dcsimg

Coralline algae ( Inglês )

fornecido por wikipedia EN

Coralline algae are red algae in the order Corallinales. They are characterized by a thallus that is hard because of calcareous deposits contained within the cell walls. The colors of these algae are most typically pink, or some other shade of red, but some species can be purple, yellow, blue, white, or gray-green. Coralline algae play an important role in the ecology of coral reefs. Sea urchins, parrot fish, and limpets and chitons (both mollusks) feed on coralline algae. In the temperate Mediterranean Sea, coralline algae are the main builders of a typical algal reef, the Coralligène ("coralligenous").[5] Many are typically encrusting and rock-like, found in marine waters all over the world. Only one species lives in freshwater.[6] Unattached specimens (maerl, rhodoliths) may form relatively smooth compact balls to warty or fruticose thalli.

A close look at almost any intertidal rocky shore or coral reef will reveal an abundance of pink to pinkish-grey patches, distributed throughout the rock surfaces. These patches of pink "paint" are actually living crustose coralline red algae. The red algae belong to the division Rhodophyta, within which the coralline algae form the order Corallinales. There are over 1600 described species of nongeniculate coralline algae.[7]

The corallines are presently grouped into two families on the basis of their reproductive structures.[8]

Distribution

Coralline algae are widespread in all of the world's oceans, where they often cover close to 100% of rocky substrata. Only one species, Pneophyllum cetinaensis, is found in freshwater. Its ancestor lived in brackish water, and was already adapted to osmotic stress and rapid changes in water salinity and temperature.[6][9] Many are epiphytic (grow on other algae or marine angiosperms), or epizoic (grow on animals), and some are even parasitic on other corallines. Despite their ubiquity, the coralline algae are poorly known by ecologists, and even by specialist phycologists (people who study algae). For example, a recent book on the seaweeds of Hawaii does not include any crustose coralline algae, even though corallines are quite well studied there and dominate many marine areas.

Forms

Corallines have been divided into two groups, although this division does not constitute a taxonomic grouping:

  • the geniculate (articulated) corallines;
  • the nongeniculate (nonarticulated) corallines.

Geniculate corallines are branching, tree-like organisms which are attached to the substratum by crustose or calcified, root-like holdfasts. The organisms are made flexible by having noncalcified sections (genicula) separating longer calcified sections (intergenicula). Nongeniculate corallines range from a few micrometres to several centimetres thick crusts. They are often very slow growing, and may occur on rock, coral skeletons, shells, other algae or seagrasses. Crusts may be thin and leafy to thick and strongly adherent. Some are parasitic or partly endophytic on other corallines. Many coralline crusts produce knobby protuberances ranging from a millimetre to several centimetres high. Some are free-living as rhodoliths (rounded, free-living specimens). The morphological complexity of rhodoliths enhances species diversity, and can be used as a non-taxonomic descriptor for monitoring.[10]

Thalli can be divided into three layers: the hypothallus, perithallus and epithallus.[11] The epithallus is periodically shed, either in sheets or piecemeal.[12]

Habitat

Corallines live in varying depths of water, ranging from periodically exposed intertidal settings to 270 m water depth (around the maximum penetration of light).[13] Some species can tolerate brackish[13] or hypersaline[14] waters, and only one strictly freshwater coralline species exists.[6] (Some species of the morphologically similar, but non-calcifying, Hildenbrandia, however, can survive in freshwater.) A wide range of turbidities and nutrient concentrations can be tolerated.[13]

Growth

Corallines, especially encrusting forms, are slow growers, and expand by 0.1–80 mm annually.[13] All corallines begin with a crustose stage; some later become frondose.[15]

Avoidance of fouling

Coralline algae about 20 meter deep at the lower limit of kelp forest[16]

As sessile encrusting organisms, the corallines are prone to overgrowth by other "fouling" algae. The group have many defences to such immuration, most of which depend on waves disturbing their thalli. However, the most relied-upon method involves waiting for herbivores to devour the potential encrusters.[17] This places them in the unusual position of requiring herbivory, rather than benefiting from its avoidance.[18] Many species periodically slough their surface epithallus – and anything attached to it.[17]

Some corallines slough off a surface layer of epithallial cells, which in a few cases may be an antifouling mechanism which serves the same function as enhancing herbivore recruitment. This also affects the community, as many algae recruit on the surface of a sloughing coralline, and are then lost with the surface layer of cells. This can also generate patchiness within the community. The common Indo-Pacific corallines, Neogoniolithon fosliei and Sporolithon ptychoides, slough epithallial cells in continuous sheets which often lie on the surface of the plants.

Not all sloughing serves an antifouling function. Epithallial shedding in most corallines is probably simply a means of getting rid of damaged cells whose metabolic function has become impaired. Morton and his students studied sloughing in the South African intertidal coralline alga, Spongites yendoi, a species which sloughs up to 50% of its thickness twice a year. This deep-layer sloughing, which is energetically costly, does not affect seaweed recruitment when herbivores are removed. The surface of these plants is usually kept clean by herbivores, particularly the pear limpet, Patella cochlear. Sloughing in this case is probably a means of eliminating old reproductive structures and grazer-damaged surface cells, and reducing the likelihood of surface penetration by burrowing organisms.

Evolutionary history

The corallines have an excellent fossil record from the Early Cretaceous onwards, consistent with molecular clocks that show the divergence of the modern taxa beginning in this period.[1] The fossil record of nonarticulated forms is better: the unmineralized genuiculae of articulated forms break down quickly, scattering the mineralized portions, which then decay more quickly.[1] This said, non-mineralizing coralline algae are known from the Silurian of Gotland[19] showing that the lineage has a much longer history than molecular clocks would indicate.

The earliest known coralline deposits date from the Ordovician,[2][3] although modern forms radiated in the Cretaceous.[20] True corallines are found in rocks of Jurassic age onwards.[21] Stem group corallines are reported from the Ediacaran Doushantuo formation;[20] later stem-group forms include Arenigiphyllum, Petrophyton, Graticula, and Archaeolithophyllum. The corallines were thought to have evolved from within the Solenoporaceae,[22] a view that has been disputed.[3] Their fossil record matches their molecular history, and is complete and continuous.[1]

The Sporolithaceae tend to be more diverse in periods of high ocean temperatures; the opposite is true for the Corallinaceae.[13] The group's diversity has closely tracked the efficiency of grazing herbivores; for instance, the Eocene appearance of parrotfish marked a spike in coralline diversity, and the extinction of many delicately branched (and thus predation-prone) forms.[17]

Taxonomy

The group's internal taxonomy is in a state of flux; molecular studies are proving more reliable than morphological methods in approximating relationships within the group.[23] Recent advances in morphological classification based on skeletal ultrastructure, however, are promising. Crystal morphology within the calcified cell wall of coralline algae was found to have a high correspondence with molecular studies. These skeletal structures thus provide morphologic evidence for molecular relationships within the group.[24]

According to AlgaeBase:

According to the World Register of Marine Species:

According to ITIS:

Ecology

Fresh surfaces are generally colonized by thin crusts, which are replaced by thicker or branched forms during succession over the course of one (in the tropics) to ten (in the Arctic) years.[17] However, the transition from crusts to branched form depends on environmental conditions. Crusts may also become detached and form calcareous nodules known as Rhodoliths.[27] Their growth may be also disrupted by local environmental factors.[28] While coralline algae are present in most hard substrate marine communities in photic depths, they are more common in higher latitudes and in the Mediterranean.[29] Their ability to calcify in low light conditions makes them the some of deepest photosynthetic organisms in the ocean[30] and as such a critical base of mesophotic ecological systems.[31][32]

Mineralogy

Since coralline algae contain calcium carbonate, they fossilize fairly well. They are particularly significant as stratigraphic markers in petroleum geology. Coralline rock was used as building stone since the ancient Greek culture.[33]

The calcite crystals composing the cell wall are elongated perpendicular to the cell wall. The calcite normally contains magnesium (Mg), with the magnesium content varying as a function of species and water temperature.[34] If the proportion of magnesium is high, the deposited mineral is more soluble in ocean water, particularly in colder waters, making some coralline algae deposits more vulnerable to ocean acidification.[35]

History

The first coralline alga recognized as a living organism was probably Corallina in the 1st century AD.[36] In 1837, Rodolfo Amando Philippi recognized coralline algae were not animals, and he proposed the two generic names Lithophyllum and Lithothamnion as Lithothamnium.[36] For many years, they were included in the order Cryptonemiales as the family Corallinaceae until, in 1986, they were raised to the order Corallinales.

Corallines in community ecology

Branched coralline algae washed ashore on the beach of the county park refuge at Moss Beach, California

Many corallines produce chemicals which promote the settlement of the larvae of certain herbivorous invertebrates, particularly abalone. Larval settlement is adaptive for the corallines because the herbivores remove epiphytes which might otherwise smother the crusts and preempt available light. Settlement is also important for abalone aquaculture; corallines appear to enhance larval metamorphosis and the survival of larvae through the critical settlement period. It also has significance at the community level; the presence of herbivores associated with corallines can generate patchiness in the survival of young stages of dominant seaweeds. This has been seen this in eastern Canada, and it is suspected the same phenomenon occurs on Indo-Pacific coral reefs, yet nothing is known about the herbivore enhancement role of Indo-Pacific corallines, or whether this phenomenon is important in coral reef communities.

Some coralline algae develop into thick crusts which provide microhabitat for many invertebrates. For example, off eastern Canada, Morton found juvenile sea urchins, chitons, and limpets suffer nearly 100% mortality due to fish predation unless they are protected by knobby and undercut coralline algae. This is probably an important factor affecting the distribution and grazing effects of herbivores within marine communities. Nothing is known about the microhabitat role of Indo-Pacific corallines. However, the most common species in the region, Hydrolithon onkodes, often forms an intimate relationship with the chiton Cryptoplax larvaeformis. The chiton lives in burrows it makes in H. onkodes plants, and comes out at night to graze on the surface of the coralline. This combination of grazing and burrowing results in a peculiar growth form (called "castles") in H. onkodes, in which the coralline produces nearly vertical, irregularly curved lamellae. Coralline algae are part of the diet of shingle urchins (Colobocentrotus atratus).

Nongeniculate corallines are of particular significance in the ecology of coral reefs, where they add calcareous material to the structure of the reef, help cement the reef together, and are important sources of primary production. Coralline algae are especially important in reef construction, as they lay down calcium carbonate as calcite. Although they contribute considerable bulk to the calcium carbonate structure of coral reefs, their more important role in most areas of the reef, is in acting as the cement which binds the reef materials into a sturdy structure.[37]

Corallines are particularly important in constructing the algal ridge's reef framework for surf-pounded reefs in both the Atlantic and Indo-Pacific regions. Algal ridges are carbonate frameworks constructed mainly by nongeniculate coralline algae (after Adey, 1978). They require high and persistent wave action to form, so develop best on windward reefs with little or no seasonal change in wind direction. Algal ridges are one of the main reef structures that prevent oceanic waves from striking adjacent coastlines, helping to prevent coastal erosion.

Economic importance

Because of their calcified structure, coralline algae have a number of economic uses.

Some harvesting of maërl beds that span several thousand kilometres off the coast of Brazil takes place. These beds contain as-yet undetermined species belonging to the genera Lithothamnion and Lithophyllum.

Soil conditioning

The collection of unattached corallines (maërl) for use as soil conditioners dates to the 18th century. This is particularly significant in Britain and France, where more than 300,000 tonnes of Phymatolithon calcareum (Pallas, Adey & McKinnin) and Lithothamnion corallioides are dredged annually.

Medicine and food

The earliest use of corallines in medicine involved the preparation of a vermifuge from ground geniculate corallines of the genera Corallina and Jania. This use stopped towards the end of the 18th century. Medical science now uses corallines in the preparation of dental bone implants. The cell fusions provide the matrix for the regeneration of bone tissue.

Maërl is also used as a food additive for cattle and pigs, as well as in the filtration of acidic drinking water.

Aquaria

As a colorful component of live rock sold in the marine aquarium trade, and an important part of reef health, coralline algae are desired in home aquariums for their aesthetic qualities, and ostensible benefit to the tank ecosystem.

See also

References

  1. ^ a b c d Aguirre, J.; Perfectti, F.; Braga, J.C. (2010). "Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta)". Paleobiology. 36 (4): 519. doi:10.1666/09041.1. S2CID 85227395.
  2. ^ a b Riding, R.; Cope, J.C.W.; Taylor, P.D. (1998). "A coralline-like red alga from the Lower Ordovician of Wales" (PDF). Palaeontology. 41: 1069–1076. Archived from the original (PDF) on 9 March 2012.
  3. ^ a b c Brooke, C.; Riding, R. (1998). "Ordovician and Silurian coralline red algae". Lethaia. 31 (3): 185. doi:10.1111/j.1502-3931.1998.tb00506.x.
  4. ^ Silva, P.; Johansen, H. W. (1986). "A reappraisal of the order Corallinales (Rhodophyceae)". European Journal of Phycology. 21 (3): 245–254. doi:10.1080/00071618600650281.
  5. ^ Ballesteros E., 2006 Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanography and Marine Biology - an Annual Review 44: 123–130
  6. ^ a b c Žuljević, A.; et al. (2016). "First freshwater coralline alga and the role of local features in a major biome transition". Sci. Rep. Nature. 6: 19642. Bibcode:2016NatSR...619642Z. doi:10.1038/srep19642. PMC 4726424. PMID 26791421.
  7. ^ Woelkerling, Wm.J. (1988). The coralline red algae: An analysis of the genera and subfamilies of non-geniculate Corallinaceae. Natural History. London, UK: British Museum. ISBN 978-0-19-854249-0.
  8. ^ Taylor, Thomas N; Taylor, Edith L; Krings, Michael (2009). Paleobotany: the biology and evolution of fossil plants. ISBN 978-0-12-373972-8.
  9. ^ Žuljević, A.; Kaleb, S.; Peña, V.; Despalatović, M.; Cvitković, I.; De Clerck, O.; Le Gall, L.; Falace, A.; Vita, F.; Braga, Juan C.; Antolić, B. (2016). "Pneophyllum cetinaensis". Nature. 6: 19642. Bibcode:2016NatSR...619642Z. doi:10.1038/srep19642. PMC 4726424. PMID 26791421. srep 19642.
  10. ^ Basso D, et al. (2015). "Monitoring deep Mediterranean rhodolith beds" (PDF). Aquatic Conservation: Marine and Freshwater Ecosystems. 26 (3): 3. doi:10.1002/aqc.2586.
  11. ^ Blackwell, W.H.; Marak, J.H.; Powell, M.J. (1982). "The identity and reproductive structures of a misplaced Solenopora (Rhodophycophyta) from the Ordovician of southwestern Ohio and eastern Indiana". Journal of Phycology. 18 (4): 477. doi:10.1111/j.0022-3646.1982.00477.x.
  12. ^ Keats, D.W.; Knight, M.A.; Pueschel, C.M. (1997). "Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef". Journal of Experimental Marine Biology and Ecology. 213 (2): 281. doi:10.1016/S0022-0981(96)02771-2.
  13. ^ a b c d e Aguirre, J.; Riding, R.; Braga, J.C. (2000). "Diversity of coralline red algae: Origination and extinction patterns from the early Cretaceous to the Pleistocene". Paleobiology. 26 (4): 651–667. doi:10.1666/0094-8373(2000)026<0651:DOCRAO>2.0.CO;2. ISSN 0094-8373. S2CID 130399147.
  14. ^ Thornton, Scott E.; Orrin, H. Pil (1978). "A lagoonal crustose coralline algal micro-ridge: Bahiret el Bibane, Tunisia". SEPM Journal of Sedimentary Research. 48. doi:10.1306/212F7554-2B24-11D7-8648000102C1865D.
  15. ^ Cabioch, J. (1988). "Morphogenesis and generic concepts in coralline algae: A reappraisal". Helgoländer Meeresuntersuchungen. 42 (3–4): 493–509. Bibcode:1988HM.....42..493C. doi:10.1007/BF02365623.
  16. ^ Küpper, F.C. and Kamenos, N.A. (2018) "The future of marine biodiversity and marine ecosystem functioning in UK coastal and territorial waters (including UK Overseas Territories)–with an emphasis on marine macrophyte communities". Botanica Marina, 61(6): 521-535. doi:10.1515/bot-2018-0076.
  17. ^ a b c d Steneck, R.S. (1986). "The ecology of coralline algal crusts: Convergent patterns and adaptative strategies". Annual Review of Ecology and Systematics. 17: 273–303. doi:10.1146/annurev.es.17.110186.001421. JSTOR 2096997.
  18. ^ Stenec, R.S. (1983). "Escalating herbivory and resulting adaptive trends in calcareous algal crusts". Paleobiology. 9k (1): 44–61. doi:10.1017/S0094837300007375. JSTOR 2400629. S2CID 85645519.
  19. ^ Smith, M.R. and Butterfield, N.J. 2013: A new view on Nematothallus: coralline red algae from the Silurian of Gotland. Palaeontology 56, 345–359. 10.1111/j.1475-4983.2012.01203.x
  20. ^ a b Xiao, S.; Knoll, A. H.; Yuan, X.; Pueschel, C. M. (2004). "Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae". American Journal of Botany. 91 (2): 214–227. doi:10.3732/ajb.91.2.214. PMID 21653378.
  21. ^ Basson, P. W.; Edgell, H. S. (1971). "Calcareous algae from the Jurassic and Cretaceous of Lebanon". Micropaleontology. 17 (4): 411–433. doi:10.2307/1484871. JSTOR 1484871.
  22. ^ Johnson, J. H. (May 1956). "Ancestry of the Coralline algae". Journal of Paleontology. 30 (3): 563–567. ISSN 0022-3360. JSTOR 1300291.
  23. ^ Bittner, L.; Payri, C. E.; Maneveldt, G. W.; Couloux, A.; Cruaud, C.; De Reviers, B.; Le Gall, L. (2011). "Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes" (PDF). Molecular Phylogenetics and Evolution. 61 (3): 697–713. doi:10.1016/j.ympev.2011.07.019. hdl:10566/904. PMID 21851858.
  24. ^ Auer, Gerald; Piller, Werner E. (14 February 2020). "Nanocrystals as phenotypic expression of genotypes—An example in coralline red algae". Science Advances. 6 (7): eaay2126. Bibcode:2020SciA....6.2126A. doi:10.1126/sciadv.aay2126. PMC 7015681. PMID 32095524.
  25. ^ a b c d e f g h "Taxonomy Browser :: Algaebase". www.algaebase.org.
  26. ^ Athanasiadis, Athanasios (January 2, 2019). "Amphithallia, a genus with four-celled carpogonial branches and connecting filaments in the Corallinales (Rhodophyta)". Marine Biology Research. 15 (1): 13–25. doi:10.1080/17451000.2019.1598559. S2CID 155866871 – via Taylor and Francis+NEJM.
  27. ^ Riosmena-Rodríguez, Rafael; Wendy, Nelson; Julio, Aguirre (2016). Rhodolith/Maërl Beds : a global perspective. Switzerland. ISBN 978-3-319-29313-4.
  28. ^ Dulin, Tuvia; Avnaim-Katav, Simona; Sisma-Ventura, Guy; Bialik, Or M.; Angel, Dror L. (January 2020). "Rhodolith beds along the southeastern Mediterranean inner shelf: Implications for past depositional environments". Journal of Marine Systems. 201: 103241. Bibcode:2020JMS...20103241D. doi:10.1016/j.jmarsys.2019.103241. S2CID 210297206.
  29. ^ Basso, Daniela (March 2012). "Carbonate production by calcareous red algae and global change". Geodiversitas. 34 (1): 13–33. doi:10.5252/g2012n1a2. S2CID 86112464.
  30. ^ Littler, Mark M.; Littler, Diane S.; Blair, Stephen M.; Norris, James N. (4 January 1985). "Deepest Known Plant Life Discovered on an Uncharted Seamount". Science. 227 (4682): 57–59. Bibcode:1985Sci...227...57L. doi:10.1126/science.227.4682.57. PMID 17810025. S2CID 20905891.
  31. ^ Bialik, Or M.; Varzi, Andrea Giulia; Durán, Ruth; Le Bas, Timothy; Gauci, Adam; Savini, Alessandra; Micallef, Aaron (25 February 2022). "Mesophotic Depth Biogenic Accumulations ("Biogenic Mounds") Offshore the Maltese Islands, Central Mediterranean Sea". Frontiers in Marine Science. 9: 803687. doi:10.3389/fmars.2022.803687.
  32. ^ Btracchi, Valentina; Savini, Alessandra; Marchese, Fabio; Palamara, Serena; Basso, Daniela; Corselli, Cesare (February 2015). "Coralligenous habitat in the Mediterranean Sea: a geomorphological description from remote". Italian Journal of Geosciences. 134 (1): 32–40. doi:10.3301/IJG.2014.16.
  33. ^ Coletti; et al. (2017). "Economic Importance of Coralline Carbonates". In Riosmena-Rodríguez; et al. (eds.). Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library. Vol. 15. pp. 87–101. doi:10.1007/978-3-319-29315-8_4. ISBN 978-3-319-29313-4.
  34. ^ Baas-Becking, L. G.; Galliher, E. W. (1931). "Wall structure and mineralization in coralline algae". Journal of Physical Chemistry. 35 (2): 467–479. doi:10.1021/j150320a006.
  35. ^ Basso D, Granier B (2012). "Carbonate production by calcareous red algae and global change". Geodiversitas. Calcareous algae and global change: from identification to quantification. 34: 13–33. doi:10.5252/g2012n1a2. S2CID 86112464.
  36. ^ a b Irvine, Linda M.; Chamberlain, Yvonne M. (1994). Corallinales, Hildenbrandiales. London, UK: Her Majesty's Stationery Office. ISBN 978-0-11-310016-3.
  37. ^ Caragnano et al., 2009. 3-D distribution of nongeniculate corallinales: A case study from a reef crest of South Sinai (Red Sea, Egypt). Coral Reefs 28: 881-891
licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia EN

Coralline algae: Brief Summary ( Inglês )

fornecido por wikipedia EN

Coralline algae are red algae in the order Corallinales. They are characterized by a thallus that is hard because of calcareous deposits contained within the cell walls. The colors of these algae are most typically pink, or some other shade of red, but some species can be purple, yellow, blue, white, or gray-green. Coralline algae play an important role in the ecology of coral reefs. Sea urchins, parrot fish, and limpets and chitons (both mollusks) feed on coralline algae. In the temperate Mediterranean Sea, coralline algae are the main builders of a typical algal reef, the Coralligène ("coralligenous"). Many are typically encrusting and rock-like, found in marine waters all over the world. Only one species lives in freshwater. Unattached specimens (maerl, rhodoliths) may form relatively smooth compact balls to warty or fruticose thalli.

A close look at almost any intertidal rocky shore or coral reef will reveal an abundance of pink to pinkish-grey patches, distributed throughout the rock surfaces. These patches of pink "paint" are actually living crustose coralline red algae. The red algae belong to the division Rhodophyta, within which the coralline algae form the order Corallinales. There are over 1600 described species of nongeniculate coralline algae.

The corallines are presently grouped into two families on the basis of their reproductive structures.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia EN

Corallinales ( Espanhol; Castelhano )

fornecido por wikipedia ES

Las algas coralinas (Corallinales) forman un orden de algas rojas que pertenecen a la clase Florideophyceae.[4]​ Se encuentran en todas las aguas marinas del mundo y se caracterizan por un talo duro que contiene depósitos calcáreos contenidos dentro de las paredes celulares. El color de estas algas es típicamente rosado u algún otro tono de rojo, pero existen también especies que pueden ser púrpura, amarillo, azul, blanco o gris-verde. Las algas coralinas tienen un papel importante en la ecología de los arrecifes de coral. Los erizos de mar, peces loro, lapas (moluscos) y quitones (moluscos), se alimentan de algas coralinas. Típicamente, muchas especies son incrustante y su superficie se parece a una roca. Especies no fijadas (maerl, rodolitos) pueden formar bolas relativamente compactas con una superficie que puede variar de suave hasta verrugosa o talos fruticosos. Hay más de 1600 especies de algas coralinas no geniculadas.[6]

Las algas coralinas están agrupadas en dos familias sobre la base de sus estructuras reproductivas.[7]

Distribución y hábitat

Las algas coralinas se distribuyen en todos los océanos del mundo, donde a menudo cubren casi el 100% de los sustratos rocosos. Muchas de ellas son epífitas (que crecen sobre otras algas o angiospermas marinas), o epizoicos (que crecen sobre animales), y algunos incluso son parásitos de otros algas coralinas.

Habitan diferentes profundidades, desde áreas periódicamente expuestas a mareas, hasta una produndidad de 270 metros, cerca del límite máximo de la penetración de la luz.[8]​ Aunque algunas especies pueden tolerar agua salobre[8]​ o hipersalino,[9]​ no existen especies de agua dulce. Pueden tolerar una amplia gama de turbidez y de concentraciones de nutrientes.[8][2][3]

Acuarios

Las algas coralinas se desean en los acuarios caseros por sus cualidades estéticas y benefician al ecosistema tanque. Ellos son una parte importante de roca viva, y la roca incrustada con muchos colores de las algas coralinas es muy valorado.[10]

Referencias

  1. Aguirre, J.; Perfectti, F.; Braga, J. C. (2010). "Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta)". Paleobiology 36 (4): 519. doi:10.1666/09041.1
  2. a b Riding, R.; Cope, J.C.W.; Taylor, P.D. (1998). «A coralline-like red alga from the Lower Ordovician of Wales». Palaeontology 41: 1069-1076. Archivado desde el original el 9 de marzo de 2012.
  3. a b Brooke, C.; Riding, R. (1998). "Ordovician and Silurian coralline red algae". Lethaia 31 (3): 185. doi:10.1111/j.1502-3931.1998.tb00506.x.
  4. a b c d «Clasificacion de Order: Corallinales». Ministerio de Ciencia y Tecnología de la República Argentina. Consultado el 13 de octubre de 2015.
  5. Silva, P.; Johansen, P. (1986). "A reappraisal of the order Corallinales (Rhodophyceae)". European Journal of Phycology 21 (3): 245–254. doi:10.1080/00071618600650281. ISBN 1618600650281.
  6. Woelkerling, Wm.J. (1988). The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. Londres: British Museum (Natural History). ISBN 0-19-854249-6.
  7. Taylor, Thomas N; Taylor, Edith L; Krings, Michael (2009). Paleobotany: the biology and evolution of fossil plants. ISBN 978-0-12-373972-8.
  8. a b c Aguirre, J.; Riding, R.; Braga, J. C. (2000). "Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene". Paleobiology 26 (4): 651–667. doi:10.1666/0094-8373(2000)0262.0.CO;2. ISSN 0094-8373.
  9. Scott E. Thornton (2), Orrin H. Pil (1978). "A Lagoonal Crustose Coralline Algal Micro-Ridge: Bahiret El Bibane, Tunisia". SEPM Journal of Sedimentary Research Vol. 48. doi:10.1306/212F7554-2B24-11D7-8648000102C1865D.
  10. «Cantidad de Rocas Vivas en un Acuario de Arrecife». Consultado el 14 de octubre de 2015.

Bibliografía

  • Morton, O. and Chamberlain, Y.M. 1985. Records of some epiphytic coralline algae in the nortth-east of Ireland. Ir. Nat. J. 21: 436 – 440.
  • Morton, O. and Chamberlain, Y.M. 1989. Further records of encrusting coralline algae on the north-east coast of Ireland. Ir. Nat. J. 23: 102 – 106.
  • Suneson, S. 1943. The structure, life-history, and taxonomy of the Swedish Corallinaceae. Lunds Universitets Arsskrift, N.F., Avd.2, 39(9): 1 – 66.
  • Woelkerling, W.J. 1993. Type collections of Corallinales (Rhodophyta) in the Foslie Herbarium (TRH). Gunneria 67 1 – 289.
  • Sistema Integrado de Información Taxonómica. «Corallinales (TSN 12303)» (en inglés).

 title=
licença
cc-by-sa-3.0
direitos autorais
Autores y editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia ES

Corallinales: Brief Summary ( Espanhol; Castelhano )

fornecido por wikipedia ES

Las algas coralinas (Corallinales) forman un orden de algas rojas que pertenecen a la clase Florideophyceae.​ Se encuentran en todas las aguas marinas del mundo y se caracterizan por un talo duro que contiene depósitos calcáreos contenidos dentro de las paredes celulares. El color de estas algas es típicamente rosado u algún otro tono de rojo, pero existen también especies que pueden ser púrpura, amarillo, azul, blanco o gris-verde. Las algas coralinas tienen un papel importante en la ecología de los arrecifes de coral. Los erizos de mar, peces loro, lapas (moluscos) y quitones (moluscos), se alimentan de algas coralinas. Típicamente, muchas especies son incrustante y su superficie se parece a una roca. Especies no fijadas (maerl, rodolitos) pueden formar bolas relativamente compactas con una superficie que puede variar de suave hasta verrugosa o talos fruticosos. Hay más de 1600 especies de algas coralinas no geniculadas.​

Las algas coralinas están agrupadas en dos familias sobre la base de sus estructuras reproductivas.​

licença
cc-by-sa-3.0
direitos autorais
Autores y editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia ES

Korallilevät ( Finlandês )

fornecido por wikipedia FI

Korallilevät (Corallinales) ovat punalevien kuntaan kuuluvia makroleviä. Niitä elää yleisesti maailman valtamerissä, sekä vuorovesivyöhykkeellä että syvemmällä.[2]

Rakenteensa puolesta korallilevät voidaan jakaa kahteen ryhmään, mutta tälle jaolle ei ole taksonomisia perusteita. Toiset muodostuvat jäykistä kalkkia sisältävistä osista, jotka liittyvät toisiinsa joustavilla kapeilla liitoksilla muodostaen haarautuvia ketjuja. Toiset taas kasvavat jäkälää tai maalitahraa muistuttavina läikkinä pitkin kiven pintaa.[3]

Lähteet

  1. Guiry, Michael D. (2015). Corallinales. In: Guiry, M.D. & Guiry, G.M. (2015). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway (taxonomic information republished from AlgaeBase with permission of M.D. Guiry). Accessed through: World Register of Marine Species at http://www.marinespecies.org/ Viitattu = 6.6.2015
  2. Corallinales corallinales.com. Viitattu 6.6.2015.
  3. Two kinds of coralline algae corallinales.com. Viitattu 6.6.2015.
licença
cc-by-sa-3.0
direitos autorais
Wikipedian tekijät ja toimittajat
original
visite a fonte
site do parceiro
wikipedia FI

Korallilevät: Brief Summary ( Finlandês )

fornecido por wikipedia FI

Korallilevät (Corallinales) ovat punalevien kuntaan kuuluvia makroleviä. Niitä elää yleisesti maailman valtamerissä, sekä vuorovesivyöhykkeellä että syvemmällä.

Rakenteensa puolesta korallilevät voidaan jakaa kahteen ryhmään, mutta tälle jaolle ei ole taksonomisia perusteita. Toiset muodostuvat jäykistä kalkkia sisältävistä osista, jotka liittyvät toisiinsa joustavilla kapeilla liitoksilla muodostaen haarautuvia ketjuja. Toiset taas kasvavat jäkälää tai maalitahraa muistuttavina läikkinä pitkin kiven pintaa.

licença
cc-by-sa-3.0
direitos autorais
Wikipedian tekijät ja toimittajat
original
visite a fonte
site do parceiro
wikipedia FI

Corallinales ( Francês )

fornecido por wikipedia FR

L'ordre des Corallinales est un ordre d'algues rouges de la sous-classe des Corallinophycidae, dans la classe des Florideophyceae.

Description et caractéristiques

Les algues corallinales sont des « algues calcaires encroûtantes » articulées ou non et d'aspect minéral. Leur couleur est généralement proche du rouge ou du rose, mais des formes avec d'autres couleurs existent, et celle-ci peut également varier en fonction de divers facteurs. Certaines sont ramifiantes (comme Corallina officinalis), présentant un thalle calcifié articulé par des parties molles, mais d'autres sont recouvrantes (comme les Porolithon), et se développement le long des parois minérales sur quelques millimètres d'épaisseur à la manière des lichens. Cette distinction n'est cependant pas un critère phylogénétique, aboutissant à des groupes paraphylétiques[1].

On en compte deux familles principales (Sporolithacées et les Corallinacées), contenant au total plus de 700 espèces[1].

Ces algues sont sans doute le groupe d'algues pouvant vivre le plus profond, jusqu'à −262 m aux Bahamas (à cette profondeur, la lumière est imperceptible pour un œil humain). On les retrouve sur tous types de roches, mais aussi sur des coquilles d'animaux (gastéropodes, oursins cidaroïdes, tortues...) ou des algues. Certaines formes sont libres, comme le maërl[1].

Ces algues jouent un rôle prépondérant dans la construction et le maintien des récifs : elles représentent jusqu'à plus de 40 % de la biomasse des récifs[1].

Liste des familles

Selon AlgaeBase (20 octobre 2014)[2] :

Selon World Register of Marine Species (20 octobre 2014)[3] :

Selon ITIS (20 octobre 2014)[4] :

Références taxinomiques

Notes et références

licença
cc-by-sa-3.0
direitos autorais
Auteurs et éditeurs de Wikipedia
original
visite a fonte
site do parceiro
wikipedia FR

Corallinales: Brief Summary ( Francês )

fornecido por wikipedia FR

L'ordre des Corallinales est un ordre d'algues rouges de la sous-classe des Corallinophycidae, dans la classe des Florideophyceae.

licença
cc-by-sa-3.0
direitos autorais
Auteurs et éditeurs de Wikipedia
original
visite a fonte
site do parceiro
wikipedia FR

Corallinales ( Croato )

fornecido por wikipedia hr Croatian

Corallinales, red crvenih alga u razredu Florideophyceae. Dio je podrazreda Corallinophycidae. Postoji blizu 600 priznatih vrsta u 7 porodica.[1]

Porodice

  1. Corallinaceae J.V.Lamouroux
  2. Corallinales familia incertae sedis
  3. Hydrolithaceae R.A.Townsend & Huisman
  4. Lithophyllaceae Athanasiadis
  5. Lithothamniaceae H.J.Haas
  6. Mastophoraceae R.A.Townsend & Huisman
  7. Porolithaceae R.A.Townsend & Huisman
  8. Spongitaceae Kützing

Izvori

  1. AlgaeBase pristupljeno 29. rujna 2018
Logotip Zajedničkog poslužitelja
Na Zajedničkom poslužitelju postoje datoteke vezane uz: Corallinales
Logotip Wikivrsta
Wikivrste imaju podatke o: Corallinales
licença
cc-by-sa-3.0
direitos autorais
Autori i urednici Wikipedije
original
visite a fonte
site do parceiro
wikipedia hr Croatian

Corallinales: Brief Summary ( Croato )

fornecido por wikipedia hr Croatian

Corallinales, red crvenih alga u razredu Florideophyceae. Dio je podrazreda Corallinophycidae. Postoji blizu 600 priznatih vrsta u 7 porodica.

licença
cc-by-sa-3.0
direitos autorais
Autori i urednici Wikipedije
original
visite a fonte
site do parceiro
wikipedia hr Croatian

Corallinales ( Italiano )

fornecido por wikipedia IT

Le Corallinales sono un ordine di alghe rosse.

Le Corallinales sono alghe rosse calcaree caratterizzate da uno sviluppo morfogenetico lento, che si manifesta con la deposizione di carbonato nelle pareti cellulari. Grazie alla loro struttura anatomica e citologica, le Corallinales possono vivere negli ambienti più disparati colonizzando substrati anche molto diversi: vivendo incrostanti su fondi duri, su conchiglie o altro, oppure in forme erette, articolate o libere (da "Corallinales Identification Integrated System" - Bressan, Babbini, Poropat).

Tassonomia

 title=
licença
cc-by-sa-3.0
direitos autorais
Autori e redattori di Wikipedia
original
visite a fonte
site do parceiro
wikipedia IT

Corallinales: Brief Summary ( Italiano )

fornecido por wikipedia IT

Le Corallinales sono un ordine di alghe rosse.

Le Corallinales sono alghe rosse calcaree caratterizzate da uno sviluppo morfogenetico lento, che si manifesta con la deposizione di carbonato nelle pareti cellulari. Grazie alla loro struttura anatomica e citologica, le Corallinales possono vivere negli ambienti più disparati colonizzando substrati anche molto diversi: vivendo incrostanti su fondi duri, su conchiglie o altro, oppure in forme erette, articolate o libere (da "Corallinales Identification Integrated System" - Bressan, Babbini, Poropat).

licença
cc-by-sa-3.0
direitos autorais
Autori e redattori di Wikipedia
original
visite a fonte
site do parceiro
wikipedia IT

Kalkalger ( Norueguês )

fornecido por wikipedia NO
Gnome-searchtool.svg
Nøyaktighet: Denne artikkelens nøyaktighet er omstridt. Opplysningene i artikkelen bør sjekkes mot kilder.

Kalkalger er en gruppe rødalger som består av 39 slekter. De vokser som skorpe på stein, skjell og andre overflater i havet. De fleste vokser svært sakte. De spiller en viktig rolle for økosystemet i korallrev. Kalkalger har blitt brukt til gjødsel, kosttilskudd og medisin.

Arter

Eksterne lenker

licença
cc-by-sa-3.0
direitos autorais
Wikipedia forfattere og redaktører
original
visite a fonte
site do parceiro
wikipedia NO

Kalkalger: Brief Summary ( Norueguês )

fornecido por wikipedia NO

Kalkalger er en gruppe rødalger som består av 39 slekter. De vokser som skorpe på stein, skjell og andre overflater i havet. De fleste vokser svært sakte. De spiller en viktig rolle for økosystemet i korallrev. Kalkalger har blitt brukt til gjødsel, kosttilskudd og medisin.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia forfattere og redaktører
original
visite a fonte
site do parceiro
wikipedia NO

Corallinales ( Português )

fornecido por wikipedia PT

Corallinales P.C. Silva & H.W. Johansen, 1986 , segundo o sistema de classificação de Hwan Su Yoon et al. (2006), é o nome botânico de uma ordem de algas vermelhas pluricelulares da classe Florideophyceae, subfilo Rhodophytina.

Famílias

Família 1: Corallinaceae J.V. Lamouroux, 1812

Família 2: Hapalidiaceae J.E. Gray, 1864

Família 3: Sporolithaceae E. Verheij, 1993

Sporolithales Le Gall, L., Payri, C.E., Bittner, C.E., & Saunders, G.W., 2009

Referências

  • Irvine, L.M.; Chamberlain, Y.M. (1994). Seaweeds of the British Isles: Rhodophyta, Part 2B. Corallinales, Hildenbrandiales. Seaweeds of the British Isles, 1. Natural History Museum: London, UK. ISBN 0-11-310016-7.
  • Womersley, H.B.S. (1996). The marine benthic flora of southern Australia - Part IIIB - Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Vol. 5 pp. 1–392, 160 figs. Canberra & Adelaide: Australian Biological Resources Study & the State Herbarium of South Australia.
  • Yoon, H.S., Muller, K.M., Sheath, R.G., Ott, F.D. & Bhattacharya, D. (2006). Defining the major lineages of red algae (Rhodophyta). Journal of Phycology 42: 482-492.
  • Le Gall, L., Payri, C.E., Bittner, C.E., & Saunders, G.W. (2009). Multigene polygenetic analyses support recognition of the Sporolithales, ord. nov. Molecular Phylogenetics and Evolution.

 title=
licença
cc-by-sa-3.0
direitos autorais
Autores e editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia PT

Corallinales: Brief Summary ( Português )

fornecido por wikipedia PT
licença
cc-by-sa-3.0
direitos autorais
Autores e editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia PT

Коралінові ( Ucraniano )

fornecido por wikipedia UK

Коралі́нові — родина червоних водоростей ряду коралін. Об'єднує декілька родів з невеликою кількістю видів. Так основний рід Кораліна (Corallina) має всього 16 видів.

Посилання

Ульва Це незавершена стаття з альгології.
Ви можете допомогти проекту, виправивши або дописавши її.
licença
cc-by-sa-3.0
direitos autorais
Автори та редактори Вікіпедії
original
visite a fonte
site do parceiro
wikipedia UK

Коралінові: Brief Summary ( Ucraniano )

fornecido por wikipedia UK

Коралі́нові — родина червоних водоростей ряду коралін. Об'єднує декілька родів з невеликою кількістю видів. Так основний рід Кораліна (Corallina) має всього 16 видів.

licença
cc-by-sa-3.0
direitos autorais
Автори та редактори Вікіпедії
original
visite a fonte
site do parceiro
wikipedia UK

珊瑚藻 ( Chinês )

fornecido por wikipedia 中文维基百科

珊瑚藻,又名鈣化藻,是一紅藻,即珊瑚藻科。它們的葉狀體堅硬,原因是在細胞壁中含有石灰。珊瑚藻一般都呈粉紅色,有些呈紅色,有些則呈紫色、黃色、藍色、白色或灰綠色。

沒有附著的珊瑚藻標本會形成較為光滑的小球狀或土灌木狀的葉狀體,大部份都是殼狀及像岩石的。珊瑚藻在珊瑚礁生態上有重要角色。海膽鸚哥魚科帽貝多板綱都會以珊瑚藻為食。

珊瑚藻分佈在世界各地的海洋,覆蓋著接近100%的岩石下層。很多都是著生的或附動物的,有些甚至是寄生在其他珊瑚藻的。雖然它們無處不在,但實際所知的不多。

傳統上,珊瑚藻可以分為兩類,即膝曲状珊瑚藻及非膝曲状珊瑚藻。膝曲状珊瑚藻是有分枝及樹狀的,以外殼或鈣化的鉤子附在下層,但也有非鈣化較靈活的部份。非膝曲状珊瑚藻的外殼厚幾微米至幾厘米,生長速度較慢,可以在岩石、珊瑚骨骼、貝殼、其他藻類或海草上生長,現已知有超過1600個物種。[3]

形態

珊瑚藻大多都是鈣化的。它們可能有生殖窠;其細胞間具有連結,且展現出次級紋孔連結。[4]它們能夠形成疊層石[5]

葉狀體可以分成三層,即下葉狀體、上葉狀體及邊葉狀體。[6]

演化

最古老的珊瑚藻可以追溯至奧陶紀[1][2],而現今的形態是源自白堊紀[4]莖類的珊瑚藻相信是源自埃迪卡拉紀陡山沱組[4]珊瑚藻相信是在管孔藻科內進行演化的。[7]

歷史

第一個活生生的珊瑚藻應該於1世紀發現的,且是屬於珊瑚藻屬的。[8]於1837年,Rodolfo Amando Philippi認為珊瑚藻並非動物,並稱石葉藻屬石枝藻屬Lithothamnium[8]多年來它們都被包含在隱絲藻目中,直至1986年才被提升為珊瑚藻目

群落生態

大部份珊瑚藻都會產生適合某些草食性無脊椎動物幼體(如鮑魚)附著的化學物質。幼體可以清除妨礙珊瑚藻生長的著生植物。幼體附著對於鮑魚的養殖十分重要;珊瑚藻似乎可以促進幼體變態及生存。在群落層面也有其重要性:珊瑚藻與這些無脊椎動物的出現,可以幫助海草幼生生存的綴塊性。這在加拿大東部已經得到證實,估計在印度洋-太平洋海域珊瑚礁可能也有類似情況。

一些珊瑚藻摒棄了表層的邊葉狀體細胞,當中少量是用來抗垢及促進草食性動物的生長。當這些珊瑚藻失去表層細胞時,群落得以生成綴塊性。在印度洋-太平洋海域最常見的珊瑚藻有太平洋新角石藻Sporolithon ptychoides。不過並非所有這類表現都具有抗垢功效。大部份珊瑚藻摒棄表層細胞目的是要清除代謝功能受損的細胞。在南非潮間帶遠滕似綿藻每年可以摒棄達50%的厚度,這種方式非常耗費能源,且對海草生成沒有幫助。[9][10]這種摒棄方式都是用來清除舊有的繁殖結構及受損的長層細胞,以減低挖穴生物穿過表面的可能性。

一些珊瑚藻會長出很厚的外殼,為很多無脊椎動物提供了微觀生境。例如在加拿大東部對出,幼生海膽多板綱帽貝魚類掠食下的死亡率接近100%,除非它們受到珊瑚藻的保護。[9][10]這可能是影響草食性動物的分佈及牧食效能的重要因素,但是在印度洋-太平洋海域的微觀生境角色所知甚少。在當地常見的Hydrolithon onkodesCryptoplax larvaeformis的石鱟有一種非常親密的關係,這種石鱟會棲息在珊瑚藻內的巢穴,並於晚上才出來覓食。這種關係令這種珊瑚藻產生了一種奇突的生長形態:它們會生長出直立及不規則彎曲的片層。

珊瑚藻在珊瑚礁生態上有獨特的重要性,可以為珊瑚礁的結構提供石灰物質,令珊瑚礁可以黏合在一起。另外,它們在大西洋及印度洋-太平洋海域可以幫助構築藻脊。藻脊是碳酸鹽結構,主要是非膝曲状珊瑚藻所構築的。[11]它們需要持續及高海浪來形成,故在迎風面生成最為理想。

經濟重要性

由於其鈣化結構,珊瑚藻具有許多經濟價值。於18世紀開始就有採集非附著的珊瑚藻(藻團粒)為土壤調理劑。在英國法國,每年就有超過30萬噸的Phymatolithon calcareumLithothamnion corallioides被挖出來。在巴西對出海岸的一些挖掘工作可以延綿幾千公里。藻團粒也會被用作為歐洲牛的食物添加劑,與及過濾酸性飲用水。

在醫藥上最早使用珊瑚藻是作為驅蟲藥,於18世紀末停止了此種用途。現時會使用珊瑚藻來作為牙補骨。

由於珊瑚藻含有碳酸鈣,故化石化得較好,可以生成地層。

參考

  1. ^ 1.0 1.1 Riding, R.; Cope, J.C.W.; Taylor, P.D. A coralline-like red alga from the Lower Ordovician of Wales (PDF). Palaeontology. 1998, 41: 1069–76. (原始内容 (PDF)存档于2012-03-09).
  2. ^ 2.0 2.1 Brooke, C.; Riding, R. Ordovician and Silurian coralline red algae. Lethaia. 1998, 31 (3): 185–95. doi:10.1111/j.1502-3931.1998.tb00506.x (不活跃 2009-04-14).
  3. ^ Woelkerling, Wm.J. The coralline red algae : an analysis of the genera and subfamilies of nongeniculate Corallinaceae. London: British Museum (Natural History). 1988. ISBN 0-19-854249-6.
  4. ^ 4.0 4.1 4.2 Xiao, S.; Knoll, A.H.; Yuan, X.; Pueschel, C.M. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany. 2004, 91 (2): 214–27. doi:10.3732/ajb.91.2.214.
  5. ^ Wendt, J. Solenoporacean Stromatolites. Palaios. 1993, 8 (1): 101–10. doi:10.2307/3515224.
  6. ^ Blackwell, W. H.; Marak, J. H.; Powell, M. J. The Identity and Reproductive Structures of a Misplaced Solenopora (Rhodophycophyta) from the Ordovician of Southwestern Ohio and Eastern Indiana. Journal of Phycology. 1982, 18: 477. doi:10.1111/j.0022-3646.1982.00477.x.
  7. ^ Johnson, R. Ancestry of the Coralline Algae. Journal of Paleontology (Paleontological Society). 1956, 30 (3): 445–772.
  8. ^ 8.0 8.1 Linda M. Irvine & Yvonne M. Chamberlain. Corallinales, Hildenbrandiales. London: HMSO. 1994. ISBN 0 11 3100167.
  9. ^ 9.0 9.1 Morton, O. and Chamberlain, Y.M. Records of some epiphytic coralline algae in the nortth-east of Ireland. Ir. Nat. J. 1985, 21: 436–40.
  10. ^ 10.0 10.1 Morton, O. and Chamberlain, Y.M. Further records of encrusting coralline algae on the north-east coast of Ireland. Ir. Nat. J. 1989, 23: 102–6.
  11. ^ Adey WH. Algal ridges of the Caribbean sea and West Indies. Phycologia. 1978, 17: 361–7.
  • Suneson, S. The structure, life-history, and taxonomy of the Swedish Corallinaceae. N.F., Avd. 2. 1943, 39 (9): 1–66.
  • Woelkerling, W.J. Type collections of Corallinales (Rhodophyta) in the Foslie Herbarium (TRH). Gunneria. 1993, 67: 1–289.

外部連結

 src= 维基物种中的分类信息:珊瑚藻 红藻门 皮胆虫英语Picozoa
皮胆虫英语Picozoa
灰胞藻 隐藻门Cryptomonadales Goniomonadales 绿色植物/
狭义植物绿藻门 链型植物轮藻门 有胚植物/
陆生植物苔藓植物/
非维管植物 维管植物石松门 真叶植物 种子植物
 title=
licença
cc-by-sa-3.0
direitos autorais
维基百科作者和编辑
original
visite a fonte
site do parceiro
wikipedia 中文维基百科

珊瑚藻: Brief Summary ( Chinês )

fornecido por wikipedia 中文维基百科

珊瑚藻,又名鈣化藻,是一紅藻,即珊瑚藻科。它們的葉狀體堅硬,原因是在細胞壁中含有石灰。珊瑚藻一般都呈粉紅色,有些呈紅色,有些則呈紫色、黃色、藍色、白色或灰綠色。

沒有附著的珊瑚藻標本會形成較為光滑的小球狀或土灌木狀的葉狀體,大部份都是殼狀及像岩石的。珊瑚藻在珊瑚礁生態上有重要角色。海膽鸚哥魚科帽貝多板綱都會以珊瑚藻為食。

珊瑚藻分佈在世界各地的海洋,覆蓋著接近100%的岩石下層。很多都是著生的或附動物的,有些甚至是寄生在其他珊瑚藻的。雖然它們無處不在,但實際所知的不多。

傳統上,珊瑚藻可以分為兩類,即膝曲状珊瑚藻及非膝曲状珊瑚藻。膝曲状珊瑚藻是有分枝及樹狀的,以外殼或鈣化的鉤子附在下層,但也有非鈣化較靈活的部份。非膝曲状珊瑚藻的外殼厚幾微米至幾厘米,生長速度較慢,可以在岩石、珊瑚骨骼、貝殼、其他藻類或海草上生長,現已知有超過1600個物種。

licença
cc-by-sa-3.0
direitos autorais
维基百科作者和编辑
original
visite a fonte
site do parceiro
wikipedia 中文维基百科

산호말목 ( Coreano )

fornecido por wikipedia 한국어 위키백과

산호말목(Corallinales)은 진정홍조강에 속하는 홍조류 목 분류군의 하나이다.[2] 7개 과에 약 600여 종으로 이루어져 있다.[2]

하위 분류

  • 산호말과 (Corallinaceae)
  • 가시돌잎과 (Hydrolithaceae)
  • 혹돌잎과 (Lithophyllaceae)
  • 쩍과 (Lithothamniaceae)
  • 마스토포라과 (Mastophoraceae)
  • 쩍붙이과 또는 돌구멍쩍과 (Porolithaceae)
  • 수세미말과 (Spongitaceae)

계통 분류

아래는 최근 제안된 홍조류 진정홍조강의 계통 분류 중 하나이다.[3][4][5][6]

진정홍조강 분홍딱지아강

분홍딱지목

    국수나물아강[6]

개구리알말목

         

코리노닥틸루스목

   

발리아목

       

토레아목

   

로다클리아목

         

발비아니아목

     

국수나물목

       

엔트위슬레아목

   

홍다발솔목

       

팔손이풀목

   

붉은솜목

                산호말아강  

로도고르곤목

     

스포로리톤목

     

하팔리디움목

   

산호말목

          싹새기아강  

싹새기목

   

피히엘라목

     

분홍치아강

          분홍치아강  

카테넬롭시스목[5]

     

갈고리풀목

         

아트락토포라목[4]

   

바다표고목

     

돌가사리목

         

아크로심피톤목

     

비단풀목

   

이인규목[5]

         

우뭇가사리목

       

곱슬이목

   

꼬시래기목

       

네마스토마목

     

도박목

     

미끌부채목

   

분홍치목

                   

각주

  1. Silva, P.; Johansen, H. W. (1986). “A reappraisal of the order Corallinales (Rhodophyceae)”. 《European Journal of Phycology》 21 (3): 245–254. doi:10.1080/00071618600650281.
  2. “Order: Corallinales”. AlgaeBase. 2019년 10월 14일에 확인함.
  3. Divergence time estimates and the evolution of major lineages in the florideophyte red algae - Nature
  4. Choi, H.-G., Kraft, G.T. & Saunders, G.W. 2000. Nuclear small-subunit rDNA sequences from Ballia spp. (Rhodophyta): proposal of the Balliales ord. nov., Balliaceae fam. nov., Ballia nana sp. nov. and Inkyuleea gen. nov. (Ceramiales). Phycologia 39: 272–287. doi: 10.2216/i0031-8884-39-4-272.1.
  5. Saunders, G.W., Filloramo, G., Dixon, K., Le Gall, L., Maggs, C.A. & Kraft, G.T. 2016. Multigene analyses resolve early diverging lineages in the Rhodymeniophycidae (Florideophyceae, Rhodphyta). Journal of Phycology 52(4): 505–522. doi: 10.1111/jpy.12426
  6. Saunders, G.W., Wadland, K.L., Salomaki, E.D. & Lane, C.E. (2017). A contaminant DNA barcode sequence reveals a new red algal order, Corynodactylales (Nemaliophycidae, Florideophyceae). Botany 95: 561-566
 title=
licença
cc-by-sa-3.0
direitos autorais
Wikipedia 작가 및 편집자