name coronaviruses.
  12. ^ a b Lalchhandama K (2020). "The chronicles of coronaviruses: the bronchitis, the hepatitis and the common cold". Science Vision. 20 (1): 43–53. doi:10.33493/scivis.20.01.04.
  13. ^ Carstens EB (2010). "Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009)". Archives of Virology. 155 (1): 133–46. doi:10.1007/s00705-009-0547-x. PMC 7086975. PMID 19960211.
  14. ^ "International Committee on Taxonomy of Viruses (ICTV)". talk.ictvonline.org. Retrieved 2020-09-14.
  15. ^ Estola T (1970). "Coronaviruses, a New Group of Animal RNA Viruses". Avian Diseases. 14 (2): 330–336. doi:10.2307/1588476. ISSN 0005-2086. JSTOR 1588476. PMID 4316767.
  16. ^ Fabricant J (1998). "The Early History of Infectious Bronchitis". Avian Diseases. 42 (4): 648–650. doi:10.2307/1592697. ISSN 0005-2086. JSTOR 1592697. PMID 9876830.
  17. ^ Bushnell LD, Brandly CA (1933). "Laryngotracheitis in chicks". Poultry Science. 12 (1): 55–60. doi:10.3382/ps.0120055.
  18. ^ a b Decaro N (2011). "Gammacoronavirus". In Tidona C, Darai G (eds.). Gammacoronavirus‡: Coronaviridae. The Springer Index of Viruses. Springer. pp. 403–413. doi:10.1007/978-0-387-95919-1_58. ISBN 978-0-387-95919-1. PMC 7176155.
  19. ^ a b c McIntosh K (1974). "Coronaviruses: A Comparative Review". In Arber W, Haas R, Henle W, Hofschneider PH, Jerne NK, Koldovský P, Koprowski H, Maaløe O, Rott R (eds.). Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung. Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung. Berlin, Heidelberg: Springer. p. 87. doi:10.1007/978-3-642-65775-7_3. ISBN 978-3-642-65775-7.
  20. ^ "Il était une fois les coronavirus". Réalités Biomédicales (in French). 2020-03-27. Retrieved 2020-04-18.
  21. ^ Kahn JS, McIntosh K (November 2005). "History and recent advances in coronavirus discovery". The Pediatric Infectious Disease Journal. 24 (11 Suppl): S223–7, discussion S226. doi:10.1097/01.inf.0000188166.17324.60. PMID 16378050.
  22. ^ Mahase E (April 2020). "The BMJ in 1965". BMJ. 369: m1547. doi:10.1136/bmj.m1547. PMID 32299810.
  23. ^ Monto AS (1984). "Coronaviruses". In Evans AS (ed.). Viral Infections of Humans. Viral Infections of Humans: Epidemiology and Control. Springer US. pp. 151–165. doi:10.1007/978-1-4684-4727-9_7. ISBN 978-1-4684-4727-9.
  24. ^ a b Kendall EJ, Bynoe ML, Tyrrell DA (July 1962). "Virus isolations from common colds occurring in a residential school". British Medical Journal. 2 (5297): 82–6. doi:10.1136/bmj.2.5297.82. PMC 1925312. PMID 14455113.
  25. ^ Richmond C (2005-06-18). "David Tyrrell". BMJ: British Medical Journal. 330 (7505): 1451. doi:10.1136/bmj.330.7505.1451. PMC 558394.
  26. ^ "Obituary Notices: Malcom Byone". British Medical Journal. 2 (5660): 827–829. 1969-06-28. doi:10.1136/bmj.2.5660.827. S2CID 220187042.
  27. ^ Tyrrell DA, Bynoe ML (June 1965). "Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures". British Medical Journal. 1 (5448): 1467–70. doi:10.1136/bmj.1.5448.1467. PMC 2166670. PMID 14288084.
  28. ^ Tyrrell DA, Fielder M (2002). Cold Wars: The Fight Against the Common Cold. Oxford University Press. pp. 93–95. ISBN 978-0-19-263285-2.
  29. ^ Hagan WA, Bruner DW, Gillespie JH, Timoney JF, Scott FW, Barlough JE (1988). Hagan and Bruner's Microbiology and Infectious Diseases of Domestic Animals: With Reference to Etiology, Epizootiology, Pathogenesis, Immunity, Diagnosis, and Antimicrobial Susceptibility. Cornell University Press. p. 440. ISBN 978-0-8014-1896-9.
  30. ^ Knapp, Alex. "The Secret History Of The First Coronavirus". Forbes. Retrieved 2020-05-06.
  31. ^ Hamre D, Procknow JJ (January 1966). "A new virus isolated from the human respiratory tract". Proceedings of the Society for Experimental Biology and Medicine. 121 (1): 190–3. doi:10.3181/00379727-121-30734. PMID 4285768. S2CID 1314901.
  32. ^ "The woman who discovered the first coronavirus". BBC News. 2020-04-14.
  33. ^ Almeida J (2008-06-26). "June Almeida (née Hart)". BMJ. 336 (7659): 1511.1–1511. doi:10.1136/bmj.a434. ISSN 0959-8138. PMC 2440895.
  34. ^ Almeida JD, Tyrrell DA (April 1967). "The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture". The Journal of General Virology. 1 (2): 175–8. doi:10.1099/0022-1317-1-2-175. PMID 4293939.
  35. ^ McIntosh K, Becker WB, Chanock RM (December 1967). "Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease". Proceedings of the National Academy of Sciences of the United States of America. 58 (6): 2268–73. Bibcode:1967PNAS...58.2268M. doi:10.1073/pnas.58.6.2268. PMC 223830. PMID 4298953.
  36. ^ McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM (April 1967). "Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease". Proceedings of the National Academy of Sciences of the United States of America. 57 (4): 933–40. Bibcode:1967PNAS...57..933M. doi:10.1073/pnas.57.4.933. PMC 224637. PMID 5231356.
  37. ^ Times, Harold M. Schmeck Jr Special To the New York (1967-05-05). "Six Newly Discovered Viruses May Explain Cold; Strains Are Similar to Germ That Causes a Bronchial Infection in Chickens Believed to Be New Group". The New York Times. ISSN 0362-4331. Retrieved 2020-04-25.
  38. ^ Myint SH (1995). "Human Coronavirus Infections". In Siddell SG (ed.). The Coronaviridae. The Viruses. Springer US. pp. 389–401. doi:10.1007/978-1-4899-1531-3_18. ISBN 978-1-4899-1531-3. S2CID 80726096.
  39. ^ Geller C, Varbanov M, Duval RE (November 2012). "Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies". Viruses. 4 (11): 3044–68. doi:10.3390/v4113044. PMC 3509683. PMID 23202515.
  40. ^ Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, et al. (August 2014). "Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013". Emerging Infectious Diseases. 20 (8): 1319–22. doi:10.1007/978-1-4899-7448-8_10. ISBN 978-1-4899-7447-1. PMC 7122465. PMID 25075637. The other OC strains and B814 that could not be adapted to mouse brain resisted adaptation to cell culture as well; these distinct viruses have since been lost and may actually have been rediscovered recently.
  41. ^ Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. (February 2020). "A Novel Coronavirus from Patients with Pneumonia in China, 2019". The New England Journal of Medicine. 382 (8): 727–733. doi:10.1056/NEJMoa2001017. PMC 7092803. PMID 31978945.
  42. ^ a b c d e de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J (2011). "Family Coronaviridae". In King AM, Lefkowitz E, Adams MJ, Carstens EB, International Committee on Taxonomy of Viruses, International Union of Microbiological Societies. Virology Division (eds.). Ninth Report of the International Committee on Taxonomy of Viruses. Oxford: Elsevier. pp. 806–28. doi:10.1016/B978-0-12-384684-6.00068-9. ISBN 978-0-12-384684-6. S2CID 212719285.
  43. ^ Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, et al. (February 2004). "Ultrastructural characterization of SARS coronavirus". Emerging Infectious Diseases. 10 (2): 320–6. doi:10.3201/eid1002.030913. PMC 3322934. PMID 15030705. Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A).
  44. ^ a b c d Masters PS (2006). "The molecular biology of coronaviruses". Advances in Virus Research. 66: 193–292. doi:10.1016/S0065-3527(06)66005-3. ISBN 9780120398690. PMC 7112330. PMID 16877062.
  45. ^ a b c d e Lalchhandama K (2020). "The chronicles of coronaviruses: the electron microscope, the doughnut, and the spike". Science Vision. 20 (2): 78–92. doi:10.33493/scivis.20.02.03.
  46. ^ Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. (April 2011). "A structural analysis of M protein in coronavirus assembly and morphology". Journal of Structural Biology. 174 (1): 11–22. doi:10.1016/j.jsb.2010.11.021. PMC 4486061. PMID 21130884. See Figure 10.
  47. ^ Lai MM, Cavanagh D (1997). "The molecular biology of coronaviruses". Advances in Virus Research. 48: 1–100. doi:10.1016/S0065-3527(08)60286-9. ISBN 9780120398485. PMC 7130985. PMID 9233431.
  48. ^ a b Godet M, L'Haridon R, Vautherot JF, Laude H (1992). "TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions". Virology. 188 (2): 666–75. doi:10.1016/0042-6822(92)90521-p. PMC 7131960. PMID 1316677.
  49. ^ a b c d e f g h i j k l m n o Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See section: Virion Structure.
  50. ^ Naskalska A, Dabrowska A, Szczepanski A, Milewska A, Jasik KP, Pyrc K (October 2019). "Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor". Journal of Virology. 93 (19). doi:10.1128/JVI.00355-19. PMC 6744225. PMID 31315999.
  51. ^ Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. (August 2006). "Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy". Journal of Virology. 80 (16): 7918–28. doi:10.1128/JVI.00645-06. PMC 1563832. PMID 16873249. Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure 1 for double shell.
  52. ^ Schoeman D, Fielding BC (May 2019). "Coronavirus envelope protein: current knowledge". Virology Journal. 16 (1): 69. doi:10.1186/s12985-019-1182-0. PMC 6537279. PMID 31133031.
  53. ^ Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. (April 2011). "A structural analysis of M protein in coronavirus assembly and morphology". Journal of Structural Biology. 174 (1): 11–22. doi:10.1016/j.jsb.2010.11.021. PMC 4486061. PMID 21130884.
  54. ^ J Alsaadi EA, Jones IM (April 2019). "Membrane binding proteins of coronaviruses". Future Virology. 14 (4): 275–286. doi:10.2217/fvl-2018-0144. PMC 7079996. PMID 32201500.
  55. ^ Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ (July 2008). "Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution". Proceedings of the National Academy of Sciences of the United States of America. 105 (26): 9065–9. Bibcode:2008PNAS..105.9065Z. doi:10.1073/pnas.0800502105. PMC 2449365. PMID 18550812.
  56. ^ Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH (March 2014). "The SARS coronavirus nucleocapsid protein—forms and functions". Antiviral Research. 103: 39–50. doi:10.1016/j.antiviral.2013.12.009. PMC 7113676. PMID 24418573. See Figure 4c.
  57. ^ Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. (August 2003). "Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage". Journal of Molecular Biology. 331 (5): 991–1004. doi:10.1016/S0022-2836(03)00865-9. PMC 7159028. PMID 12927536. See Figure 1.
  58. ^ Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S (December 2013). "Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research". Antiviral Research. 100 (3): 605–14. doi:10.1016/j.antiviral.2013.09.028. PMC 3889862. PMID 24121034. See Figure 2.
  59. ^ Szlachcic, Wojciech J.; Dabrowska, Agnieszka; Milewska, Aleksandra; Ziojla, Natalia; Blaszczyk, Katarzyna; Barreto-Duran, Emilia; Sanak, Marek; Surmiak, Marcin; Owczarek, Katarzyna; Grzanka, Dariusz; Durzynska, Julia; Pyrc, Krzysztof; Borowiak, Malgorzata (July 2022). "SARS-CoV-2 infects an in vitro model of the human developing pancreas through endocytosis". iScience. 25 (7): 104594. doi:10.1016/j.isci.2022.104594.
  60. ^ Masters PS (2006-01-01). "The molecular biology of coronaviruses". Advances in Virus Research. Academic Press. 66: 193–292. doi:10.1016/S0065-3527(06)66005-3. ISBN 9780120398690. PMC 7112330. PMID 16877062. See Figure 8.
  61. ^ Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR (August 2016). "Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens". Journal of Virology. 90 (16): 7415–28. doi:10.1128/JVI.00080-16. PMC 4984655. PMID 27279608. Finally, these results, combined with those from previous work (33, 44), suggest that CoVs encode at least three proteins involved in fidelity (nsp12-RdRp, nsp14-ExoN, and nsp10), supporting the assembly of a multiprotein replicase-fidelity complex, as described previously (38).
  62. ^ a b Payne S (2017-01-01). "Chapter 17 - Family Coronaviridae". Viruses. Academic Press. pp. 149–158. doi:10.1016/B978-0-12-803109-4.00017-9. ISBN 978-0-12-803109-4. S2CID 91572610.
  63. ^ a b Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, Liu W, Bi Y, Gao GF (June 2016). "Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses". Trends in Microbiology. 24 (6): 490–502. doi:10.1016/j.tim.2016.03.003. PMC 7125511. PMID 27012512.
  64. ^ Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. Vol. 1282. Springer. pp. 1–23. doi:10.1007/978-1-4939-2438-7_1. ISBN 978-1-4939-2438-7. PMC 4369385. PMID 25720466. See section: Coronavirus Life Cycle—Assembly and Release
  65. ^ Masters PS (2006-01-01). "The molecular biology of coronaviruses". Advances in Virus Research. Academic Press. 66: 193–292. doi:10.1016/S0065-3527(06)66005-3. ISBN 978-0120398690. PMC 7112330. PMID 16877062. Nevertheless, the interaction between S protein and receptor remains the principal, if not sole, determinant of coronavirus host species range and tissue tropism.
  66. ^ Cui J, Li F, Shi ZL (March 2019). "Origin and evolution of pathogenic coronaviruses". Nature Reviews. Microbiology. 17 (3): 181–92. doi:10.1038/s41579-018-0118-9. PMC 7097006. PMID 30531947. Different SARS-CoV strains isolated from several hosts vary in their binding affinities for human ACE2 and consequently in their infectivity of human cells 76, 78 (Fig. 6b)
  67. ^ a b c Decaro N (2011). Tidona C, Darai G (eds.). Alphacoronavirus. The Springer Index of Viruses. Springer. pp. 371–383. doi:10.1007/978-0-387-95919-1_56. ISBN 978-0-387-95919-1. PMC 7176201.
  68. ^ a b Decaro N (2011). Tidona C, Darai G (eds.). Betacoronavirus. The Springer Index of Viruses. Springer. pp. 385–401. doi:10.1007/978-0-387-95919-1_57. ISBN 978-0-387-95919-1. PMC 7176184.
  69. ^ a b Li F, Li W, Farzan M, Harrison SC (September 2005). "Structure of SARS coronavirus spike receptor-binding domain complexed with receptor". Science. 309 (5742): 1864–68. Bibcode:2005Sci...309.1864L. doi:10.1126/science.1116480. PMID 16166518. S2CID 12438123.
  70. ^ International Committee on Taxonomy of Viruses (2010-08-24). "ICTV Master Species List 2009—v10". Archived from the original (xls) on 2013-04-15.
  71. ^ Wertheim JO, Chu DK, Peiris JS, Kosakovsky Pond SL, Poon LL (June 2013). "A case for the ancient origin of coronaviruses". Journal of Virology. 87 (12): 7039–45. doi:10.1128/JVI.03273-12. PMC 3676139. PMID 23596293. Alphacoronaviruses and betacoronaviruses are found exclusively in mammals, whereas gammacoronaviruses and deltacoronaviruses primarily infect birds.
  72. ^ "Nextstrain, phylogenetic tree of Beta-CoV". nextstrain.org.
  73. ^ Wertheim JO, Chu DK, Peiris JS, Kosakovsky Pond SL, Poon LL (June 2013). "A case for the ancient origin of coronaviruses". Journal of Virology. 87 (12): 7039–45. doi:10.1128/JVI.03273-12. PMC 3676139. PMID 23596293.
  74. ^ Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. (April 2012). "Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus". Journal of Virology. 86 (7): 3995–4008. doi:10.1128/JVI.06540-11. PMC 3302495. PMID 22278237.
