dcsimg

Comments

provided by eFloras
According to L. G. Hickok (1977), Ceratopteris richardii is diploid. Morphologically, specimens from the United States are difficult to distinguish from tetraploid C . thalictroides . The primary characteristic distinguishing C . richardii is its 16-spored sporangia. Herbarium specimens with 16-spored sporangia from the West Indies and Latin America have variable morphology ranging from that of C . pteridoides to that of C . thalictroides (R. M. Lloyd 1974, fig. 6). Some specimens have both 16- and 32-spored sporangia. This suggests multiple origins for C . richardii . Because reproductive isolation is incomplete among the diploid taxa, and highly fertile F 2 segregates of various morphologic types occur, further work is needed to determine the nature, origin, and distinctness of C . richardii .
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 2 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Description

provided by eFloras
Plants floating or rooted. Sterile leaves lanceolate to deltate to ovate. Petiole of sterile leaf 1--11 cm, not inflated; small leaves lobed to pinnate, segments or pinnae with entire to somewhat incised margins, larger leaves 2-pinnate-pinnatifid with deeply incised pinnae. Blade of sterile leaf 3--16 × 2.5--17 cm, pinnae deltate to ovate; proximal pinnae usually alternate. Fertile leaves lanceolate to deltate to ovate to 19 × 12 cm. Petiole of fertile leaf 6--9 cm. Blade of fertile leaf 2--3-pinnate; terminal segments narrow. Sporangia scattered to densely crowded between midvein and revolute margin, with 20--40 or more indurate annulus cells. Spores 16 per sporangium, 107--150 µm diam. 2 n = 78.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 2 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Distribution

provided by eFloras
La.; West Indies; Central America in Guatemala; South America; Africa.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 2 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Habitat

provided by eFloras
Aquatic to semiaquatic; lakes and ponds; 0m.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 2 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Synonym

provided by eFloras
Ceratopteris deltoidea Benedict
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 2 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Comprehensive Description

provided by North American Flora
Ceratopteris deltoidea Benedict, Bull. Torrey Club 36 : 472. 1909
Plants always partly submerged ; leaves up to 65 cm. long, the stipe flattened, not bulbous ; sterile leaves 15-45 cm. long, floating and emergent; lamina of the earliest leaves
VOI.UMK 16, Part 1, 1909]
29 30 simple, ovate or deltoid, in the following leaves 3-7-lobed and broadly rhombic to pentagonal, the lobes deltoid, acute; mature sterile leaves taller, erect, 25-50 cm. long, the stipes 10-20 cm. long, flattened, the lamina deltoid, acute, 20-35 cm. long, 15-25 cm. broad, 2-pinnate-pinnatifid, the lowest with 5-8 pairs of pinnae, broadly deltoid, 9-12 cm. long, 9-14 cm. broad, the ultimate segments lanceolate to deltoid, 3-4 cm. long, 0.5-3 cm. broad, acute ; sporophyls 40-65 cm. long, the stipes flattened, the lamina deltoid, 30^0 cm. long, 25-37 cm. broad, 4 times pinnately divided, the ultimate segments linear, 0.5-2 cm. long,
0.5-2 mm. broad; sporangium with welldeveloped annulus (40-50-celled) and lip-cells • spores 16.
Type locality : Orange Bay River, Jamaica.
Distribution : Florida and lyOuisiana ; Porto Rico ; Jamaica ; also in South America (?).
license
cc-by-nc-sa-3.0
bibliographic citation
Lucien Marcus Underwood, Ralph Curtiss BenedictWilliam Ralph Maxon. 1909. OPHIOGLOSSALES-FILICALES; OPHIOGLOSSACEAE, MARATTIACEAE, OSMUNDACEAE, CERATOPTERIDACEAE, SCHIZAEACEAE, GLEICHENIACEAE, CYATHEACEAE (pars). North American flora. vol 16(1). New York Botanical Garden, New York, NY
original
visit source
partner site
North American Flora

Ceratopteris richardii

provided by wikipedia EN

Ceratopteris richardii is a fern species belonging to the genus Ceratopteris, one of only two genera of the subfamily Parkerioideae of the family Pteridaceae.[1] It is one of several genera of ferns adapted to an aquatic existence. C. richardii was previously regarded as being part of the species Ceratopteris thalictroides.

"C-Fern"

This particular species is of special scientific interest because a patented strain, called "C-Fern", was developed as a scientific aid and teaching tool in biology in 1995.[2] The use of "C-Fern" is facilitated by the fact that it grows readily in a cell-culture dish on agar media, reaching sexual maturity within 2–3 weeks of spore inoculation, with motile sperm cells being visible at this time. Over the course of about 6 weeks germination, sex determination and development of gametophytes, fertilization, embryogenesis, organogenesis, and sporophyte growth can all be observed, allowing an incredibly comprehensive study of the life cycle of homosporous ferns in a relatively short time period.[3] In addition, due to the small size of the plant many specimens can be observed growing simultaneously, allowing for larger sample sizes in research studies. Following the culture of "C-Fern" in dishes it can be transplanted to a dirt substrate, where it can be further allowed to grow and future generations can be used for subsequent studies.

Monilophytes are generally studied far less than other groups of plants and a full genome sequence is not yet available, however due to the development of "C-Fern" research into fern biology has been more prevalent and C. richardii has been used as a model organism to study vascular plant cell walls, alternation of generations (and associated mutations), genetics, population dynamics, and the effects of mitotic disrupter herbicides, among other topics.[4][5][6] Despite being genetically identical the inoculated spores can give rise to both hermaphrodites and male gametophytes, depending on the secretion of antheridiogen; this phenomenon has been used to study plant pheromones and the cascade of events that leads to epigenetic changes in ferns.[7] The ability to switch from bisexual to all male spores may provide an evolutionary advantage by promoting outbreeding.[8]

The use of C. richardii in genetic research studies has been valuable to understanding fern and plant evolution as a whole, and in 2019 "C-fern" became the first homosporous fern to have its genome partially assembled, thus acting as a reference genome to which other ferns can be compared.[9]

C. richardii spores germinated in space in 1999 on shuttle mission STS-93, making them one of the few plants to be grown in space.[10]

Development of "C-Fern" at 1 week after inoculation of spores onto agar media. Observed under bright field light microscopy.
Development of "C-Fern" at 3 weeks after inoculation of spores onto agar media. Observed under bright field light microscopy.

References

  1. ^ PPG I (2016), "A community-derived classification for extant lycophytes and ferns", Journal of Systematics and Evolution, 54 (6): 563–603, doi:10.1111/jse.12229, S2CID 39980610
  2. ^ C-fern official site
  3. ^ Renzaglia, Karen Sue; Warne, Thomas R. (May 1995). "Ceratopteris: An Ideal Model System for Teaching Plant Biology". International Journal of Plant Sciences. 156 (3): 385–392. doi:10.1086/297260. ISSN 1058-5893. S2CID 85418664.
  4. ^ Spiro, Mark D.; Knisely, Karin I. (March 2008). Sundberg, Marshall (ed.). "Alternation of Generations and Experimental Design: A Guided-Inquiry Lab Exploring the Nature of the her1 Developmental Mutant of Ceratopteris richardii (C-Fern)". CBE: Life Sciences Education. 7 (1): 82–88. doi:10.1187/cbe.07-82-88. ISSN 1931-7913. PMC 2262118. PMID 18316811.
  5. ^ Hoffman, J. C.; Vaughn, K. C. (March 1996). "Spline and flagellar microtubules are resistant to mitotic disrupter herbicides". Protoplasma. 192 (1–2): 57–69. doi:10.1007/BF01273245. ISSN 0033-183X. S2CID 19844471.
  6. ^ Leroux, Olivier; Eeckhout, Sharon; Viane, Ronald L. L.; Popper, Zoë A. (2013). "Ceratopteris richardii (C-fern): a model for investigating adaptive modification of vascular plant cell walls". Frontiers in Plant Science. 4: 367. doi:10.3389/fpls.2013.00367. ISSN 1664-462X. PMC 3779834. PMID 24065974.
  7. ^ Atallah, Nadia M.; Vitek, Olga; Gaiti, Federico; Tanurdzic, Milos; Banks, Jo Ann (July 2018). "Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte". G3: Genes, Genomes, Genetics. 8 (7): 2205–2214. doi:10.1534/g3.118.200292. ISSN 2160-1836. PMC 6027899. PMID 29720393.
  8. ^ Timothy Walker, Plants: A Very Short Introduction. Oxford University Press, 2012. p. 49
  9. ^ Marchant, D. Blaine; Sessa, Emily B.; Wolf, Paul G.; Heo, Kweon; Barbazuk, W. Brad; Soltis, Pamela S.; Soltis, Douglas E. (December 2019). "The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly". Scientific Reports. 9 (1): 18181. Bibcode:2019NatSR...918181M. doi:10.1038/s41598-019-53968-8. ISSN 2045-2322. PMC 6890710. PMID 31796775.
  10. ^ Salmi, ML; Roux, SJ (2008). "Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii". Planta. 229 (1): 151–9. doi:10.1007/s00425-008-0817-y. PMID 18807069. S2CID 30624362.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Ceratopteris richardii: Brief Summary

provided by wikipedia EN

Ceratopteris richardii is a fern species belonging to the genus Ceratopteris, one of only two genera of the subfamily Parkerioideae of the family Pteridaceae. It is one of several genera of ferns adapted to an aquatic existence. C. richardii was previously regarded as being part of the species Ceratopteris thalictroides.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN