dcsimg

Brief Summary

    Protura: Brief Summary
    provided by wikipedia

    The Protura, or proturans, and sometimes nicknamed coneheads, are very small (

    Brief Summary
    provided by EOL authors

    Protura is a group of tiny, primarily wingless hexapods (Hexapoda = Insecta + Protura + Diplura + Collembola) that live in soil. Proturans inhabit soils in all terrestrial regions of the earth (with the exception of the Arctic and Antarctic regions).They lack antennae and eyes, but hold their front legs forward and these apparently play an important role in sensing their environment.

    Proturans were not described until 1907. Today, around 800 valid proturan species are recognized. Due to their small body size (body length between 0.5–2.5 mm) and soil-dwelling habit, our knowledge of the biology and ecology of proturans remains very limited. Diagnostic taxonomic characters are very inconspicuous and difficult to assess. Identification at the species level strongly depends on subtle chaetotaxic characters, such as the position and length ratio of certain bristles on the foretarsi. Resch et al. (2014) explored the usefulness of "DNA barcoding" for this group. In their study, clusters identified by COI mtDNA sequences and 28S rDNA were consistent with named species (and genera) identified by a proturan specialist using standard morphological characters.

    Although the phylogenetic position of Protura is clearly basal to the the ectognaths (Ectognatha = jumping bistletails + silverfish and firebrats + winged insects), the relationship among Protura, Diplura, and Collembola remains unclear (Dell’Ampio et al. 2013).

    Pass and Szucsich (2011) reviewed the history of research on Protura.

    (Pass and Szucsich 2011 and references therein; Resch et al. 2014 and references therein)

Comprehensive Description

    Protura
    provided by wikipedia

    The Protura, or proturans, and sometimes nicknamed coneheads,[2][3] are very small (<2 mm long), soil-dwelling animals, so inconspicuous they were not noticed until the 20th century. The Protura constitute an order of hexapods that were previously regarded as insects, and sometimes treated as a class in their own right.[1][4][5]

    Some evidence indicates the Protura are basal to all other hexapods,[6] although not all researchers consider them Hexapoda, rendering the monophyly of Hexapoda unsettled.[7] Uniquely among hexapods, proturans show anamorphic development, whereby body segments are added during moults.[8]

    There are close to 800 species, described in seven families. Nearly 300 species are contained in a single genus, Eosentomon.[1][9]

    Morphology

    Proturans have no eyes, wings, or antennae, and, lacking pigmentation, are usually white or pale brown. The sensory function of the antennae is fulfilled by the first of three pairs of five-segmented legs, which are held up, pointing forward and have many tarsal sensilla and sensory hairs. They walk with only four legs.[10] The head is conical, and bears two pseudoculi with unknown function. The body is elongated and cylindrical,[11] with a postanal telson at the end. The mouthparts are entognathous (enclosed within the head capsule) and consist of thin mandibles and maxillae.[8] There are no cerci at the end of the abdomen, which gives the group their name, from the Greek proto- (meaning "first", in this case implying primitive), and ura, meaning "tail".[12] The first three abdominal segments bear limb-like appendages[10] called "styli".[12] The genitalia are internal and the genital opening lies between the eleventh segment and the telson of the adult.[10] The genitalia are everted from a chamber in both sexes.[13] Members of Eosentomidae possess spiracles and a simple tracheal system, while those in the Acerentomoidea lack these structures and perform gas exchange by diffusion.[10]

    Ecology

     src=
    Protura photographed in Durham, NC

    Proturans live chiefly in soil, mosses, and leaf litter[8] of moist temperate forests[12] that are not too acidic.[14] They have also been found beneath rocks or under the bark of trees,[11] as well as in animal burrows.[10] They are generally restricted to the uppermost 0.1 m (3.9 in),[14] but have been found as deep as 0.25 m (9.8 in).[15] Although they are sometimes considered uncommon,[12] they are probably often overlooked because of their small size:[11] densities of over 90,000 individuals per square metre have been measured.[16]

    The diet of proturans is not yet sufficiently observed, but they feed on mycorrhizal fungi, dead Acari, and mushroom powder in culture,[10] and are thought to feed on decaying vegetable matter and fungi in the wild.[11][12] The styliform mouthparts suggest the Protura are fluid feeders, with evidence that some species suck out the contents of fungal hyphae.[14]

    Proturans which live near the soil surface generally have one generation per year and have longer legs, while those that live deeper have shorter legs and reproduce less seasonally, although some migratory species move to deeper layers for the winter and shallower layers for the summer.[14]