  75. ^ a b c Forni D, Cagliani R, Clerici M, Sironi M (January 2017). "Molecular Evolution of Human Coronavirus Genomes". Trends in Microbiology. 25 (1): 35–48. doi:10.1016/j.tim.2016.09.001. PMC 7111218. PMID 27743750. Specifically, all HCoVs are thought to have a bat origin, with the exception of lineage A beta-CoVs, which may have reservoirs in rodents [2].
  76. ^ Huynh J, Li S, Yount B, Smith A, Sturges L, Olsen JC, et al. (December 2012). "Evidence supporting a zoonotic origin of human coronavirus strain NL63". Journal of Virology. 86 (23): 12816–25. doi:10.1128/JVI.00906-12. PMC 3497669. PMID 22993147. If these predictions are correct, this observation suggests that HCoV-NL63 may have originated from bats between 1190 and 1449 CE.
  77. ^ Pfefferle S, Oppong S, Drexler JF, Gloza-Rausch F, Ipsen A, Seebens A, et al. (September 2009). "Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana". Emerging Infectious Diseases. 15 (9): 1377–84. doi:10.3201/eid1509.090224. PMC 2819850. PMID 19788804. The most recent common ancestor of hCoV-229E and GhanaBt-CoVGrp1 existed in ≈1686–1800 AD.
  78. ^ Crossley BM, Mock RE, Callison SA, Hietala SK (December 2012). "Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E". Viruses. 4 (12): 3689–700. doi:10.3390/v4123689. PMC 3528286. PMID 23235471.
  79. ^ Forni D, Cagliani R, Clerici M, Sironi M (January 2017). "Molecular Evolution of Human Coronavirus Genomes". Trends in Microbiology. 25 (1): 35–48. doi:10.1016/j.tim.2016.09.001. PMC 7111218. PMID 27743750.
  80. ^ Lau SK, Li KS, Tsang AK, Lam CS, Ahmed S, Chen H, et al. (August 2013). "Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus". Journal of Virology. 87 (15): 8638–50. doi:10.1128/JVI.01055-13. PMC 3719811. PMID 23720729.
  81. ^ Vijaykrishna D, Smith GJ, Zhang JX, Peiris JS, Chen H, Guan Y (April 2007). "Evolutionary insights into the ecology of coronaviruses". Journal of Virology. 81 (8): 4012–20. doi:10.1128/jvi.02605-06. PMC 1866124. PMID 17267506.
  82. ^ Gouilh MA, Puechmaille SJ, Gonzalez JP, Teeling E, Kittayapong P, Manuguerra JC (October 2011). "SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory". Infection, Genetics and Evolution. 11 (7): 1690–702. doi:10.1016/j.meegid.2011.06.021. PMC 7106191. PMID 21763784.
  83. ^ Cui J, Han N, Streicker D, Li G, Tang X, Shi Z, et al. (October 2007). "Evolutionary relationships between bat coronaviruses and their hosts". Emerging Infectious Diseases. 13 (10): 1526–32. doi:10.3201/eid1310.070448. PMC 2851503. PMID 18258002.
  84. ^ Lau SK, Woo PC, Li KS, Tsang AK, Fan RY, Luk HK, et al. (March 2015). "Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A". Journal of Virology. 89 (6): 3076–92. doi:10.1128/JVI.02420-14. PMC 4337523. PMID 25552712.
  85. ^ a b Bidokhti MR, Tråvén M, Krishna NK, Munir M, Belák S, Alenius S, Cortey M (September 2013). "Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains". The Journal of General Virology. 94 (Pt 9): 2036–2049. doi:10.1099/vir.0.054940-0. PMID 23804565. See Table 1
  86. ^ Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, et al. (February 2005). "Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event". Journal of Virology. 79 (3): 1595–604. doi:10.1128/jvi.79.3.1595-1604.2005. PMC 544107. PMID 15650185.
  87. ^ Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, et al. (February 2005). "Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event". Journal of Virology. 79 (3): 1595–604. doi:10.1128/JVI.79.3.1595-1604.2005. PMC 544107. PMID 15650185. However, it is tempting to speculate about an alternative hypothesis, that the 1889-1890 pandemic may have been the result of interspecies transmission of bovine coronaviruses to humans, resulting in the subsequent emergence of HCoV-OC43.
  88. ^ a b Corman VM, Muth D, Niemeyer D, Drosten C (2018). "Hosts and Sources of Endemic Human Coronaviruses". Advances in Virus Research. 100: 163–188. doi:10.1016/bs.aivir.2018.01.001. ISBN 978-0-12-815201-0. PMC 7112090. PMID 29551135.
  89. ^ Lau SK, Lee P, Tsang AK, Yip CC, Tse H, Lee RA, et al. (November 2011). "Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination". Journal of Virology. 85 (21): 11325–37. doi:10.1128/JVI.05512-11. PMC 3194943. PMID 21849456.
  90. ^ Schaumburg CS, Held KS, Lane TE (May 2008). "Mouse hepatitis virus infection of the CNS: a model for defense, disease, and repair". Frontiers in Bioscience. 13 (13): 4393–406. doi:10.2741/3012. PMC 5025298. PMID 18508518.
  91. ^ Liu P, Shi L, Zhang W, He J, Liu C, Zhao C, et al. (November 2017). "Prevalence and genetic diversity analysis of human coronaviruses among cross-border children". Virology Journal. 14 (1): 230. doi:10.1186/s12985-017-0896-0. PMC 5700739. PMID 29166910.
  92. ^ a b Forgie S, Marrie TJ (February 2009). "Healthcare-associated atypical pneumonia". Seminars in Respiratory and Critical Care Medicine. 30 (1): 67–85. doi:10.1055/s-0028-1119811. PMID 19199189.
  93. ^ King, Anthony (2020-05-02). "An uncommon cold". New Scientist. 246 (3280): 32–35. Bibcode:2020NewSc.246...32K. doi:10.1016/S0262-4079(20)30862-9. ISSN 0262-4079. PMC 7252012. PMID 32501321.
  94. ^ Cecil RL, Goldman L, Schafer AI (2012). Goldman's Cecil Medicine, Expert Consult Premium Edition (24 ed.). Elsevier Health Sciences. pp. 2103–. ISBN 978-1-4377-1604-7. Archived from the original on 2016-05-04.
  95. ^ Pelczar (2010). Microbiology: Application Based Approach. p. 656. ISBN 978-0-07-015147-5. Archived from the original on 2016-05-16.
  96. ^ Charlton CL, Babady E, Ginocchio CC, Hatchette TF, Jerris RC, Li Y, et al. (January 2019). "Practical Guidance for Clinical Microbiology Laboratories: Viruses Causing Acute Respiratory Tract Infections". Clinical Microbiology Reviews. 32 (1). doi:10.1128/CMR.00042-18. PMC 6302358. PMID 30541871. See Figure 1.
  97. ^ Monto AS, DeJonge P, Callear AP, Bazzi LA, Capriola S, Malosh RE, et al. (April 2020). "Coronavirus occurrence and transmission over 8 years in the HIVE cohort of households in Michigan". The Journal of Infectious Diseases. 222: 9–16. doi:10.1093/infdis/jiaa161. PMC 7184402. PMID 32246136.
  98. ^ Abdul-Rasool S, Fielding BC (May 2010). "Understanding Human Coronavirus HCoV-NL63". The Open Virology Journal. 4: 76–84. doi:10.2174/1874357901004010076. PMC 2918871. PMID 20700397.
  99. ^ Wang C, Horby PW, Hayden FG, Gao GF (February 2020). "A novel coronavirus outbreak of global health concern". Lancet. 395 (10223): 470–473. doi:10.1016/S0140-6736(20)30185-9. PMID 31986257.
  100. ^ Lau EH, Hsiung CA, Cowling BJ, Chen CH, Ho LM, Tsang T, et al. (March 2010). "A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan". BMC Infectious Diseases. 10: 50. doi:10.1186/1471-2334-10-50. PMC 2846944. PMID 20205928.
  101. ^ a b "Old age, sepsis tied to poor COVID-19 outcomes, death". CIDRAP, University of Minnesota. Retrieved 2020-03-29.
  102. ^ Karlberg J, Chong DS, Lai WY (February 2004). "Do men have a higher case fatality rate of severe acute respiratory syndrome than women do?". American Journal of Epidemiology. 159 (3): 229–31. doi:10.1093/aje/kwh056. PMID 14742282.
  103. ^ a b "Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003". World Health Organization. April 2004.
  104. ^ a b c d e "COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)". ArcGIS. Johns Hopkins University. Retrieved 2023-03-10.
  105. ^ a b c d e "Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19)" (PDF). World Health Organization. February 2020.
  106. ^ Oh MD, Park WB, Park SW, Choe PG, Bang JH, Song KH, et al. (March 2018). "Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea". The Korean Journal of Internal Medicine. 33 (2): 233–246. doi:10.3904/kjim.2018.031. PMC 5840604. PMID 29506344.
  107. ^ Ñamendys-Silva SA (March 2020). "Respiratory support for patients with COVID-19 infection". The Lancet. Respiratory Medicine. doi:10.1016/S2213-2600(20)30110-7. PMID 32145829.
  108. ^ Pasley, James. "How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774". Business Insider. Retrieved 2020-11-08.
  109. ^ Doucleef M (2012-09-26). "Scientists Go Deep On Genes Of SARS-Like Virus". Associated Press. Archived from the original on 2012-09-27. Retrieved 2012-09-27.
  110. ^ Falco M (2012-09-24). "New SARS-like virus poses medical mystery". CNN Health. Archived from the original on 2013-11-01. Retrieved 2013-03-16.
  111. ^ "New SARS-like virus found in Middle East". Al-Jazeera. 2012-09-24. Archived from the original on 2013-03-09. Retrieved 2013-03-16.
  112. ^ Kelland K (2012-09-28). "New virus not spreading easily between people: WHO". Reuters. Archived from the original on 2012-11-24. Retrieved 2013-03-16.
  113. ^ Nouveau coronavirus—Point de situation : Un nouveau cas d'infection confirmé Archived 8 June 2013 at the Wayback Machine (Novel coronavirus—Status report: A new case of confirmed infection) 12 May 2013, social-sante.gouv.fr
  114. ^ "MERS Transmission". Centers for Disease Control and Prevention (CDC). 2019-08-02. Archived from the original on 2019-12-07. Retrieved 2019-12-10.
  115. ^ "Novel coronavirus infection". World Health Association. 2013-05-22. Archived from the original on 2013-06-07. Retrieved 2013-05-23.
  116. ^ "MERS in the U.S." Center for Disease Control. 2019-08-02. Archived from the original on 2019-12-15. Retrieved 2019-12-10.
  117. ^ Sang-Hun C (2015-06-08). "MERS Virus's Path: One Man, Many South Korean Hospitals". The New York Times. Archived from the original on 2017-07-15. Retrieved 2017-03-01.
  118. ^ "Middle East respiratory syndrome coronavirus (MERS-CoV)". WHO. Archived from the original on 2019-10-18. Retrieved 2019-12-10.
  119. ^ The Editorial Board (2020-01-29). "Is the World Ready for the Coronavirus?—Distrust in science and institutions could be a major problem if the outbreak worsens". The New York Times. Retrieved 2020-01-30.
  120. ^ "WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China". www.who.int. 2020-01-09. Archived from the original on 2020-01-14. Retrieved 2020-01-10.
  121. ^ "Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection. Interim guidance, 10 January 2020" (PDF). Archived (PDF) from the original on 2020-01-20. Retrieved 2020-01-14.
  122. ^ "Novel Coronavirus 2019, Wuhan, China". www.cdc.gov (CDC). 2020-01-23. Archived from the original on 2020-01-20. Retrieved 2020-01-23.
  123. ^ "2019 Novel Coronavirus infection (Wuhan, China): Outbreak update". Canada.ca. 2020-01-21.
  124. ^ Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. (February 2020). "The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China". International Journal of Infectious Diseases. 91: 264–66. doi:10.1016/j.ijid.2020.01.009. PMC 7128332. PMID 31953166.
  125. ^ Cohen J (2020-01-26). "Wuhan seafood market may not be source of novel virus spreading globally". ScienceMag American Association for the Advancement of Science. (AAAS). Archived from the original on 2020-01-27. Retrieved 2020-01-29.
  126. ^ Eschner K (2020-01-28). "We're still not sure where the COVID-19 really came from". Popular Science. Archived from the original on 2020-01-30. Retrieved 2020-01-30.
  127. ^ a b c d e f g h i j k "Chapter 24 - Coronaviridae". Fenner's Veterinary Virology (Fifth ed.). Academic Press. 2017. pp. 435–461. doi:10.1016/B978-0-12-800946-8.00024-6. ISBN 978-0-12-800946-8. S2CID 219575461.
  128. ^ Murphy FA, Gibbs EP, Horzinek MC, Studdart MJ (1999). Veterinary Virology. Boston: Academic Press. pp. 495–508. ISBN 978-0-12-511340-3.
  129. ^ a b Tirotta E, Carbajal KS, Schaumburg CS, Whitman L, Lane TE (July 2010). "Cell replacement therapies to promote remyelination in a viral model of demyelination". Journal of Neuroimmunology. 224 (1–2): 101–07. doi:10.1016/j.jneuroim.2010.05.013. PMC 2919340. PMID 20627412.
  130. ^ a b "Merck Veterinary Manual". Merck Veterinary Manual. Retrieved 2020-06-08.
  131. ^ a b Bande F, Arshad SS, Bejo MH, Moeini H, Omar AR (2015). "Progress and challenges toward the development of vaccines against avian infectious bronchitis". Journal of Immunology Research. 2015: 424860. doi:10.1155/2015/424860. PMC 4411447. PMID 25954763.
  132. ^ Cavanagh, D (2007). "Coronavirus avian infectious bronchitis virus". Veterinary Research. 38 (2): 281–97. doi:10.1051/vetres:2006055. PMID 17296157.open access
  133. ^ "Taxonomy browser (Avian coronavirus)". www.ncbi.nlm.nih.gov. Retrieved 2020-06-03.
  134. ^ Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, et al. (April 2018). "Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin". Nature. 556 (7700): 255–58. Bibcode:2018Natur.556..255Z. doi:10.1038/s41586-018-0010-9. PMC 7094983. PMID 29618817.
  135. ^ Wei X, She G, Wu T, Xue C, Cao Y (February 2020). "PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway". Veterinary Research. 51 (1): 10. doi:10.1186/s13567-020-0739-7. PMC 7011528. PMID 32041637.
  136. ^ a b c "Taxonomy browser (Alphacoronavirus 1)". www.ncbi.nlm.nih.gov. Retrieved 2020-06-08.
  137. ^ Cruz JL, Sola I, Becares M, Alberca B, Plana J, Enjuanes L, Zuñiga S (June 2011). "Coronavirus gene 7 counteracts host defenses and modulates virus virulence". PLOS Pathogens. 7 (6): e1002090. doi:10.1371/journal.ppat.1002090. PMC 3111541. PMID 21695242.
  138. ^ Cruz JL, Becares M, Sola I, Oliveros JC, Enjuanes L, Zúñiga S (September 2013). "Alphacoronavirus protein 7 modulates host innate immune response". Journal of Virology. 87 (17): 9754–67. doi:10.1128/JVI.01032-13. PMC 3754097. PMID 23824792.
  139. ^ a b "Taxonomy browser (Betacoronavirus 1)". www.ncbi.nlm.nih.gov. Retrieved 2020-06-08.
  140. ^ "Taxonomy browser (Alphacoronavirus)". www.ncbi.nlm.nih.gov. Retrieved 2020-06-08.
  141. ^ Murray J (2014-04-16). "What's New With Ferret FIP-like Disease?" (xls). Archived from the original on 2014-04-24. Retrieved 2014-04-24.
  142. ^ "Infectious Diseases of Ferrets - Exotic and Laboratory Animals". Merck Veterinary Manual. Retrieved 2020-06-08.
  143. ^ a b "Taxonomy browser (Embecovirus)". www.ncbi.nlm.nih.gov. Retrieved 2020-06-08.
  144. ^ Weiss SR, Navas-Martin S (December 2005). "Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus". Microbiology and Molecular Biology Reviews. 69 (4): 635–64. doi:10.1128/MMBR.69.4.635-664.2005. PMC 1306801. PMID 16339739.
  145. ^ "Enteric Coronavirus". Diseases of Research Animals. Archived from the original on 2019-07-01. Retrieved 2020-01-24.
  146. ^ "COVID-19 vaccine and treatments tracker (Choose vaccines or treatments tab, apply filters to view select data)". Milken Institute. 2020-11-03. Retrieved 2020-11-03.
  147. ^ a b "COVID-19 vaccine and therapeutics tracker". BioRender. 2020-10-30. Retrieved 2020-11-03.
  148. ^ Dong L, Hu S, Gao J (2020). "Discovering drugs to treat coronavirus disease 2019 (COVID-19)". Drug Discoveries & Therapeutics. 14 (1): 58–60. doi:10.5582/ddt.2020.01012. PMID 32147628.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Coronavirus: Brief Summary

provided by wikipedia EN

Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In humans and birds, they cause respiratory tract infections that can range from mild to lethal. Mild illnesses in humans include some cases of the common cold (which is also caused by other viruses, predominantly rhinoviruses), while more lethal varieties can cause SARS, MERS and COVID-19, which is causing the ongoing pandemic. In cows and pigs they cause diarrhea, while in mice they cause hepatitis and encephalomyelitis.

Coronaviruses constitute the subfamily Orthocoronavirinae, in the family Coronaviridae, order Nidovirales and realm Riboviria. They are enveloped viruses with a positive-sense single-stranded RNA genome and a nucleocapsid of helical symmetry. The genome size of coronaviruses ranges from approximately 26 to 32 kilobases, one of the largest among RNA viruses. They have characteristic club-shaped spikes that project from their surface, which in electron micrographs create an image reminiscent of the stellar corona, from which their name derives.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Orthocoronavirinae ( Spanish; Castilian )

provided by wikipedia ES

Orthocoronavirinae, comúnmente conocidos como coronavirus, es una subfamilia de virus ARN monocatenario positivos perteneciente a la familia Coronaviridae. Se subdivide en los géneros Alphacoronavirus, Betacoronavirus, Gammacoronavirus y Deltacoronavirus.[2][3]​ Estos incluyen genogrupos filogenéticamente similares de virus con una nucleocápside de simetría helicoidal con envoltura cuyos viriones pueden medir entre aproximadamente 50 y 200 nm de diámetro. Su material genético es el de mayor tamaño dentro de los virus de ARN, con genomas que van desde los 26 a 32 kilonucleótidos.[4][5]​ Se les llama coronavirus por la corona de puntas que se ve alrededor de la superficie del virus. Fue descrito por primera vez en 1965.[6]

Los coronavirus pueden infectar aves y mamíferos produciendo una serie de enfermedades respiratorias y digestivas, muchas de ellas letales trayendo como consecuencia serios perjuicios en la avicultura y la ganadería; también pueden infectar al ser humano causando enfermedades que van desde el resfriado común hasta enfermedades más graves, como bronquitis, bronquiolitis, neumonía, el síndrome respiratorio de Oriente Medio (MERS), el síndrome respiratorio agudo grave (SARS) y el COVID-19, entre otras. La mayoría de las personas se infectan con estos virus en algún momento de su vida.[2][7][3][8]

Hasta la fecha se han registrado cuarenta y cinco especies de coronavirus.[1]​ Varias especies son de reciente investigación[8]​ debido a que varias cepas particulares no habían sido identificadas previamente en humanos.[9]​ Existe poca información sobre la transmisión, gravedad e impacto clínico[9]​ y no existen tratamientos aprobados hasta la fecha,[8]​ sin embargo se pueden tratar varios de los síntomas, las opciones terapéuticas dependen del estado clínico de cada paciente.[8]

El género Alphacoronavirus —anteriormente conocido como Coronavirus grupo 1 (CoV-1)— incluye los subgrupos 1a y 1b, cuyos integrantes más representativos son el coronavirus humano 229E (HCoV-229E) y HCoV-NL63, así como la nueva especie alfacoronavirus 1 —incluyendo virus de la gastroenteritis transmisible porcina (TGEV)—, respectivamente. El género Betacoronavirus —anteriormente Betacoronavirus grupo 2 (Cov-2)— incluye varios subgrupos. Los más prominentes (subgrupos 2a y 2b) tienen como especies tipo las especies de coronavirus murino —incluido el virus de la hepatitis de ratón (MHV)– y el SARS-CoV, respectivamente. Los géneros Alphacoronavirus y Betacoronavirus provienen del pool genético que tiene a murciélagos como huésped. El género Gammacoronavirus incluye todos los coronavirus aviares identificados hasta 2009.[10][11]

Historia natural

El ancestro común más reciente del coronavirus se ha encontrado en el siglo IX a. C. Estudios realizados durante 1990 lograron datar los ancestros comunes más recientes de los géneros:

  • Betacoronavirus: 3300 a. C.
  • Deltacoronavirus: 3000 a. C.
  • Gammacoronavirus: 2800 a. C.
  • Alphacoronavirus: 2400 a. C.

De acuerdo a estos estudios, en ese entonces el factor principal de la fuente del coronavirus era la sangre caliente, particularmente de los murciélagos y pájaros. El coronavirus bovino se separó de la especie equina coronavirus al final del siglo XVIII. El coronavirus bovino y el coronavirus humano OC43 se separaron en 1899. Otra estimación sugiere que el coronavirus humano OC43 divergió del coronavirus bovino en 1890. El coronavirus bovino y el canino respiratorio con el coronavirus divergieron de un ancestro común en 1951. El ancestro común más reciente del coronavirus humano OC43 ha sido fechado en la década de 1950. El síndrome respiratorio coronavirus de Oriente Medio, aunque relacionado con varias especies de murciélagos, parece haber divergido de estos hace varios siglos. El coronavirus de murciélago está más estrechamente relacionado con el coronavirus del SARS, del que se separó en 1986.[12][13][14][15][16][17][18][19][20][21][22]

Estructura

 src=
Animación de un virión representativo de Orthocoronavirinae, la sección transversal indica los componentes y proteínas que pueden ser parte de su estructura

Las partes que conforman la estructura general de los coronavirus son, como en todos los virus animales, la envoltura y la nucleocápside. En el caso de los coronavirus, en la envoltura se encuentra una glucoproteína de membrana (M) de 20 a 35 kDa, que forma una matriz en contacto con la nucleocápside. Además se encuentra en la envoltura la glucoproteína S, de 180 a 220 kDa,[23]​ que forma las espículas, espigas o peplómeros responsables de la adhesión a la célula huésped. En el caso específico del coronavirus SARS, en sus espículas un dominio de unión para receptores definidos dirigen la adherencia del virus a su receptor celular, la enzima convertidora de angiotensina 2 (ACE-2).[24]​ Algunos coronavirus (específicamente los miembros de Betacoronavirus subgrupo A, también llamado subgénero Embecovirus[25]​) tienen también en la superficie una proteína adicional más corta llamada esterasa-hemaglutinina.[26]

Replicación

La replicación de los coronavirus comienza con la entrada en la célula, momento en que pierde su envoltura, y el genoma de ARN se libera en el citoplasma. El genoma del coronavirus tiene un caperuza metilada en el extremo 5' (extremo cap'), y una cola poliadenilada (poly A) en el extremo 3', dándole un gran parecido al ARN mensajero eucariota. Esto permite que al ARN se le adhieran los ribosomas citoplasmáticos para su traducción. Los coronavirus tienen también una proteína replicasa codificada en su código genético, que le permite generar nuevas copias de su ARN sin necesidad de transcribirse a ADN, usando los recursos de la célula huésped. Esta replicasa es la primera proteína que se sintetiza ya que una vez que el gen que codifica la replicasa es traducido (síntesis proteica), el proceso se detiene por un codón de parada.[27]​ Esto se conoce como una transcripción anidada. Cuando el transcrito de ARNm solo codifica un gen, se conoce como monocistrónico. El genoma de ARN se replica a cadena negativa y de esta se forman copias positivas de la que se traduce una larga poliproteína, que deberá ser escindida en las distintas proteínas funcionales del virus. Los coronavirus tienen para ello una proteasa denominada Mpro o 3CLpro[28]​ que corta la poliproteína para dar lugar a las proteínas víricas (maduración de la poliproteína). Esta es una estrategia vírica para la economía genética, ya que le permite codificar un buen número de proteínas con un número pequeño de transcritos a la vez que mejora la tasa de fallos durante la ejecución de la ARN polimerasa.[29][27]​ Dicha proteasa es un objetivo de fármacos para impedir la replicación del virus.[30]

Humanos

Los coronavirus humanos fueron descritos por primera vez en la década de 1960 en cavidades nasales de pacientes con un resfriado común. Estos virus fueron nombrados posteriormente coronavirus humano 229E y OC43. Otros dos miembros de esta familia han sido identificados, el HCoV-NL63 en 2004 y HKU1 en 2005. Los cuales circulan globalmente en la población humana y causan aproximadamente un tercio de los casos de resfriado común. Al igual que otros tipos de virus pueden causar enfermedades más graves del sistema respiratorio como bronquitis o neumonía especialmente en personas con factores de riesgo, ancianos, niños y pacientes inmunodeprimidos. Además de afecciones respiratorias también pueden causar enfermedades intestinales y neurológicas.[31]

Existen registros de siete cepas de coronavirus relacionados con enfermedades respiratorias en humanos (HCoV):

  1. Coronavirus humano 229E
  2. Coronavirus humano OC43
  3. SARS-CoV
  4. Coronavirus humano NL63
  5. Coronavirus humano HKU1
  6. Coronavirus del síndrome respiratorio de Oriente Medio (MERS-CoV).
  7. SARS-CoV-2 (COVID-19).[32][33]

Después de la publicación del perfil de los brotes de SARS en 2003, resucitó entre los virólogos un interés por los coronavirus. Durante muchos años, los científicos sabían de solo dos coronavirus humanos (HCoV-229E y OC43-HCoV). El descubrimiento de SARS-CoV añadió un tercer coronavirus humano. A finales de 2004, tres laboratorios de investigación independientes informaron del descubrimiento de un cuarto coronavirus humano, nombrado NL63, NL, y coronavirus de New Haven simultáneamente por varios grupos de investigación. Los tres laboratorios siguen discutiendo sobre cuál de ellos descubrió el virus en primer lugar y por tanto tiene derecho a nombrarlo. A principios de 2005, un equipo de investigación de la Universidad de Hong Kong informó del hallazgo de un quinto coronavirus humano en dos pacientes con neumonía. Lo llamaron coronavirus humano HKU1. El brote de neumonía 2019-20 en Wuhan, China, llevó al hallazgo de un coronavirus nuevo, catalogado como 2019-nCoV por la OMS.[34][35][32][33]

Síndrome respiratorio agudo grave

En 2003, tras el brote del SARS (síndrome respiratorio agudo grave), que había comenzado en el año 2002 en Asia, y luego en otras partes del mundo, la Organización Mundial de la Salud (OMS) emitió un comunicado de prensa indicando que un coronavirus de nueva identificación por parte una serie de laboratorios era el agente causante del SARS. El virus fue nombrado oficialmente como coronavirus del SARS (SARS-CoV). Más de 8000 personas resultaron infectadas, alrededor del 10% de los cuales murieron.[26]

Síndrome respiratorio de Medio Oriente

En septiembre de 2012, se identificó un nuevo tipo de coronavirus, llamado inicialmente coronavirus nuevo 2012, y ahora con el nombre oficial coronavirus del síndrome respiratorio de Oriente Medio (MERS-CoV). La Organización Mundial de la Salud emitió una alerta mundial poco después. La actualización de la OMS el 28 de septiembre de 2012 declaró que no parecía que el virus se transmitiese fácilmente de persona a persona. Sin embargo, el 12 de mayo de 2013, un caso de transmisión de humano a humano en Francia fue confirmado por el Ministerio de Asuntos Sociales y de Salud de Francia. Además, los casos de transmisión de humano a humano han sido reportados por el Ministerio de Salud de Túnez. Dos casos confirmados parecen haber contraído la enfermedad de su difunto padre, quienes se enfermaron después de una visita a Catar y Arabia Saudita. A pesar de esto, parece que el virus tiene problemas para la difusión de humano a humano, ya que la mayoría de las personas que están infectadas no transmiten el virus.[36][37][38][39][40][41]

Para el 30 de octubre de 2013, había en Arabia Saudita 124 casos y 52 muertes. Después de que el Centro Médico Erasmus neerlandés secuenció el virus, le dio un nombre nuevo, coronavirus humano-Centro Médico Erasmus (HCoV-CEM). El nombre final para el virus es coronavirus del síndrome respiratorio de Oriente Medio (MERS-CoV). En mayo de 2014 se registraron los dos únicos casos de infección con MERS-CoV en los Estados Unidos, ocurrieron en trabajadores de la salud que trabajaron en Arabia Saudita y luego se desplazaron a Estados Unidos. Ambos individuos fueron hospitalizados temporalmente y luego dados de alta. En mayo de 2015, un brote de MERS-CoV se produjo en Corea del Sur, cuando un hombre que había viajado a Oriente Medio, visitó 4 hospitales diferentes en el área de Seúl para tratar su enfermedad. Esto provocó uno de los mayores brotes de MERS-CoV fuera del Medio Oriente. En diciembre de 2019, 2.468 casos de infección MERS-CoV habían sido confirmados por medio de pruebas de laboratorio, casos de los cuales 851 fueron mortales, una tasa de mortalidad de aproximadamente el 34,5%.[42][43][44][45]

SARS-CoV-2

Esta sección es un extracto de SARS-CoV-2.editar
 src=
Micrografía electrónica de transmisión de viriones de SARS-CoV-2, aislados desde un paciente. Imagen coloreada, para resaltar los virus.

El coronavirus de tipo 2 causante del síndrome respiratorio agudo severo,[46]​ abreviado SARS-CoV-2 (del inglés severe acute respiratory syndrome coronavirus 2)[47]​ o SRAS-CoV-2,[46]​ es un tipo de coronavirus causante de la enfermedad por coronavirus de 2019,[48][49][50]​ cuya expansión mundial provocó la pandemia de COVID-19. Inicialmente fue llamado 2019-nCoV (en inglés, 2019-novel coronavirus, ‘nuevo coronavirus de 2019’) y también, ocasionalmente, HCoV-19 (en inglés, human coronavirus 2019).[51][52]​ Se descubrió y se aisló por primera vez en Wuhan, China. Tiene un origen zoonótico, es decir, que se transmitió de un huésped animal a uno humano.[53]

Es un clado dentro de la familia de los Coronaviridae, género Betacoronavirus, subgénero Sarbecovirus, especie virus SARS[54]​(virus relacionado con el síndrome respiratorio agudo severo o grave).[55]

El genoma del virus está formado por una sola cadena de ARN, y se clasifica como un virus ARN monocatenario positivo. Su secuencia genética se ha aislado a partir de una muestra obtenida de un paciente afectado por neumonía en la ciudad china de Wuhan, aunque la falta de experimento de control doble ciego en la técnica de secuenciación publicada puede poner en cuestionamiento la validez científica de la técnica [56]​.[57][58][59][60][61]​ Se detectó por primera vez el 12 de noviembre de 2019. Puede producir el contagio de una persona a otra mediante las gotas de saliva expulsadas a través de la tos y el estornudo o al espirar (véase gotitas de Flügge).[62][63]​ Puede provocar enfermedad respiratoria aguda y neumonía grave en los seres humanos.[64]

Aunque previamente no había ningún tratamiento específico aprobado oficialmente, ya se habían desarrollado algunos antivirales existentes, así como el tratamiento con plasma convaleciente y la dexametasona, que parecen tener una mayor eficacia en el manejo de los síntomas o que parecen acortar el periodo de recuperación en poblaciones especiales.[65][66]​ En diciembre de 2020 comenzó una campaña de vacunación con las primeras vacunas aprobadas, que se prolongó durante 2021 y se mantendrá durante 2022[cita requerida] Fue Pfizer - BioNTech, con la vacuna Comirnaty, los laboratorios pioneros en patentar una vacuna[67]​ y posteriormente, los laboratorios Moderna y AstraZeneca se unieron a esta carrera por la vacuna.[68]

Veterinaria

Los coronavirus han sido reconocidos como causantes de condiciones patológicas en veterinaria desde principios de 1970. A excepción de la bronquitis infecciosa aviar, las principales enfermedades relacionadas tienen principalmente una ubicación intestinal.

Los coronavirus infectan principalmente el tracto respiratorio y gastrointestinal superior de mamíferos y aves. Actualmente se conocen siete cepas del coronavirus que infectan a los humanos. Se cree que los coronavirus causan un porcentaje significativo de todos los resfriados comunes en personas adultas y niños. Los coronavirus causan resfriados con síntomas importantes; por ejemplo, fiebre, inflamación de las adenoides de la garganta, en los seres humanos principalmente en las temporadas de invierno y primavera temprana. Los coronavirus puede causar neumonía, ya sea neumonía viral directa o una neumonía bacteriana secundaria, y la bronquitis, ya sea bronquitis viral directa o una bronquitis bacteriana secundaria. El coronavirus humano más conocido fue descubierto en 2003, SARS-CoV que causa el síndrome respiratorio agudo grave (SARS), tiene una patogénesis única porque causa que infecciones de las vías respiratorias tanto superior como inferior. La importancia económica y el impacto de los coronavirus como agentes causantes del resfriado común son difíciles de evaluar debido a que, a diferencia de los rinovirus (otro virus del resfriado común), los coronavirus humanos son difíciles de cultivar en el laboratorio.[69][70]

Los coronavirus también causan una serie de enfermedades en los animales de granja y mascotas domesticadas, algunos de los cuales pueden ser graves y son una amenaza para la industria agrícola. En los pollos, el virus de la bronquitis infecciosa (IBV), es un coronavirus que afecta no solo las vías respiratorias, sino también el tracto urogenital. El virus puede propagarse a los diferentes órganos del cuerpo de la gallina. Los que tienen consecuencias económicamente significativas en los animales de granja incluyen el coronavirus porcino (coronavirus de la gastroenteritis transmisible, TGE) y el coronavirus bovino, el cual causa diarrea en los animales jóvenes. Coronavirus felino: existen dos formas, el coronavirus entérico felino es un patógeno de importancia clínica menor, pero la mutación espontánea de este virus puede provocar una peritonitis infecciosa felina (FIP), una enfermedad asociada con una alta mortalidad. Del mismo modo, hay dos tipos de coronavirus que infectan a los hurones: el coronavirus entérico de hurón causa un síndrome gastrointestinal conocido como epizoótica catarral enteritis (ECE), y una versión sistémica más letal del virus (como FIP en los gatos), conocido en hurones como coronavirus sistémico de hurón (FSC). Hay dos tipos de coronavirus canino (CoVC), uno que causa la enfermedad gastrointestinal leve y uno que causa enfermedad respiratoria. El virus de la hepatitis del ratón (MHV) es un coronavirus que causa una enfermedad epidémica murina con una mortalidad alta, especialmente entre las colonias de ratones de laboratorio.[71][72][73]​ El virus de la sialodacrioadenitis (sialo saliva, dacrio lágrima) es un coronavirus altamente infeccioso de ratas de laboratorio, que puede transmitirse entre individuos por contacto directo o indirectamente por las secreciones en aerosol. Las infecciones agudas tienen una alta morbilidad y tropismo para las glándulas salivales, lacrimales y harderiana.[74]

Uno relacionado con el coronavirus murciélago Rinolophus HKU2 llamado coronavirus del síndrome de diarrea aguda porcina (SADS-CoV) (del inglés swine acute diarrhea syndrome) causa diarrea en cerdos.[75]

Antes del descubrimiento de SARS-CoV, MHV había sido estudiado tanto in vivo como in vitro, así como a nivel molecular. Algunas cepas de MHV causaron una encefalitis desmielinizante progresiva en ratones a los que se ha utilizado como modelo murino para la esclerosis múltiple. Importantes esfuerzos de investigación se han centrado en dilucidar la patogénesis viral de estos coronavirus de animales, especialmente por los virólogos interesados en las enfermedades zoonóticas y veterinarios.[76]

 src=
Ciclo de infección de los coronavirus[77]

Listado de los coronavirus de animales domésticos

Otra enfermedad veterinaria nueva, virus de la diarrea epidémica porcina (PED o PEDV), ha surgido en todo el mundo. Su importancia económica es aún poco clara, pero muestra una alta mortalidad en los lechones.[78][79][80]

Taxonomía

 src=
Escultura coronavirus ubicada en el Instituto de Investigaciones Biomédicas de la UNAM, México

Los géneros, subgéneros y especies incluidas en Orthocoronavirinae son:[81]

Véase también

Bibliografía

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Orthocoronavirinae: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Orthocoronavirinae, comúnmente conocidos como coronavirus, es una subfamilia de virus ARN monocatenario positivos perteneciente a la familia Coronaviridae. Se subdivide en los géneros Alphacoronavirus, Betacoronavirus, Gammacoronavirus y Deltacoronavirus.​​ Estos incluyen genogrupos filogenéticamente similares de virus con una nucleocápside de simetría helicoidal con envoltura cuyos viriones pueden medir entre aproximadamente 50 y 200 nm de diámetro. Su material genético es el de mayor tamaño dentro de los virus de ARN, con genomas que van desde los 26 a 32 kilonucleótidos.​​ Se les llama coronavirus por la corona de puntas que se ve alrededor de la superficie del virus. Fue descrito por primera vez en 1965.​

Los coronavirus pueden infectar aves y mamíferos produciendo una serie de enfermedades respiratorias y digestivas, muchas de ellas letales trayendo como consecuencia serios perjuicios en la avicultura y la ganadería; también pueden infectar al ser humano causando enfermedades que van desde el resfriado común hasta enfermedades más graves, como bronquitis, bronquiolitis, neumonía, el síndrome respiratorio de Oriente Medio (MERS), el síndrome respiratorio agudo grave (SARS) y el COVID-19, entre otras. La mayoría de las personas se infectan con estos virus en algún momento de su vida.​​​​

Hasta la fecha se han registrado cuarenta y cinco especies de coronavirus.​ Varias especies son de reciente investigación​ debido a que varias cepas particulares no habían sido identificadas previamente en humanos.​ Existe poca información sobre la transmisión, gravedad e impacto clínico​ y no existen tratamientos aprobados hasta la fecha,​ sin embargo se pueden tratar varios de los síntomas, las opciones terapéuticas dependen del estado clínico de cada paciente.​

El género Alphacoronavirus —anteriormente conocido como Coronavirus grupo 1 (CoV-1)— incluye los subgrupos 1a y 1b, cuyos integrantes más representativos son el coronavirus humano 229E (HCoV-229E) y HCoV-NL63, así como la nueva especie alfacoronavirus 1 —incluyendo virus de la gastroenteritis transmisible porcina (TGEV)—, respectivamente. El género Betacoronavirus —anteriormente Betacoronavirus grupo 2 (Cov-2)— incluye varios subgrupos. Los más prominentes (subgrupos 2a y 2b) tienen como especies tipo las especies de coronavirus murino —incluido el virus de la hepatitis de ratón (MHV)– y el SARS-CoV, respectivamente. Los géneros Alphacoronavirus y Betacoronavirus provienen del pool genético que tiene a murciélagos como huésped. El género Gammacoronavirus incluye todos los coronavirus aviares identificados hasta 2009.​​

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Coronavirus ( French )

provided by wikipedia FR

Orthocoronavirinae

 src=
SARS-CoV-2 3D virion

Les coronavirus (CoV) sont des virus qui constituent la sous-famille Orthocoronavirinae de la famille Coronaviridae. Le nom « coronavirus », du latin signifiant « virus à couronne », est dû à l'apparence des virions sous un microscope électronique, avec une frange de grandes projections bulbeuses qui évoquent une couronne solaire[2].

Les coronavirus sont munis d'une enveloppe virale incluant une capside caractérisée par des protéines en forme de massue (appelées spicules). Ils ont un génome à ARN monocaténaire (c'est-à-dire à un seul brin), de sens positif (groupe IV de la classification Baltimore), de 26 à 32 kilobases (ce qui en fait les plus grands génomes parmi les virus à ARN)[3]. Ils se classent parmi les Nidovirales, ordre de virus produisant un jeu imbriqué d'ARNm sous-génomiques lors de l'infection. Des spicules, une enveloppe, membrane et capside contribuent à la structure d'ensemble de tous les coronavirus. Ils peuvent muter et se recombiner[4].

Les chauves-souris et les oiseaux, en tant que vertébrés volants à sang chaud, seraient les hôtes idéaux pour les coronavirus assurant l'évolution et la dissémination du coronavirus[5]. Les coronavirus sont normalement spécifiques à un taxon animal comme hôte, mammifères ou oiseaux selon leur espèce ; mais ils peuvent parfois changer d'hôte à la suite d'une mutation. Leur transmission interhumaine se produit principalement par contacts étroits via des aérosols respiratoires générées par les éternuements, la toux ou la phonation. Plus de 500 types de coronavirus ont été isolées chez la chauve-souris et il existerait plus de 5 000 types de coronavirus[6].

Sept principaux coronavirus sont généralement cités comme pouvant contaminer l'humain[7]. Un huitième a été identifié : le B814[8] (le premier coronavirus humain identifié), mais cette souche semble ne plus circuler.

Quatre coronavirus en circulation sont considérés comme sources d'infection bénignes : 229E, NL63, OC43 et HKU1. Ils seraient la cause de 15 à 30 % des rhumes courants.

Plus récemment ont été identifiés trois types de coronavirus responsables de graves pneumopathies :

  1. Le SARS-CoV, agent pathogène du syndrome respiratoire aigu sévère (SRAS) en 2002-2004 ;
  2. Le MERS-CoV, celui du syndrome respiratoire du Moyen-Orient à partir de 2012 ;
  3. Le SARS-CoV-2, celui de la maladie à coronavirus 2019 (Covid-19) apparue en Chine en 2019 et responsable d'une sévère pandémie depuis 2019.

Découverte, histoire

 src=
Illustration de la morphologie des coronavirus. Les péplomères, pointes virales en forme de massue ici colorées en rouge, créent l'apparence d'une couronne entourant le virion, lorsqu'ils sont vus au microscope électronique.

Les coronavirus existent probablement depuis au moins des centaines de millions d'années, mais du point de vue de l'épidémiologie et de l'histoire médicale et en tant que zoonose c'est au XXIe siècle qu'ils ont pris de l'importance : « cinq des sept coronavirus humains ont été isolés au cours de ce siècle. Et malheureusement, les trois derniers sont entrés dans notre vie avec les craintes liées à une épidémie, une pandémie ou à la mort »[9].

C'est en 1930 aux États-Unis que la première maladie due à un coronavirus est observée, chez des volailles. L'année suivante, un médecin décrit dans un article la maladie qui cause une détresse respiratoire chez la poule et une diminution de la ponte et de la qualité des œufs. En 1937, l'agent infectieux, le virus de la bronchite infectieuse aviaire (IBV pour Infectious Bronchitis Virus) est isolé.

En 1946, un autre coronavirus est identifié, le Coronavirus de la gastro-entérite transmissible porcine (TGEV). Indépendamment, en 1949 à New York et 1951 à Londres, deux équipes découvrent le virus de l'hépatite murine chez une souris paralysée[10].

En 1965, le premier coronavirus infectant l'être humain (la souche B814) est découvert. Et rapidement, d'autres suivent : 229E en 1966 et OC43 en 1967[11], qui sont la cause de rhumes plus ou moins graves selon les personnes. L'année suivante, ils sont observés au microscope électronique par June Almeida et David Tyrrell qui mettent en évidence leur structure en couronne[12]. La relation est faite entre tous ces virus, et le terme de « coronavirus » est pour la première fois utilisé dans la revue Nature en 1968[2],[10].

Épidémie du XXIe siècle

Pandémie de Coronavirus

Le dernier coronavirus humain (ou récemment humanisé, très probablement à partir d'une ou plusieurs souches portées par des chauves-souris) semble avoir émergé à Wuhan en Chine en 2019 : le SARS-CoV-2. La maladie qu'il cause (Covid-19) a provoqué en quelques mois la première grande pandémie à coronavirus, caractérisée par un R0 élevé (2,3 en moyenne d'après les estimations disponibles en avril 2020, mais qui semble pouvoir atteindre 5,7) ; avec un taux de létalité de 6,3 (très variable selon les âges et les contextes, pouvant parfois dépasser 15%)[9].

Pandémie de Coronavirus Pandémie Date Cas confirmés Décès Guérisons Sous-type impliqué Épidémie de SRAS de 2002-2004 2002-2004 8 096 774 - Sars-Cov (SRAS) Coronavirus du syndrome respiratoire du Moyen-Orient 2012-2014 361 107 - MERS-CoV Pandémie de Covid-19 (En cours) 2019-2021 + 250 847 494 (10 novembre 2021)[13] + 5 064 350 (10 novembre 2021)[13] + 220 905 435 (10 novembre 2021)[13] SARS-CoV-2 (Covid-19)

Données de la pandémie de Sars-CoV-2 (depuis 2019)

Caractérisation

La taxonomie de ces nouveaux virus fait d'abord débat, pour finalement aboutir en 1975 à la création d'une nouvelle famille (Coronaviridae) et d'une nouvelle sous-famille (Orthocoronavirinae) par l'International Committee on Taxonomy of Viruses[10].

Dénomination

Le terme coronavirus (du latin corona et virus, littéralement « virus à couronne »[15]) provient de l'apparence des virions au microscope électronique, caractérisée par une frange de grandes protubérances entourant l'enveloppe avec l'apparence d'une couronne, par analogie avec la couronne solaire[2].

Hôtes du virus

Les hôtes idéaux des coronavirus, en tant que vertébrés volants à sang chaud, sont les chauves-souris (pour les Alphacoronavirus et les Betacoronavirus) et les oiseaux (pour les Gammacoronavirus et les Deltacoronavirus). Ces espèces-réservoir assurent l'évolution et la dissémination des coronavirus[5]. Chez d'autres espèces, les symptômes varient (maladies des voies respiratoires supérieures chez la poule, diarrhée chez la vache ou le porc, des voies digestives chez le chat et le chien, etc.). Parfois, aucun symptôme n'est associé à leur présence (ex. : coronavirus du béluga).

L'être humain abrite naturellement quatre types de coronavirus bénins, qui provoquent des infections des voies respiratoires, comme le rhume, et plus rarement affectent les systèmes gastro-intestinaux, cardiaques et nerveux[16].

Les groupes de coronavirus ont normalement un hôte animal spécifique (mammifères ou oiseaux[17]) mais ils peuvent parfois changer d'hôte à la suite d'une mutation. Ce sont de telles mutations qui ont probablement conduit à l'apparition de souches causant de graves infections chez l'homme (SRAS, MERS et Covid-19).

Tropisme

On a longtemps pensé que les coronavirus avaient un tropisme uniquement respiratoire ou gastrointestinal (traduit par des pneumonies et entérocolites dans les cas graves), mais un nombre croissant d'études montrent un tropisme bien plus large, cardiovasculaire notamment, et neurologique également (dès les années 1980, on a montré que plusieurs coronavirus, dont en dernier cas le SARS-CoV-2 sont clairement aussi neuroinvasifs et neurotropes[18],[19],[20], au point que cette diversité de tropismes et de symptômes font des coronavirus (murins notamment, regroupées sous le sigle de MHV) un modèle animal pour l'étude de maladies humaines aussi variées que la sclérose en plaques, l’hépatite virale ou la pneumonie (S. R. Weiss et al. 2011). Le MHV pénètre le Système nerveux central (SNC) via les neurones du nerf olfactif, et peut causer une encéphalite aiguë ou une maladie démyélinisante chronique s'il y persiste (il peut aussi se propager jusqu’à la moelle épinière)[19],[21].

Recherches

En 2002, l’apparition du Sars-CoV, un virus responsable d'une maladie infectieuse des poumons, pousse l’Union européenne à lancer plusieurs programmes afin de ne pas être prise au dépourvu en cas de nouvelles émergences. Dès 2004, l’équipe de Bruno Canard, directeur de recherche CNRS à Aix-Marseille, spécialiste des coronavirus, grâce aux réseaux collaboratifs européens, affiche des résultats prometteurs. « Nous avions eu cette idée qui s’est révélée fructueuse : les virus ont une capacité énorme à être différents, variés, avec de larges familles. Nous les avons donc étudiés tous en même temps, afin d’en avoir un modèle type qui nous permettrait, en cas de menace d’un virus inconnu, d’en trouver un proche, d’où nous pourrions extraire des données scientifiques[22]. »

Mais dès 2006, l’intérêt des politiques pour le Sars-CoV disparaît. La crise financière de 2008 accélère le désengagement de l’Europe et de la France pour la recherche, les stratégies de recherche fondamentale perdent leurs financements. Aussi, en 2015, Bruno Canard dénonce le désengagement européen et français dans le secteur des sciences et adresse avec ses collègues belges et hollandais, des lettres d’intention à la Commission européenne expliquant qu’il existe neuf familles de virus pour lesquelles une émergence est possible. « Le premier sur la liste était le flavivirus, explique-t-il. Le second, le coronavirus. Un an plus tard, apparaissait Zika, un flavivirus ». Or, la Commission européenne ne donnera jamais de réponse. Et en 2020 surgit le Sars-CoV-2, un coronavirus[22] engendrant la Covid-19.

Biologie

Morphologie

 src=
Morphologie d'un coronavirus.

Ce virus enveloppé est constitué d'une enveloppe virale entourant une capside hélicoïdale qui contient le brin d'ARN. La taille du génome de ces virus varie d'environ 26 à 32 kilobases, valeurs parmi les plus élevées chez les virus à ARN.

Les coronavirus ont en commun des protéines désignées par une lettre indiquant leur localisation : S (protubérances), E (enveloppe), M (membrane) et N (nucléocapside). Certains, notamment ceux du sous-groupe A du genre Betacoronavirus, ont une protéine HE (hémagglutinine estérase (en)) caractéristique. Le coronavirus du SRAS présente en outre sur la protéine S un site de liaison spécifique à l'enzyme de conversion de l'angiotensine 2[23] qui lui sert de point d'entrée dans la cellule hôte.

La taille physique du virion est classiquement donnée comme étant de 120 à 160 nm[24] ou comme étant de l'ordre de 125 nm[25]. Toutefois le SARS-CoV-2, responsable de la Covid-19 a été annoncé plus récemment comme mesurant approximativement de 60 à 140 nm, et comme étant de forme elliptique avec de nombreuses variations[26].

Génome

 src=
Génome et protéines du SRAS-CoV

Tous les CoV ont un génome d'ARN non-segmentés (simple brin) organisé de la même manière : les deux tiers environ du génome contiennent deux grands « cadres de lecture ouverts » et se chevauchant (dits ORF1a et ORF1b). Ces deux cadres sont traduits en « polyprotéines réplicase » pp1a et pp1ab. « Ces polyprotéines sont ensuite traitées pour générer 16 protéines non structurales, désignées nsp1 ~ 16. La partie restante du génome contient des ORF pour les protéines structurales, y compris la pointe (S), l'enveloppe (E), la membrane (M) et la nucléoprotéine (N). Un certain nombre de protéines accessoires spécifiques à la lignée sont également codées par différentes lignées de CoV »[3],[27],[28],[29].

Réplication

 src=
Réplication du virus à couronne.

Elle se fait en six étapes successives (voir illustration) :

  1. Grâce à leur protéine S, les coronavirus se lient aux molécules cellulaires de surface telles que les métalloprotéinases. Les virus dotés en plus de la protéine HE (hémagglutinine-estérase) dans leur enveloppe peuvent aussi se lier à l'acide N-acétylneuraminique qui sert de corécepteur (lui-même initiateur de l'entrée d'un pathogène dans une cellule hôte). On ne sait pas clairement si les virus entrent dans la cellule hôte par fusion des membranes virales et cellulaires, ou par une internalisation à récepteur. Quel qu’en soit le mécanisme, le brin d'ARN est inséré dans la cellule, et la capside (la coque) est abandonnée ;
  2. Les coronavirus sont munis d'un seul génome ARN à brin positif, à présent sur place dans le cytoplasme. Le génome de l'ARN du coronavirus a une coiffe méthylée 5' et une queue polyadénylée 3', ce qui permet à l'ARN de se fixer aux ribosomes pour la traduction. Les ribosomes de la cellule décodent l'ARN viral, produisant les protéines qui y sont codées ;
  3. D'abord l'ARN positif du virus est transcrit en protéine pour former une ARN polymérase propre (une ARN polymérase ARN-dépendante). La réplicase est la première protéine fabriquée ; une fois le gène codant la réplicase traduit par le ribosome de la cellule hôte, la traduction est arrêtée par un codon stop. Cette réplicase virale ne reconnaît et produit que l'ARN viral, et permet au génome viral d'être transcrit en nouvelles copies d'ARN, à l'aide de la machinerie de la cellule hôte. Se servant du brin positif comme modèle, cet enzyme assemble le brin négatif ;
  4. Par la suite, ce brin négatif sert lui-même de modèle pour transcrire de petits ARN sous-génomiques, qui sont utilisés pour fabriquer toutes les autres protéines. C'est ce qu'on appelle une transcription imbriquée. Ce processus est une forme d'économie génétique, permettant au virus de coder le plus grand nombre de gènes dans un petit nombre de nucléotides ;
    le génome du brin négatif est traduit par le ribosome de la cellule hôte, et une longue polyprotéine est formée, où toutes les protéines virales sont attachées. Les coronavirus ont une protéine non structurale — une protéase — qui est capable de cliver la polyprotéine.
    Par ailleurs, ce brin négatif joue un rôle dans la réplication de nouveaux génomes ARN à brin positif.
    Le cytoplasme de la cellule hôte se remplit de protéines et d'ARN viraux ;
  5. (a) La protéine N aide à lier l'ARN génomique pour réaliser l’encapsidation du génome virale dans une enveloppe protectrice nommée capside[30] ; la protéine M s'intègre à la membrane du réticulum endoplasmique, côté capside ; et des protéines HE et S traversent la membrane du réticulum endoplasmique, via la protéine de translocation, et se positionnent du côté opposé ;
    (b) avec la liaison entre la capside et les protéines M, la membrane du réticulum s'invagine, et bourgeonne. La capside (la coque) assemblée dotée d'ARN hélicoïdal se retrouve alors à l'intérieur du réticulum endoplasmique, ayant capturé à son profit la membrane de ce dernier, qui porte à présent à son extérieur les protéines HE et S ;
  6. Cette progéniture virale est ensuite (a) encapsulée et transportée par des vésicules golgiennes vers la membrane cellulaire, (b) pour être enfin externalisée (par exocytose) hors de la cellule.

Infection à coronavirus

Types d'infection

Sept types de coronavirus infectent couramment l'homme[31], dont trois causent des infections graves.

Infections bénignes

Les quatre premiers types connus sont sans gravité : les coronavirus humains 229E, NL63, OC43 et HKU1, inconnus chez la chauve-souris. Ils causent des rhumes avec fièvre et des maux de gorge dus à des végétations adénoïdes gonflées, principalement en hiver et au début du printemps[32].

Les coronavirus seraient la cause de 15 à 30 % des rhumes courants[33].

Infections graves

 src=
Transmission et cycle de vie du SRAS-CoV-2 causant COVID-19.

Trois types de coronavirus qui ne se trouvent pas naturellement chez l'homme mais chez des mammifères ont été découverts plus récemment et ont été à l'origine d'infections graves des poumons (pneumopathie virale) :

Selon le virus en cause, les formes graves de la maladie ont leurs particularités. Par exemple, la diarrhée était très fréquente dans le SRAS mais rare dans la maladie à coronavirus 2019.

Comparaison des infections graves

Trois principales sources sont utilisées : l'Institut Pasteur, l'OMS et les CDC américains[35].

Passage de la barrière des espèces

 src=
Origines des coronavirus humains avec d'éventuels hôtes intermédiaires.

Au vu des séquences génomiques disponibles, deux grands taxons animaux seraient le réservoir principal des CoVs :

Au vu des connaissances disponibles, les coronavirus semblaient avoir besoin d'hôtes intermédiaires (toujours des mammifères) pour s'« humaniser », c'est-à-dire muter pour pouvoir infecter l'Homme.
Des hôtes intermédiaires connus ont été :

Transmission interhumaine

Pour la pandémie de 2019-2020, se reporter aux articles dont les noms suivent.

 src=
Particules éjectées par un éternuement.

La transmission interhumaine des coronavirus se fait principalement par les gouttelettes ou des aérosols respiratoires expectorées par une personne infectée (via la toux, les éternuements, des postillons, ou parfois par le simple fait de parler fort ou en criant) quand les particules virales sont inhalées par une personne se trouve à proximité. La transmission et la contagiosité varient aussi selon le coronavirus, et peut-être selon sa souche au sein d'une épidémie.

La prophylaxie passe par une prévention primaire visant à limiter la transmission du virus : éviter les contacts (surfaces potentiellement contaminées, poignées de main, embrassades), se laver les mains fréquemment, éviter de se toucher les yeux, le nez ou la bouche, par où le virus peut s'introduire dans l'organisme. En cas de symptômes de type toux ou rhume, se maintenir à au moins 1 mètre de toute personne et éviter d'émettre des particules contaminées[54].

D'autres recommandations comprennent[55] :

  • ne pas entrer en contact avec des animaux manifestement malades, ne pas consommer de viandes provenant d'animaux malades ;
  • ne pas consommer de produits animaux (viande...) mal cuits, ni de légumes crus s'ils n'ont pas été lavés avec de l'eau non contaminée.

Traitement

Dans le cas du SRAS, des médicaments ont été utilisés pour tenter d'enrayer l'épidémie : la ribavirine, un analogue de nucléotides, des anti-inflammatoires stéroïdiens et, après identification formelle de l'agent pathogène et des criblages de sensibilité, l'interféron-alpha et des inhibiteurs de protéases. Leur efficacité est encore sujette à caution. Aucun n'a fait l'objet d'une étude clinique adéquate : beaucoup d'études disponibles ne permettent pas de conclusions scientifiques claires car elles ont été réalisées sur de petits nombres de sujets ou alors sans protocole ou dose fixe. Certaines indiquent même que ces traitements pourraient avoir nui à l'éradication du virus[56].

Bruno Canard dénonce en mars 2020 l'emballement et publie une lettre ouverte Coronavirus : la science ne marche pas dans l’urgence ![57]. Il déclare : « Un vaccin demande au mieux 18 mois de recherches. Et pour des virus non prévisibles, qui changent, il n’est pas adapté. Mieux vaut faire des médicaments qui ont un large spectre dans une famille virale. Cela peut nécessiter 5 ans, parfois 10. D’où l’importance de l’anticipation scientifique[22]. »

Vaccins

L'éradication rapide de l'épidémie de SRAS précédente n'a pas laissé place à beaucoup d'essais cliniques. Des vaccins à base de virus inactivé, et d'autres fondés sur les protéines S et N, sont à l'étude depuis plusieurs années[58]. Pour les vaccins, les éléments viraux produisant l'immunité ne sont souvent pas assez conservés dans la même famille virale. « Ainsi, s'il y avait eu un vaccin contre le coronavirus de 2003, il est pratiquement certain qu'il n'aurait pas marché de manière satisfaisante contre [la] Covid-19 » (Bruno Canard)[59].

Taxonomie

Nommage des coronavirus

Les coronavirus sont nommés par un groupe d'étude[60] travaillant au sein de l'ICTV (International committee on Taxonomy of viruses)[61].

Classification

Les coronavirus (CoV) sont des virus à ARN monocaténaire de sens positif (groupe IV de la classification Baltimore) correspondant à la sous-famille Orthocoronavirinae de la taxonomie de l'ICTV[1], dans la famille Coronaviridae, et de l'ordre Nidovirales[62],[63].

Selon les caractéristiques de leurs séquences protéiques, les CoV sont classés en 4 genres (alpha-CoV, beta-CoV, gamma-CoV et delta-CoV), qui tous contiennent des virus pathogènes pour les mammifères[4] :

 src=
Arbre phylogénétique des coronavirus
  1. Alphacoronavirus, qui inclut le virus de la diarrhée épidémique porcine (PEDv), le virus de la gastro-entérite transmissible porcine (TGEV), le coronavirus du syndrome de la diarrhée aiguë porcine (SADS-CoV), le coronavirus canin, le coronavirus entérique félin, le virus de la péritonite infectieuse féline (FIPV) ;
  2. Betacoronavirus, dont le virus respiratoire du SRAS (SARS-CoV), le SARS-CoV-2, le coronavirus du syndrome respiratoire du Moyen-Orient (MERS-CoV), virus de l'hépatite murine (MHV), coronavirus bovins, virus de la sialodacryoadénite du rat, virus de la sialodacryoadénite porcine, hémagglutinose porcine, virus de l'hémagglutinose porcine coronavirus équin. Dans ce genre Betacoronavirus, le SARS-CoV et le SARS-CoV-2 appartiennent tous les deux au sous-genre Sarbecovirus au sein duquel trois clades distincts ont été identifiés :
    - Clade1: souches "chauve-souris" de Bulgarie et Kenya[64],
    - Clade2: SARS-CoV-2 et souches "chauve-souris" de Chine orientale[64],
    - Clade3: SARS-CoV et souches "chauves-souris" de Chine du sud-ouest[64] ;
  3. Gammacoronavirus: surtout trouvé chez des oiseaux migrateurs, causant notamment des bronchites ; un Gammacoronavirus a été isolé d'un béluga en captivité ;
  4. Deltacoronavirus: connus depuis peu, qui semblent surtout infecter les oiseaux, mais aussi trouvé chez les porcs.

Remarques :

  • on a parfois nommé un coronavirus selon l'espèce animale où il a d'abord été trouvé (par exemple : coronavirus respiratoire canin, ou CRCoV pour Canine respiratory coronavirus, virus appartenant au genre betacoronavirus et à son sous-groupe 2a)[65],[66] ;
  • le dernier coronavirus trouvé, en 2019, est le SARS-CoV-2, responsable de la pandémie de Covid-19.

Liste des espèces

La sous-famille Orthocoronavirinae de la famille Coronaviridae est organisée en 4 genres, 22 sous-genres et une quarantaine d'espèces[67] :

Notes

Références

  1. a et b (en) « Virus Taxonomy: 2018b Release », ICTV, juillet 2018 (consulté le 24 janvier 2020).
  2. a b et c (en) « Virology: Coronaviruses », Nature, vol. 220, no 5168,‎ novembre 1968, p. 650–650 (ISSN et , PMCID , DOI , lire en ligne, consulté le 14 mai 2020)
  3. a et b (en) Zi-Wei Ye et Shuofeng Yuan, « Zoonotic origins of human coronaviruses », sur International Journal of Biological Sciences, 2020 (ISSN , PMID , PMCID , DOI , consulté le 22 mai 2020), p. 1686–1697
  4. a et b SARS-CoV, B.S (2020) Mutation and Recombination.
  5. a et b (en) Patrick C. Y. Woo, Susanna K. P. Lau, Carol S. F. Lam, Candy C. Y. Lau, Alan K. L. Tsang, John H. N. Lau, Ru Bai, Jade L. L. Teng, Chris C. C. Tsang, Ming Wang, Bo-Jian Zheng, Kwok-Hung Chan et Kwok-Yung Yuen, « Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus », Journal of Virology, vol. 86, no 7,‎ avril 2012, p. 3995-4008 (PMID , DOI , Bibcode , lire en ligne, consulté le 6 mars 2020)
  6. « Coronaviruses 101: Focus on Molecular Virology » (consulté le 2 avril 2020).
  7. (en-US) « Coronavirus | Human Coronavirus Types | CDC », sur www.cdc.gov, 27 février 2020 (consulté le 15 avril 2020)
  8. A. Z. Kapikian, « The coronaviruses », Developments in Biological Standardization, vol. 28,‎ 1975, p. 42–64 (ISSN , PMID , lire en ligne, consulté le 15 avril 2020)
  9. a et b Cemal BULUT et Yasuyuki KATO, « Epidemiology of COVID-19 », TURKISH JOURNAL OF MEDICAL SCIENCES, vol. 50, no SI-1,‎ 21 avril 2020, p. 563–570 (ISSN , DOI , lire en ligne, consulté le 25 avril 2020)
  10. a b et c Marc Gozlan, « Il était une fois les coronavirus », sur https://www.lemonde.fr/blog/realitesbiomedicales, Le Monde, mars 2020 (consulté le 4 avril 2020)
  11. K McIntosh, W B Becker et R M Chanock, « Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease. », Proceedings of the National Academy of Sciences of the United States of America, vol. 58, no 6,‎ décembre 1967, p. 2268–2273 (ISSN , PMID , lire en ligne, consulté le 15 avril 2020)
  12. Steven Brocklehurst, « The woman who discovered the first coronavirus », sur https://www.bbc.com, British Broadcasting Corporation, avril 2020 (consulté le 17 avril 2020)
  13. a b et c (en) « COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) », sur gisanddata.maps.arcgis.com (consulté le 14 juin 2020)
  14. (en) Hannah Ritchie, Edouard Mathieu, Lucas Rodés-Guirao, Cameron Appel, Charlie Giattino, Esteban Ortiz-Ospina, Joe Hasell, Bobbie Macdonald, Diana Beltekian, Saloni Dattani et Max Roser, « Coronavirus Pandemic (COVID-19) », sur Our World in Data, 2020–2021 (consulté le 28 mai 2022)
  15. « S'informer sur le Coronavirus », sur popsciences.universite-lyon (consulté le 1er avril 2020).
  16. Zhu N., Zhang D., Wang W. et al., « A Novel Coronavirus from Patients with Pneumonia in China, 2019. », The New England Journal of Medicine, vol. 382, no 8,‎ 24 janvier 2020, p. 727-733 (PMID , PMCID , DOI ).
  17. Jacobson E.R (2007) Infectious Diseases and Pathology of Reptiles; CRC Press, Taylor & Francis Group: Boca Raton, FL, États-Unis ; p. 33487–2742 (lien Google Livre)
  18. (en) K. Yagami, K. Hirai et N. Hirano, « Pathogenesis of haemagglutinating encephalomyelitis virus (HEV) in mice experimentally infected by different routes », Journal of Comparative Pathology, vol. 96, no 6,‎ novembre 1986, p. 645–657 (PMID , PMCID , DOI , lire en ligne, consulté le 17 mai 2020)
  19. a et b (en) Susan J. Bender et Susan R. Weiss, « Pathogenesis of Murine Coronavirus in the Central Nervous System », Journal of Neuroimmune Pharmacology, vol. 5, no 3,‎ septembre 2010, p. 336–354 (ISSN et , PMID , PMCID , DOI , lire en ligne, consulté le 17 mai 2020)
  20. (en) Timothy J Cowley et Susan R Weiss, « Murine coronavirus neuropathogenesis: determinants of virulence », Journal of NeuroVirology, vol. 16, no 6,‎ novembre 2010, p. 427–434 (ISSN et , DOI , lire en ligne, consulté le 17 mai 2020)
  21. Lane, Thomas E et Martin P Hosking. 2010. « The pathogenesis of murine coronavirus infection of the central nervous system. » Critical reviews in immunology 30 (2): 119‐30.
  22. a b et c « Bruno Canard, le chercheur qui avait alerté en 2015 sur le risque de Coronavirus, dénonce le désengagement dans la recherche », sur L'Humanité, 16 mars 2020 (consulté le 16 mai 2022)
  23. (en) Fang Li, Wenhui Li, Michael Farzan et Stephen C. Harrison, « Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor », Science, vol. 309, no 5742,‎ 16 septembre 2005, p. 1864-1868 (PMID , DOI , JSTOR , Bibcode , lire en ligne, consulté le 25 janvier 2020)
  24. (en) Thomas C. Holland, Neurovirology in Handbook of Clinical Neurology, 2014 lire en ligne
  25. (en) Fehr, Anthony R, Stanley Perlman. “Coronaviruses: an overview of their replication and pathogenesis.” Methods in molecular biology (Clifton, N.J.) vol. 1282 (2015): 1-23. doi:10.1007/978-1-4939-2438-7_1 lire en ligne
  26. Cascella M, Rajnik M, Cuomo A, et al. Features, Evaluation and Treatment Coronavirus (COVID-19), in: StatPearls [Internet], StatPearls Publishing, Treasure Island (Floride), janvier 2020, mis à jour le 8 mars 2020 lire en ligne
  27. (en) Shuo Su et Gary Wong, « Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses », sur Trends in Microbiology, juin 2016 (DOI , consulté le 23 mai 2020), p. 490–502
  28. (en) Lok-Yin Roy Wong et Pak-Yin Lui, « A molecular arms race between host innate antiviral response and emerging human coronaviruses », sur Virologica Sinica, février 2016 (ISSN , PMID , PMCID , DOI , consulté le 23 mai 2020), p. 12–23
  29. (en) Shuo Su et Gary Wong, « Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses », sur Trends in Microbiology, juin 2016 (PMID , PMCID , DOI , consulté le 23 mai 2020), p. 490–502
  30. (en) Ping-Kun Hsieh, Shin C. Chang, Chu-Chun Huang et Ting-Ting Lee, « Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent », Journal of Virology, vol. 79, no 22,‎ novembre 2005, p. 13848–13855 (ISSN , PMID , PMCID , DOI , lire en ligne, consulté le 13 mars 2020).
  31. (en) CDC, « Human Coronavirus Types », sur Center for Disease Control Prevention (consulté le 22 janvier 2020).
  32. (en) Liu P, Shi L, Zhang W, He J, Liu C, Zhao C, Kong SK, Loo JF, Gu D, Hu L, « Prevalence and genetic diversity analysis of human coronaviruses among cross-border children », Virology Journal, vol. 14, no 1,‎ novembre 2017, p. 230 (PMID , PMCID , DOI ).
  33. Fehr AR, Perlman S, « Coronaviruses: an overview of their replication and pathogenesis », Methods in Molecular Biology, vol. 1282,‎ 2015, p. 1–23 (ISBN 978-1-4939-2437-0, PMID , PMCID , DOI ).
  34. a et b Julie Kern, « Le SARS-CoV-2 serait un mélange de coronavirus de pangolin et de chauve-souris », sur Futura (consulté le 16 mai 2022)
  35. Coronavirus Disease (COVID-19 cdc.gov, consulté le 02 mars 2020.
  36. « MERS-CoV », Institut Pasteur, 6 octobre 2015 (consulté le 29 janvier 2020).
  37. (en-US) CDC, « Middle East Respiratory Syndrome (MERS) », sur Centers for Disease Control and Prevention, 2 août 2019 (consulté le 29 janvier 2020).
  38. « SRAS », Institut Pasteur, 6 octobre 2015 (consulté le 29 janvier 2020).
  39. O.M.S, « Syndrome aiguë respiratoire », sur O.M.S (consulté le 29 janvier 2020).
  40. (en-US) « SARS | Home | Severe Acute Respiratory Syndrome | SARS-CoV Disease | CDC », sur www.cdc.gov, 22 octobre 2019 (consulté le 29 janvier 2020).
  41. a b c et d Vincent J. Munster, Marion Koopmans, Neeltje van Doremalen et Debby van Riel, « A Novel Coronavirus Emerging in China — Key Questions for Impact Assessment », The New England Journal of Medicine, vol. 382, no 8,‎ 20 février 2020, p. 692–694 (ISSN , DOI , lire en ligne, consulté le 3 mars 2020).
  42. a b et c Organisation mondiale de la santé, "Consensus document on the epidemiology of severe acute respiratory syndrome (SARS)", 2003, page 15.
  43. (en) Huijun Chen, Juanjuan Guo, Chen Wang et Fan Luo, « Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records », The Lancet, vol. 395, no 10226,‎ 7 mars 2020, p. 809–815 (ISSN et , PMID , DOI , lire en ligne, consulté le 27 mars 2020).
  44. Corwin A. Robertson, Sara A. Lowther, Thomas Birch et Christina Tan, « SARS and Pregnancy: A Case Report », Emerging Infectious Diseases, vol. 10, no 2,‎ février 2004, p. 345–348 (ISSN et , PMID , PMCID , DOI , lire en ligne, consulté le 15 avril 2020)
  45. (en) Kimberly A. Lackey, Ryan M. Pace, Janet E. Williams et Lars Bode, « SARS-CoV-2 and human milk: what is the evidence? », medRxiv,‎ 11 avril 2020, p. 2020.04.07.20056812 (DOI , lire en ligne, consulté le 15 avril 2020)
  46. Étude du Johns Hopkins Bloomberg School of Public Health, de Baltimore associée à School of Public Health and Health Sciences du Massachusetts, et à la Ludwig-Maximilians-Universität de Munich.
  47. a et b (en) David L. Swerdlow et Lyn Finelli, « Preparation for Possible Sustained Transmission of 2019 Novel Coronavirus: Lessons From Previous Epidemics », JAMA,‎ 11 février 2020 (ISSN , DOI , lire en ligne, consulté le 12 février 2020).
  48. « Le taux de reproduction de COVID-19 est plus élevé que celui du SRAS ».
  49. « Coronavirus : une affiche du ministère écarte trop vite le risque de contagion lors de l’incubation », sur Le Monde, 6 février 2020 (consulté le 16 mai 2022)
  50. (en) Smriti Mallapaty, « What the cruise-ship outbreaks reveal about COVID-19 », Nature,‎ 26 mars 2020, d41586–020–00885-w (ISSN et , DOI , lire en ligne, consulté le 27 mars 2020).
  51. « Coronavirus : la maladie pourrait aussi se transmettre par voie fécale », sur www.pourquoidocteur.fr (consulté le 17 mars 2020).
  52. « Coronavirus : L’OMS indique que le taux de mortalité est de 3,4 % », Intellivoire,‎ 5 mars 2020 (lire en ligne, consulté le 5 mars 2020).
  53. a b c d e et f (en) Jie Cui, Fang Li et Zheng-Li Shi, « Origin and evolution of pathogenic coronaviruses », Nature Reviews Microbiology, vol. 17, no 3,‎ mars 2019, p. 181–192 (ISSN , DOI , lire en ligne, consulté le 17 mars 2020).
  54. Coronavirus disease (COVID-19) advice for the public, OMS, 2020.
  55. « Coronavirus – informations et conseils », sur Centre de vaccinations internationales Air France (consulté le 13 mars 2020).
  56. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3:e343. doi:10.1371/journal.pmed.0030343
  57. « Coronavirus : la science ne marche pas dans l’urgence ! », 4 mars 2020 (consulté le 16 mai 2022)
  58. Zhu, M. 2004. SARS immunity and vaccination. Cell. Mol. Immunol. 1:193-198
  59. Filippi 24 mars 2021 à 17 h 32 min Répondre, « Bruno Canard : «Demander un médicament dès le lendemain d’une épidémie n’a aucun sens» – Sciences Critiques » (consulté le 16 mai 2022)
  60. coronavirus Study Group ou CSG
  61. Gorbalenya A.E & a. (2020) Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group. bioRxiv, https://www.biorxiv. org/content/10.1101/2020.02.07.937862v1.full.pdf.
  62. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J, Ninth Report of the International Committee on Taxonomy of Viruses, Oxford, Elsevier, 2011, 806–828 p. (ISBN 978-0-12-384684-6), « Family Coronaviridae ».
  63. International Committee on Taxonomy of Viruses, « ICTV Master Species List 2009 – v10 » [xls], 24 août 2010.
  64. a b et c Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, [...] Tan W, 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet doi: https://doi.org/10.1016/S0140-6736(20)30251-8.
  65. (en) Kerstin Erles, Kai-Biu Shiu et Joe Brownlie, « Isolation and sequence analysis of canine respiratory coronavirus », Virus Research, vol. 124, no 1,‎ 1er mars 2007, p. 78–87 (ISSN , DOI , lire en ligne, consulté le 17 mars 2020).
  66. (en) Kerstin Erles, Crista Toomey, Harriet W Brooks et Joe Brownlie, « Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease », Virology, vol. 310, no 2,‎ 5 juin 2003, p. 216–223 (ISSN , DOI , lire en ligne, consulté le 17 mars 2020).
  67. (en) « Virus taxonomy: 2018b release », sur ICTV online, juillet 2018 (consulté le 24 janvier 2020).

Voir aussi

Infographie

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Coronavirus: Brief Summary ( French )

provided by wikipedia FR

Orthocoronavirinae

 src= SARS-CoV-2 3D virion

Les coronavirus (CoV) sont des virus qui constituent la sous-famille Orthocoronavirinae de la famille Coronaviridae. Le nom « coronavirus », du latin signifiant « virus à couronne », est dû à l'apparence des virions sous un microscope électronique, avec une frange de grandes projections bulbeuses qui évoquent une couronne solaire.

Les coronavirus sont munis d'une enveloppe virale incluant une capside caractérisée par des protéines en forme de massue (appelées spicules). Ils ont un génome à ARN monocaténaire (c'est-à-dire à un seul brin), de sens positif (groupe IV de la classification Baltimore), de 26 à 32 kilobases (ce qui en fait les plus grands génomes parmi les virus à ARN). Ils se classent parmi les Nidovirales, ordre de virus produisant un jeu imbriqué d'ARNm sous-génomiques lors de l'infection. Des spicules, une enveloppe, membrane et capside contribuent à la structure d'ensemble de tous les coronavirus. Ils peuvent muter et se recombiner.

Les chauves-souris et les oiseaux, en tant que vertébrés volants à sang chaud, seraient les hôtes idéaux pour les coronavirus assurant l'évolution et la dissémination du coronavirus. Les coronavirus sont normalement spécifiques à un taxon animal comme hôte, mammifères ou oiseaux selon leur espèce ; mais ils peuvent parfois changer d'hôte à la suite d'une mutation. Leur transmission interhumaine se produit principalement par contacts étroits via des aérosols respiratoires générées par les éternuements, la toux ou la phonation. Plus de 500 types de coronavirus ont été isolées chez la chauve-souris et il existerait plus de 5 000 types de coronavirus.

Sept principaux coronavirus sont généralement cités comme pouvant contaminer l'humain. Un huitième a été identifié : le B814 (le premier coronavirus humain identifié), mais cette souche semble ne plus circuler.

Quatre coronavirus en circulation sont considérés comme sources d'infection bénignes : 229E, NL63, OC43 et HKU1. Ils seraient la cause de 15 à 30 % des rhumes courants.

Plus récemment ont été identifiés trois types de coronavirus responsables de graves pneumopathies :

Le SARS-CoV, agent pathogène du syndrome respiratoire aigu sévère (SRAS) en 2002-2004 ; Le MERS-CoV, celui du syndrome respiratoire du Moyen-Orient à partir de 2012 ; Le SARS-CoV-2, celui de la maladie à coronavirus 2019 (Covid-19) apparue en Chine en 2019 et responsable d'une sévère pandémie depuis 2019.
license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Orthocoronavirinae ( Italian )

provided by wikipedia IT

Orthocoronavirinae è una sottofamiglia di virus, noti anche come coronavirus, della famiglia Coronaviridae, del sottordine Cornidovirineae, dell'ordine Nidovirales.[1] In passato era classificata come genere.

Suddivisa nei generi (in passato sottogeneri) Alphacoronavirus, Betacoronavirus, Gammacoronavirus e Deltacoronavirus, questi includono genogruppi filogeneticamente compatti di RNA avvolto, a senso positivo, e con un nucleocapside di simmetria elicoidale. Alphacoronavirus e Betacoronavirus derivano dal pool genico dei pipistrelli.

La "dimensione genomica" dei coronavirus varia da circa 26 a 32 kilobasi, straordinariamente grande per un virus a RNA.[2][3] Il loro numero sta crescendo rapidamente con diversi nuovi coronavirus scoperti di recente, tra cui SARS-CoV-1 scoperto nel 2002, MERS-CoV nel 2012 e SARS-CoV-2 scoperto nel 2019 a Wuhan, in Cina.

Il nome "coronavirus" deriva dal termine latino corona, a sua volta derivato dal greco κορώνη (korṓnē, "ghirlanda"), che significa "corona" o "aureola". Ciò si riferisce alle spinule[4][5] (proteine S) formate dai virioni (la forma infettiva del virus) visibile al microscopio elettronico, che presenta una serie di glicoproteine superficiali che danno un'immagine che ricorda una corona reale o una corona solare. Questa morfologia a spinula è dovuta ai peplomeri virali, che sono proteine che popolano la superficie del virus e determinano il tropismo nell'ospite.

Si pensa che il primo caso riportato di coronavirus sia dovuto a veterinari tedeschi che nel 1912 descrissero il caso di un gatto febbricitante con un enorme ingrossamento del ventre. Ma solo negli anni 1960 un virus con struttura a forma di corona che causava comuni raffreddori venne isolato e venne associato al fenomeno, inclusi altri riscontrati in svariati animali. I ricercatori pensarono che i coronavirus fossero capaci di causare negli umani solo sintomi lievi, fino a che non ci fu l'epidemia di SARS nel 2003[6].

I coronavirus sono responsabili di diverse patologie nei mammiferi e negli uccelli, dal verificarsi di diarrea nei bovini e nei suini e a malattie respiratorie delle vie superiori nei polli. Nell'uomo, provocano infezioni delle vie respiratorie, spesso di lieve entità come il raffreddore comune, ma in rari casi potenzialmente letali come polmoniti e bronchiti.

I coronavirus sono stati responsabili delle gravi epidemie di SARS del novembre 2002, di quella della MERS del 2012 e della pandemia di COVID-19 del 2020.

Struttura

 src=
Modello di coronavirus visto in sezione

I coronavirus sono virus a RNA positivo dal diametro di circa 80-160 nm, il che li rende tra i più grandi virus capaci di attaccare l'essere umano. Con 30 000 basi genetiche, i coronavirus hanno il più ampio genoma tra i virus a RNA, inoltre è uno dei pochi virus a RNA ad avere un meccanismo di correzione di lettura genetica che previene l'accumulo di mutazioni. Il nome del virus deriva dalla classica forma apprezzabile al microscopio elettronico a trasmissione a "corona". Questo aspetto è dato dalla presenza di spinule rappresentate dalla glicoproteina che attraversa il pericapside, raggiungendo il rivestimento proteico, detta proteina spinula o proteina S, con proprietà emoagglutinanti e di fusione. La struttura del virus è quella più o meno tipica dei virus rivestiti: presenta quindi un nucleocapside a simmetria elicoidale e un pericapside costituito da un doppio strato fosfolipidico di origine cellulare; tra questi due strati si interpone un coat proteico costituito dalla proteina M (matrice). Nel nucleocapside si ritrova il genoma costituito da un ssRNA+ (un filamento di RNA singolo a polarità positiva) da 27-30 kilo basi che codifica per 7 proteine virali ed è associato alla proteina N.

I coronavirus si attaccano alla membrana cellulare delle cellule bersaglio grazie alle loro proteine S che interagiscono con l'aminopeptidasi N della membrana. Alcuni coronavirus possono legare l'acido N-acetil neuraminico grazie all'espressione della glicoproteina E3. Non è chiaro se la penetrazione della cellula sia effettuata mediante fusione del pericapside con la membrana plasmatica o per endocitosi. All'interno del citoplasma della cellula il coronavirus rilascia il suo RNA a singolo filamento positivo che si attacca ai ribosomi, dove viene tradotto. La traduzione comporta la produzione di una RNA-polimerasi RNA-dipendente (proteina L) che trascrive un RNA a filamento negativo da cui poi è possibile ottenere nuovi RNA a filamento positivo del coronavirus, nonché le sette proteine che esso codifica. A ciascun nuovo filamento di RNA positivo si associa la proteina N, mentre le proteine del pericapside si integrano nella membrana del reticolo endoplasmatico. Un traslocatore trasferisce i nuovi nucleocapsidi nel lume del reticolo endoplasmatico; successivamente da questo gemmano vescicole che costituiscono i nuovi virioni che possono essere rilasciati per esocitosi.

I generi

La famiglia dei coronavirus è stata divisa in quattro generi distinti:[7][8]

Il genere alphacoronavirus (precedentemente noto come gruppo 1 dei Coronavirus, CoV-1) comprende i sottogruppi 1a e 1b, che sono prototipati dal coronavirus umano 229E (HCoV-229E) e HCoV-NL63, nonché dalla nuova specie alphacoronavirus 1 (incluso virus della gastroenterite trasmissibile suina, TGEV), rispettivamente.

Il genere betacoronavirus (precedentemente gruppo 2 dei coronavirus, Cov-2) comprende diversi sottogruppi, con i più importanti (sottogruppi 2a e 2b) prototipati dalla specie murine coronavirus (incluso il virus dell'epatite murina, MHV) e SARS-related coronavirus. Si divide nei sottogeneri Embecovirus, Hibecovirus, Merbecovirus, Nobecovirus e Sarbecovirus.

Il genere gammacoronavirus comprende tutti i coronavirus aviari identificati fino al 2009.

Coronavirus di interesse umano

 src=
Questa illustrazione, creata dai Centers for Disease Control and Prevention (CDC) statunitense, rivela la morfologia ultrastrutturale mostrata dal "SARS-CoV-2". Si notino i chiodini che costellano la superficie esterna del virus e che gli conferiscono l'aspetto di una corona che circonda il virione, vista al microscopio elettronico. Questo virus è stato identificato come la causa di una pandemia di affezioni respiratorie registrate per la prima volta a Wuhan, in Cina.

I coronavirus sono stati scoperti negli anni sessanta dalle cavità nasali dei pazienti con raffreddore comune.[9] Questi virus furono successivamente chiamati Coronavirus umano 229E (HCoV-229E) e Coronavirus umano OC43 (HCoV-OC43).[10] Sono stati identificati altri due membri di questa famiglia (Coronavirus umano NL63, HCoV-NL63, nel 2004; Coronavirus umano HKU1, HCoV-HKU1, nel 2005) e sono stati coinvolti in infezioni del tratto respiratorio più gravi.

Non esistono vaccini o farmaci antivirali considerati validi dalla comunità scientifica per la prevenzione o per il trattamento delle patologie indotte.

