dcsimg

Myxobacteria

provided by wikipedia EN

The myxobacteria ("slime bacteria") are a group of bacteria that predominantly live in the soil and feed on insoluble organic substances. The myxobacteria have very large genomes relative to other bacteria, e.g. 9–10 million nucleotides except for Anaeromyxobacter[2] and Vulgatibacter.[3] One species of myxobacteria, Minicystis rosea,[4] has the largest known bacterial genome with over 16 million nucleotides. The second largest is another myxobacteria Sorangium cellulosum.[5][6] Myxobacteria are included among the delta group of proteobacteria, a large taxon of Gram-negative forms.

Myxobacteria can move by gliding.[7] They typically travel in swarms (also known as wolf packs), containing many cells kept together by intercellular molecular signals. Individuals benefit from aggregation as it allows accumulation of the extracellular enzymes that are used to digest food; this in turn increases feeding efficiency. Myxobacteria produce a number of biomedically and industrially useful chemicals, such as antibiotics, and export those chemicals outside the cell.[8]

Myxobacteria are used to study the polysaccharide production in gram-negative bacteria like the model Myxococcus xanthus which have four different mechanisms[9] of polysaccharide secretion and where a new Wzx/Wzy mechanism producing a new polysaccharide was identified in 2020.[9]

Myxobacteria are also good models to study the multicellularity in the bacterial world.[10]

Life cycle

When nutrients are scarce, myxobacterial cells aggregate into fruiting bodies (not to be confused with those in fungi), a process long-thought to be mediated by chemotaxis but now considered to be a function of a form of contact-mediated signaling.[11][12] These fruiting bodies can take different shapes and colors, depending on the species. Within the fruiting bodies, cells begin as rod-shaped vegetative cells, and develop into rounded myxospores with thick cell walls. These myxospores, analogous to spores in other organisms, are more likely to survive until nutrients are more plentiful. The fruiting process is thought to benefit myxobacteria by ensuring that cell growth is resumed with a group (swarm) of myxobacteria, rather than as isolated cells. Similar life cycles have developed among certain amoebae, called cellular slime molds.

At a molecular level, initiation of fruiting body development in Myxococcus xanthus is regulated by Pxr sRNA.[13][14]

Myxobacteria such as Myxococcus xanthus and Stigmatella aurantiaca are used as model organisms for the study of development.

 src=
 src=
 src=
 src=
Various myxobacterial species as sketched by Roland Thaxter in 1892: Chondromyces crocatus (figs. 1–11), Stigmatella aurantiaca (figs. 12–19 and 25-28), Melittangium lichenicola (figs. 20–23), Archangium gephyra (fig. 24), Myxococcus coralloides (figs. 29-33), Polyangium vitellinum (figs. 34-36), and Myxococcus fulvus (figs. 37-41). Thaxter was the first taxonomist to recognize the bacterial nature of the myxobacteria. Previously, they had been misclassified as members of the fungi imperfecti.[15]

It has been suggested that the last common ancestor of myxobacteria was an aerobe and that their anaerobic predecessors lived syntrophically with early eukaryotes.[16]

Clinical use

Metabolites secreted by Sorangium cellulosum known as epothilones have been noted to have antineoplastic activity. This has led to the development of analogs which mimic its activity. One such analog, known as Ixabepilone is a U.S. Food and Drug Administration approved chemotherapy agent for the treatment of metastatic breast cancer.[17]

Myxobacteria are also known to produce gephyronic acid, an inhibitor of eukaryotic protein synthesis and a potential agent for cancer chemotherapy.[18]

References

  1. ^ Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. (2020). "Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities". Int J Syst Evol Microbiol. 70 (11): 5972–6016. doi:10.1099/ijsem.0.004213. PMID 33151140.
  2. ^ Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA, Löffler FE (May 2008). "The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria". PLOS ONE. 3 (5): e2103. Bibcode:2008PLoSO...3.2103T. doi:10.1371/journal.pone.0002103. PMC 2330069. PMID 18461135.
  3. ^ "Vulgatibacter incomptus strain DSM 27710, complete genome". 2015-08-19. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ "Minicystis rosea strain DSM 24000, complete genome". 2017-01-04. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, et al. (November 2007). "Complete genome sequence of the myxobacterium, Sorangium cellulosum". Nat. Biotechnol. 25 (11): 1281–9. doi:10.1038/nbt1354. PMID 17965706.
  6. ^ Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW (March 2015). "Insights from 20 years of bacterial genome sequencing". Funct. Integr. Genomics. 15 (2): 141–61. doi:10.1007/s10142-015-0433-4. PMC 4361730. PMID 25722247.
  7. ^ Mauriello EM, Mignot T, Yang Z, Zusman DR (June 2010). "Gliding motility revisited: how do the myxobacteria move without flagella?". Microbiol. Mol. Biol. Rev. 74 (2): 229–49. doi:10.1128/MMBR.00043-09. PMC 2884410. PMID 20508248.
  8. ^ Reichenbach H (September 2001). "Myxobacteria, producers of novel bioactive substances". J. Ind. Microbiol. Biotechnol. 27 (3): 149–56. doi:10.1038/sj.jim.7000025. PMID 11780785. S2CID 34964313.
  9. ^ a b Islam ST, Vergara Alvarez I, Saïdi F, Guiseppi A, Vinogradov E, Sharma G, et al. (June 2020). "Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion". PLOS Biology. 18 (6): e3000728. doi:10.1371/journal.pbio.3000728. PMC 7310880. PMID 32516311.
  10. ^ Islam ST, Vergara Alvarez I, Saïdi F, Guiseppi A, Vinogradov E, Sharma G, et al. (June 2020). "Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion". PLOS Biology. 18 (6): e3000728. doi:10.1371/journal.pbio.3000728. PMC 7310880. PMID 32516311.
  11. ^ Kiskowski MA, Jiang Y, Alber MS (December 2004). "Role of streams in myxobacteria aggregate formation". Phys Biol. 1 (3–4): 173–83. Bibcode:2004PhBio...1..173K. doi:10.1088/1478-3967/1/3/005. PMID 16204837.
  12. ^ Sozinova O, Jiang Y, Kaiser D, Alber M (August 2005). "A three-dimensional model of myxobacterial aggregation by contact-mediated interactions". Proc. Natl. Acad. Sci. U.S.A. 102 (32): 11308–12. Bibcode:2005PNAS..10211308S. doi:10.1073/pnas.0504259102. PMC 1183571. PMID 16061806.
  13. ^ Yu YT, Yuan X, Velicer GJ (May 2010). "Adaptive evolution of an sRNA that controls Myxococcus development". Science. 328 (5981): 993. Bibcode:2010Sci...328..993Y. doi:10.1126/science.1187200. PMC 3027070. PMID 20489016.
  14. ^ Fiegna F, Yu YT, Kadam SV, Velicer GJ (May 2006). "Evolution of an obligate social cheater to a superior cooperator". Nature. 441 (7091): 310–4. Bibcode:2006Natur.441..310F. doi:10.1038/nature04677. PMID 16710413. S2CID 4371886.
  15. ^ Thaxter R (1892). "On the Myxobacteriaceæ, a New Order of Schizomycetes". Botanical Gazette. 17 (12): 389–406. doi:10.1086/326866. ISSN 0006-8071.
  16. ^ Hoshino, Y.; Gaucher, E.A. (2021). "Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis". PNAS. 118 (25): e2101276118. doi:10.1073/pnas.2101276118. ISSN 0027-8424. PMC 8237579. PMID 34131078.
  17. ^ "FDA Approval for Ixabepilone". National Cancer Institute.
  18. ^ Sasse F, Steinmetz H, Höfle G, Reichenbach H (January 1995). "Gephyronic acid, a novel inhibitor of eukaryotic protein synthesis from Archangium gephyra (myxobacteria). Production, isolation, physico-chemical and biological properties, and mechanism of action". J. Antibiot. 48 (1): 21–5. doi:10.7164/antibiotics.48.21. PMID 7868385.

 title=
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Myxobacteria: Brief Summary

provided by wikipedia EN

The myxobacteria ("slime bacteria") are a group of bacteria that predominantly live in the soil and feed on insoluble organic substances. The myxobacteria have very large genomes relative to other bacteria, e.g. 9–10 million nucleotides except for Anaeromyxobacter and Vulgatibacter. One species of myxobacteria, Minicystis rosea, has the largest known bacterial genome with over 16 million nucleotides. The second largest is another myxobacteria Sorangium cellulosum. Myxobacteria are included among the delta group of proteobacteria, a large taxon of Gram-negative forms.

Myxobacteria can move by gliding. They typically travel in swarms (also known as wolf packs), containing many cells kept together by intercellular molecular signals. Individuals benefit from aggregation as it allows accumulation of the extracellular enzymes that are used to digest food; this in turn increases feeding efficiency. Myxobacteria produce a number of biomedically and industrially useful chemicals, such as antibiotics, and export those chemicals outside the cell.

Myxobacteria are used to study the polysaccharide production in gram-negative bacteria like the model Myxococcus xanthus which have four different mechanisms of polysaccharide secretion and where a new Wzx/Wzy mechanism producing a new polysaccharide was identified in 2020.

Myxobacteria are also good models to study the multicellularity in the bacterial world.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Myxococcales

provided by wikipedia FR

Les Myxococcales, ou Myxobacteria ou Myxobactéries, sont un ordre de bactéries que l'on trouve en majorité dans le sol et qui se nourrissent de composés organiques insolubles. Elles font partie de la classe des Deltaproteobacteria, un grand taxon de bactéries à Gram négatif.

La plupart des myxobactéries connues se distinguent par un cycle de vie complexe, et notamment la formation d'un corps de fructification pluricellulaire. Les classifications phylogénétiques moléculaires établies à partir de l'ARNr 16S montrent une monophylie des taxons constitués à partir de la morphologie des corps de fructification, suggérant que la forme et la taille de ces corps est un bon critère taxinomique[2].

Les myxobactéries possèdent des génomes de très grande taille par rapport aux autres groupes de bactéries, à savoir de l'ordre de 9 à 10 millions de nucléotides, exceptions faites des genres Anaeromyxobacter[3] et Vulgatibacter[4]. En effet, les deux espèces de bactéries possédant les plus grands génomes connus sont des myxobactéries : Minicystis rosea (16 Mb)[5] et Sorangium cellulosum[6],[7].

Les myxobactéries peuvent se déplacer par glissement. Typiquement, elles se déplacent en essaims (swarms en anglais) contenant de nombreuses cellules restant groupées ensemble grâce à des signaux moléculaires intercellulaires. Les individus bénéficient de cette agrégation car elle permet d'accumuler des enzymes extracellulaires utilisées pour digérer de la nourriture, ce qui en retour augmente l'efficacité d'alimentation. Les myxobactéries produisent un certain nombre de substances chimiques utiles en sciences biomédicales et dans l'industrie, tels que des antibiotiques, et exportent ces molécules dans le milieu extracellulaire[8].

Cycle de vie

Lorsque les nutriments sont rares, les cellules de myxobactéries s'agrègent pour former des corps de fructification (à ne pas confondre avec ceux produits par les Fungi, les sporophores), un processus qu'on a longtemps pensé comme contrôlé par chimiotaxie mais désormais considéré comme une forme de signalisation cellulaire par contact[9],[10]. Ces corps de fructification peuvent prendre différentes formes et couleurs selon l'espèce. Au sein des corps de fructification, les cellules sont d'abord dans un état végétatif et en forme de bâtonnets, puis se développent en myxospores de forme ronde avec d'épaisses parois cellulaires. Ces myxospores, analogues aux spores que l'on retrouve chez d'autres organismes, auront une meilleure chance de survie jusqu'à ce que les nutriments soient de nouveau abondants dans l'environnement. On pense que le processus de fructification favorise les myxobactéries en assurant que la croissance cellulaire soit reprise au niveau d'un groupe de myxobactéries (essaim ou swarm en anglais), plutôt qu'au niveau de cellules isolées. Des cycles de vie similaires se sont développés chez les myxomycètes.

Au niveau moléculaire, l'initiation du développement d'un corps de fructification chez Myxococcus xanthus est régulé par l'ARN de régulation ARNs Pxr[11],[12].

Certaines myxobactéries comme Myxococcus xanthus et Stigmatella aurantiaca sont utilisées comme organismes modèles en biologie du développement.

Classification phylogénétique

Cette phylogénie[13] a été obtenue par comparaison de la séquence de l'ARNr 16S de 12 espèces de l'ordre des Myxobacteria entre elles et avec 3 espèces de l'ordre des Deltaproteobacteria, mais n'appartenant pas aux Myxobacteria, et servant de groupe externe (Bdellovibrio stolpii, Desulfosarcina variabilis et Desulfovibrio desulfuricans). Les distances phylogénétiques entre chaque paire de séquences ont été calculées à partir des pourcentages de similarité corrigés par la méthode de Jukes et Cantor[14] modifiée par G.J. Olsen[15].

-o Myxobacteria ├─o │├─o Stigmatella aurantiaca │└─o │ ├─o Cystobacter fuscus │ └─o │ ├─o │ │ ├─o Archangium gephyra │ │ └─o Angiococcus disciformis │ └─o │ ├─o Myxococcus xanthus │ └─o │ ├─o Melittangium lichenicola │ └─o Corallococcus coralloides └─o ├─o Nannocystis exedens └─o ├─o │ ├─o Polyangium sp. │ └─o Polyangium cellulosum └─o ├─o Chondromyces apiculatus └─o Chondromyces crocatus 

Utilisation clinique

 src=
 src=
 src=
 src=
Croquis de diverses espèces de myxobactéries par Roland Thaxter en 1892 : Chondromyces crocatus (figs. 1-11), Stigmatella aurantiaca (figs. 12-19 et 25-28), Melittangium lichenicola (figs. 20-23), Archangium gephyra (fig. 24), Myxococcus coralloides (figs. 29-33), Polyangium vitellinum (figs. 34-36) et Myxococcus fulvus (figs. 37-41). Thaxter a été le premier taxonomiste à reconnaître la nature bactérienne des myxobactéries. Auparavant, elles étaient (mal) classifiées dans le groupe des Fungi imperfecti.

Les chercheurs ont remarqué que les métabolites sécrétés par Sorangium cellulosum connus sous le nom d'épothilones ont une activité antinéoplasique. Cela a mené au développement d'analogues qui imitent son activité. Un de ces analogues, connu sous le nom d'Ixabepilone, est un agent chimiothérapique approuvé par la Food and Drug Administration pour le traitement du cancer du sein à métastases[16].

Les myxobactéries sont également connues pour produire de l'acide géphyronique, un inhibiteur de la biosynthèse des protéines chez les eucaryotes, ainsi qu'un agent potentiel pour la chimiothérapie contre le cancer[17].

Voir aussi

Notes et références

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé .
  1. Yao-Tseng Tchan, Jacques Pochon et André-Romain Prévot, « Étude de systématique bactérienne. VIII. Essai de classification des Cytophaga », Annales de l’Institut Pasteur (Paris), vol. 74,‎ 1948, p. 394-400.
  2. (en) De-Ming Jiang, Zhi-Hong Wu, Jing-Yi Zhao et Yue-Zhong Li, « Fruiting and non-fruiting myxobacteria: A phylogenetic perspective of cultured and uncultured members of this group », Molecular Phylogenetics and Evolution, vol. 44, no 2,‎ août 2007, p. 545-552 (ISSN , DOI , résumé)
  3. Sara H. Thomas, Ryan D. Wagner, Adrian K. Arakaki et Jeffrey Skolnick, « The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria », PloS One, vol. 3, no 5,‎ 7 mai 2008, e2103 (ISSN , PMID , PMCID , DOI , lire en ligne, consulté le 25 avril 2018)
  4. Eisaku Yamamoto, Hideyuki Muramatsu et Koji Nagai, « Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. », International Journal of Systematic and Evolutionary Microbiology, vol. 64, no 10,‎ 2014, p. 3360–3368 (DOI , lire en ligne, consulté le 25 avril 2018)
  5. Ronald Garcia, Katja Gemperlein et Rolf Müller, « Minicystis rosea gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium », International Journal of Systematic and Evolutionary Microbiology, vol. 64, no 11,‎ 2014, p. 3733–3742 (DOI , lire en ligne, consulté le 25 avril 2018)
  6. Susanne Schneiker, Olena Perlova, Olaf Kaiser et Klaus Gerth, « Complete genome sequence of the myxobacterium Sorangium cellulosum », Nature Biotechnology, vol. 25, no 11,‎ novembre 2007, p. 1281–1289 (ISSN , PMID , DOI , lire en ligne, consulté le 25 avril 2018)
  7. (en) Miriam Land, Loren Hauser, Se-Ran Jun et Intawat Nookaew, « Insights from 20 years of bacterial genome sequencing », Functional & Integrative Genomics, vol. 15, no 2,‎ 1er mars 2015, p. 141–161 (ISSN et , PMID , PMCID , DOI , lire en ligne, consulté le 25 avril 2018)
  8. H. Reichenbach, « Myxobacteria, producers of novel bioactive substances », Journal of Industrial Microbiology & Biotechnology, vol. 27, no 3,‎ septembre 2001, p. 149–156 (ISSN , PMID , lire en ligne, consulté le 25 avril 2018)
  9. Maria A. Kiskowski, Yi Jiang et Mark S. Alber, « Role of streams in myxobacteria aggregate formation », Physical Biology, vol. 1, nos 3-4,‎ décembre 2004, p. 173–183 (ISSN , PMID , DOI , lire en ligne, consulté le 25 avril 2018)
  10. Olga Sozinova, Yi Jiang, Dale Kaiser et Mark Alber, « A three-dimensional model of myxobacterial aggregation by contact-mediated interactions », Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no 32,‎ 9 août 2005, p. 11308–11312 (ISSN , PMID , PMCID , DOI , lire en ligne, consulté le 25 avril 2018)
  11. Yuen-Tsu N. Yu, Xi Yuan et Gregory J. Velicer, « Adaptive evolution of an sRNA that controls Myxococcus development », Science (New York, N.Y.), vol. 328, no 5981,‎ 21 mai 2010, p. 993 (ISSN , PMID , PMCID , DOI , lire en ligne, consulté le 25 avril 2018)
  12. Francesca Fiegna, Yuen-Tsu N. Yu, Supriya V. Kadam et Gregory J. Velicer, « Evolution of an obligate social cheater to a superior cooperator », Nature, vol. 441, no 7091,‎ 18 mai 2006, p. 310–314 (ISSN , PMID , DOI , lire en ligne, consulté le 25 avril 2018)
  13. (en) L. Shimkets, « A phylogenetic analysis of the Myxobacteria - Basis for their classification », PNAS, vol. 89, no 20,‎ 15 octobre 1992, p. 9459-9463 (ISSN )
  14. (en) T.H. Jukes et C.R. Cantor, « Evolution of Protein Molecules », New York: Academic Press, Munro HN,‎ 1969, p. 21-132
  15. (en) G. J. Olsen, « Earliest Phylogenetic Branchings: Comparing rRNA-based Evolutionary Trees Inferred with Various Techniques », Cold Spring Harbor Symposia on Quantitative Biology, vol. 52,‎ 1er janvier 1987, p. 825–837 (ISSN et , PMID , DOI , lire en ligne, consulté le 25 avril 2018)
  16. (en) « FDA Approval for Ixabepilone », sur National Cancer Institute (consulté le 25 avril 2018)
  17. F. Sasse, H. Steinmetz, G. Höfle et H. Reichenbach, « Gephyronic acid, a novel inhibitor of eukaryotic protein synthesis from Archangium gephyra (myxobacteria). Production, isolation, physico-chemical and biological properties, and mechanism of action », The Journal of Antibiotics, vol. 48, no 1,‎ janvier 1995, p. 21–25 (ISSN , PMID , lire en ligne, consulté le 25 avril 2018)

license
fr
copyright
http://creativecommons.org/licenses/by-sa/3.0/
original
visit source
partner site
wikipedia FR

Myxococcales: Brief Summary

provided by wikipedia FR

Les Myxococcales, ou Myxobacteria ou Myxobactéries, sont un ordre de bactéries que l'on trouve en majorité dans le sol et qui se nourrissent de composés organiques insolubles. Elles font partie de la classe des Deltaproteobacteria, un grand taxon de bactéries à Gram négatif.

La plupart des myxobactéries connues se distinguent par un cycle de vie complexe, et notamment la formation d'un corps de fructification pluricellulaire. Les classifications phylogénétiques moléculaires établies à partir de l'ARNr 16S montrent une monophylie des taxons constitués à partir de la morphologie des corps de fructification, suggérant que la forme et la taille de ces corps est un bon critère taxinomique.

Les myxobactéries possèdent des génomes de très grande taille par rapport aux autres groupes de bactéries, à savoir de l'ordre de 9 à 10 millions de nucléotides, exceptions faites des genres Anaeromyxobacter et Vulgatibacter. En effet, les deux espèces de bactéries possédant les plus grands génomes connus sont des myxobactéries : Minicystis rosea (16 Mb) et Sorangium cellulosum,.

Les myxobactéries peuvent se déplacer par glissement. Typiquement, elles se déplacent en essaims (swarms en anglais) contenant de nombreuses cellules restant groupées ensemble grâce à des signaux moléculaires intercellulaires. Les individus bénéficient de cette agrégation car elle permet d'accumuler des enzymes extracellulaires utilisées pour digérer de la nourriture, ce qui en retour augmente l'efficacité d'alimentation. Les myxobactéries produisent un certain nombre de substances chimiques utiles en sciences biomédicales et dans l'industrie, tels que des antibiotiques, et exportent ces molécules dans le milieu extracellulaire.

license
fr
copyright
http://creativecommons.org/licenses/by-sa/3.0/
original
visit source
partner site
wikipedia FR

점액세균

provided by wikipedia 한국어 위키백과

점액세균(粘液細菌, myxobacteria, "slime bacteria") 또는 점액세균류(粘液細菌類)는 점액세균목(Myxococcales)에 속하는 세균의 총칭이다. 두께 0.6~1.2 μm, 길이 3~15 μm의 간균으로 활주운동에 의해 이동한다. 점액세균들은 집단(swarm)으로 함께 모여서 생활하는 특성이 있는데, 영양분이 결핍된 상황에서 수십만 마리의 세포들이 한 점으로 모여서 다세포 자실체를 형성하며, 간균 형태의 세포들은 자실체 내에서 구형 또는 타원형의 포자로 변형된다. 포자들은 열악한 환경에서도 장기간 생존할 수 있다. 영양분이 이용 가능하게 되면 자실체를 구성한 수십만 개의 포자들이 동시에 발아하여 다시 세포의 집단을 형성한다. 주로 토양에서 서식하며, 다른 미생물 또는 유기물질들을 소화함으로써 영양분을 얻는다. Sorangium cellulosumByssovorax cruenta는 셀룰로오스를 분해하여 영양분을 얻기도 한다. Sorangium cellulosum은 세균 중에서 가장 큰 유전체(13.0 Mbp)를 지니고 있다. 점액세균은 의학적으로 중요한 다양한 생리활성물질을 생산한다. 에포틸론(epothilone)은 점액세균에서 발견된 대표적 생리활성물질로 에포틸론-B 유도체 익사벱필론(ixabepilone)이 익셈프라(IxempraTM)라는 항암치료제로 판매되고 있다.

각주

 title=
license
ko
copyright
http://creativecommons.org/licenses/by-sa/3.0/

점액세균: Brief Summary

provided by wikipedia 한국어 위키백과

점액세균(粘液細菌, myxobacteria, "slime bacteria") 또는 점액세균류(粘液細菌類)는 점액세균목(Myxococcales)에 속하는 세균의 총칭이다. 두께 0.6~1.2 μm, 길이 3~15 μm의 간균으로 활주운동에 의해 이동한다. 점액세균들은 집단(swarm)으로 함께 모여서 생활하는 특성이 있는데, 영양분이 결핍된 상황에서 수십만 마리의 세포들이 한 점으로 모여서 다세포 자실체를 형성하며, 간균 형태의 세포들은 자실체 내에서 구형 또는 타원형의 포자로 변형된다. 포자들은 열악한 환경에서도 장기간 생존할 수 있다. 영양분이 이용 가능하게 되면 자실체를 구성한 수십만 개의 포자들이 동시에 발아하여 다시 세포의 집단을 형성한다. 주로 토양에서 서식하며, 다른 미생물 또는 유기물질들을 소화함으로써 영양분을 얻는다. Sorangium cellulosum과 Byssovorax cruenta는 셀룰로오스를 분해하여 영양분을 얻기도 한다. Sorangium cellulosum은 세균 중에서 가장 큰 유전체(13.0 Mbp)를 지니고 있다. 점액세균은 의학적으로 중요한 다양한 생리활성물질을 생산한다. 에포틸론(epothilone)은 점액세균에서 발견된 대표적 생리활성물질로 에포틸론-B 유도체 익사벱필론(ixabepilone)이 익셈프라(IxempraTM)라는 항암치료제로 판매되고 있다.

license
ko
copyright
http://creativecommons.org/licenses/by-sa/3.0/