    Development

    The nymph has 9 abdominal segments, but the number increases through moulting until the full adult number of 12 is reached. Further moults may occur, but do not add any more body segments,[12] and it is not known whether the adults continue to moult through their lives.[10] Eggs have only been observed in a few species.[10] Five developmental stages follow: the prenymph hatches from the egg and has only weakly developed mouthparts and 9 abdominal segments; nymph I follows and has fully developed mouthparts; nymph II has ten abdominal segments; maturus junior has 12 abdominal segments and is followed by the adult.[10] The family Acerentomidae differs in having an extra preimago stage, with partially developed genitalia, between the maturus junior and the adult.[10]

    History

    Proturans were first discovered in the early 20th century, when Filippo Silvestri and Antonio Berlese discovered the animals independently.[14] The first species to be described was Acerentomon doderoi, published in 1907 by Silvestri,[10] based on material from near Syracuse, New York.[12]

    Impact on humans

    Proturans aid in decomposition by helping in the breakdown of leaf litter and recycling organic nutrients back into the soil. They thus play a role in soil formation and composition, which can be vital in soil restoration.[17]

    References

    1. ^ a b c Andrzej Szeptycki (2007). "Catalogue of the World Protura" (PDF)..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""'"'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    2. ^ "Proturans / Coneheads". North Carolina State University College of Agriculture and Life Sciences. Archived from the original on May 15, 2008. Retrieved July 30, 2008. External link in |publisher= (help)
    3. ^ "Order Protura - Coneheads". http://bugguide.net bugguide.net, hosted by Iowa State University Department of Entomology. Retrieved July 30, 2008. External link in |publisher= (help)
    4. ^ Charles S. Henry (2005). "Insect phylogeny". University of Connecticut. Archived from the original on 2006-09-05.
    5. ^ Galli, Loris; Shrubovych, Julia; Bu, Yun; Zinni, Matteo (2018). "Genera of the Protura of the World: diagnosis, distribution, and key". Zookeys. 772. doi:10.3897/zookeys.772.24410.
    6. ^ Ryuichiro Machida (2006). "Evidence from embryology for reconstructing the relationships of hexapod basal clades" (PDF). Archived from the original (PDF) on 2007-07-20.
    7. ^ Charles E Cook, Qiaoyun Yue & Michael Akam (2005). "Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic". Proceedings of the Royal Society B. 272 (1569): 1295–1304. doi:10.1098/rspb.2004.3042. PMC 1564108. PMID 16024395.
    8. ^ a b c P. J. Gullan & P. S. Cranston (1994). The insects: an outline of entomology. Chapman and Hall. ISBN 0-412-49360-8.
    9. ^ G Pass & NU Szucsich (2011). "100 years of research on the Protura: many secrets still retained" (PDF).
    10. ^ a b c d e f g h i j k Christopher Tipping (2004). "Proturans". University of Florida.
    11. ^ a b c d "Protura". CSIRO.
    12. ^ a b c d e f g John R. Meyer (March 5, 2005). "Protura". North Carolina State University. Archived from the original on May 15, 2008.
    13. ^ Beutel, Rolf G.; Friedrich, Frank; Ge, Si-Qin; Yang, Xing-Ke (2014). Insect Morphology and Phylogeny. De Gruyter. p. 184. ISBN 978-3-11-026263-6.
    14. ^ a b c d e "Gordon's Protura Page". November 11, 2005.
    15. ^ "Protura". Tree of Life Web Project. January 1, 2002.
    16. ^ J. Krauß & W. Funke (1999). "Extraordinary high density of Protura in a windfall area of young spruce plants". Pedobiologia. 43: 44–46.
    17. ^ Behan-Pelletier, V.M. (1993). "Diversity of soil arthropods in Canada: systematic and ecological problems". In G.E. Ball and H.V. Danks. Systematics and Entomology: Diversity, Distribution, Adaptation and Application. Memoirs of the Entomological Society of Canada. 165. Entomological Society of Canada. pp. 11–50.CS1 maint: Uses editors parameter (link)

Development

    Development
    provided by EOL authors

    The larva has nine abdominal segments, but the number increases through moulting until the full adult number of twelve is reached. Further moults may occur, but do not involve any additional body segments (Meyer 2005), and it is not known whether the adults continue to moult throughout their lives.[8] Eggs have only been observed in a few species (Tipping 2004). Five developmental stages follow: the prelarva hatches from the egg and has only weakly developed mouthparts and nine abdominal segments; larva I follows and has fully developed mouthparts; larva II has ten abdominal segments; maturus junior has twelve abdominal segments and is followed by the adult (Tipping 2004). The family Acerentomidae differs in having an extra pre-imago stage, with partially developed genitalia, between the maturus junior and the adult (Tipping 2004).