Si ritiene che i coronavirus causino una percentuale significativa di tutti i raffreddori comuni negli adulti e nei bambini. I sintomi che si riscontrano più frequentemente sono febbre e adenoidite acuta con maggior incidenza durante l'inverno e l'inizio della primavera.[11] In molti casi i coronavirus possono causare polmonite, polmonite virale diretta o polmonite batterica secondaria; inoltre possono portare anche allo sviluppo di bronchite, bronchite virale diretta o bronchite batterica secondaria.[12]

I ceppi causa delle principali patologie che interessano l'uomo appartengono al genere Betacoronavirus.[13]

Il coronavirus umano scoperto nel 2003, SARS-CoV-1, causa una grave sindrome respiratoria acuta (SARS) e ha una patogenesi unica, perché causa infezioni del tratto respiratorio superiore e inferiore.[12]

La variante SARS dei coronavirus, apparsa inizialmente in Cina nella provincia del Guangdong nel novembre 2002 e isolata per la prima volta l'anno successivo, ha le stesse identiche caratteristiche morfologiche degli altri coronavirus, ma sembra sia una specie del tutto nuova derivata probabilmente da un serbatoio animale (non ancora noto) che ben si è adattato all'uomo. Tra i fattori che il virus della SARS utilizza per incrementare notevolmente la sua virulenza rispetto agli altri coronavirus, c'è un potente sistema di inibizione dell'interferone.

Un altro focolaio pericoloso provocato da un diverso ceppo di coronavirus ha avuto inizio nel giugno 2012 in Arabia Saudita. La malattia è stata perciò indicata col nome di sindrome respiratoria mediorientale da Coronavirus o MERS (dall'acronimo in inglese). Sono stati accertati con test di laboratorio almeno 2000 casi nel mondo, di cui oltre i 3/4 in Arabia Saudita;[14] fino al giugno 2015 c'erano già stati oltre 500 morti (su circa 1500 casi registrati fino a quella data).[15]

Il 31 dicembre 2019 è stato segnalato un nuovo ceppo di questo virus a Wuhan, in Cina,[16] identificato come un nuovo ceppo di β-CoV dal Gruppo 2B con una somiglianza genetica del 70% circa rispetto al SARS-CoV-1. Il nuovo ceppo, di conseguenza, è stato nominato SARS-CoV-2.

A gennaio 2020 sono conosciuti 7 ceppi di coronavirus in grado di infettare gli umani:

  1. Coronavirus umano 229E (HCoV-229E)
  2. Coronavirus umano OC43 (HCoV-OC43)
  3. Coronavirus umano NL63 (HCoV-NL63)
  4. Coronavirus umano HKU1 (HCoV-HFU1)[3]
  5. Coronavirus da sindrome respiratoria acuta grave (SARS-CoV-1)
  6. Coronavirus della sindrome respiratoria mediorientale (MERS-CoV), conosciuto anche come Novel Coronavirus 2012 (2012-nCoV)
  7. Coronavirus 2 da sindrome respiratoria acuta grave (SARS-CoV-2),[17][18] conosciuto anche come Novel Coronavirus 2019 (2019-nCoV) o Coronavirus di Wuhan.[19]

La trasmissione dei coronavirus tra umani avviene principalmente attraverso le goccioline respiratorie emesse da un individuo infetto mediante tosse o starnuti, che successivamente vengono inalate da un soggetto sano che si trovi nelle vicinanze. Sembrerebbe che sia possibile infettarsi anche dopo aver toccato superfici o oggetti ove sia presente il virus e portando successivamente le mani verso la propria bocca o verso il naso o gli occhi.[20]

Sebbene i virus respiratori siano trasmissibili solitamente quando il soggetto malato presenta anche i sintomi, il coronavirus SARS-CoV-2 può diffondersi anche in occasione di un contatto ravvicinato con un paziente infetto asintomatico.[20]

Tassonomia

I nuovi coronavirus

Con la sigla nCoV vengono genericamente indicate nuove specie o ceppi di Coronavirus che non sono mai stati precedentemente identificati nell'uomo.[21]

Note

  1. ^ Taxonomy browser (Orthocoronavirinae), su ncbi.nlm.nih.gov. URL consultato il 14 marzo 2020.
  2. ^ de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J, Family Coronaviridae, in AMQ King, E Lefkowitz, MJ Adams e EB Carstens (a cura di), Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier, Oxford, 2011, pp. 806-828, ISBN 978-0-12-384684-6.
  3. ^ a b International Committee on Taxonomy of Viruses, ICTV Master Species List 2009 – v10 (XLS), su talk.ictvonline.org, 24 agosto 2010.
  4. ^ spìnula in Vocabolario - Treccani, su treccani.it. URL consultato il 16 mag 2022.
  5. ^ Aggiornamenti sul contagio lessicale del virus a corona, su diciamoloinitaliano.wordpress.com, 20 apr 2020. URL consultato il 16 mag 2022.
  6. ^ nature.com, https://www.nature.com/articles/d41586-020-01315-7 Titolo mancante per url url (aiuto).
  7. ^ (EN) Taxonomy, su ICTV. URL consultato il 19 gennaio 2020.
  8. ^ Taxonomy browser (Orthocoronavirinae), su National Center for Biotechnology Information. URL consultato il 13 marzo 2020.
  9. ^ Jeffrey S. Kahn e Kenneth McIntosh, History and recent advances in coronavirus discovery, in The Pediatric Infectious Disease Journal, vol. 24, 11 Suppl, 2005-11, pp. S223–227, discussion S226, DOI:10.1097/01.inf.0000188166.17324.60. URL consultato il 14 marzo 2020.
  10. ^ Geller C, Varbanov M, Duval RE, Coronavirus umani: approfondimenti sulla resistenza ambientale e la loro influenza sullo sviluppo di nuove strategie antisettiche, in Viruses.
  11. ^ (EN) Liu P, Shi L, Zhang W, He J, Liu C, Zhao C, Kong SK, Loo JF, Gu D, Hu L, Prevalence and genetic diversity analysis of human coronaviruses among cross-border children, in Virology Journal, vol. 14, n. 1, novembre 2017, p. 230, DOI:10.1186/s12985-017-0896-0, PMC 5700739, PMID 29166910.
  12. ^ a b (EN) Forgie S, Marrie TJ, Healthcare-associated atypical pneumonia, in Seminars in Respiratory and Critical Care Medicine, vol. 30, n. 1, febbraio 2009, pp. 67-85, DOI:10.1055/s-0028-1119811, PMID 19199189.
  13. ^ (EN) Cluster of pneumonia cases caused by a novel coronavirus, Wuhan, China (PDF), su ECDC (European Centre for Disease Prevention and Control), 17 gennaio 2020. URL consultato il 19 gennaio 2020.
  14. ^ (EN) WHO MERS-CoV Global Summary and Assessment of Risk (PDF), su WHO [OMS], 2017. URL consultato il 19 gennaio 2020.
  15. ^ (EN) Epidemiological update: Middle East respiratory syndrome coronavirus (MERS-CoV), su ECDC (European Centre for Disease Prevention and Control), 2015. URL consultato il 19 gennaio 2020.
  16. ^ Il nuovo coronavirus, spiegato bene, su Il Post, 27 gennaio 2020. URL consultato il 27 gennaio 2020.
  17. ^ (EN) Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection. Interim guidance, 10 January 2020 (PDF), su apps.who.int. URL consultato il 14 gennaio 2020 (archiviato il 20 gennaio 2020).
  18. ^ (EN) Novel Coronavirus 2019, Wuhan, China | CDC, su cdc.gov, 23 gennaio 2020. URL consultato il 23 gennaio 2020 (archiviato il 20 gennaio 2020).
  19. ^ Pneumonia of unknown cause – China, su who.int, World Health Organization, 5 gennaio 2020. URL consultato il 23 gennaio 2020 (archiviato il 7 gennaio 2020).
  20. ^ a b (EN) Transmission of Novel Coronavirus (2019-nCoV) | CDC, su cdc.gov, 31 gennaio 2020. URL consultato il 1º febbraio 2020.
  21. ^ Ministero della Salute, FAQ - Covid-19, domande e risposte, su salute.gov.it. URL consultato il 1º giugno 2020.

Bibliografia

 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Orthocoronavirinae: Brief Summary ( Italian )

provided by wikipedia IT

Orthocoronavirinae è una sottofamiglia di virus, noti anche come coronavirus, della famiglia Coronaviridae, del sottordine Cornidovirineae, dell'ordine Nidovirales. In passato era classificata come genere.

Suddivisa nei generi (in passato sottogeneri) Alphacoronavirus, Betacoronavirus, Gammacoronavirus e Deltacoronavirus, questi includono genogruppi filogeneticamente compatti di RNA avvolto, a senso positivo, e con un nucleocapside di simmetria elicoidale. Alphacoronavirus e Betacoronavirus derivano dal pool genico dei pipistrelli.

La "dimensione genomica" dei coronavirus varia da circa 26 a 32 kilobasi, straordinariamente grande per un virus a RNA. Il loro numero sta crescendo rapidamente con diversi nuovi coronavirus scoperti di recente, tra cui SARS-CoV-1 scoperto nel 2002, MERS-CoV nel 2012 e SARS-CoV-2 scoperto nel 2019 a Wuhan, in Cina.

Il nome "coronavirus" deriva dal termine latino corona, a sua volta derivato dal greco κορώνη (korṓnē, "ghirlanda"), che significa "corona" o "aureola". Ciò si riferisce alle spinule (proteine S) formate dai virioni (la forma infettiva del virus) visibile al microscopio elettronico, che presenta una serie di glicoproteine superficiali che danno un'immagine che ricorda una corona reale o una corona solare. Questa morfologia a spinula è dovuta ai peplomeri virali, che sono proteine che popolano la superficie del virus e determinano il tropismo nell'ospite.

Si pensa che il primo caso riportato di coronavirus sia dovuto a veterinari tedeschi che nel 1912 descrissero il caso di un gatto febbricitante con un enorme ingrossamento del ventre. Ma solo negli anni 1960 un virus con struttura a forma di corona che causava comuni raffreddori venne isolato e venne associato al fenomeno, inclusi altri riscontrati in svariati animali. I ricercatori pensarono che i coronavirus fossero capaci di causare negli umani solo sintomi lievi, fino a che non ci fu l'epidemia di SARS nel 2003.

I coronavirus sono responsabili di diverse patologie nei mammiferi e negli uccelli, dal verificarsi di diarrea nei bovini e nei suini e a malattie respiratorie delle vie superiori nei polli. Nell'uomo, provocano infezioni delle vie respiratorie, spesso di lieve entità come il raffreddore comune, ma in rari casi potenzialmente letali come polmoniti e bronchiti.

I coronavirus sono stati responsabili delle gravi epidemie di SARS del novembre 2002, di quella della MERS del 2012 e della pandemia di COVID-19 del 2020.

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Coronavírus ( Portuguese )

provided by wikipedia PT

Os coronavírus são um grupo de vírus de genoma de RNA simples de sentido positivo (serve diretamente para a síntese proteica), conhecidos desde meados dos anos 1960. Pertencem à subfamília taxonómica Orthocoronavirinae da família Coronaviridae, da ordem Nidovirales.[1][2]

A maioria das pessoas se infecta com os coronavírus comuns ao longo da vida. Eles são uma causa comum de infecções respiratórias brandas a moderadas de curta duração. Entre os coronavírus encontra-se o vírus causador da forma de pneumonia atípica grave conhecida por SARS,[3][4][5] e o vírus causador da COVID-19, responsável pela pandemia em 2020 e 2021.

Taxonomia

Os coronavírus da subfamília Orthocoronaviridae se dividem em quatro gêneros: Alphacoronavirus, Betacoronavirus, Gammacoronavirus e Deltacoronavirus. De todos esses gêneros, há seis espécies que causam infecção em humanos.

No gênero Alphacoronavirus há os coronavírus humanos das espécies HCoV-229E e HCoV-NL63, que causam infecções leves a moderadas comuns.[6] Neste gênero também se encontra o CCoV, o coronavírus canino, que causa gastroenterite em cães e pode ser prevenido com vacina.[7][8]

No gênero Betacoronavirus há os coronavírus humanos das espécies HCoV-OC43, HCoV-HKU1, SARSr-CoV e MERS-CoV.

HCoV-OC43 e HCoV-HKU1 causam infecções leves a moderadas comuns. MERS-CoV causa a doença MERS (Síndrome respiratória do Médio Oriente).[6]

A espécie SARSr-CoV se divide nas cepas SARS-CoV, que causa a doença SARS (Síndrome respiratória aguda grave), e SARS-CoV-2, que causa a doença Covid-19 (COrona VIrus Disease 2019).

O SARS-CoV-2, causador da COVID-19, foi identificado em 2020, tem "parentesco" com o vírus da SARS-CoV. Causa febre, tosse e falta de ar e dificuldade para respirar (pneumonia).[9][10]

Origem evolutiva dos coronavírus humanos

Existem sete cepas conhecidas de coronavírus humanos, e todas elas evoluíram de coronavírus de outros animais.[11]

June Almeida descobriu o primeiro coronavírus humano no St Thomas' Hospital em Londres em 1964.[12]

Foram descobertos em 2020, seis novos coronavírus em morcegos em Mianmar, mas esses vírus não estão relacionados ao Síndrome Respiratório Agudo Grave de Coronavírus (SARS CoV-1), Síndrome Respiratória do Oriente Médio (MERS) ou COVID-19.[27]

Sinais e sintomas

Diferentes coronavírus afetam diferentes espécies causando diferentes doenças. Os principais sintomas da COVID-19 são febre, tosse e fadiga.[28]

Transmissão

A transmissão do vírus pode se dar:[6]

  • Por meio de tosse ou espirro;
  • Contato pessoal próximo, como toque ou aperto de mão;
  • Contato com objetos ou superfícies contaminadas, seguido então de contato com a boca, nariz ou olhos.

Entre os grupos de risco estão qualquer pessoa que cuidou do paciente, incluindo profissionais de saúde ou familiares, que tenha tido contato físico com o paciente ou que tenha permanecido no mesmo local que o paciente doente.[3]

Em 2020, análises indicaram que o SARS-CoV-2 (anteriormente 2019-nCoV) pode ter passado de um animal para o ser humano.[9]

Epidemiologia

Pandemia de 2020

 src=
Mapa-múndi e mapa de propagação de pandemia entre países

Em meados de janeiro a imprensa começou a reportar casos sobre um "misterioso vírus que causava problemas respiratórios", tendo este vírus depois sido classificado como um coronavírus e chamado numa primeira fase de 2019-nCoV. Inicialmente, 800 pessoas foram infectadas e houve 259 mortes na China, mas houve casos também no Japão, Tailândia, Coreia do Sul, França e Estados Unidos, todos associados a pessoas que haviam viajado para a China recentemente. Em 20 de janeiro a OMS estimava que o número de casos poderia estar próximo de dois mil.[9][29][30]

A 11 de março de 2020, o surto foi declarado uma pandemia, sendo que o numero de casos confirmados a nível mundial atingiu mais de 121 000, sendo em 120 diferentes territórios, dos quais mais de 80 000 na China. O número de mortes ascende a 4 300, havendo mais de 1 200 mortes fora da China.[31][32]

Surto de 2015 na Coreia do Sul

Um surto de MERS foi associado a um viajante que havia retornado do Oriente Médio. Quase 200 pessoas foram infectadas e houve 36 mortes.[6][33][34]

Surto de 2012 no Oriente Médio

Em 2012 foi isolado outro novo coronavírus, distinto do SARS-CoV. Esse novo coronavírus, desconhecido até então, foi inicialmente identificado na Arábia Saudita e, posteriormente, em outros países do Oriente Médio, na Europa e na África. Todos os casos identificados fora da Península Arábica tinham histórico de viagem ou contato recente com viajantes procedentes de países do Oriente Médio – Arábia Saudita, Catar, Emirados Árabes e Jordânia. Pela localização dos casos, a doença passou a ser designada como síndrome respiratória do Oriente Médio, cuja sigla é MERS, do inglês “Middle East Respiratory Syndrome”. O novo vírus foi nomeado coronavírus associado à MERS (MERS-CoV).[3][6]

Surto de 2002 na China

Os primeiros casos da síndrome respiratória aguda grave (SARS - Severe Acute Respiratory Syndrome), causada pelo SARS-CoV, aconteceram na China em 2002, tendo o vírus se espalhado rapidamente para mais de doze (12) países na América do Norte, América do Sul, Europa e Ásia. Entre 2002 e 2003, mais de oito mil (8.000) pessoas foram infectadas e cerca de oitocentas (800) morreram, no que foi chamado uma "epidemia global". (SARS-CoV).[3][9]

Referências

  1. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J (2011). «Family Coronaviridae». In: AMQ King, E Lefkowitz, MJ Adams, EB Carstens. Ninth Report of the International Committee on Taxonomy of Viruses. [S.l.]: Elsevier, Oxford. pp. 806–828. ISBN 978-0-12-384684-6
  2. International Committee on Taxonomy of Viruses (24 de agosto de 2010). «ICTV Master Species List 2009 – v10» (xls)
  3. a b c d «SOBRE CORONAVÍRUS». www.saude.sp.gov.br. Consultado em 21 de janeiro de 2020
  4. Ksiazek, TG; Erdman D; Goldsmith CS; Zaki SR; et al (2003). «A novel coronavirus associated with severe acute respiratory syndrome». N Engl J Med. 348 (20). pp. 1953–66. PMID 12690092 A referência emprega parâmetros obsoletos |coautores= (ajuda)
  5. Woo, PCY; Lau SKP; Huang Y; Yuen KY (2009). «Coronavirus Diversity, Phylogeny and Interspecies Jumping». Exp Biol Med (Maywood). 234 (10). pp. 1117–27. PMID 19546349. doi:10.3181/0903-MR-94 A referência emprega parâmetros obsoletos |coautores= (ajuda)
  6. a b c d e «Coronavírus: causas, sintomas, tratamento, diagnóstico e prevenção». saude.gov.br. Consultado em 21 de janeiro de 2020
  7. «É falso que vacina para cachorro combate novo coronavírus». Governo de São Paulo. 19 de março de 2020. Consultado em 20 de março de 2020
  8. Guirao, M. P.; Souza, S. P.; Jerez, J. A.; Richtzenhain, L. J.; Brandão, P. E. (Dezembro de 2013). «Phylogeny of canine coronavirus (CCoV) from Brazilian dogs based on membrane protein partial sequences». Arquivo Brasileiro de Medicina Veterinária e Zootecnia (em inglês). 65 (6): 1887–1890. ISSN 0102-0935. doi:10.1590/S0102-09352013000600042
  9. a b c d e «Coronavírus na China: após casos triplicarem, o que se sabe sobre a misteriosa doença». G1. Consultado em 21 de janeiro de 2020
  10. «Vírus se dissemina por mais cidades chinesas e OMS marca reunião de emergência». noticias.uol.com.br. Consultado em 21 de janeiro de 2020
  11. Wertheim, Joel O.; Chu, Daniel K. W.; Peiris, Joseph S. M.; Kosakovsky Pond, Sergei L.; Poon, Leo L. M. (2013). «A Case for the Ancient Origin of Coronaviruses». Journal of Virology. 87 (12): 7039–7045. ISSN 0022-538X. PMC . PMID 23596293. doi:10.1128/JVI.03273-12
  12. «A cientista que descobriu o primeiro coronavírus humano - após ter abandonado escola aos 16 anos». BBC. 18 de Abril de 2020. Consultado em 18 de Abril de 2020
  13. a b c d Hu, Ben; Ge, Xingyi; Wang, Lin-Fa; Shi, Zhengli (22 de dezembro de 2015). «Bat origin of human coronaviruses». Virology Journal. 12. ISSN 1743-422X. PMC . PMID 26689940. doi:10.1186/s12985-015-0422-1
  14. Crossley, Beate M.; Mock, Richard E.; Callison, Scott A.; Hietala, Sharon K. (12 de dezembro de 2012). «Identification and Characterization of a Novel Alpaca Respiratory Coronavirus Most Closely Related to the Human Coronavirus 229E». Viruses. 4 (12): 3689–3700. ISSN 1999-4915. PMC . PMID 23235471. doi:10.3390/v4123689
  15. Vijaykrishna, D.; Smith, G. J. D.; Zhang, J. X.; Peiris, J. S. M.; Chen, H.; Guan, Y. (2007). «Evolutionary Insights into the Ecology of Coronaviruses». Journal of Virology. 81 (8): 4012–4020. ISSN 0022-538X. PMC . PMID 17267506. doi:10.1128/JVI.02605-06
  16. Brandão, Paulo Eduardo (2018). «Could human coronavirus OC43 have co-evolved with early humans?». Genetics and Molecular Biology. 41 (3): 692–698. ISSN 1678-4685. doi:10.1590/1678-4685-gmb-2017-0192
  17. Vijgen, Leen; Keyaerts, Els; Moës, Elien; Thoelen, Inge; Wollants, Elke; Lemey, Philippe; Vandamme, Anne-Mieke; Van Ranst, Marc (2005). «Complete Genomic Sequence of Human Coronavirus OC43: Molecular Clock Analysis Suggests a Relatively Recent Zoonotic Coronavirus Transmission Event». Journal of Virology. 79 (3): 1595–1604. ISSN 0022-538X. PMID 15650185. doi:10.1128/JVI.79.3.1595-1604.2005
  18. Huynh, Jeremy; Li, Shimena; Yount, Boyd; Smith, Alexander; Sturges, Leslie; Olsen, John C.; Nagel, Juliet; Johnson, Joshua B.; Agnihothram, Sudhakar (2012). «Evidence Supporting a Zoonotic Origin of Human Coronavirus Strain NL63». Journal of Virology. 86 (23): 12816–12825. ISSN 0022-538X. PMC . PMID 22993147. doi:10.1128/JVI.00906-12
  19. Esper, Frank; Weibel, Carla; Ferguson, David; Landry, Marie L.; Kahn, Jeffrey S. (2006). «Coronavirus HKU1 Infection in the United States». Emerging Infectious Diseases. 12 (5): 775–779. ISSN 1080-6040. PMC . PMID 16704837. doi:10.3201/eid1205.051316
  20. Woo, Patrick C. Y.; Lau, Susanna K. P.; Huang, Yi; Yuen, Kwok-Yung (2009). «Coronavirus diversity, phylogeny and interspecies jumping». Experimental Biology and Medicine (Maywood, N.J.). 234 (10): 1117–1127. ISSN 1535-3699. PMID 19546349. doi:10.3181/0903-MR-94
  21. Corman, Victor Max; Ithete, Ndapewa Laudika; Richards, Leigh Rosanne; Schoeman, M. Corrie; Preiser, Wolfgang; Drosten, Christian; Drexler, Jan Felix (2014). «Rooting the Phylogenetic Tree of Middle East Respiratory Syndrome Coronavirus by Characterization of a Conspecific Virus from an African Bat». Journal of Virology. 88 (19): 11297–11303. ISSN 0022-538X. PMC . PMID 25031349. doi:10.1128/JVI.01498-14
  22. Ji, Wei; Wang, Wei; Zhao, Xiaofang; Zai, Junjie; Li, Xingguang. «Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human». Journal of Medical Virology (em inglês). n/a (n/a). ISSN 1096-9071. doi:10.1002/jmv.25682
  23. Callaway, Ewen; Cyranoski, David (23 de janeiro de 2020). «Why snakes probably aren't spreading the new China virus». Nature (em inglês). doi:10.1038/d41586-020-00180-8
  24. Lu, Roujian; Zhao, Xiang; Li, Juan; Niu, Peihua; Yang, Bo; Wu, Honglong; Wang, Wenling; Song, Hao; Huang, Baoying (30 de janeiro de 2020). «Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding». The Lancet (em English). 0 (0). ISSN 0140-6736. doi:10.1016/S0140-6736(20)30251-8 !CS1 manut: Língua não reconhecida (link)
  25. Carbinatto, Bruno (2020). «Este pode ter sido o animal que passou o novo coronavírus para humanos». Superinteressante. Consultado em 8 de fevereiro de 2020
  26. Liu, Ping; Jiang, Jing-Zhe; Wan, Xiu-Feng; Hua, Yan; Li, Linmiao; Zhou, Jiabin; Wang, Xiaohu; Hou, Fanghui; Chen, Jing (2020). «Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?». PLOS Pathogens (em inglês). 16 (5): e1008421. ISSN 1553-7374. doi:10.1371/journal.ppat.1008421
  27. «Six new coronaviruses discovered in bats» (em inglês). 15 de abril de 2020
  28. Larissa Lopes (31 de março de 2020). «Como os sintomas da Covid-19 evoluem a cada dia, de acordo com a gravidade». Revista Galileu. Globo. Consultado em 19 de abril de 2020
  29. «Coronavirus cases surge in China as virus spreads». NBC News (em inglês). Consultado em 21 de janeiro de 2020
  30. Stanway, David (1 de fevereiro de 2020). «Mortes causadas por coronavírus aumentam e China encara mais restrições na fronteira». Uol. Consultado em 1 de fevereiro de 2020
  31. «OMS declara pandemia de coronavírus». G1. 11 de março de 2020. Consultado em 11 de março de 2020
  32. News, B. N. O. (2 de fevereiro de 2020). «Tracking coronavirus: Map, data and timeline». BNO News (em inglês). Consultado em 14 de fevereiro de 2020
  33. «Síndrome respiratória do Oriente Médio (MERS) na Coreia do Sul». www.portalconsular.itamaraty.gov.br. Consultado em 21 de janeiro de 2020
  34. «Coreia do Sul declara fim da epidemia do vírus MERS». VEJA. Consultado em 21 de janeiro de 2020
 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Coronavírus: Brief Summary ( Portuguese )

provided by wikipedia PT

Os coronavírus são um grupo de vírus de genoma de RNA simples de sentido positivo (serve diretamente para a síntese proteica), conhecidos desde meados dos anos 1960. Pertencem à subfamília taxonómica Orthocoronavirinae da família Coronaviridae, da ordem Nidovirales.

A maioria das pessoas se infecta com os coronavírus comuns ao longo da vida. Eles são uma causa comum de infecções respiratórias brandas a moderadas de curta duração. Entre os coronavírus encontra-se o vírus causador da forma de pneumonia atípica grave conhecida por SARS, e o vírus causador da COVID-19, responsável pela pandemia em 2020 e 2021.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

코로나바이러스 ( Korean )

provided by wikipedia 한국어 위키백과

 src= 이 문서는 넓은 의미의 코로나바이러스에 관한 것입니다. 2019년부터 전세계적으로 유행하기 시작한 코로나바이러스에 대해서는 SARS-CoV-2 문서를 참고하십시오.

코로나바이러스(영어: Coronavirus, 문화어: 코로나비루스)는 코로나바이러스과(영어: Coronaviridae)의 코로나바이러스아과(Coronavirinae)에 속하는 RNA 바이러스의 총칭으로,[1][2] 사람과 동물의 호흡기와 소화기계 감염을 유발한다. 주로 점막전염(粘膜感染), 비말전파(飛沫傳播)로 쉽게 감염되며, 사람에게는 일반적으로 경미한 호흡기 감염을 일으키지만 치명적인 감염을 유발하기도 하며, 소와 돼지는 설사, 닭은 호흡기 질환이 발생하기도 한다.

현대 문명에서 치명적인 감염병을 일으키는 코로나바이러스가 많이 있다. 2003년 4월에는 중화인민공화국중증급성호흡기증후군, 일명 사스(SARS)가 유행해 사망률 9.6%를 기록하며 많은 사람이 사망했다. 2015년에는 중동호흡기증후군, 일명 메르스가 중동에서 전 세계로 퍼지면서 사망률 약 36%로써 사망자가 다수 발생하였다. 또한 2019년 12월부터 중국 우한발 신종 코로나바이러스 감염증(코로나19, COVID-19)이 전 세계로 확산되면서 감염자가 늘어나고 있으며, 치사율은 2020년 2월까지 집계된 자료에 따르면 2.6%로 그나마 낮은 편이지만 세계적으로 확진자가 증가하는 중이며 예방 또는 치료 목적으로 승인된 백신이나 항바이러스제는 없었다.

설명

코로나바이러스는 니도바이러스목, 코로나바이러스과, 코로나바이러스아과 혹은 Torovirinae에 포함된 바이러스속인 종이다. 코로나바이러스는 +ssRNA나선형 대칭형 뉴클레오펩시드로 감싸진 바이러스다. 코로나바이러스의 유전자 크기는 거의 26에서 32 킬로베이스(kb)로 RNA바이러스 중에서 가장 크다.[3]

코로나바이러스의 이름은 왕관이나 광륜을 뜻하는 라틴어 코로나에서 유래되었고 전자현미경으로 보면 바이러스 겉부분의 가장자리가 왕관 혹은 태양의 코로나를 연상시키는 모양을 가지고 있으며, 이는 바이론의 특징을 나타낸다. 이러한 형태학적 특징은 바이러스 표면에 스파이크단백질에 의한것이다.[4]

구조

코로나바이러스는 포지티브 센스 단일 가닥(positive-sense single-stranded) RNA 바이러스로 크기는 80–220 nm이다. 지질이 포함된 외피에 둘러싸여 있으며, 외피에 20 nm의 왕관 모양과 같은 돌기(spikes)가 있다. 코로나바이러스는 크게 4가지의 구조로 이루어져 있다. 이는 spike (S), membrane (M), envelope (E), nucleocapsid (N) proteins이다. 코로나바이러스의 스파이크 (S) 단백질은 S1과 S2 서브유닛으로 이루어져 있다. 이중에서 S1 서브유닛은 스파이크의 머리 부분이며 receptor binding domain (RBD)을 가지고 있다. S2 서브유닛은 스파이크의 기둥 부분이다. 막(M)과 외피(E) 단백질은 바이러스의 겉부분을 형성하고 형태를 유지하는데 중요한 역할을 한다. 외피 내부에는 뉴클레오캡시드(N) 단백질이 있다.[5] 몇몇 코로나바이러스(특히 베타코로나바이러스 하위집단 구성원)는 또한 항체 에스테라아제라고 불리는 단백질 같은 짧은 스파이크를 가진다

 src=
코로나바이러스의 3차원 모형(돌기모양의 스파이크단백질을 보여준다)

코로나바이러스는 인간에게 유발되는 일반적 감기 중 상당 부분의 원인이라고 알려져 있다. 뿐만 아니라 직접적인 바이러스성 폐렴이나 2차적인 세균성 폐렴을 일으킬 수 있으며, 직접적인 바이러스성 기관지염이나 2차적인 세균성 기관지염도 일으킬 수 있다. 2003년에 발견된 인간 코로나 바이러스는 중증급성호흡기증후군(SARS)를 일으키는 중증급성호흡기증후군 코로나바이러스(SARS-CoV)로, 상부 및 하부 호흡기 감염을 유발하는 독특한 병인을 가지고 있다. 코로나바이러스는 RNA의 유전 정보를 갖고 있는데, RNA는 변종이 쉽게 일어나서 수많은 코로나바이러스 변종이 나온다.

인간 코로나바이러스에는 7 가지 변종이 알려져있다.

코로나바이러스 HCoV-229E, -NL63, -OC43 및 -HKU1 등은 사람 사이를 지속적으로 순환하며, 전세계의 성인과 어린이에게 호흡기 감염을 일으켜 왔으며 인플루엔자 바이러스만큼이나 급속한 확산경로와 변종을 포함하는 범유행을 일으킬 것으로 과학자들은 경고하고 있다.[6] [7][8]

같이 보기

각주

  1. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJM, Talbot PJ, Woo PCY, Ziebuhr J (2011). “Family Coronaviridae”. AMQ King, E Lefkowitz, MJ Adams, and EB Carstens (Eds),. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, Oxford. 806–828쪽. ISBN 978-0-12-384684-6.
  2. International Committee on Taxonomy of Viruses (2000년 8월 24일). “ICTV Master Species List 2009 – v10” (xls).
  3. 오, 철우 (2015년 6월 4일). “사이언스온 - '사우디의 2014 메르스”. 《사이언스 온》. 2016년 4월 9일에 확인함.
  4. shutterstock. “diagram-of-corona-virus-particle-structure”. 《shtterstock》.
  5. Fehr, Anthony; Perlman, Stanley (2015). 《Coronaviruses. Methods in Molecular Biology》. Springer. 1-23쪽. ISBN 978-1-4939-2438-7.
  6. [참고]넷플릭스 www.netflix.com -판데믹: 인플루엔자와의 전쟁) https://webcache.googleusercontent.com/search?q=cache:jrS4-Z4Z22wJ:https://www.netflix.com/kr/title/81026143+&cd=1&hl=ko&ct=clnk&gl=kr
  7. [참고](넷플릭스 - 익스플레인: 코로나바이러스를 해설하다 | Netflix 공식 사이트)
  8. [참고](헬로우디디 - [코로나19]집콕시대, 넷플릭스 '팬데믹' 인기라는데~)https://www.hellodd.com/?md=news&mt=view&pid=71447
 title=
license
cc-by-sa-3.0
copyright
Wikipedia 작가 및 편집자

코로나바이러스: Brief Summary ( Korean )

provided by wikipedia 한국어 위키백과
 src= 이 문서는 넓은 의미의 코로나바이러스에 관한 것입니다. 2019년부터 전세계적으로 유행하기 시작한 코로나바이러스에 대해서는 SARS-CoV-2 문서를 참고하십시오.

코로나바이러스(영어: Coronavirus, 문화어: 코로나비루스)는 코로나바이러스과(영어: Coronaviridae)의 코로나바이러스아과(Coronavirinae)에 속하는 RNA 바이러스의 총칭으로, 사람과 동물의 호흡기와 소화기계 감염을 유발한다. 주로 점막전염(粘膜感染), 비말전파(飛沫傳播)로 쉽게 감염되며, 사람에게는 일반적으로 경미한 호흡기 감염을 일으키지만 치명적인 감염을 유발하기도 하며, 소와 돼지는 설사, 닭은 호흡기 질환이 발생하기도 한다.

현대 문명에서 치명적인 감염병을 일으키는 코로나바이러스가 많이 있다. 2003년 4월에는 중화인민공화국중증급성호흡기증후군, 일명 사스(SARS)가 유행해 사망률 9.6%를 기록하며 많은 사람이 사망했다. 2015년에는 중동호흡기증후군, 일명 메르스가 중동에서 전 세계로 퍼지면서 사망률 약 36%로써 사망자가 다수 발생하였다. 또한 2019년 12월부터 중국 우한발 신종 코로나바이러스 감염증(코로나19, COVID-19)이 전 세계로 확산되면서 감염자가 늘어나고 있으며, 치사율은 2020년 2월까지 집계된 자료에 따르면 2.6%로 그나마 낮은 편이지만 세계적으로 확진자가 증가하는 중이며 예방 또는 치료 목적으로 승인된 백신이나 항바이러스제는 없었다.

license
cc-by-sa-3.0
copyright
Wikipedia 작가 및 편집자