dcsimg

Lifespan, longevity, and ageing

provided by AnAge articles
Maximum longevity: 21.8 years (captivity)
license
cc-by-3.0
copyright
Joao Pedro de Magalhaes
editor
de Magalhaes, J. P.
partner site
AnAge articles

Life Expectancy

provided by Animal Diversity Web

Coyotes have been known to live a maximum of ten years in the wild and 18 years in captivity.

Range lifespan
Status: wild:
10 (high) years.

Range lifespan
Status: captivity:
18 (high) years.

Average lifespan
Status: captivity:
15.0 years.

Average lifespan
Status: wild:
14.5 years.

Average lifespan
Status: captivity:
21.8 years.

Average lifespan
Status: wild:
21.0 years.

Average lifespan
Status: wild:
14.5 years.

Average lifespan
Status: captivity:
18.0 years.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

Coyotes are extremely adaptable and use a wide range of habitats including forests, grasslands, deserts, and swamps. They are typically excluded from areas with wolves. Coyotes, because of their tolerance for human activities, also occur in suburban, agricultural, and urban settings.

Habitat Regions: temperate ; terrestrial

Terrestrial Biomes: taiga ; desert or dune ; savanna or grassland ; chaparral ; forest ; scrub forest ; mountains

Wetlands: swamp

Other Habitat Features: urban ; suburban ; agricultural ; riparian

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

Coyotes are native to the Nearctic region. They are found throughout North and Central America. They range from Panama in the south, north through Mexico, the United States, and Canada. They occur as far north as Alaska and all but the northernmost portions of Canada.

Biogeographic Regions: nearctic (Native )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Coyotes are versatile in their eating habits. They are carnivorous; 90% of their diet is mammalian. They eat primarily small mammals, such as eastern cottontail rabbits, thirteen-lined ground squirrels, and white-footed mice. They occasionally eat birds, snakes, large insects and other large invertebrates. They prefer fresh meat, but they consume large amounts of carrion. Part of what makes coyotes so successful at living in so many different places is the fact that they will eat almost anything, including human trash and household pets in suburban areas. Plants eaten include leaves of balsam fir and white cedar, sasparilla, strawberry, and apple. Fruits and vegetables are a significant part of the diet of coyotes in the fall and winter months. Coyotes hunt animals in interesting ways. When on a "mousing" expedition, they slowly stalk through the grass and sniff out the mouse. Suddenly, with all four legs held stiffly together, the coyotes stiffen and pounce on the prey. Hunting deer, on the other hand, calls for teamwork. Coyotes may take turns pursuing the deer until it tires, or they may drive it towards a hidden member of the pack. Coyotes sometimes form "hunting partnerships" with badgers. Because coyotes aren't very effective at digging rodents out of their burrows, they chase the animals while they're above ground. Badgers do not run quickly, but are well-adapted to digging rodents out of burrows. When both hunt together they effectively leave no escape for prey in the area. The average distance covered in a night's hunting is 4 km.

Animal Foods: birds; mammals; reptiles; carrion ; insects; terrestrial non-insect arthropods; terrestrial worms

Plant Foods: leaves; fruit

Primary Diet: omnivore

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Coyotes help in keeping many small mammal populations in check, such as mice and rabbits. If populations of these small mammals were allowed to become too large it would result in habitat degradation

Mutualist Species:

  • American badgers (Taxidea taxus)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Coyotes help to control some agricultural pests, such as rodents. Coyote pelts are also still collected and sold in some areas.

Positive Impacts: body parts are source of valuable material; controls pest population

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Coyotes serves as hosts for a number of diseases, including rabies. They are considered a threat to poultry, livestock, and crops. Coyotes may also compete with hunters for deer, rabbits, and other game species.

Negative Impacts: injures humans (carries human disease); causes or carries domestic animal disease

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

Coyotes are common and widespread because of their extraordinary adaptability.

US Federal List: no special status

CITES: no special status

State of Michigan List: no special status

IUCN Red List of Threatened Species: least concern

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Behavior

provided by Animal Diversity Web

Coyotes use auditory, visual, olfactory and tactile signals to communicate. They are the most vocal of all North American wild mammals, using 3 distinct calls (squeak, distress call and howl call) which consist of a quick series of yelps, followed by a falsetto howl. Howling may act to announce where territories are to other packs. Coyotes also howl when two or more members of a pack re-unite and to announce to each other their location. Their sight is less developed and is used primarily to note movement. They have acute hearing and sense of smell. They use stumps, posts, bushes or rocks as "scent posts" on which they urinate and defecate, possibly to mark territory. Coyotes are very good swimmers but poor climbers.

Communication Channels: visual ; tactile ; acoustic ; chemical

Other Communication Modes: choruses ; scent marks

Perception Channels: visual ; tactile ; acoustic ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Untitled

provided by Animal Diversity Web

Coyotes are one of the dominant terrestrial carnivores in North America, with humans and wolves being their greatest enemies.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Coloration of coyotes varies from grayish brown to a yellowish gray on the upper parts. The throat and belly are whitish. The forelegs, sides of head, muzzle and feet are reddish brown. The back has fulvous colored underfur and long, black-tipped guard hairs that produce a black dorsal stripe and a dark cross on the shoulder area. The tail, which is half the body length, is bottle shaped with a black tip. There is also a scent gland located on the dorsal base of the tail. There is one moult per year, which starts in May with light loss of hair and ends in July after profuse shedding. Coyotes are significantly smaller than gray wolves and much larger than foxes. Coyotes are distinguished from domesticated dogs by their pointed, erect ears and drooping tail, which they hold below their back when running. The eyes have a yellow iris and round pupil. The nose is black and usually less than one inch in diameter. The ears are large in relation to the head and the muzzle is long and slender. The feet are relatively small for the size of the body. The pes has four digits and the manus has five with a small first digit. Coyotes run on their toes (digitigrade). The dental formula is 3/3 1/1 4/4 2/3. The molars are structured for crushing and the canines are rather long and slender.

Range mass: 7 to 21 kg.

Range length: 75 to 100 cm.

Other Physical Features: endothermic ; homoiothermic; bilateral symmetry

Sexual Dimorphism: male larger

Average basal metabolic rate: 19.423 W.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Coyotes are very secretive. Especially near human habitations they are active mostly early in the morning and late in the evening. Coyotes keep their young in or near the den while they are young so that the pups aren't killed by predators and competitors such as wolves and mountain lions.

Known Predators:

  • humans (Homo sapiens)
  • gray wolves (Canis lupus)
  • mountain lions (Puma concolor)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Courtship lasts for approximately 2 to 3 months. Female coyotes are monoestrous and are in heat for 2 to 5 days between late January and late March. Mating occurs within these 3 months. Once the female chooses a partner, the mates may remain paired for a number of years, but not necessarily for life.

Mating System: monogamous

Spermatogenesis in males takes around 54 days and occurs between January and February depending on geographic location. Gestation lasts from 60 to 63 days. Litter size ranges from 1 to 19 pups; the average is 6. The pups weigh approximately 250 grams. The young are born blind, limp-eared and pug-nosed. After 10 days the eyes open, the pups weigh 600 grams and their ears begin to erect in true coyote fashion. Twenty-one to 28 days after birth, the young begin to emerge from the den and by 35 days they are fully weaned. They are fed regurgitated food by both parents. Male pups disperse from the dens between months 6 and 9, while females usually stay with the parents and form the basis of the pack. Adult size is reached between 9 and 12 months. Sexual maturity is reached by 12 months. Coyotes hybridize with domestic dogs and occasionally with gray wolves.

Breeding interval: Coyotes usually breed once each year.

Breeding season: Breeding occurs from January to March.

Range number of offspring: 1 to 19.

Average number of offspring: 5.7.

Range gestation period: 50 to 65 days.

Range weaning age: 35 to 49 days.

Range age at sexual or reproductive maturity (female): 9 to 10 months.

Range age at sexual or reproductive maturity (male): 9 to 10 months.

Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization ; viviparous

Average birth mass: 250 g.

Average number of offspring: 6.

Female coyotes gestate and nurse their young. Both male and female coyotes bring food to their young after they are weaned and protect their offspring. The young sometimes stay with the pack into adulthood and learn how to hunt during a learning period.

Parental Investment: altricial ; pre-fertilization (Provisioning, Protecting: Female); pre-hatching/birth (Provisioning: Female, Protecting: Female); pre-weaning/fledging (Provisioning: Female, Protecting: Male, Female); pre-independence (Provisioning: Male, Female, Protecting: Male, Female); post-independence association with parents; extended period of juvenile learning

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Tokar, E. 2001. "Canis latrans" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Canis_latrans.html
author
Erik Tokar, University of Michigan-Ann Arbor
editor
Allison Poor, University of Michigan-Ann Arbor
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associated Plant Communities

provided by Fire Effects Information System Animals
More info for the term: tundra

Coyotes evolved in a plains environment and were historically most
numerous in western grasslands where large ungulate populations were
high. Coyotes flourished in the shortgrass-steppe, semiarid sagebrush
(Artemisia spp.)-grasslands, and deserts, and they ranged from deserts
and plains to alpine areas of adjacent mountains [58].

Today, range expansions indicate that coyotes can be successful in any
plant community from the tropics of Guatemala to the tundra of northern
Alaska [58]. Although they occur in most plant communities throughout
their range, coyotes do show some preferences. In the Intermountain
region, coyotes are closely associated with sagebrush communities.
Coyotes in eastern Nevada preferred black sagebrush (Artemisia nova)
flats to other habitats. These flats were areas of highest black-tailed
jackrabbit (Lepus californicus) densities [44]. In the Sierra Nevada,
California, coyotes inhabit almost every plant community and
successional stage. However, they prefer grass-forb and shrub-conifer
seedling-conifer sapling communities [63].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Common Names

provided by Fire Effects Information System Animals
coyote
brush wolf
prairie wolf
American jackal
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Conservation Status

provided by Fire Effects Information System Animals
Information on state- and province-level protection status of animals in
the United States and Canada is available at NatureServe, although
recent changes in status may not be included.
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Cover Requirements

provided by Fire Effects Information System Animals
More info for the terms: cover, forest

Coyotes commonly hunt in open to semiopen areas [12,18,51]. In
California coyotes used ecotones, fuelbreaks, roads, trails, and open
chaparral more than dense unbroken cover. In southern California where
chaparral is adjacent to unbroken areas, coyotes forage at night along
edges and return during the day to chaparral cover. The steep slopes
and heavy cover of most chaparral communities impede coyote movements
[51]. In Georgia, the proportion of open area in coyote home ranges was
significantly (P less than 0.04) greater than that generally available in the
area, and the proportion of forest was significantly (P less than 0.04) less [59].

Coyotes use cover for daytime resting and den sites. In Georgia, areas
with "sufficient" cover were used more for daytime rest sites, and early
successional and open areas were used more for nocturnal foraging. In
summer, some coyotes used corn fields for cover during the day [59].
Urban coyotes in Seattle, Washington, foraged in residential areas, but
only in areas that were immediately adjacent to forest cover. Forested
areas provided the majority of cover, including denning sites [51].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Distribution

provided by Fire Effects Information System Animals
Coyotes are found from Costa Rica to northern Alaska, and from coast to
coast in the United States and Canada. The highest densities occur in
the Great Plains states and in south-central United States. Coyotes are
absent from the barrens and Arctic islands of northern Canada, including
much of northern Quebec, northern Newfoundland, and Labrador. Coyotes
are uncommon where gray wolf populations are high in northeastern
Minnesota, northern Alaska, the Northwest Territories, Manitoba, and
Ontario. The distribution of coyotes in eastern North America has
expanded during this century. In some states such as Florida and
Georgia, coyotes have been introduced [4,12,43]. Today, all eastern
states and provinces have at least a small population of coyotes [64].
Distribution of the subspecies is listed below [61,66]:

Mexican coyote - Occurs in Oaxaca, San Luis Potosi, Pueblo, and
Veracrus, Mexico. Its range may extend into southern Nuevo Leon and
southern Tamaulipas, Mexico.

San Pedro Martir coyote - Occurs in northern Baja California and
southwestern California (mostly San Diego County).

southeastern coyote - Occurs in southeastern and extreme eastern Kansas,
Oklahoma, Texas, Missouri, and Arkansas.

Durango coyote - Occurs along the Pacific coast drainage of western
Mexico between about 22 degrees and 26 degrees north latitude, extreme
southern Sonora, extreme southwestern Chihuahua, western Durango,
western Zacatecas, and Sinaloa.

northern coyote - In Canada, northern coyotes occur in Yukon Territory,
the Northwest Territories, northern British Columbia, and northern
Alberta. In the United States, northern coyotes occur in most of Alaska
except the southeastern coastal section.

Tiburon Island coyote - Occurs on Tiburon Island off Baja California.

plains coyote - In Canada, plains coyotes occur in southeastern Alberta,
southern Saskatchewan, and the extreme southwestern corner of Manitoba.
In the United States, they occur in Montana, Wyoming, and Colorado east
of the Rocky Mountains, and the northeastern corner of New Mexico; North
Dakota except the northeastern quarter; northwestern Oklahoma, and the
northern Panhandle region of Texas.

mountain coyote - In Canada, mountain coyotes occur in southern British
Columbia and southeastern Alberta. In the United States, they occur in
Oregon and Washington east of the Cascade Range, northern California,
Idaho, western Montana, Wyoming, and Colorado (except the southeast
corner), northern and central Nevada, and northern and central Utah.

Mearns coyote - Occurs in southwestern Colorado, extreme southern Utah
and Nevada, southeastern California, northeastern Baja California,
Arizona, west of the Rio Grande in New Mexico, and Sonora and Chihuahua
in Mexico.

Lower Rio Grande coyote - Occurs in extreme southern Texas and northern
Tamaulipas, Mexico.

California valley coyote - Occurs in California west of the Sierra
Nevada, except in the northern part.

peninsula coyote - Occurs on the Baja California peninsula.

Texas plains coyote - Occurs in Texas, except for the northern panhandle
region, the eastern part, and the extreme southern tip. Texas plains
coyotes also occur in eastern New Mexico except for the northeastern
corner, and part of northeastern Mexico.

northeastern coyote - In Canada, northeastern coyotes occur in
north-central Saskatchewan, Manitoba (except the extreme southwestern
corner), southern Ontario, and extreme southern Quebec. In the United
States, northeastern coyotes occur along the eastern edge of North
Dakota and in Minnesota, Iowa, Missouri (north of the Missouri River),
Michigan, Wisconsin, Illinois (except the extreme southern portion), and
northern Indiana.

northwest coast coyote - Occurs west of the Cascade Range in Oregon and
Washington.

Colima coyote - Occurs along the southwestern Pacific slope of Jalisco,
Michoacan, and Guerrero, Mexico.
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Food Habits

provided by Fire Effects Information System Animals
More info for the term: fruit

Coyotes are opportunistic feeders and eat a variety of food [4,12,64].
About 90 percent of their diet consists of animal matter; however, they
also eat vegetable matter. Some common prey items include deer, elk,
sheep (Ovis spp.), rabbits and hares (Leporidae), various rodents
(Rodentia), ground-nesting birds, amphibians, lizards, snails, fish,
crustaceans, and insects. During winter, much of the diet is made up of
rabbits, hares, and the carrion of large ungulates. Small mammals,
especially voles and mice (Muridae), are important food items during
spring, summer, and fall [4,64]. Various berries are also eaten [4].

An extensive study of coyote food habits conducted in 17 western states
showed that major diet items were lagomorphs (33%), carrion (25%),
rodents (18%), and domestic livestock (13.5%) [56]. Coyote diets in
sagebrush habitat of northeastern Utah and south-central Idaho consisted
of about 75 percent black-tailed jackrabbits year-round [13]. In
northeastern California, meadow voles (Microtus pennsylvanicus) occurred
in about half of all coyote scats analyzed. Other important diet items
were mule deer (Odocoileus hemionus) and cattle, probably eaten as
carrion [33]. Mule deer were also important in coyote diets in two
areas of southern Utah. In central Wyoming, mule deer, pronghorn
(Antilocapra americana), white-tailed jackrabbits (Lepus townsendii),
and desert cottontails (Sylvilagus audubonii) were present in 63 percent
of coyote scats [58]. On Arizona cattle ranges, where the habitat was
primarily open grasslands, oak (Quercus spp.), juniper, and ponderosa
pine (Pinus ponderosa), coyote diets contained high percentages of plant
material. Juniper berries were particularly important, followed by
prickly pear (Opuntia spp.) fruit [47].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat-related Fire Effects

provided by Fire Effects Information System Animals
More info for the terms: cover, density, fire exclusion, fire suppression, forest, wildfire

Fire may improve the foraging habitat and prey base of coyotes. In New
England, coyotes are commonly found in forest openings created by fire
or logging [18]. Fires that reduce vegetation height and create open
areas probably increase hunting efficiency by coyotes. Surface fires
often open substrates for quieter stalking and easier capture of prey
than can occur in closed forests [38]. Wirtz [68] noted increases in
consumption of birds and deer by coyotes after a chaparral fire in the
San Dimas Experimental Forest, California. Increased consumption was
presumably the result of increased vulnerability of prey with reduced
cover, but no change was noted in small mammal consumption.

Periodic fire helps to maintain habitat for many prey species of coyote.
Fires that create a mosaic of burned and unburned areas are probably the
most beneficial to many coyote prey species. Several studies indicate
that many small mammal populations increase rapidly subsequent to
burning in response to increased food availability. Fire often improves
hare and rabbit forage quality and quantity for two or more growing
seasons [38]. Hill [67] concluded that burning at intervals longer than
2 years would be less beneficial to rabbits and hares, but any fire is
believed better than fire exclusion. Along the coast of northern
California, black-tailed jackrabbits occurred at highest density in open
brush, moderate density on recent burn areas, and lowest density in
mature chaparral stands [68]. Wagle [65] reported that fire suppression
in grasslands is detrimental to populations of small bird and mammal
herbivores due to organic matter accumulation and reduced plant vigor.

The 1988 fires in Yellowstone National Park have probably benefited
coyotes. Fire in combination with drought likely increased available
carrion the fall and winter following the fire. Additionally, the fires
stimulated grass production, which should lead to an increase in small
mammal populations [45].

In California, coyotes are abundant in young chaparral (less than 20
years old) and are rare or absent in chaparral that has not been burned
for 20 years or more [51]. Quinn [51] observed more coyote sign during
the second and third years after a chamise (Adenostoma spp.) chaparral
wildfire in Riverside County than had been observed prior to burning.
Coyote numbers increased during the second and third years following a
chaparral fire in the Sierra Nevada foothills [39].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat: Cover Types

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

More info for the term: cover

Coyotes probably occur in all SAF cover types.
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat: Ecosystem

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

More info for the term: shrub

FRES10 White-red-jack pine
FRES11 Spruce-fir
FRES12 Longleaf-slash pine
FRES13 Loblolly-shortleaf pine
FRES14 Oak-pine
FRES15 Oak-hickory
FRES16 Oak-gum-cypress
FRES17 Elm-ash-cottonwood
FRES18 Maple-beech-birch
FRES19 Aspen-birch
FRES20 Douglas-fir
FRES21 Ponderosa pine
FRES22 Western white pine
FRES23 Fir-spruce
FRES24 Hemlock-Sitka spruce
FRES25 Larch
FRES26 Lodgepole pine
FRES27 Redwood
FRES28 Western hardwoods
FRES29 Sagebrush
FRES30 Desert shrub
FRES31 Shinnery
FRES32 Texas savanna
FRES33 Southwestern shrubsteppe
FRES34 Chaparral-mountain shrub
FRES35 Pinyon-juniper
FRES36 Mountain grasslands
FRES37 Mountain meadows
FRES38 Plains grasslands
FRES39 Prairie
FRES40 Desert grasslands
FRES41 Wet grasslands
FRES42 Annual grasslands
FRES44 Alpine
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat: Plant Associations

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

Coyotes probably occur in all Kuchler plant associations.
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat: Rangeland Cover Types

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):

More info for the term: cover

Coyotes probably occur in all SRM (rangeland) cover types.
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Management Considerations

provided by Fire Effects Information System Animals
More info for the term: competition

Coyotes are the principal predator of domestic sheep in the West [44].
Predation on sheep often occurs in the summer [64]. In 16 studies
reviewed by Sterner and Shumake [60], coyotes were responsible for 82
percent of all sheep losses due to predators. However, only a few
flocks typically showed sizeable losses [12]. Coyote predation is a
minor cause of most livestock losses. Most of the livestock consumed,
except sheep, is carrion [64].

Methods of coyote control have been described in the literature
[1,4,12,64]. The impact of predator control on coyote population
densities, behavior, and ecology are not well known. Coyote populations
are able to maintain themselves under considerable human-induced
mortality. Their means of survival include behavioral adaptations and
biological compensatory mechanisms such as increased rates of
reproduction, survival, and immigration. In most areas, coyote numbers
likely are controlled by competition for food and by social stress,
diseases, and parasites [1]. There is little evidence to support the
notion that coyote predation is a primary limiting factor on populations
of large ungulates [12].

Coyote population control efforts may affect the social organization and
activity patterns of coyotes. In areas where population control is not
practiced, most coyotes exist in relatively "large" groups, whereas
coyotes in areas where populations are controlled generally exist in
"smaller" groups. Coyotes have been reported as more active during the
day in uncontrolled [26,70] than in population-controlled areas [71]. Roy
and Dorrance [72] reported that coyotes avoided open areas near roads
during daylight hours in areas where they were hunted.

Coyotes often aid in the dispersal of seeds. Seeds of oneseed juniper
(Juniperus monosperma) and Indian manzanita (Arctostaphylos mewukka)
have been found in coyote scats [24,31].

Coyotes are inflicted with a wide variety of parasites and diseases
which are described by Gier and others [28].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Occurrence in North America

provided by Fire Effects Information System Animals

AL
AK
AZ
AR
CA
CO
CT
DE
FL
GA

ID
IL
IN
IA
KS
KY
LA
ME
MD

MA
MI
MN
MS
MO
MT
NE
NV
NH
NJ

NM
NY
NC
ND
OH
OK
OR
PA
RI
SC

SD
TN
TX
UT
VT
VA
WA
WV
WI
WY

AB
BC
MB
NB
NF
NT
NS
ON
PE
PQ

SK
YT
MEXICO

license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Predators

provided by Fire Effects Information System Animals
Mountain lions (Felis concolor) sometimes kill and eat coyotes [4].
Other predators of coyotes include humans, gray wolves, black bears
(Ursus americanus), and grizzly bears (Ursus arctos). Golden eagles
(Aquila chrysaetos) attack young coyotes [2].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Preferred Habitat

provided by Fire Effects Information System Animals
More info for the terms: cover, grassland, shrubland

Coyotes occupy a broad range of habitats [4,12,64]. Almost any habitat
that supports prey populations also supports coyotes; however, some
preferences have been noted (refer to PLANT COMMUNITIES slot) [64].

Dens - Coyotes den in a wide variety of places, including brush-covered
slopes, steep banks, rock ledges, thickets, and hollow logs. Dens
previously used by other animals (e.g., American badgers [Taxidea
taxus]) are frequently used [12]. Dens are usually about 1 foot (0.3 m)
in diameter and from 5 to 25 feet (1.5-7.5 m) long [4]. They usually
have more than one entrance and many interconnecting tunnels. The same
den may be used from year to year. Den sharing occurs only rarely
[4,12]. Movement of pups from one den to another is very common. The
reason is unknown, but disturbance and possibly infestation by parasites
may be factors. Most moves are over relatively short distances;
however, moves over 2.5 miles (4 km) are not uncommon [12].

Home range and territory - A single home range may be inhabited by a
family of two or more generations, a mated pair, or a single adult.
Home ranges vary from an average of 2 square miles (5 sq km) in Texas
[1] to averages of 21 to 55 square miles (54-142 sq km) in Washington
[57]. Males tend to have larger home ranges than females. In
Minnesota, male home ranges averaged 16 square miles (42 sq km), whereas
those of females averaged 4 square miles (10 sq km). The home ranges of
males overlapped considerably, but those of females did not [4]. In
Arkansas, Gipson and Sealander [26] reported that male coyote home
ranges were 8 to 16 square miles (21-42 sq km) and female home ranges
were 3 to 4 square miles (8-10 sq km).

In southeastern Colorado, the home range size of coyotes varied with
habitat, which was correlated with prey abundance. Coyotes in canyon
woodlands and in hills dominated by pinyon-juniper (Pinus-Juniperus
spp.) woodlands interspersed with grassland and shrubland had the
smallest home ranges. Coyotes in pinyon-juniper-prairie had
intermediate-size home ranges, and coyotes in shortgrass prairie had the
largest home ranges. As the amount of pinyon-juniper increased, home
range size decreased, possibly because these areas had high small mammal
populations and provided cover for resting sites and dens. The
shortgrass prairie had the lowest relative abundance of small mammals in
the study area [25].

Group size and social behavior may also influence home range size.
Coyotes living in packs and defending ungulate carrion during winter may
have smaller home ranges than coyotes living in pairs or alone [12,64].
Typically, only pack members defend territories; pairs of coyotes and
solitary individuals do not [4,12].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Regional Distribution in the Western United States

provided by Fire Effects Information System Animals
More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):

1 Northern Pacific Border
2 Cascade Mountains
3 Southern Pacific Border
4 Sierra Mountains
5 Columbia Plateau
6 Upper Basin and Range
7 Lower Basin and Range
8 Northern Rocky Mountains
9 Middle Rocky Mountains
10 Wyoming Basin
11 Southern Rocky Mountains
12 Colorado Plateau
13 Rocky Mountain Piedmont
14 Great Plains
15 Black Hills Uplift
16 Upper Missouri Basin and Broken Lands
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Taxonomy

provided by Fire Effects Information System Animals
The currently accepted scientific name for the coyote is Canis latrans
Say. It is in the family Canidae. Nineteen subspecies are currently
recognized, however; only 16 subspecies occur in Mexico, the United
States, and Canada [4,30]:

Canis latrans cagottis (Hamilton-Smith) (Mexican coyote)
Canis latrans clepticus Elliot (San Pedro Martir coyote)
Canis latrans frustror Woodhouse (southeastern coyote)
Canis latrans impavidus Allen (Durango coyote)
Canis latrans incolatus Hall (northern coyote)
Canis latrans jamesi Townsend (Tiburon Island coyote)
Canis latrans latrans (plains coyote)
Canis latrans lestes Merriam (mountain coyote)
Canis latrans mearnsi Merriam (Mearns coyote)
Canis latrans microdon Merriam (Lower Rio Grande coyote)
Canis latrans ochropus Eschscholtz (California valley coyote)
Canis latrans peninsulae Merriam (peninsula coyote)
Canis latrans texesis Bailey (Texas plains coyote)
Canis latrans thamnos Jackson (northeastern coyote)
Canis latrans umpquesis Jackson (northwest coast coyote)
Canis latrans vigilis Merriam (Colima coyote)

Fertile hybrids have been produced by matings of coyotes with feral dogs
(C. familiaris), red wolves (C. rufus), gray wolves (C. lupus), and red
foxes (Vulpes vulpes) [4,12]. Coyote-dog hybrids exhibit decreased
fecundity [12].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Timing of Major Life History Events

provided by Fire Effects Information System Animals
More info for the terms: density, litter, monoestrous

Social organization - There is a considerable amount of variability in
coyote social organizations. In many areas, most coyotes are solitary
outside of the breeding season. In other areas, such as Jackson Hole,
Wyoming, and Jasper, Alberta, groups of coyotes are frequently observed.
Coyote social organization is influenced by prey size. In populations
where the major prey items throughout the year are small rodents,
coyotes tend to be solitary. In populations where large animals are
available (e.g., elk [Cervus elaphus], and deer [Odocoileus spp.]),
large groups of coyotes form [12].

Breeding season - Courtship may begin as early as 2 to 3 months before
coyotes attempt to mate. The female is monoestrous, having one period
of heat per year usually between January and March [4,62]. Estrus lasts
2 to 5 days. Some coyotes mate with the same individual from year to
year, but not necessarily for life [4]. In the Sierra Nevada, coyotes
mate from February to May, with peak breeding time in April and May [63].
Yearling females usually breed later in the season than older females
[12].

Age at first breeding - Both males and females are capable of breeding
as yearlings [4]. However, many coyotes do not breed until their second
year [63]. Generally, about 60 to 90 percent of adult females and 0 to
70 percent of female yearlings produce litters [12]. In years when food
is abundant, more females (especially yearlings) breed. In years when
rodent populations are high, as many as 75 percent of yearling females
may breed [4].

Gestation and litter size - Gestation lasts approximately 63 days. The
average litter size is 6, but may range from 3 to 15 [12,63]. Litter
size can be affected by population density and food availability.
Knowlton [36] reported average litter sizes of 4.3 at high coyote
densities and 6.9 at low coyote densities. In years of high rodent
density, mean litter size is generally higher than in years of low
rodent densities [12].

Development of young - Coyote young are born with their eyes closed.
They are cared for by the mother and sometimes siblings from a previous
year. The father and other males often provide food for the mother and
the young. Pups emerge from the den in 2 or 3 weeks. They begin to eat
solid food at about 3 weeks of age and are weaned at about 5 to 7 weeks
of age [4].

Dispersal of juveniles - Juvenile coyotes usually disperse alone or
sometimes in groups at 6 to 9 months of age during October to February.
However, some juveniles do not disperse until their second year.
Juvenile coyotes may disperse up to 100 miles (160 km) from their den
[4]. In Minnesota, Berg and Chesness [7] reported mean dispersal
distances of 30 miles (48 km) that occurred at a mean rate of 7 miles
(11 km) per week [12]. Juvenile dispersal distances averaged 17 to 19
miles (28-31 km) in Alberta [48], 4 miles (7 km) in Arkansas [26], and 3
to 4 miles (5-6 km) in California [32].

Activity and movements - Coyotes are active day and night, with peaks in
activity at sunrise or sunset. Generally, activity and movements such
as foraging are greatest at night. Andelt [1] found that daytime
activity increased during the breeding season. In Arkansas, Gipson and
Sealander [26] found that young were more active than adults during the
day.

Life span - Coyotes in captivity may live as long as 18 years, but in
wild populations few coyotes live more than 6 to 8 years. The maximum
known age for a wild coyote is 14.5 years [4].
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Use of Fire in Population Management

provided by Fire Effects Information System Animals
More info for the term: fire regime

Prescribed burning that favors small mammals by creating ecotones and
different age classes of vegetation would increase the prey base for
coyotes and make hunting easier by opening up the habitat [51].

FIRE REGIMES :
Find fire regime information for the plant communities in which this
species may occur by entering the species name in the FEIS home page under
"Find FIRE REGIMES".
license
cc-publicdomain
bibliographic citation
Tesky, Julie L. 1995. Canis latrans. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Coywolf

provided by wikipedia EN

Captive-bred F1 gray wolf × coyote hybrids, Wildlife Science Center in Forest Lake, Minnesota

Coywolf is an informal term for a canid hybrid descended from coyotes, eastern wolves, gray wolves, and dogs. All members of the genus Canis are closely genetically related with 78 chromosomes and therefore can interbreed.[1] One genetic study indicates that these two species genetically diverged relatively recently (around 55,000–117,000 years ago). Genomic studies indicate that nearly all North American gray wolf populations possess some degree of admixture with coyotes following a geographic cline, with the lowest levels occurring in Alaska, and the highest in Ontario and Quebec, as well as Atlantic Canada.[2] Another term for these hybrids is sometimes wolfote.

Description

Hybrids of any combination tend to be larger than coyotes but smaller than wolves; they show behaviors intermediate between coyotes and the other parent's species.[3][4] In one captive hybrid experiment, six F1 hybrid pups from a male northwestern gray wolf and a female coyote were measured shortly after birth with an average on their weights, total lengths, head lengths, body lengths, hind foot lengths, shoulder circumferences, and head circumferences compared with those on pure coyote pups at birth. Despite being delivered by a female coyote, the hybrid pups at birth were much larger and heavier than regular coyote pups born and measured around the same time.[3] At six months of age, these hybrids were closely monitored at the Wildlife Science Center. Executive Director Peggy Callahan at the facility states that the howls of these hybrids are said to start off much like regular gray wolves with a deep strong vocalization, but changes partway into a coyote-like high pitched yipping.[5]

Compared with pure coyotes, eastern wolf × coyote hybrids form more cooperative social groups and are generally less aggressive with each other while playing.[6] Hybrids also reach sexual maturity when they are two years old, which is much later than occurs in pure coyotes.[7]

Varieties

Eastern coyotes

An Eastern coyote, a coyote-wolf hybrid in West Virginia near the Virginia state line.

Eastern coyotes range from New England, New York, New Jersey, Pennsylvania,[8] Ohio,[9] West Virginia,[10] Maryland,[11] Delaware, and Virginia.[12] Their range also occurs in the Canadian provinces of Ontario, Quebec, New Brunswick,[13] Nova Scotia,[14] Prince Edward Island and Newfoundland and Labrador.[15] Coyotes and wolves hybridized in the Great Lakes region, followed by an eastern coyote expansion, creating the largest mammalian hybrid zone known.[16] Extensive hunting of gray wolves over a period of 400 years caused a population decline that reduced the number of suitable mates, thus facilitating coyote genes swamping into the eastern wolf population. This has caused concern over the purity of remaining wolves in the area, and the resulting eastern coyotes are too small to substitute for pure wolves as apex predators of moose and deer.[17]

The main nucleus of pure eastern wolves is currently concentrated within Algonquin Provincial Park. This susceptibility to hybridization led to the eastern wolf being listed as Special Concern under the Canadian Committee on the Status of Endangered Wildlife and with the Committee on the Status of Species at Risk in Ontario. By 2001, protection was extended to eastern wolves occurring on the outskirts of the park, thus no longer depriving Park eastern wolves of future pure-blooded mates. By 2012, the genetic composition of the park's eastern wolves was roughly restored to what it was in the mid-1960s, rather than in the 1980s–1990s, when the majority of wolves had large amounts of coyote DNA.[17]

Aside from the combinations of coyotes and eastern wolves making up most of the modern day eastern coyote's gene pools, some of the coyotes in the northeastern United States have mild domestic dog (C. lupus familiaris) and western Great Plains gray wolf (C. l. nubilus) influences in their gene pool, suggesting that the eastern coyote is actually a four-in-one hybrid of coyotes, eastern wolves, western gray wolves, and dogs. The hybrids living in areas with higher white-tailed deer density often have higher degrees of wolf genes than those living in urban environments. The addition of domestic dog genes may have played a minor role in facilitating the eastern hybrids' adaptability to survive in human-developed areas.[18]

The four-in-one hybrid theory was further explored in 2014, when Monzón and his team reanalyzed the tissue and SNP samples taken from 425 eastern coyotes to determine the degree of wolf and dog introgressions involved in each geographic range.[19] The domestic dog allele averages 10% of the eastern coyote's genepool, while 26% is contributed by a cluster of both eastern wolves and western gray wolves. The remaining 64% matched mostly with coyotes. This analysis suggested that prior to the uniformity of its modern-day genetic makeup, multiple swarms of genetic exchanges between the coyotes, feral dogs, and the two distinct wolf populations present in the Great Lakes region may have occurred. Urban environments often favor coyote genes, while the ones in the rural and deep forest areas maintain higher levels of wolf content. A 2016 meta-analysis of 25 genetics studies from 1995 to 2013 found that the northeastern coywolf is 60% western coyote, 30% eastern wolf, and 10% domestic dog. However, this hybrid canid is only now coming into contact with the southern wave of coyote migration into the southern United States.[20]

Red wolves and eastern wolves

The taxonomy of the red and eastern wolf of the Southeastern United States and the Great Lakes regions, respectively, has been long debated, with various schools of thought advocating that they represent either unique species or results of varying degrees of gray wolf × coyote admixture.

In May 2011, an examination of 48,000 single nucleotide polymorphisms in red wolves, eastern wolves, gray wolves, and dogs indicated that the red and eastern wolves were hybrid species, with the red wolf being 76% coyote and 20% gray wolf, and the eastern wolf being 58% gray wolf and 42% coyote, finding no evidence of being distinct species in either.[21] The study was criticized for having used red wolves with recent coyote ancestry,[22] and a reanalysis in 2012 indicated that it suffered from insufficient sampling.[23]

A comprehensive review in 2012 further argued that the study's dog samples were unrepresentative of the species' global diversity, having been limited to boxers and poodles, and that the red wolf samples came from modern rather than historical specimens.[24] The review was itself criticized by a panel of scientists selected for an independent peer review of its findings by the USFWS, which noted that the study's conclusion that the eastern wolf's two unique nonrecombining markers were insufficient to justify full-species status for the animal.[25]

In 2016, a whole-genome DNA study suggested that all of the North American canids, both wolves and coyotes, diverged from a common ancestor 6,000–117,000 years ago. The whole-genome sequence analysis shows that two endemic species of North American wolf, the red wolf and eastern wolf, are admixtures of the coyote and gray wolf.[26][27]

Mexican wolf × coyote hybrids

In a study that analyzed the molecular genetics of coyotes, as well as samples of historical red wolves and Mexican wolves from Texas, a few coyote genetic markers have been found in the historical samples of some isolated Mexican wolf individuals. Likewise, gray wolf Y chromosomes have also been found in a few individual male Texan coyotes.[28] This study suggested that although the Mexican wolf is generally less prone to hybridizations with coyotes, exceptional genetic exchanges with the Texan coyotes may have occurred among individual gray wolves from historical remnants before the population was completely extirpated in Texas. The resulting hybrids would later on melt back into the coyote populations as the wolves disappeared.

The same study discussed an alternative possibility that the red wolves, which also once overlapped with both species in central Texas, were involved in circuiting the gene flows between the coyotes and gray wolves, much like how the eastern wolf is suspected to have bridged gene flows between gray wolves and coyotes in the Great Lakes region, since direct hybridizations between coyotes and gray wolves is considered rare.

In tests performed on a stuffed carcass of what was initially labelled a chupacabra, mitochondrial DNA analysis conducted by Texas State University showed that it was a coyote, though subsequent tests revealed that it was a coyote × gray wolf hybrid sired by a male Mexican wolf.[29]

Northwestern wolf × coyote hybrid experiment

A F1 hybrid coyote-gray wolf hybrid, conceived in captivity

In 2013, the U.S. Department of Agriculture Wildlife Services conducted a captive-breeding experiment at their National Wildlife Research Center Predator Research Facility in Logan, Utah. Using gray wolves from British Columbia and western coyotes, they produced six hybrids, making this the first hybridization case between pure coyotes and northwestern wolves. The experiment, which used artificial insemination, was intended to determine whether or not the sperm of the larger gray wolves in the west was capable of fertilizing the egg cells of western coyotes. Aside from the historical hybridizations between coyotes and the smaller Mexican wolves in the south, as well as with eastern wolves and red wolves, gray wolves from the northwestern US and western provinces of Canada were not known to interbreed with coyotes in the wild, thus prompting the experiment.

The six resulting hybrids included four males and two females. At six months of age, the hybrids were closely monitored and were shown to display both physical and behavioral characteristics from both species, as well as some physical similarities to the eastern wolves, whose status as a distinct wolf species or as a genetically distinct subspecies of the gray wolf is controversial. Regardless, the result of this experiment concluded that northwestern wolves, much like the eastern wolves, red wolves, Mexican wolves, and domestic dogs, are capable of hybridizing with coyotes.[3]

In 2015, a research team from the cell and microbiology department of Anoka-Ramsey Community College revealed that an F2 litter of two pups had been produced from two of the original hybrids. At the same time, despite the six F1's successful delivery from the same coyote, they were not all full siblings because multiple sperm from eight different northwestern wolves were used in their production. The successful production of the F2 litter, nonetheless, confirmed that hybrids of coyotes and northwestern wolves are just as fertile as hybrids of coyotes to eastern and red wolves. Both the F1 and F2 hybrids were found to be phenotypically intermediate between the western gray wolves and coyotes. Unlike the F1 hybrids, which were produced via artificial insemination, the F2 litter was produced from a natural breeding.[30]

The study also discovered through sequencing 16S ribosomal RNA encoding genes that the F1 hybrids all have an intestinal microbiome distinct from both parent species, but which was once reported to be present in some gray wolves. Moreover, analysis of their complementary DNA and ribosomal RNA revealed that the hybrids have very differential gene expressions compared to those in gray wolf controls.

Coydogs

Coydogs in Wyoming, 1951

Hybrids between coyotes and domestic dogs have been bred in captivity, dating to pre-Columbian Mexico.[31] Other specimens were later produced by mammal biologists mostly for research purposes. Domestic dogs are included in the gray wolf species.[32] Hence, coydogs are another biological sub-variation of hybrids between coyotes and gray wolves - the dog being considered a domesticated subspecies of Canis lupus.[33]

See also

References

  1. ^ Wayne, R. (1993). "Molecular evolution of the dog family". Trends in Genetics. 9 (6): 218–24. doi:10.1016/0168-9525(93)90122-X. PMID 8337763.
  2. ^ vonHoldt, B. M.; Cahill, J. A.; Fan, Z.; Gronau, I.; Robinson, J.; Pollinger, J. P.; Shapiro, B.; Wall, J.; Wayne, R. K. (2016). "Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf". Science Advances. 2 (7): e1501714. Bibcode:2016SciA....2E1714V. doi:10.1126/sciadv.1501714. PMC 5919777. PMID 29713682.
  3. ^ a b c Mech, L. D.; Christensen, B. W.; Asa, C. S.; Callahan, M.; Young, J. K. (2014). "Production of Hybrids between Western Gray Wolves and Western Coyotes". PLOS ONE. 9 (2): e88861. Bibcode:2014PLoSO...988861M. doi:10.1371/journal.pone.0088861. PMC 3934856. PMID 24586418.
  4. ^ Way J. G. (2007). "A comparison of body mass of Canis latrans (Coyotes) between eastern and western North America" (PDF). Northeastern Naturalist. 14 (1): 111–24. doi:10.1656/1092-6194(2007)14[111:acobmo]2.0.co;2. S2CID 85288738.
  5. ^ Riese, Clive (March 19, 2014), Wildlife Science Center partners in study impacting wolf controversy, Forest Lake Times
  6. ^ Bekoff, M. (1978). "Behavioral Development in Coyotes and Eastern Coyotes", pp. 97–124 in M. Bekoff, (ed.) Coyotes: Biology, Behavior, and Management. Academic Press, New York. ISBN 1930665423.
  7. ^ Way J.G.; Rutledge L.; Wheeldon T.; White B.N. (2010). "Genetic characterization of Eastern "Coyotes" in eastern Massachusetts" (PDF). Northeastern Naturalist. 17 (2): 189–204. doi:10.1656/045.017.0202. S2CID 135542.
  8. ^ "Greater than the sum of its parts". The Economist. October 31, 2015. Retrieved October 30, 2015.
  9. ^ Update on Coy Wolf sightings in Ohio – Ohio Ag Net | Ohio's Country Journal. Ocj.com. Retrieved on 2018-09-05.
  10. ^ West Virginia DNR – Coyote. Wvdnr.gov. Retrieved on 2018-09-05.
  11. ^ Coyotes in Maryland. Department of Natural Resources. maryland.gov
  12. ^ Coyote-Wolf Hybrids Have Spread Across U.S. East. News.nationalgeographic.com (2011-11-08). Retrieved on 2018-09-05.
  13. ^ "Living with Wildlife – Eastern coyotes" (PDF). Natural Resources website. Government of New Brunswick. Retrieved February 2, 2014.
  14. ^ "Frequently Asked Questions about Eastern Coyote in Nova Scotia". Department of Natural Resources website. Government of Nova Scotia. Retrieved February 2, 2014.
  15. ^ "Living with Coyotes in Newfoundland and Labrador". The Department of Environment and Conservation website. Government of Newfoundland and Labrador. Archived from the original on February 19, 2014. Retrieved February 2, 2014.
  16. ^ Vonholdt, Bridgett M.; Kays, Roland; Pollinger, John P.; Wayne, Robert K. (2016). "Admixture mapping identifies introgressed genomic regions in North American canids". Molecular Ecology. 25 (11): 2443–53. doi:10.1111/mec.13667. PMID 27106273.
  17. ^ a b Rutledge, L. Y.; White, B. N.; Row, J. R.; Patterson, B. R. (2012). "Intense harvesting of eastern wolves facilitated hybridization with coyotes". Ecology and Evolution. 2 (1): 19–33. doi:10.1002/ece3.61. PMC 3297175. PMID 22408723.
  18. ^ Monzón, J; Kays, R; Dykhuizen, D. E. (2013). "Assessment of coyote-wolf-dog admixture using ancestry-informative diagnostic SNPs". Molecular Ecology. 23 (1): 182–197. doi:10.1111/mec.12570. PMC 3899836. PMID 24148003.
  19. ^ Monzon, Javier (January 22, 2014). "It's a "Coyote-wolf-dog eat dog" world". Gotham Coyote Project. Archived from the original on August 7, 2016. Retrieved June 16, 2016.
  20. ^ "Northeastern coyote/coywolf taxonomy and admixture: A meta-analysis" (PDF). Canid Biology & Conservation. 19 (1): 1–7. Archived from the original (PDF) on April 4, 2016. Retrieved March 20, 2016.
  21. ^ von Holt, B.M.; et al. (May 12, 2011). "A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids". Genome Res. 21 (8): 1294–305. doi:10.1101/gr.116301.110. PMC 3149496. PMID 21566151.
  22. ^ Beeland, T. DeLene (2013). The Secret World of Red Wolves. Chapel Hill, NC: University of North Carolina Press. ISBN 9781469601991.
  23. ^ Rutledge, L. Y; Devillard, S; Boone, J. Q; Hohenlohe, P. A; White, B. N (July 2015). "RAD sequencing and genomic simulations resolve hybrid origins within North American Canis". Biology Letters. 11 (7): 20150303. doi:10.1098/rsbl.2015.0303. PMC 4528444. PMID 26156129.
  24. ^ Chambers, Steven M.; Fain, Steven R.; Fazio, Bud; Amaral, Michael (2012). "An account of the taxonomy of North American wolves from morphological and genetic analyses". North American Fauna. 77: 1–67. doi:10.3996/nafa.77.0001.
  25. ^ Dumbacher, J. (January 2014). "Review of Proposed Rule Regarding Status of the Wolf Under the Endangered Species Act" (PDF). NCEAS. U.S. Fish & Wildlife Service.
  26. ^ von Holdt, B.M.; Cahill, J. A.; Fan, Z.; Gronau, I.; Robinson, J.; Pollinger, J.P.; et al. (2016). "Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf". Science Advances. 2 (7): e1501714. Bibcode:2016SciA....2E1714V. doi:10.1126/sciadv.1501714. PMC 5919777. PMID 29713682.
  27. ^ Morell, Virginia (2016). "How do you save a wolf that's not really a wolf?". Science. doi:10.1126/science.aag0699.
  28. ^ Hailer, F.; Leonard, J.A. (2008). "Hybridization among three native North American Canis species in a region of natural sympatry". PLOS ONE. 3 (10): e3333. Bibcode:2008PLoSO...3.3333H. doi:10.1371/journal.pone.0003333. PMC 2556088. PMID 18841199.
  29. ^ Ardizzoni, S. (September 1, 2013). "Texas State University researcher helps unravel mystery of Texas 'blue dog' claimed to be Chupacabra". Bio News Texas. Archived from the original on March 19, 2014. Retrieved January 23, 2014.
  30. ^ "NCUR". Archived from the original on April 24, 2016. Retrieved April 1, 2016.
  31. ^ Valadez, Raúl; Rodríguez, Bernardo; Manzanilla, Linda; Tejeda, Samuel. "13. Dog-wolf Hybrid Biotype Reconstruction from the Archaeological City of Teotihuacan in Prehispanic Central Mexico" (PDF). In Snyder, Lynn M.; Moore, Elizabeth A. (eds.). 9th ICAZ Conference, Durham 2002: Dogs and People in Social, Working, Economic, or Symbolic Interaction. pp. 120–130. Archived from the original (PDF) on September 23, 2015. Retrieved December 12, 2014.
  32. ^ "ADW: Canis lupus familiaris: Information". Animal Diversity Web. Retrieved April 1, 2016.
  33. ^ Anderson, T.M.; Vonholdt, B.M.; Candille, S.I.; Musiani, M.; Greco, C.; Stahler, D.R.; et al. (2009). "Molecular and evolutionary history of melanism in North American gray wolves". Science. 323 (5919): 1339–1343. Bibcode:2009Sci...323.1339A. doi:10.1126/science.1165448. PMC 2903542. PMID 19197024.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Coywolf: Brief Summary

provided by wikipedia EN
Captive-bred F1 gray wolf × coyote hybrids, Wildlife Science Center in Forest Lake, Minnesota

Coywolf is an informal term for a canid hybrid descended from coyotes, eastern wolves, gray wolves, and dogs. All members of the genus Canis are closely genetically related with 78 chromosomes and therefore can interbreed. One genetic study indicates that these two species genetically diverged relatively recently (around 55,000–117,000 years ago). Genomic studies indicate that nearly all North American gray wolf populations possess some degree of admixture with coyotes following a geographic cline, with the lowest levels occurring in Alaska, and the highest in Ontario and Quebec, as well as Atlantic Canada. Another term for these hybrids is sometimes wolfote.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN