dcsimg

Description

provided by AmphibiaWeb articles
Agalychnis callidryas, the red-eyed tree frog, is a slender, colorful, medium-sized frog. Females measure up to 77 mm, and males to 59 mm (Savage 2002). This frog has leaf-green to dark green dorsal surfaces; dark blue, purple, or brownish flanks, with cream-colored or yellow vertical or diagonal bars; blue or orange upper arms; thighs that are blue or orange on the anterior, posterior, and ventral surfaces; orange hands and feet, except for the outermost digits on each; a white ventrum; and protuberant red eyes, with vertical pupils (Savage 2002; Leenders 2001; Duellman 2001). The back is sometimes marked with faint tranverse darker green lines (especially in individuals from Nicaragua or Costa Rica) or small white dots (Duellman 2001). The average number of bars on the flanks increases in populations from north to south, with a mean of 5.0 bars in Mexico and a mean of 9.0 bars in Panama (Duellman 2001). In some populations from the middle part of the range (Nicaragua and Costa Rica, on the Caribbean side), there is often a continuous, longitudinal yellowish stripe connecting the upper ends of the vertical bars and separating the blue flanks from the green dorsum (Duellman 2001). The skin is smooth both dorsally and ventrally (Savage 2002). Agalychnis callidryas has a rounded head and a truncated snout when viewed from above (Duellman 2001). Eyes are large and directed sideways (Leenders 2001). When this frog closes its eyes, transparent lower eyelids marked with a network of gold are apparent (Leenders 2001). It has distinct tympana (Savage 2002). The body is slender and somewhat flattened (Leenders 2001). Fingers are short, about one-half webbed, and have moderately large discs (Duellman 2001). The toes are short, about two-thirds webbed, and also have moderately large discs that are nearly as large as those on the fingers, with a narrow fold running from the heel to the disc of the fifth toe (Duellman 2001; Savage 2002). Adult males have paired vocal slits and a single internal median subgular vocal sac, as well as a grayish brown spinose nuptial pad at the base of each thumb (Savage 2002). Young froglets (at least from Panama) are able to change color; they are green by day and change to purplish or reddish brown at night (Pyburn 1963). In addition, young froglets have yellow rather than red eyes, and have lighter-colored flanks lacking whitish bars (Pyburn 1963). The red eye coloration appears first at the periphery of the eye at about two weeks post-metamorphosis, and over a period of several days spreads inward to make the iris wholly red (Starrett 1960). Agalychnis callidryas tadpoles are large, with a robust body that can measure 48 mm in total length at stage 34 (Savage 2002). The tail and caudal fins are moderately sized, with the tail tip narrowing to a thin flagellum (Savage 2002). The spiracle is sinistral and lateroventral, while the vent is dextral (Savage 2002). Eyes and nostrils are dorsolateral (Savage 2002). The mouth is anteroventral, with a small and complete oral disk, serrated beaks, and two upper plus three lower rows of denticles (Savage 2002; Duellman 2001). The row of denticles just above the mouth has a small gap medially (Savage 2002). Labial papillae are present on the lower lip in one to three rows lateral and ventral to the mouth, and on the upper lip in one to two rows lateral to the mouth, but lacking directly above the mouth (Duellman 2001). The tadpole body is olive gray dorsally, shading into a bluish gray speckled with olive-brown on the sides and undersides (Duellman 2001). Larval caudal musculature is a light grayish brown while the caudal fins are transparent, but both are speckled with dark gray (Duellman 2001).The diploid number of chromosomes is 26 for Agalychnis callidryas (Duellman and Cole 1965). A Spanish-language species account can be found at the website of Instituto Nacional de Biodiversidad (INBio) (http://darnis.inbio.ac.cr/FMPro?-DB=UBIpub.fp3&-lay=WebAll&-Format=/ubi/detail.html&-Op=bw&id=4182&-Find).

References

  • Briggs, V. S. (2008). ''Mating patterns of red-eyed treefrogs, Agalychnis callidryas and A. moreletii.'' Ethology, 114, 489-498.
  • Caldwell, M. S., Johnston, G. R., McDaniel, J. G., and Warkentin, K. M. (2010). ''Vibrational signaling in the agonistic interactions of red-eyed treefrogs.'' Current Biology, doi:10.1016/j.cub.2010.03.069.
  • Cohen, K.L., Seid, M.A., Warkentin, K.M., (2016). ''How embryos escape from danger: the mechanism of rapid, plastic hatching in red-eyed treefrogs.'' Journal of Experimental Biology, 219, 1875-1883.
  • Cope, E. D. (1862). ''Catalogue of the reptiles obtained during the explorations of the Parana, Paraguay, Vermejo, and Uruguay Rivers, by Captain Thos. J. Page, U.S.N., and of those procured by Lieut. N. Michler, U.S. Top. Eng., Commander of the expedition conducting the survey.'' Proceedings of the Academy of Natural Sciences of Philadelphia, 14, 346-359.
  • D'Orgeix, C. A., and Turner, B. J. (1995). ''Multiple paternity in the red-eyed treefrog Agalychnis callidryas (Cope).'' Molecular Ecology, 4, 505-508.
  • Donnelly, M., and Guyer, C. (1994). ''Patterns of reproduction and habitat use in an assemblage of Neotropical hylid frogs.'' Oecologia, 98, 291-302.
  • Dudley, R., King, V. A., and Wassersug, R. J. (1991). ''The implications of shape and metamorphosis for drag forces on a generalized pond tadpole (Rana catesbeiana).'' Copeia, 1991, 252-257.
  • Duellman, W. E. (1963). ''Amphibians and reptiles of the rainforest of southern El Petén, Guatemala.'' University of Kansas Publications, Museum of Natural History, 15, 205-249.
  • Duellman, W. E., and Cole, C. J. (1965). ''Studies of chromosomes of some anuran amphibians.'' Systematic Zoology, 14(2), 139-143.
  • Fouquette, M. J., Jr. (1968). ''Some hylid frogs of the Canal Zone, with special reference to call structure.'' Caribbean Journal of Science, 6(3-4), 167-172.
  • Gray, L. A., and Nishikawa, K.C. (1995). ''Feeding kinematics of phyllomedusine tree frogs.'' The Journal of Experimental Biology, 198, 457-463.
  • Gray, L. A., and Rand, A. S. (1997). ''A daybreak chorus in the frog, Agalychnis callidryas.'' Journal of Herpetology, 31(3), 440-441.
  • McCranie, J. R., Wilson, L. D., and Townsend, J. H. (2003). ''Agalychnis callidryas (Red-eyed Treefrog). Reproduction.'' Herpetological Review, 34(1), 43.
  • Mignogna, G., Severina, C., Erspamer, G. F., Siciliano, R., Kreil, G., and Barra, D. (1997). ''Tachykinins and other biologically active peptides from the skin of the Costa Rican phyllomedusid frog Agalychnis callidryas.'' Peptides, 18(3), 367-372.
  • Pyburn, W. F. (1963). ''Observations on the life history of the treefrog, Phyllomedusa callidryas (Cope).'' Texas Journal of Science, 15, 155-170.
  • Pyburn, W. F. (1964). ''Breeding behavior of the leaf-frog, Phyllomedusa callidryas, in southern Veracruz.'' The American Philosophical Society Yearbook, 1964, 291-294.
  • Pyburn, W. F. (1970). ''Breeding behavior of the leaf-frogs Phyllomedusa callidryas and Phyllomedusa dacnicolor in Mexico.'' Copeia, 2, 209-218.
  • Roberts, W. E. (1994). ''Explosive breeding aggregations and parachuting in a neotropical frog, Agalychnis saltator (Hylidae).'' Journal of Herpetology, 28(2), 193-199.
  • Shi, Y-B. (2000). Amphibian Metamorphosis: From Morphology to Molecular Biology. Wiley-Liss, Inc., New York.
  • Vonesh, J. R., and Warkentin, K. M. (2006). ''Opposite shifts in size at metamorphosis in response to larval and metamorph predators.'' Ecology, 87(3), 556-562.
  • Warkentin, K. M. (1995). ''Adaptive plasticity in hatching age: A response to predation risk trade-offs.'' Proceedings of the National Academy of Sciences, 92, 3507-3510.
  • Warkentin, K. M. (2000). ''Environmental and developmental effects on external gill loss in the Red-Eyed Tree Frog, Agalychnis callidryas.'' Physiological and Biochemical Zoology, 73(5), 557-565.
  • Warkentin, K. M. (2000). ''Wasp predation and wasp-induced hatching of red-eyed treefrog eggs.'' Animal Behavior, 60, 503-510.
  • Warkentin, K. M. (2002). ''Hatching timing, O2 availability and external gill regression in the treefrog, Agalychnis callidryas.'' Physiological and Biochemical Zoology, 75, 155-164.
  • Warkentin, K. M. (2005). ''How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs.'' Animal Behavior, 70, 59-71.
  • Warkentin, K. M., Buckley, C. R., and Metcalf, K. A. (2006). ''Development of red-eyed treefrog eggs affects efficiency and choices of egg-foraging wasps.'' Animal Behavior, 71, 417-425.
  • Warkentin, K. M., Caldwell, M. S., Siok, T. D., D'Amato, A. T., and McDaniel, J. G. (2007). ''Flexible information sampling in vibrational assessment of predation risk by red-eyed treefrog embryos.'' The Journal of Experimental Biology, 210, 614-619.
  • Warkentin, K. M., Caldwell, M. S., and McDaniel, J. G. (2006). ''Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas.'' Journal of Experimental Biology, 209, 1376-1384.
  • Warkentin, K. M., Currie, C. R., and Rehner, S. A. (2001). ''Egg-killing fungus induces early hatching of red-eyed treefrog eggs.'' Ecology, 82(10), 2860-2869.
  • Warkentin, K. M., and Wassersug, R. J. (2001). ''Do prostaglandins regulate external gill regression in anurans?'' Journal of Experimental Zoology, 289, 366-373.

license
cc-by-3.0
author
Kellie Whittaker
original
visit source
partner site
AmphibiaWeb articles

Distribution and Habitat

provided by AmphibiaWeb articles
Red-eyed tree frogs are distributed from Mexico (Yucatán) to Panama, with an isolated report from the Cartagena Botanic Gardens in Colombia (Savage 2002; Ruiz-Carranza et al. 1996). They inhabit humid forests, primarily in lowlands and sometimes on premontane slopes up to 1,250 m (Leenders 2001).
license
cc-by-3.0
author
Kellie Whittaker
original
visit source
partner site
AmphibiaWeb articles

Life History, Abundance, Activity, and Special Behaviors

provided by AmphibiaWeb articles
This species can tolerate some habitat modification, such as in areas where selective logging has been done, but is thought not to be able to live where the forest has been heavily degraded (Stuart et al. 2008). However, McCranie et al. (2003) report finding Agalychnis callidryas eggs and tadpoles in a wide variety of breeding sites in Honduras, including some in heavily deforested areas (see Life History section above for a description). All five Agalychnis species (A. annae, A. callidryas, A. moreletii, A. saltator, and A. spurrelli) are now under CITES protection, under Appendix II (as of March 21, 2010). Within the past decade the U.S. alone has imported 221,960 Agalychnis frogs, according to the Species Survival Network (http://www.ssn.org/Meetings/cop/cop15/Factsheets/Tree_Frogs_EN.pdf) (SSN).
license
cc-by-3.0
author
Kellie Whittaker
original
visit source
partner site
AmphibiaWeb articles

Life History, Abundance, Activity, and Special Behaviors

provided by AmphibiaWeb articles
Agalychnis callidryas is nocturnally active. This frog is arboreal and shelters on the underside of a broad leaf during the day and during the dry season, with limbs folded underneath its body (Leenders 2001). It has also been found in bromeliads, though this appears to be rare (Duellman 2001). This species is abundant in suitable habitat (Stuart et al. 2008). Breeding occurs during the wet season (late May to November), beginning with the first rains (Pyburn 1970). Mating takes place throughout the rainy season but is particularly frequent in June, and occasionally peaks again in October (Donnelly and Guyer 1994). Agalychnis callidryas generally prefers quiet pools of water with overhanging vegetation as breeding sites (but see the paragraph below for other types of sites used); the pools may be permanent, seasonal but long-lasting, or temporary (Warkentin et al. 2001; Pyburn 1970). Males make aggressive calls, to deter other males from intruding onto their territories, and advertisement calls, to attract females (Gray and Rand 1997). The aggressive call sounds like a soft chuckle, and the advertisement call is a "chack" or "chack-chack", repeated at intervals of 8-60 seconds (Duellman 1967; Pyburn 1970; Duellman 2001). The dominant call frequency ranges from 1.5-2.5 kHz (Gray and Rand 1997). Calling begins at dusk and is most frequent in the evening, especially during rains, as males advertise for mates (Pyburn 1970). However, Agalychnis callidryas have also been reported to participate in a brief daybreak chorus of advertisement calls, at a much higher call rate than evening or morning advertisement choruses (Gray and Rand 1997; Duellman 2001). On dry nights, males call from higher perches in the tree canopy (Pyburn 1970). On wetter nights, or when the ponds are full, males begin calling from the ground and from small trees and bushes near the edges of ponds or backwaters (Pyburn 1970). Calls are generally made from horizontal perches on leaves or branches, although vertical perches on stems are occasionally used (Pyburn 1970). Males move about frequently while calling, changing both their positions and the direction of calling (Pyburn 1970). If precipitation or water level conditions are sufficient, males then descend to the breeding sites at the water's edge and continue calling (Savage 2002). Females descend from the canopy, approach selected calling males in a straight line, and allow amplexus to take place (Pyburn 1970). Descent generally occurs slowly hand-over-hand, but parachuting has also been observed in this species, both in the wild (Pyburn 1964), and in experimental trials (Roberts 1994). Once amplexed, a female will carry the amplectant male into the water and remain there for about ten minutes (Pyburn 1970; D'Orgeix and Turner 1995). Pyburn (1970) carried out experiments showing that the purpose of this behavior is to allow the female to absorb water through her skin, into her bladder, in order to make the jelly mass surrounding the clutch of eggs (Pyburn 1970). The amplectant pair then moves up into the trees, as the female searches for an appropriate egg deposition site on vegetation overhanging the water (Pyburn 1970; D'Orgeix and Turner 1995). Eggs are generally deposited on either the upper side (Pyburn 1970) or lower side (Fouquette 1968) of a broad leaf, as high as 12 feet over the water (Fouquette 1968). Sturdy plants and trees at the water's edge are preferred, but oviposition may also take place on emergent vegetation (Pyburn 1970). Egg clutches may also occasionally be deposited on substrates such as branches or fence wire (Pyburn 1970). Very rarely eggs will be deposited on the ground (Pyburn 1970). This species has also been reported to sometimes make use of a wide variety of other types of sites, such as water-filled depressions made by human and pack animals, completely lacking overhanging vegetation; vines and small trees overhanging cavities of water in fallen trees; passionflower vines growing above a trickle of water from a pig pen; or by attaching eggs to the inside surface of water collection devices (McCranie et al. 2003). Occasionally clutches are found with leaves partially or completely folded over the eggs (Duellman 2001). If the deposition site is on top of a leaf, the parents may be protecting the clutch from sun and predators by folding the leaf edge over, where it adheres to the sticky jelly mass surrounding the eggs (Leenders 2001). Other leaf-breeding frogs (Phyllomedusa iheringi, P. hypochondrialis, and P. sauvagii) protect their clutches within folded leaves (Pyburn 1970). However, Duellman (2001) cautions that for Agalychnis callidryas, the occasional folding may be due to attachment of the eggs to particular types of leaves more prone to curling, as neither he nor others (e.g. Pyburn) have observed this species actively curling leaves during oviposition. Pyburn (1970), in fact, specifically mentions that Agalychnis callidryas lays its eggs on open leaves, in contrast to other phyllomedusine frogs. Fertilization occurs immediately after egg deposition (Leenders 2001). Occasionally amplectant pairs are attacked by single males, as the intruder attempts to dislodge the first male or attach himself alongside or on the first male's back (Pyburn 1970; D'Orgeix and Turner 1995). This strategy sometimes succeeds, as molecular analysis has confirmed that multiple paternity does occur and that the second male can contribute significantly to clutch fertilization in the wild (D'Orgeix and Turner 1995). Briggs (2008) conducted male-displacement trials, where a male at least 5 mm longer in SVL was placed into a covered 5-gallon bucket with a recently amplexed pair and checked every hour with red light, but found no male takeovers occurred. Over a three-year study period, Briggs (2008) reported that mating patterns varied; red-eyed tree frogs showed evidence of size-assortative mating in one of the three years and evidence of large-male mating advantage in another one of the three years (the driest year). Clutches consist of about 40 green eggs, each surrounded by a clear jelly coat, with each egg having a diameter of about 3.7 mm at oviposition and 5.2 mm when mature enough to hatch (Pyburn 1963; Warkentin 2000a; Warkentin 2002). The entire clutch is itself surrounded in more jelly, which is sticky and serves to adhere the clutch to the substrate as well as to prevent desiccation (Pyburn 1963; Pyburn 1970; Warkentin et al. 2006). Yolk color is consistent within clutches, but varies between clutches, from cream to gold to turquoise to lime green (Warkentin et al. 2006); as the clutches get older, the yolk changes color from pale green to yellow (Duellman 2001). Females may lay multiple clutches (up to five) in a single night (Pyburn 1970). In between clutches, the female carries the amplectant male down into the water again as she rehydrates (D'Orgeix and Turner 1995). Ovulation is likely to occur twice during the reproductive season, given that gravid females containing ovulated eggs were also found to have equal numbers of immature half-size eggs still within the ovary, (Duellman 1963; Duellman 2001). This observation also fits with the second peak in mating sometimes observed near the end of the rainy season (Donnelly and Guyer 1994). Fertilization success is high, with Briggs (2008) noting 100% fertilization in 54 of 56 experimental clutches and reporting that this did not differ from her field observations. Since the egg clutches are attached to vegetation overhanging the water, hatching tadpoles generally fall into the water below as soon as they hatch (Pyburn 1963). Thus hatching involves a shift in habitat, from aerial to aquatic, with a concomitant change in the suite of potential predators and selection pressures (Warkentin 1995). Occasionally, hatching tadpoles may also fall onto the ground (Pyburn 1970). Tadpoles are able to live out of water for up to 20 hours (Valerio 1971). Those that fall onto the ground or remain stuck to the leaf may still survive if a later rain washes them into standing water, or if they are able to flip themselves into the water by thrashing about with their tails (Pyburn 1963; Pyburn 1970). Agalychnis callidryas shows remarkable adaptive plasticity in the timing of hatching (Warkentin 1995). In undisturbed clutches, embryos develop essentially synchronously but hatch asynchronously, from six to ten days post-oviposition (Warkentin 1995; Warkentin 2005). Most undisturbed embryos will hatch at about seven days, with the study population in Panama hatching on average at about 6 - 7 days and the study population in Costa Rica hatching at about 7 - 8 days (Warkentin 2005). However, if disturbed, Agalychnis callidryas embryos can undergo early, relatively synchronous hatching, as early as 4 days in Panama (Warkentin 2000b) or 5 days in Costa Rica (Warkentin 1995). Accelerated hatching can occur in entire clutches or small groups of eggs within a clutch, in response to at least four different natural risks: snake attack (Warkentin 1995), wasp attack (Warkentin 2000b), fungus infestation (Warkentin et al. 2001), and flooding or submersion (Pyburn 1963; Warkentin 2002). Hypoxia from exposure to hypoxic gas mixtures also induces early hatching (Warkentin 2002). Fungal attack, flooding, and hypoxia result in more gradual early hatching than immediate threat of predation (Warkentin 2000b). The decision to hatch is a behavioral decision since highly energetic movement is required; embryos that remain motionless do not hatch, even though they have reached an appropriate developmental stage (Warkentin 1995; Warkentin et al. 2001). Mechanical disturbance is both sufficient and necessary to induce rapid, synchronous hatching, since simultaneous touching and jiggling of the eggs by poking forceps into the surrounding jelly results in rapid hatching (Warkentin 1995). However, Agalychnis callidryas embryos do not respond to all mechanical disturbances by rapid hatching (Warkentin 1995). Five-day-old embryos are insensitive to movements of the leaf substrate caused by simply touching the egg jelly coats, or collecting and transporting egg clutches, or even high winds and heavy rain (Warkentin 1995). The plasticity in timing and synchronization of hatching, particularly early hatching, is thus not simply a response to mechanical stimulus intensity (Warkentin 2000b), nor is it a response to visual or chemical cues from snake or wasp predators, or cues such as wetting of the clutch from precipitation (Warkentin 2005). Rather, experiments have shown that red-eyed tree frog embryos assess the temporal pattern of substrate-borne vibrations when making the decision to hatch (Warkentin 2005; Warkentin et al. 2006; Warkentin et al. 2007). Further, they do not hatch at the earliest possible moment following stimulation, but wait some seconds to minutes to evaluate the information before deciding to hatch (Warkentin et al. 2007). Cohen et al. (2016) showed that arboreal embryos of Agalychnis callidryas can hatch very rapidly (6.5 - 49 seconds) in order to escape from snake attacks. They identified three stages of hatching: pre-rupture shaking and gaping, vitelline membrane rupture near the snout, and muscular thrashing to escape. Electron microscopy revealed hatching glands densely clustered on the snout that are filled with vesicles that release their contents rapidly at hatching. Characterization of the postulated hatching enzyme remains to be accomplished. Comparative studies of the glands should reveal differences among taxa to determine whether this or other novel mechanisms are employed. A video clip is available (https://www.youtube.com/watch?v=uH5SvJR6UkQ) of Agalychnis callidryas embryos undergoing accelerated hatching resulting from snake attack. Developing Agalychnis callidryas embryos are commonly preyed on by snakes (e.g., Leptodeira septentrionalis) (Warkentin 1995). Snake attack induces embryos to hatch up to 30% early (as early as five days post-oviposition), rapidly (within seconds to minutes), and relatively synchronously, as the entire clutch hatches within a few minutes rather than over several days (Warkentin 1995). Embryos are able to distinguish between the potentially lethal event of a snake attack and the relatively non-dangerous event of a rainstorm by the duration and timing of resulting vibrations (Warkentin et al. 2006). When vibrational recordings produced by a snake attack or by a rainstorm are edited and played back, such that the timing of vibrations more closely resembles the other stimulus, the hatching response shifts in the expected direction: higher for more snakelike vibrations, lower for more rain-like vibrations (Warkentin et al. 2006). Tadpoles first enter the water on hatching, shifting their habitat from aerial to aquatic as they fall from from the overhanging leaves to which the egg clutch was attached (Pyburn 1963). If undisturbed by snakes, embryos tend to delay hatching until they are about seven days old, because more developed larvae are less vulnerable to aquatic predators such as shrimp and fish (Warkentin 1995; Warkentin 2005). Developing Agalychnis callidryas embryos are also frequently vulnerable to predation by several different species of polybid wasps (Warkentin 2000b; Warkentin et al. 2006). Wasp predation, like snake predation, induces early and rapid hatching of Agalychnis callidryas embryos (Warkentin 2000b). Interestingly, the number of embryos hatching is different, depending on the predation scenario. Warkentin (2000b) reports that embryos hatch individually or in small groups (the ones grasped by a wasp, plus sometimes the nearest neighbors) in response to wasps, which consume a single embryo at a time, whereas whole clutches hatch in response to snakes, which eat entire clutches. A video featuring Karen Warkentin's work (https://www.youtube.com/watch?v=vR4rUzK23nQ) is available. Fungal infection of Agalychnis callidryas egg clutches by a filamentous ascomycete (family Phaeosphaeriaceae) also induces early hatching (Warkentin et al. 2001). While eggs in non-infected clutches hatch in a spatially random order, hatching in infected clutches is non-random (Warkentin et al. 2001). In infected clutches, those eggs which are specifically in direct contact with fungal hyphae will hatch early if they are at least five days old (Warkentin et al. 2001). Adjacent empty eggs can form a "barrier" which the fungus does not typically cross, allowing the remaining embryos to continue developing within the clutch (Warkentin et al. 2001). In contrast to the immediate, synchronous hatching in response to snake or wasp attack, fungus-infected clutches that are at a sufficient stage of development hatch over a period of days, but at an average younger age than healthy clutches (Warkentin et al. 2001). Agalychnis callidryas larvae have unusually large, elaborate external gills for anurans, consisting of a gill trunk on each side of the body, with one row of branched filaments (Pyburn 1963). The presence of large, elaborate gills is likely to indicate oxygen limitation throughout development, especially since the embryos of this species develop in large, closely packed eggs under quite warm conditions (Warkentin 2000a). Larvae show strikingly rapid external gill loss on hatching, with substantial gill regression occurring as fast as three minutes post-hatching (Warkentin 2000a). Newly hatched tadpoles respire via internal gills, as well as cutaneously (Warkentin 2000a). The increase in environmentally available oxygen upon leaving the egg has been experimentally demonstrated to be the primary stimulus for external gill loss in this species, with the process of hatching itself playing a secondary role in triggering gill loss (Warkentin 2000a). Since the presence of external gills creates drag in the water (Dudley et al. 1991), rapid gill loss at the time these tadpoles first enter the water may enhance swimming performance, which could enable survival on exposure to aquatic predators (Warkentin 2000a). In this species (and probably other anurans with external gills), the loss of external gills at hatching appears to be mediated by prostaglandins of the E family, or PGEs (Warkentin and Wassersug 2001). In contrast, the loss of internal gills is mediated by thyroid hormone at the time of metamorphosis (Shi 2000). Tadpoles of Red-Eyed Tree Frogs suspend themselves vertically in the water column to feed, with heads near the water surface (Savage 2002). They are primarily water-column filter feeders (Vonesh and Warkentin 2006). Gray and Nishikawa (1995) reported that in the laboratory, adult Agalychnis callidryas preferred crickets and moths as prey. To our knowledge, no field study has yet been published on the diet of adults of this species. Eggs of Agalychnis callidryas are vulnerable to predation by arboreal snakes (such as the cat-eyed snake, Leptodeira septentrionalis), several species of polybid wasps (particularly Polybia rejecta), monkeys, and fly larvae (Hirtodrosophila batracida) (Warkentin 1995; Warkentin 2000b; Warkentin et al. 2001; Warkentin et al. 2006). In addition, eggs are susceptible to mortality from fungal infection by a filamentous ascomycete (family Phaeosphaeriaceae) (Warkentin et al. 2001). Tadpoles may be preyed on by aquatic predators such as shrimp (Macrobrachium americanum) and fish (Brachyraphis rhabdophora) (Warkentin 1995), as well as giant water bugs foraging below the water surface (Belostoma sp.) (Vonesh and Warkentin 2006). Newly metamorphosed froglets may be consumed by aquatic spiders foraging at or above the water surface (Thaumasia sp.) (Vonesh and Warkentin 2006). Predators on juvenile and adult Red-Eyed Tree Frogs include snakes (Warkentin 1995), as well as birds and bats (Leenders 2001). Although phyllomedusine (leaf-breeding) frogs do not have the same sort of highly toxic compounds as other brightly colored frogs such as the dendrobatids, their skin does contain high levels of biologically active peptides (Mignogna et al. 1997). The skin of Agalychnis callidryas has been shown to contain five different families of biologically active peptides: tachykinins, bradykinins, caerulein, opioid peptides (dermorphin and [Hyp6]dermorphin), and sauvagine (Mignogna et al. 1997). In addition to larvae being able to sense vibrations, it has now been shown that adult male Red-Eyed Tree Frogs also use vibrational signaling, in male-male aggressive interactions (Caldwell et al., 2010). The authors point out that substrate vibrations may be far more important in communication by arboreal vertebrates than had previously been realized. During contests over females, male Red-Eyed Tree Frogs emit "chuckle" calls and perform tremulation displays by shaking a branch rapidly with their hind legs. Tremulations only occurred when two males were within 2 m of each other or were on the same plant, and were often immediately followed by wrestling. To test whether the vibrations were important, various combinations of displays were made using a robotic frog on a wooden frame near a branch occupied by a live frog, plus a shaker on the branch where the live frog sat. In some tests, the robotic frog moved up and down, for a visual display, but no branch shaking was done; in others, the branch was vibrated but the robotic frog did not move; and in some tests, both visual and vibrational displays were made. The live males responded aggressively to all displays, both visual and vibrational, but only shook their own branch when vibrations were felt from the shaker (Caldwell et al. 2010).
license
cc-by-3.0
author
Kellie Whittaker
original
visit source
partner site
AmphibiaWeb articles

Relation to Humans

provided by AmphibiaWeb articles
Red-eyed tree frogs are popular in the pet trade, and can be bred in captivity under suitable conditions.
license
cc-by-3.0
author
Kellie Whittaker
original
visit source
partner site
AmphibiaWeb articles

Lifespan, longevity, and ageing

provided by AnAge articles
Observations: These animals have been known to live up to 4.1 years in captivity (Andrew Snider and J. Bowler 1992). Most likely, however, their lifespan is considerably greater. Anecodtal claims of animals living over 8 years in captivity are plausible. Further studies are needed.
license
cc-by-3.0
copyright
Joao Pedro de Magalhaes
editor
de Magalhaes, J. P.
partner site
AnAge articles

Morphology

provided by Animal Diversity Web

Agalychnis callidryas are known foremost for their huge, bright red eyes, a possible adaption to nocturnality or the central component of a defensive strategy called startle coloration. Their dorsal area is usually a neon-like shade of green, but can sometimes range from blue to yellow in coloring. The sides are light blue with cream to yellow colored stripes. The upper legs are bright blue, and the feet are a bright orange or red. Agalychnis callidryas have large, specially developed suction cup toe pads, which allow them to attach to leaves, branches, and the sides of trees.

Young A. callidryas start out brown in coloring and change to green as they mature to adult frogs.

Male A. callidryas are generally smaller than the females, the males reaching an adult length of about 2 inches, and the females reaching and adult length of as much as 3 inches.

Adult A. callidryas can change their color to a darker green or reddish-brown as their mood changes.

Other Physical Features: ectothermic ; bilateral symmetry

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Life Expectancy

provided by Animal Diversity Web

Average lifespan
Status: captivity:
4.1 years.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

Agalychnis callidryas inhabit tropical rainforest areas, where they are commonly found in the lowland rainforests and surrounding hills, particularly in areas close to rivers.

They prefer temperatures between 75-85 degrees during the day, between 66-77 degrees during the nighttime, and humidity at around 80%-100%.

Red-eyed tree frogs are excellent climbers and, as mentioned before, have suction-cup toes that help them attach themselves to the underside of leaves, where they rest during the day. They can also be found clinging to branches, tree trunks, and leaves throughout their habitat. Red-eyed tree frogs are also able to swim.

(Abernathy and Abernathy, 1996)

Terrestrial Biomes: rainforest

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

Agalychnis callidryas can be found throughout most of Central America, as far north as southern Mexico.

(Abernathy and Abernathy, 1996)

Biogeographic Regions: neotropical (Native )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Agalychnis callidryas are carnivorous and feed primarily at night. The red-eyed tree frog's green coloring permits it to stay hidden among the leaves of trees, waiting for insects or other small animals to come their way. Agalychnis callidryas eat any type of insect that fits into their mouth, but their usual diet is composed of crickets, moths, flies, grasshoppers, and sometimes even smaller frogs. As babies they feed on fruit flies and pinhead crickets.

(Abernathy and Abernathy, 1996)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Agalychnis callidryas are very popular in the pet trade. Their beautiful coloring makes these frogs very popular among frog and amphibian enthusiasts.

Agalychnis callidryas are also ecologically important. They and other amphibians are generally thought to suffer from environmental effects at an earlier time than other animals and can therefore be used as indicator species to alert humans to environmental changes in their habitat.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Life Cycle

provided by Animal Diversity Web

Development - Life Cycle: metamorphosis

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

These frogs are not considered threatened in their natural environment. However there has been much concern about the overall condition of the rain forest habitat in which A. callidryas resides. Global warming, deforestation, climatic and atmospheric changes, wetland drainage, and pollution have caused dramatic declines in the amphibian population in, and among the rainforests of Central and South America.

IUCN Red List of Threatened Species: least concern

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Untitled

provided by Animal Diversity Web

Agalychnis callidryas, a well-known member of the rain forest community, is a popular and identifiable symbol of the movement to save the world's rainforests.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Agalychnis callidryas usually reproduce in the rainy season. The reproduction process is initiated by a croaking and quivering mating ritual described below. Red-eyed tree frogs utilize a process called amplexus, a common form of reproduction for frog species. In amplexus the smaller male clasps the larger female when her eggs are mature. The male inseminates the eggs as they emerge from the female, and he does not leave until the eggs have been laid. Amplexus may persist for a day or longer.

As reproduction takes place on the underside of leaves, the female must hold on to the underside of the leaf with her suction-cup toes, holding on for both herself and her mate. Each group of eggs that a female produces is called a clutch, and the female must enter the water after laying each clutch, with the male still attached to her back, in order to fill her bladder with water. If the female does not fill her bladder between clutches, her eggs will dry up and die. Sometimes when a female and her mate enter the water, other males see them entering and attempt to force the male from her back. If this is accomplished, another male will take his positon and fertilize the next clutch eggs.

While most frog species lay their eggs directly into the water, A. callidryas lay theirs on the underside of leaves that hang over bodies of water. When the clutches of eggs have developed into tadpoles, which occurs very quickly, the tadpoles swim around within their eggs until the egg ruptures. The rupturing of all the eggs in the clutch occurs within a one minute time period, and the fluid released from the ruptured eggs helps to wash all the tadpoles down the leaf and into the waiting water below. Reproduction is a very strenous activity for A. callidryas.

(Hickman and Roberts,1995, http://www.discovery.com/)

Key Reproductive Features: gonochoric/gonochoristic/dioecious (sexes separate)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Boman, B. 2002. "Agalychnis callidryas" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Agalychnis_callidryas.html
author
Bonnie L. Boman, University of Michigan-Ann Arbor
original
visit source
partner site
Animal Diversity Web

Agalychnis callidryas

provided by wikipedia EN

Agalychnis callidryas, commonly known as the red-eyed tree frog, is a species of frog in the subfamily Phyllomedusinae. It is native to forests from Central America to north-western South America. This species is known for its bright coloration, namely its vibrant green body with blue and yellow stripes on the side. It has a white underside, brightly red and orange colored feet, and is named after its distinctive bright red eyes.

Agalychnis callidryas is an arboreal frog with long limbs and webbed toes. They mate and reproduce near ponds, and are therefore found in lowland wet areas found in tropical forests.[3]

Like all the frogs in its genus, they are nocturnal and do most of their hunting for insects at night. The males of this species are smaller than the females, and they display non-random mating patterns which suggest female choice for specific types of male. Despite its bright coloration, the red-eyed tree frog is not poisonous. Its bright coloration can thus be more attributed to camouflage amongst the greenery of the surrounding jungle, as well as the “startle reflex,” which it can use to dissuade predators. During the day, the frog uses its green back to camouflage amongst the leaves, this camouflage being its only defense. If disturbed, the frog flashes its bright red eyes, which may startle predators and allow the frog to escape.

Along with its visual appearance, phenotypic plasticity in hatching is another interesting feature of A. callidryas. If faced with the vibrational cues associated with predators, A. callidryas embryos may hatch early and fall into the water to escape predation. This response is extremely specific, and mostly occurs only at vibrational patterns associated with predators. These frogs have a distinct temperature requirement and need a body of water to reproduce, and are thus only found in humid lowlands and rainforests of South and Central America.

Description

A specimen in Costa Rica

Agalychnis callidryas is an easily recognizable species due to its colorful appearance. In terms of size, males reach about 2 inches while females grow to 3 inches and are the larger of the two.[4] Adult individuals are distinctively colored, with bright green bodies, light blue or cream colored bellies, and blue and yellow stripes along their sides. Their feet are bright orange and have suction cups which help them adhere to the bottom of leaves where they spend most of their time.[5] Their skin is smooth with little to no bumps, another feature which helps the frog blend into their leafy surroundings. An impressive feature is their bright red colored eyes with vertical slits. They do not have a true eyelid, but rather a nictitating membrane that allows light to enter the eye so that they will awaken when predators are approaching.[6]

The frog's coloration is representative of “flash coloration.” Flash coloration describes when an organism displays certain colors at rest compared to when in motion.[7] In the red-eyed tree frog’s case, the frog’s startling red eyes are hidden when its eyes are closed allowing it to blend in with leaves. When the frog is startled, it can flash its bright red eyes, orange webbed feet, and blue and yellow lateral stripes, which all serve the purpose of startling predators and allowing the frog time to escape.[8] Although the frog is brightly colored, this does not convey toxicity or aposematism like it may in related tree frog species.

Image of the nictitating membrane seen in red-eyed tree frogs

Distribution of color morphs

Though the main coloring of Agalychnis callidryas is consistent, there are some variations in morphs across the geographical range of the species. Red-eyed tree frogs have variation in the color of their side stripes, which in Costa Rica and Panama specifically includes blue, blue/red, orange and purple.[9] There are several hypotheses for the reason behind the existence of these color morphs. One strong hypothesis is that the existence of orange and purple morphs in Costa Rica are caused by isolation by distance, because the orange and purple morphs were not genetically distinct groups. It is possible that color patterns have been affected by different selective pressures, and that the existence of some morphs are due to genetic drift.[10]

Synapomorphies

As a species of tree frog, Agalychnis callidryas has a claw shaped terminal phalanx.[11] Other synapomorphies of this genus include the presence of a red hue on the iris and a golden reticulated palpebral membrane.[12]

Distribution and habitat

Agalychnis callidryas is native to Central America, from northeastern Honduras to northern Colombia.[13]

Its natural habitats include inland forests and wetlands, both tropical and mountainous areas where there is forest cover and water nearby.[14] Ponds or bodies of water are essential in its reproduction so they are always found near these areas. The red-eyed tree frog is commonly found in tropical rainforests in the previously listed countries. The frog is primarily arboreal, and prefers hiding in canopy cover amongst leaves. Agalychnis callidryas require high humidity levels of at least 80%. [15]

Behaviour and ecology

Diet

Adult red-eyed tree frogs are primarily carnivores, eating crickets, moths, grasshoppers, flies, and other insects. Occasionally, they also eat smaller amphibians. Tadpoles eat plants, algae, plankton, bacteria, and carrion.[16] After metamorphosis, froglets begin consuming small insects like fruit flies and pinhead crickets.[17] A study on carotenoids consumption has shown they play an important role in development, phenotype, and fecundity. [18] There is a critical window after metamorphosis where carotenoids improve female growth rate and fecundity, and lead to a redder skin in both sexes. Carotenoids are important nutrients for wild red-eyed tree frogs and especially for captive red-eyed tree frogs, who sometimes suffer skin pigmentation degradation due to an inadequate diet.

Reproduction and life cycle

Red-eyed tree frogs in axillary amplexus

Red-eyed tree frogs mate seasonally, specifically in the rainy season during the months of October to March.[19] Males attract females by croaking and wrestle with each other in male-male competition in order to gain access to females for reproduction.[20] Females latch on to the underside of a leaf using the suction cup like structures on their webbed feet, and the female must hold on to the leaf while males compete and wrestle nearby. The winning male and female will then participate in amplexus, and the female will lay eggs on the underside of the leaf as they are fertilized by the male.[21] The eggs typically hatch within 6 to 7 days if left undisturbed.[22] This process occurs above or very close to a body of water, because tadpoles which hatch from the eggs will drop into water from the leaf. Eggs will hatch early if their survival is threatened, in a process called phenotypic plasticity. The female chooses a leaf above a pond or large puddle on which to lay her clutch of roughly 40 eggs. Since oviposition generally occurs on both sides of a leaf, red-eyed tree frogs may fold the leaf to hide the eggs from predators. They also produce sticky jelly to glue the eggs together; this may protect the eggs from splitting and dehydration.[23]

Life cycle

Following fertilization, females lay clutches of about 40 eggs, and can lay multiple clutches in a single night. Since the eggs are often adhered to a leaf above water, tadpoles fall into the water below as soon as they hatch. Eggs will usually hatch 6-8 days after they have been laid, with some variation depending on geography and risk assessment through vibration.[24] Depending on environmental conditions, the tadpoles will then stay in the water for a few weeks or months. They will change to adult colors following metamorphosis, and live for about five years in the wild.[25]

Red-eyed tree frog embryos use natural day and night light cycles as a signal for when to hatch, and tend to hatch just after nightfall.[26] Red-eyed tree frog eggs may hatch early (exhibiting phenotypic plasticity) when a change in the environment signals a danger to their survival.[27] Dragonflies, fish, and water beetles prey on the tadpoles. The tadpoles remain in the water from three weeks to several months, until they metamorphose into frogs. The time of metamorphosis depends on duration of larval stage, which varies depending on environment. After metamorphosis, the color of tadpoles' torsos changes from green to brown, and their eyes, which are initially yellow, turn into deep red without much side patterning. These changes mark maturity. The lifespan of red-eyed tree frogs is about five years.[28]

Mating

Red-eyed tree frogs females are typically choosy about which males they mate with. Females will choose mates based on visual and auditory clues, mainly the male frogs’ croaking calls as well as their size and flank stripe. Females are likely to choose males with “local” flank stripes and call patterns, meaning that male frogs from nearby areas are selected for in mating.[29] Call and stripe patterns are considered simultaneously by females in this situation. Size plays a role in mate choice for red-eyed tree frogs as well. Often larger males are more successful in amplexus compared to smaller males. However, size-assortative mating also plays a role and larger females are more likely to pair with proportionally large males and vice versa for small females and males.[30] This is so the male can successfully fertilize the female’s eggs during amplexus.

During the mating season, the male frogs shake the branches where they are sitting to improve their chances of finding a mate by keeping rivals at bay. This is the first evidence that tree-dwelling vertebrates use vibration to communicate.[31] When rainfall is at its highest, a male red-eyed tree frog calls "chack" to get the attention of the female. Females use the call, as well as color (specifically, the stripped sides) of the male frog, in order to find a possible mate.[32] Both the call and color of the male frog show territorial display, and anti-predatory behavior. During amplexus, the female carries the male on her back for several hours during the oviposition process. Because of external egg fertilization, there is still risk of competition even after a female has selected a mate. There is not sperm priority in Agalychnis callidryas, and so a single clutch of eggs may have been fertilized by multiple males.[33]

Phenotypic plasticity

Red-eyed tree frogs' embryos exhibit phenotypic plasticity, hatching early in response to disturbance to protect themselves. Though embryos are bred synchronously, they normally hatch after 6 to 10 days from oviposition without disturbance.[23] However, a simultaneously early hatching in entire clutches is triggered when embryos are exposed to their predators or threatening environmental changes such as rainstorm and flood.[23][34] Early hatching has also been linked with egg dehydration, hatching earlier in dry egg clutches than in wet ones.[35]

Hatching early is an important defense to predators, but is also a risky strategy for embryos because early hatching increases predation risk in water.[36] Therefore, to maximize the benefits of this strategy embryos must only hatch when they are truly at risk by a predator. Studies show that this strategy is multifaceted and a specific combination of vibrational pulse duration and inter-pulse intervals is needed in order for embryos to exhibit this response.[37] This combination of pulse duration and inter-pulse intervals is thought to be specific to the embryo predators, thus ensuring the response only occurs when absolutely necessary to ensure survival.

Predators are the major cause of this response. Since these frogs usually lay eggs on both the upper and the undersides of leaves above ponds, clutches need to protect themselves against arboreal, aerial and aquatic predators, such as snakes, dragonflies, fish, monkeys, and pathogenic fungi.[38] When predators are close enough to produce detectable vibration, the embryos assess disturbance. After a few seconds, embryos vigorously hatch out into tadpoles and spread out to escape.[23][39] Since eggs are usually laid above ponds, the response improves survival because tadpoles often fall into water on hatching. Hatching direction also has implications on embryo survival. Embryos often hatch and fall into the water, but hatching direction may also be influenced by light. A study found that A. callidryas embryos hatch towards light, suggesting they use light and dark as directional cues to determine hatching direction.[40]

Conservation

As of 2016, the red-eyed tree frog is classified as being of least concern. While the population is decreasing, and inhabits many areas vulnerable to deforestation, the classification of “least concern” stems from its general tolerance to habitat modification, a wide species distribution, and presumably large captive population. The red-eyed tree frog’s husbandry, care, and breeding knowledge have been greatly improved upon in the 21st century.[41][42] However, as with all frogs and toads, the species still faces challenges from chytrid fungus, logging, residential development, and pollution.[43]

References

  1. ^ IUCN SSC Amphibian Specialist Group (2020). "Agalychnis callidryas". IUCN Red List of Threatened Species. 2020: e.T55290A3028059. doi:10.2305/IUCN.UK.2020-1.RLTS.T55290A3028059.en. Retrieved 18 November 2021.
  2. ^ "Appendices | CITES". cites.org. Retrieved 14 January 2022.
  3. ^ Dresen, Josh. "Agalychnis". Animal Diversity Web. University of Michigan.
  4. ^ "Red-eyed tree frog | San Francisco Zoo & Gardens". www.sfzoo.org.
  5. ^ "Red-eyed tree frog | San Francisco Zoo & Gardens". www.sfzoo.org.
  6. ^ Beall, Abigail (2014-02-01). "Teacup-sized frog masquerades as Smaug the dragon". New Scientist. 221 (2954): 26–27. Bibcode:2014NewSc.221...26B. doi:10.1016/S0262-4079(14)60231-1. ISSN 0262-4079.
  7. ^ Edmunds, Malcolm (2005). "Flash Colors". Encyclopedia of Entomology: 871. doi:10.1007/0-306-48380-7_1639. ISBN 0-7923-8670-1.
  8. ^ "Red-Eyed Tree Frog | National Geographic". Animals. 10 September 2010.
  9. ^ Clark, Meaghan I.; Bradburd, Gideon S.; Akopyan, Maria; Vega, Andres; Rosenblum, Erica Bree; Robertson, Jeanne M. (23 May 2021). "Genetic isolation by distance underlies color pattern divergence in red-eyed treefrogs ( Agalychnis callidryas )". doi:10.1101/2021.05.21.445051. {{cite journal}}: Cite journal requires |journal= (help)
  10. ^ Clark, Meaghan I.; Bradburd, Gideon S.; Akopyan, Maria; Vega, Andres; Rosenblum, Erica Bree; Robertson, Jeanne M. (23 May 2021). "Genetic isolation by distance underlies color pattern divergence in red-eyed treefrogs ( Agalychnis callidryas )". doi:10.1101/2021.05.21.445051. {{cite journal}}: Cite journal requires |journal= (help)
  11. ^ "Hylidae". tolweb.org.
  12. ^ Rivera-Correa, Mauricio; Duarte-Cubides, Felipe; Rueda-Almonacid, José Vicente; Daza, Juan M. (2013-04-03). "A new red-eyed treefrog of Agalychnis (Anura: Hylidae: Phyllomedusinae) from middle Magdalena River valley of Colombia with comments on its phylogenetic position". Zootaxa. 3636 (1): 85–100. doi:10.11646/zootaxa.3636.1.4. ISSN 1175-5334. PMID 26042285.
  13. ^ McCranie, J. R.; Sunyer, J.; Martínez-Fonseca, J. G. (November 2019). "Comments and updates to "Guía Ilustrada de Anfibios y Reptiles de Nicaragua" along with taxonomic and related suggestions associated with the herpetofauna of Nicaragua". Revista Nicaraguense de Biodiversidad (52): 8–9.
  14. ^ "Agalychnis callidryas: IUCN SSC Amphibian Specialist Group: The IUCN Red List of Threatened Species 2020: e.T55290A3028059". 21 June 2016. doi:10.2305/IUCN.UK.2020-1.RLTS.T55290A3028059.en. {{cite journal}}: Cite journal requires |journal= (help)
  15. ^ Boman, Bonnie L. "Agalychnis callidryas, Rana-de árbol ojos rojos". Animal Diversity Web. University of Michigan. Retrieved 9 May 2015.
  16. ^ Hofrichter, Robert (2000). The Encyclopedia of Amphibians. Adfo Books. p. 173. ISBN 1552630730.
  17. ^ Rainforest Alliance web site "Tree frog" Retrieved July 31, 2018, Updated Sep 17, 2020
  18. ^ [Ogilvy, Preziosi, R. F., Fidgett, A. L., & Garner, T. (2012). A brighter future for frogs? The influence of carotenoids on the health, development, and reproductive success of the red-eye tree frog. Animal Conservation., 15(5), 480–488. https://doi.org/10.1111/j.1469-1795.2012.00536.x]
  19. ^ "Red Eyed Tree Frog". tolweb.org.
  20. ^ "The Red-Eyed Tree Frog". Lamar.edu.
  21. ^ "Red Eyed Tree Frog". tolweb.org.
  22. ^ "Facts About the Red-Eyed Tree Frog". ThoughtCo.
  23. ^ a b c d Whittaker, Kellie. "Agalychnis callidryas". AmphibiaWeb. University of California, Berkeley.
  24. ^ "AmphibiaWeb - Agalychnis callidryas". amphibiaweb.org.
  25. ^ "Facts About the Red-Eyed Tree Frog". ThoughtCo.
  26. ^ Güell, Brandon A.; Warkentin, Karen M. (2018-12-03). "When and where to hatch? Red-eyed treefrog embryos use light cues in two contexts". PeerJ. 6: e6018. doi:10.7717/peerj.6018. ISSN 2167-8359. PMC 6283037. PMID 30533307.
  27. ^ Fields, Helen. (2013 January). The frog that roared. Smithsonian, 54–61.
  28. ^ "Agalychnis callidryas Cope 1862". Amphibians of Panama. Smithsonian Institution. Archived from the original on 2015-05-18. Retrieved 2015-05-09.
  29. ^ Kaiser, Kristine; Boehlke, Chloe; Navarro-Pérez, Edauri; Vega, Andres; Dudgeon, Steven; Robertson, Jeanne M. (December 2018). "Local preference encoded by complex signaling: mechanisms of mate preference in the red-eyed treefrog (Agalychnis callidryas)". Behavioral Ecology and Sociobiology. 72 (12): 182. doi:10.1007/s00265-018-2597-0. S2CID 53250240.
  30. ^ Briggs, Venetia S. (May 2008). "Mating Patterns of Red-Eyed Treefrogs, Agalychnis callidryas and A. moreletii". Ethology. 114 (5): 489–498. doi:10.1111/j.1439-0310.2008.01490.x.
  31. ^ Caldwell, Michael S.; Johnston, Gregory R.; McDaniel, J. Gregory; Warkentin, Karen M. (2010). "Vibrational Signaling in the Agonistic Interactions of Red-Eyed Treefrogs". Current Biology. 20 (11): 1012–1017. doi:10.1016/j.cub.2010.03.069. PMID 20493702. S2CID 12050308.
  32. ^ Kaiser, Kristine; Boehlke, Chloe; Navarro-Pérez, Edauri; Vega, Andres; Dudgeon, Steven; Robertson, Jeanne M. (2018-11-12). "Local preference encoded by complex signaling: mechanisms of mate preference in the red-eyed treefrog (Agalychnis callidryas)". Behavioral Ecology and Sociobiology. 72 (12): 182. doi:10.1007/s00265-018-2597-0. ISSN 1432-0762. S2CID 53250240.
  33. ^ D'orgeix, C. A.; Turner, B. J. (1995). "Multiple paternity in the red-eyed treefrog Agalychnis callidryas (Cope)". Molecular Ecology. 4 (4): 505–508. doi:10.1111/j.1365-294X.1995.tb00245.x. ISSN 1365-294X. PMID 8574447. S2CID 41493220.
  34. ^ Caldwell, Janalee P.; Vitt, Laurie J. (Mar 25, 2013). Herpetology: An Introductory Biology of Amphibians and Reptiles. Academic Press. p. 342. ISBN 978-0-12-386919-7. Retrieved 9 May 2015.
  35. ^ Salica, María José; Vonesh, James R.; Warkentin, Karen M. (2017-07-14). "Egg clutch dehydration induces early hatching in red-eyed treefrogs, Agalychnis callidryas". PeerJ. 5: e3549. doi:10.7717/peerj.3549. ISSN 2167-8359. PMC 5511700. PMID 28717595.
  36. ^ Warkentin, Karen M.; Caldwell, Michael S.; McDaniel, J. Gregory (15 April 2006). "Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas". Journal of Experimental Biology. 209 (8): 1376–1384. doi:10.1242/jeb.02150. PMID 16574797. S2CID 8139023.
  37. ^ Jung, Julie; Guo, Ming; Crovella, Mark E.; McDaniel, J. Gregory; Warkentin, Karen M. (6 June 2022). "Frog embryos use multiple levels of temporal pattern in risk assessment for vibration-cued escape hatching". Animal Cognition. 25 (6): 1527–1544. doi:10.1007/s10071-022-01634-4. PMID 35668245. S2CID 249434417.
  38. ^ Manjunath, Amit. "Agalychnis callidryas (Rana-de árbol ojos rojos)". Animal Diversity Web.
  39. ^ Warkentin, Karen M. (Oct 12, 1998). "The development of behavioral defenses: a mechanistic analysis of vulnerability in red-eyed treefrog hatchlings". Behavioral Ecology. 10 (3): 251–262. doi:10.1093/beheco/10.3.251. ISSN 1045-2249. Retrieved 9 May 2015.
  40. ^ Güell, Brandon A.; Warkentin, Karen M. (3 December 2018). "When and where to hatch? Red-eyed treefrog embryos use light cues in two contexts". PeerJ. 6: e6018. doi:10.7717/peerj.6018. PMC 6283037. PMID 30533307.
  41. ^ Halter, Josh (16 October 2018). "The care and maintenance of the Red Eye Tree Frog". www.TheBioDude.com. Retrieved 1 March 2023.
  42. ^ England, Jeff (31 March 2022). "Red Eyed Tree Frog Care (Habitat, Diet, and Care Guide)". www.ReptileAdvisor.com. Retrieved 1 March 2023.
  43. ^ "Agalychnis callidryas: IUCN SSC Amphibian Specialist Group: The IUCN Red List of Threatened Species 2020: e.T55290A3028059". 21 June 2016. doi:10.2305/IUCN.UK.2020-1.RLTS.T55290A3028059.en. {{cite journal}}: Cite journal requires |journal= (help)

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Agalychnis callidryas: Brief Summary

provided by wikipedia EN

Agalychnis callidryas, commonly known as the red-eyed tree frog, is a species of frog in the subfamily Phyllomedusinae. It is native to forests from Central America to north-western South America. This species is known for its bright coloration, namely its vibrant green body with blue and yellow stripes on the side. It has a white underside, brightly red and orange colored feet, and is named after its distinctive bright red eyes.

Agalychnis callidryas is an arboreal frog with long limbs and webbed toes. They mate and reproduce near ponds, and are therefore found in lowland wet areas found in tropical forests.

Like all the frogs in its genus, they are nocturnal and do most of their hunting for insects at night. The males of this species are smaller than the females, and they display non-random mating patterns which suggest female choice for specific types of male. Despite its bright coloration, the red-eyed tree frog is not poisonous. Its bright coloration can thus be more attributed to camouflage amongst the greenery of the surrounding jungle, as well as the “startle reflex,” which it can use to dissuade predators. During the day, the frog uses its green back to camouflage amongst the leaves, this camouflage being its only defense. If disturbed, the frog flashes its bright red eyes, which may startle predators and allow the frog to escape.

Along with its visual appearance, phenotypic plasticity in hatching is another interesting feature of A. callidryas. If faced with the vibrational cues associated with predators, A. callidryas embryos may hatch early and fall into the water to escape predation. This response is extremely specific, and mostly occurs only at vibrational patterns associated with predators. These frogs have a distinct temperature requirement and need a body of water to reproduce, and are thus only found in humid lowlands and rainforests of South and Central America.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN