dcsimg
Image de Crisia Lamouroux 1812
Life » » Animaux »

Bryozoaires

Bryozoa

Brief Summary ( néerlandais ; flamand )

fourni par Ecomare
Mosdiertjes zijn kolonie-vormende zeedieren. De kolonies lijken op kleurloos zeewier, een stuk kraakbeen, vitrage of kolonies van poliepen. Een mosdiertjeskolonie wordt gesticht door één mosdiertje, dat uit geslachtelijke voortplanting is ontstaan. Dit diertje kloont zichzelf ongeslachtelijk, waardoor er kopieën onstaan, die samen een kolonie vormen. Alle dieren in een kolonie zijn dus familie van elkaar. De diertjes kunnen zelfs riffen vormen; de zogenaamde 'levende stenen'. Voorbeelden zijn zeevinger, bladachtig hoornwier en de harige vliescelpoliep.
licence
cc-by-nc
droit d’auteur
Copyright Ecomare
fournisseur
Ecomare
original
visiter la source
site partenaire
Ecomare

Brief Summary ( anglais )

fourni par Ecomare
Bryozoans are colony-forming marine animals. The colonies resemble bleached seaweed, a piece of bone cartilage, lace curtain or polyp colonies. A colony of bryozoans starts with one bryozoa, which forms from sexual reproduction. This animal clones itself asexually, whereby copies evolve which together form a colony. This makes all animals in a colony family. They can even form reefs: the so-called 'living stones'. Examples are jelly bryozoan, hornwrack and hairy sea-mat.
licence
cc-by-nc
droit d’auteur
Copyright Ecomare
fournisseur
Ecomare
original
visiter la source
site partenaire
Ecomare

Brief Summary ( anglais )

fourni par EOL staff

One could easily miss the bryozoans (entoprocts) or mistake them as an alga or coral. Bryozoans are a phylum of microscopic, aquatic invertebrates that live in sessile colonies of genetically identical members. The individuals are not autonomous and are termed zooids. They grow as calcified or gelatinous encrusting masses or branching tree-like structures. Having said that, there are notable exceptions, including a genus of solitary species (Monobryozoon), a mobile species (Cristatella mucedo), and a recently found planktonic species (in genus Alcyonidium) that floats as a ball (Peck et al. 1995). Like the phoronids and the brachiopods they feed using a specialized horseshoe-shaped structure called a lophophore. Known also as “moss animals,” there are somewhere between 4000-6000 living species, some estimate that number closer to 8000 species (Ryland 2005). Most bryozans are marine or brackish, fewer than 100 species live in freshwater (Massard and Geimer 2007). About 15,000 fossil species have been found, dating from the early Ordovician/late Cambrian. Molecular phylogenetic analyses indicate that bryozoans originated earlier in the Cambrian period (along with almost all other invertebrate phyla) and that the earliest bryozoans were non-calcified, thus did not fossilize (Fuchs et al. 2009).

licence
cc-by-nc
droit d’auteur
Campbell, Dana
compilateur
Campbell, Dana
original
visiter la source
site partenaire
EOL staff

Distribution ( anglais )

fourni par EOL staff

Marine bryozoans are bountiful world wide, especially in tropic zones, but are found in all latitudes and depths, even in the cold waters of Antarctica (Brusca and Brusca 2003; Kozloff 1990).

licence
cc-by-nc
droit d’auteur
Campbell, Dana
compilateur
Campbell, Dana
original
visiter la source
site partenaire
EOL staff

Habitat ( anglais )

fourni par EOL staff

The bryozoans are divided into three very distinct monophyletic classes (Fuchs et al. 2009). Members of the class Phylactolaemata are entirely freshwater species; the Stenolaemata are exclusively marine, and Gymnolaemata, the largest class, containing 75% of living bryozoan species, is primarily marine, although some species inhabit brackish water (Brusca and Brusca 2003; Kozloff 1990).

licence
cc-by-nc
droit d’auteur
Campbell, Dana
compilateur
Campbell, Dana
original
visiter la source
site partenaire
EOL staff

Life Cycle ( anglais )

fourni par EOL staff

The fertilized egges in some bryozoans in the class Stenolaemata divide so that up to one hundred identical eggs are brooded at a time in specialized zooids. There is great diversity in the types of bryozoan larva, some feed, some are flattened, some have a shell, some are zooid-like, but all form a ciliated, free-swimming larva for some length of time, then settle and undergo dramatic reorganization to reach their mature form.

A bryozoan colony begins with an ancestrula (the primary zooid), which is formed sexually. The colony then grows by asexual budding, in a pattern dictated by the particular taxon. Bryozoan colonies are found in a wide array of colony formations. Encrusting forms (most common) can cover large areas of rocks, algae, shells or exoskeletons of other invertebrates, ship hulls, and other hard substrates. Other forms include arboristic, branching, discus, amorphous blob shapes or (especially in freshwater taxa) the zooids can grow as buds along a cord-like stolon. There is one genus of mobile bryozoans, Cristatella, which, in the shape of a caterpillar, crawls along substrates at very slow speed! Some freshwater taxa also form new colonies by asexually producing statoblasts, which drop to the bottom if the parent colony does not survive and survive harsh conditions in a dormant mode. The statoblast then generates a new zooid when conditions are more optimal. (Brusca and Brusca 2003; Kozloff 1990)

licence
cc-by-nc
droit d’auteur
Campbell, Dana
compilateur
Campbell, Dana
original
visiter la source
site partenaire
EOL staff

Morphology ( anglais )

fourni par EOL staff

The individual zooid each live in a box shaped or bud-shaped exoskeleton (zoecium) which can be mineralized, gelatinous or chitinous, and in some taxa may have an operculum over its little opening at the top. Typically suspension feeders, the zooid protracts through this opening a special feathery feeding organ called the lophophore, which is composed of a circle or horseshoe of tentacles. Cilia on the lophophore tentacles create water currents to carry appropriate sized food particles (including protists and invertebrate larvae) along food grooves on the lophophore which lead to the mouth.

Within a colony, individual zooids may be more or less connected to one another; many taxa have pores or a cord (funiculus) linking individuals in a colony, through which the individuals share coelomic fluids. In some kinds of colonies zooids function together to create more powerful water currents to bring in more food. All colonies contain autozooids, which feed and excrete wastes, some colonies also have non-feeding heterozooids, individuals specialized for gamete production, protection, or other functions and are supported with nutrients shared by surrounding zooids. Zooids may have spines on their zoecium, some that produce toxins, to ward off predators. Protective zooids may have their operculum modified into a protective structure, either an avicularium – a movable beak-like structure to rid the colony of pests, or a vibraculum – a long, movable setae-like structure thought to help in cleaning off the colony. Grazing by nudibranchs, snails, sea urchins and crustaceans is a common threat to bryozoans (Brusca and Brusca 2003; Kozloff 1990).


Bryozoans do not have nephridia or a circulatory system, instead gas exchange and nitrogenous excretions occurs passively by diffusion in the tiny zooids. When more complex wastes build up, the zooid forms a “brown body”, in which the soft tissue and lophophore (together called the polypide) degenerate within their casing (called the cystid). The cystid can then regenerate a new polypide, with the old brown body in its gut. The brown body in some taxa is then excreted through the anus (located near the mouth, but on the outside of the lophophore). In taxa with zooids arranged on stolons, the brown body simply falls off the shoot and a new zooid is regenerated. The nervous system in bryozoans is minimal, including a ganglion, nerve ring around the pharynx, and nerve net that extends into the tentacles and vicera. Sensory structures are limited to tactile cells on the lophophore (Brusca and Brusca 2003; Kozloff 1990).

licence
cc-by-nc
droit d’auteur
Campbell, Dana
compilateur
Campbell, Dana
original
visiter la source
site partenaire
EOL staff

Reproduction ( anglais )

fourni par EOL staff

Bryozoans are generally hermaphroditic. Rather than having discrete gonads, transient germ tissues on the zooid’s body wall peritoneum or on the funiculus (which connects the gut to the body wall) produce gametes. While sperm is spawned through pores in lophophore tentacles, eggs are usually harbored inside the body wall, and are internally fertilized by sperm, coming in on lophophore feeding currents (Brusca and Brusca 2003; Kozloff 1990).

licence
cc-by-nc
droit d’auteur
Campbell, Dana
compilateur
Campbell, Dana
original
visiter la source
site partenaire
EOL staff

Size ( anglais )

fourni par EOL staff

Individual bryozoan zooids are typically about 0.5 mm long. The colonies can reach sizes up to a meter across (Brusca and Brusca 2003).

licence
cc-by-nc
droit d’auteur
Campbell, Dana
compilateur
Campbell, Dana
original
visiter la source
site partenaire
EOL staff

Systematics and Taxonomy ( anglais )

fourni par EOL staff

The distinct lophophore organ of the bryozoans is also found in the brachiopods and phoronids, and these three phyla have long been associated as close relatives. However recent phylogenetic work now places the bryozoans quite distinct from the brachiopods and phoronids, as a more basal group in the containing superphylum Lophotrochozoa (Halanych 2004).

licence
cc-by-nc
droit d’auteur
Campbell, Dana
compilateur
Campbell, Dana
original
visiter la source
site partenaire
EOL staff

Briozoylar ( azéri )

fourni par wikipedia AZ

Briozoylar (lat. Ectoprocta və ya Bryozoa) — İlkağızlılar yarımbölməsindən onurğasız heyvan tipi.

Hazırda 4000 növü məlumdur, onlardan Xəzər dənizində 6 növ qeyd edilmişdir. Bowerbankia imbricata, Bowerbankia grasilis, Paludicella articulata, Victorella pavida Xəzərdə geniş yayılmışlar. Conopeum seurati Xəzər dənizinə 1958-ci ildə Azov dənizindən gəlmişdir. Hazırda bioloji örtüklərin əmələ gəlməsində mühüm rol oynayır.

Sinonim

Ectoprocta (Nitsche, 1869)

Haqqında

Briozoylar oturaq həyat tərzi keçirən dəniz heyvanları olub, nadir hallarda şirin sularda rast gəlinir. Briozoylar koloniya halında yaşayırlar, onların koloniyaları hidroid və mərcan poliplərinin əmələ gətirdikləri koloniyaları xatırladır. Koloniyalar bir neçə on santimetrlə ölçülür , koloniyanı təşkil edən hər bir fərdin ölçüsü isə 1mm- dən böyük olmur. Briozoy koloniyaları şaxəli budaq, yarpaq dəstəsi , bəzən bir müstəvi üzərində yerləşən lövhə şəklində olur. Koloniyalar polimerf və monomorf tipdə olur. Dənizdə yaşayan növlər hər iki tipdə , şirin su formaları isə yalnız monomorf olur. Monomorf koloniyadakı fərdlər quruluşca oxşar olub , eyni funksiya yerinə yetirirlər. Polimorf koloniyanın üzvləri həm quruluşuna , həm də yerinə yetirdikləri funksiyaya görə fərqlənirlər. Polimorf koloniyada bir qrup fərdlər ayırd edilir. Birinci qrup – adi fərdlər olub, lofofora , çıxıntılar tacına , cinsi məhsullar, hazırlayan sadə quruluşlu bağırsağa malikdir. Belə fərdlər koloniyada sayca üstünlük təşkil edir. Onlar qidanın tutulmasında , həzm edilməsində , mənimsənilməsində iştirak edir və bütün koloniyanı qidalandırır . Bununla əlaqədar olaraq, belə fərdlər qidalandırıcı və ya adi fərdlər adlanır. Çox vaxt bu fərdlərin üzərində və yanında oetsiya adlanan xüsusi fərdlər əmələ gəlir. Onlar yumurta hüceyrələrinin inkişaf etdiyi rüşeym kamerasına malik olurlar. İkinci qrup fərdlərin bir qismi substrata yapışmağa xidmət edir, bir qismi isə müdafiə funksiya daşıyır, koloniyanı kiçik qurdlardan , xərçənglərdən , və digər kiçik yırtıcılardan qoruyur.Belə fərdlərin arasında avikulyarilər adlanan «quş başı»na oxşar fərdlər yerləşir. Onların çıxıntıları olmadığına görə sərbəst qidalana bilmirlər, adi fərdlərin hesabına qidalanırlar. Avikulyarilərdə «alt çənəyə» oxşar törəmə inkişaf edir ki, xüsusi əzələlərin yığılması nəticəsində bu törəmə qapana bilir. Avikulyarilərin belə uyğunlaşma qabiliyyəti koloniyanı düşmənlərin təqibindən müdafiə edir. Koloniyada nadir hallarda vibrakulyarilər adlanan, müdafiə funksiyası daşıyan fərdlər olur. Vibrakulyarilərdə uzun hərəkətli qamçılar inkişaf edir ki, bunlar xüsusi əzələlərin köməyi ilə titrəyərək düşmənlərini koloniyaya yaxınlaşmağa qoymur. Avikulyarilərdə və vibrakulyarilərdə olan xüsusi hissedici törəmələr sinir sistemi ilə əlaqəlidir və düşmənin yaxınlaşmasını xəbər verir. Koloniya aktiv müdafiə edən belə fərdlərdən əlavə, əksər formaların xarici divarında passiv müdafiə orqan olan müxtəlif çıxıntılar – tikancıqlar inkişaf edir. Bir sıra formalarda bu çıxıntılar bütün koloniyanı əhatə edərək, onu tikanlı edir və düşmənlərini qorxudur. Sibir dənizlərində yayılan Uschakovia gorbunovi növündə bütün koloniya uzun tikanlı çıxıntılarla örtülmüşdür və bu da onu düşmənlərin təqibindən mühafizə edir. Bu növə 700m-ə qədər dərinlikdə , -0,9º -1,4ºC temperaturda rast gəlinir. Bu növün digər maraqlı cəhəti odur ki, koloniyanın aşağı hissəsində çıxıntılarda məhrum , cinsi məhsullar əmələ gətirməyən fərdlər yerləşir. Bu fərdlərin yuvacıqlarında ağ dənəvər kütlə toplanır. Bu özünəməxsus yuvacıqlar koloniyadakı fərdlərin şəkildəyişməsində əmələ gəlib, mürəkkəb koloniyanın böyüməsi üçün lazım olan ehtiyat qida maddələri saxlayır. Şirinsu briozoy koloniyaları az rəngarəngdir. Onlar suyun dibindəki əşyalarda , su bitkilərində budaqlanmış nazik boru şəklində yerləşirlər. Əksər hallarda sualtı əşyalarda – daşlarda, batmış ağac kötüklərində , bitkilərdə , bəzən heyvanlarda – molyusklarda, xərçənglərdə iri həcimli koloniyalar əmələ gətirirlər. Briozoy koloniyaları çoxlu kiçik fərdlərdən ibarət olur . Məsələn, Flustra foliacea koloniyasının 1 q kütləsində 1330 –a qədər fərd olur . Hər bir fərd geniş boşluğu olan ayrı-ayrı yuvacıqlarda yerləşir və zooid adlanır. Zooidin bədəni polipid adlanan ön, sistid adlnan dal hissədən ibarətdir. Sistid hissə xarici epitelinin törətdiyi kutikula qatı ilə əhatə olunmuşdur. Polipid hissə zərifdir və qalın kutikula qatından məhrumdur. Bu hissədə uzun çıxıntılarla əhatə olunmuş ağız dəliyi yerləşir. Ağız örtüyü briozoylarda dilşəkilli kiçik ağızönü pərlə və ya epistomla qapanır. Çılpaqağızlı briozoylarda isə ağız açıq olur. Çıxıntılar lotofor adlanan əsası nal şəklində olan pərin üzərində oturur . Çıxıntıların üzəri kirpikli epiteli hüceyrələri ilə örtülüdür . Polipid hissə çıxıntılarla birlikdə sistid hissənin içərisinə doğru tam çəkilə bilir. Bu çəkilmə iki əzələnin – retraktorun köməyi ilə baş verir . Retraktor bağırsağın yan tərəflərində yerləşərək , ön uca ilə polipid hissənin divarında ,dal ucu ilə sistidin əsasına birləşir. Briozoylar ikinci bədən boşluğuna - seloma malik heyvanlardır.Selom nazik arakəsmələrlə üç şöbəyə ayrılır: ön şöbə kiçik ölçülü olub, epistomda yerləşir . Bədən boşluğunun orta şöbəsini udlağı əhatə edən həlqəvi kanal təşkil edir və kor şaxələrlə çıxıntıların içərisinə daxil olur . Nisbətən böyük ölçülü arxa şöbə bütün bədəni tutaraq , gövdə selomu adlanır. Bir çox briozoylarda epistom selomla birlikdə reduksiya olunur .

Həzm sistemi

Briozoylar qidasını təşkil edən detrit və ibtidai orqanizmləri çıxıntıların üzərində olan kirpikli hüceyrələrin titrək hərəkəti ilə ağıza doğru qovurlar . Ağıza düşmüş qida qısa udlağa , sonra isə uzun qida borusuna keçir. Briozoyların həzm sistemi ön, orta və dal şöbədən ibarətdir. Ön şöbəni – ağız, udlaq , qida borusu , orta şöbəni ilgək şəklində əyilmiş iri həcmli bağırsaq təşkil edir. Dal şöbə qısa dal bağırsaqdan ibarət olub anal dəliyi ilə nəhayətlənir . Anal dəliyi bədənin ön hissəsindəki çıxıntılar olan tacın arxasında yerləşir və birbaşa xaricə açılır. Bağırsağın xarici divarı peritoneal epiteli ilə örtülmüşdür . Rekraktor adlanan əzələ orta bağırsağın ilgək şəklində əyilmiş hissəsinə birləşir, onun yığılması nəticəsndə əvvəlcə bağırsaq , sonra isə polipid hissə bütövlükdə sistid hissənin içərisinə doğru çəkilir.

Sinir sistemi

Sinir sistemi oturaq həyat tərzi ilə əlaqədar çox sadədir və demək olar ki, hiss orqanlarından məhrumdur. Sinir sistemi udlaq ilə dal bağırsağın arasında yerləşən tək udlaqüstü sinir düyünündə və ondan uzanan sinirlərdən ibarətdir. Çıxıntıların üzərində hissedici tükcüklər yeganə hiss orqanlarıdır. Briozoyların tənəffüs və qan –damar sistemi yoxdur . Tənəffüs bütün bədən səthini , çıxıntılar tənəffüs orqanı rolunu oynayır . Briozoyların qan –damar sisteminin reduksiya etməsi onların kiçik ölçülü olmaları və koloniya halında yaşamaları ilə izah olunur.

İfrazat orqanları

İfrazat orqanları yoxdur .İfrazat məhsulları bağırsağın və çıxıntıların divarındakı faqosit hüceyrələr vasitəsilə xaric edilir .

Çoxalması

Cinsi orqanlar sisteminə görə briozoylar hermofrodit orqanizmlərdir . Onlar cinsi və qeyri – cinsi yolla çoxalırlar

İnkişafı

Briozoylarda cinsi məhsullar selomun epiteli hüceyrələrində əmələ gəlir . Şirinsu briozoylarının sürfələri dəniz briozoylarının sürfələrinə nisbətən daha sadə quruluşludur. Hazırda briozoyların 4000 - ə qədər növü məlumdur . Qazıntı halında tapılan növlərin sayı isə 15000 –dən çoxdur . [1]

Mənbə

B.İ.Ağayev, Z.A.Zeynalova. Onurğasızlar zoologiyası. Bakı , «Təhsil» 2008 , 568 səh

Həmçinin bax

Xarici keçidlər

İstinadlar

  1. Dogel, Onurğasızlar zoologiyası, Bakı-2007, səh.233
licence
cc-by-sa-3.0
droit d’auteur
Vikipediya müəllifləri və redaktorları
original
visiter la source
site partenaire
wikipedia AZ

Briozoylar: Brief Summary ( azéri )

fourni par wikipedia AZ

Briozoylar (lat. Ectoprocta və ya Bryozoa) — İlkağızlılar yarımbölməsindən onurğasız heyvan tipi.

Hazırda 4000 növü məlumdur, onlardan Xəzər dənizində 6 növ qeyd edilmişdir. Bowerbankia imbricata, Bowerbankia grasilis, Paludicella articulata, Victorella pavida Xəzərdə geniş yayılmışlar. Conopeum seurati Xəzər dənizinə 1958-ci ildə Azov dənizindən gəlmişdir. Hazırda bioloji örtüklərin əmələ gəlməsində mühüm rol oynayır.

licence
cc-by-sa-3.0
droit d’auteur
Vikipediya müəllifləri və redaktorları
original
visiter la source
site partenaire
wikipedia AZ

Briozous ( catalan ; valencien )

fourni par wikipedia CA

Els briozous (Briozoa) o ectoproctes són un embrancament d'animals invertebrats aquàtics petits, caracteritzats per la presència d'un lofòfor i tentacles ciliats que serveixen per capturar aliment. Normalment mesuren uns 0,5 mm de longitud. S'han descrit unes 4.000 espècies. La majoria d'espècies marines viuen en aigües tropicals, però unes poques habiten a fosses marines, i altres habiten en aigües polars. Una classe viu únicament en una varietat d'entorn d'aigua dolça, i uns pocs membres d'una classe majoritàriament marina prefereixen les aigües salobres. Exceptuant un gènere, els briozous formen grans colònies de membres microscòpics. Es depositen a les costes quan hi ha vents forts o activitat en un llac. També se'ls coneix com "animal molsa", ja que moltes vegades el seu aspecte recorda una coberta subaquàtica de molsa.

Com els braquiòpodes, es caracteritzen per presentar un lofòfor evaginable, tret que situa als braquiòpodes i als briozous dins del clade Lophotrochozoa; la seva funció és principalment l'alimentació. Es tracta d'una corona de tentacles que generen corrents d'aigua cap a la boca de l'individu; al seu torn, aquests tentacles secreten una substància enganxosa que afavoreix la captura del plàncton, principal dieta dels briozous, i el dirigeixen cap a la boca.

El zoeci, o coberta protectora, pot ser quitinós o calcari, de forma cilíndrica i amb una obertura per a la sortida del polípide. Aquesta obertura pot presentar opercle o no.

En molts grups pot haver zooides especialitzats, donant un tret més avançat al grup. Els zooides especialitzats en la defensa de la colònia se'ls coneix com "avicularis". Els encarregats de la neteja, "vibracularis", i els que s'ocupen exclusivament de la reproducció, "gonanfis".

Referències

  1. Halanych, K.M.; Bacheller, JD; Aguinaldo, AM [et al] «Evidence from 18S ribosomal DNA that the lophophorates are protostome animals». Science, 267, 5204, 1995, pàg. 1641–1643. DOI: 10.1126/science.7886451. PMID: 7886451.
  2. Ernst, A. «A cystoporate bryozoan species from the Zechstein (Late Permian)». Paläontologische Zeitschrift, 81, 2, 2007, pàg. 113–117. DOI: 10.1007/BF02988385.

Enllaços externs

 src= A Wikimedia Commons hi ha contingut multimèdia relatiu a: Briozous Modifica l'enllaç a Wikidata
licence
cc-by-sa-3.0
droit d’auteur
Autors i editors de Wikipedia
original
visiter la source
site partenaire
wikipedia CA

Briozous: Brief Summary ( catalan ; valencien )

fourni par wikipedia CA

Els briozous (Briozoa) o ectoproctes són un embrancament d'animals invertebrats aquàtics petits, caracteritzats per la presència d'un lofòfor i tentacles ciliats que serveixen per capturar aliment. Normalment mesuren uns 0,5 mm de longitud. S'han descrit unes 4.000 espècies. La majoria d'espècies marines viuen en aigües tropicals, però unes poques habiten a fosses marines, i altres habiten en aigües polars. Una classe viu únicament en una varietat d'entorn d'aigua dolça, i uns pocs membres d'una classe majoritàriament marina prefereixen les aigües salobres. Exceptuant un gènere, els briozous formen grans colònies de membres microscòpics. Es depositen a les costes quan hi ha vents forts o activitat en un llac. També se'ls coneix com "animal molsa", ja que moltes vegades el seu aspecte recorda una coberta subaquàtica de molsa.

Com els braquiòpodes, es caracteritzen per presentar un lofòfor evaginable, tret que situa als braquiòpodes i als briozous dins del clade Lophotrochozoa; la seva funció és principalment l'alimentació. Es tracta d'una corona de tentacles que generen corrents d'aigua cap a la boca de l'individu; al seu torn, aquests tentacles secreten una substància enganxosa que afavoreix la captura del plàncton, principal dieta dels briozous, i el dirigeixen cap a la boca.

El zoeci, o coberta protectora, pot ser quitinós o calcari, de forma cilíndrica i amb una obertura per a la sortida del polípide. Aquesta obertura pot presentar opercle o no.

En molts grups pot haver zooides especialitzats, donant un tret més avançat al grup. Els zooides especialitzats en la defensa de la colònia se'ls coneix com "avicularis". Els encarregats de la neteja, "vibracularis", i els que s'ocupen exclusivament de la reproducció, "gonanfis".

 src=

Briozous de l'ordovicià a una pissarra bituminosa trobada a Estònia

Ecomare - fossiel mosdiertjes (fitis-fossiel-mosdiertje-vuursteen-01-sd).jpg
licence
cc-by-sa-3.0
droit d’auteur
Autors i editors de Wikipedia
original
visiter la source
site partenaire
wikipedia CA

Mechovci ( tchèque )

fourni par wikipedia CZ
Ecomare - fossiel mosdiertjes (fitis-fossiel-mosdiertje-vuursteen-01-sd).jpg

Mechovci (Bryozoa) je kmen vodních prvoústých živočichů ze skupiny Lophotrochozoa. Patří k nim asi 5000 recentních druhů a několikanásobně více těch fosilních.[1] Jsou na první pohled podobní žahavcům, ale mají mnohem komplexnější tělní stavbu.[2][3]

Popis

Žijí obvykle koloniálně nebo ve skupinách vzájemně propojených jedinců, složených až z několika milionů těl. Jeden jedinec jen zřídka přesahuje velikost v řádu několika milimetrů, ale kolonie mohou dosahovat v některých případech až několika metrů. Vytváří povlaky na skalním podloží, lasturách či na stélkách řas. Někdy dokonce tvoří masivní povlaky na lodích: tyto mohou někdy způsobit zhoršení směrovatelnosti a účinnosti lodi; jindy zase mohou ucpávat kanalizační systémy.[1]

Tělo jedince (zooida) je tvořeno kalichem, který nese věnec obrvených chapadel. Ta umožňují příjem potravy, která sestává zejména z planktonu a detritu. Potrava postupuje do trávicí soustavy, která má tvar U - ústa i řitní otvor jsou uprostřed věnce chapadel.[3]

Systematika

Aktuální klasifikace (2013) dělí kmen na tři třídy:[4]

(české názvy podle BioLib[5])

Kmen: Bryozoa Ehrenberg, 1831 – mechovci

  • Třída: Phylactolaemata Allman, 1856 - mechovky
    • Řád: Plumatellida Pennak, 1953
  • Třída: Stenolaemata Borg, 1941
    • Řád: Cyclostomata Busk, 1852 - mechovky kruhoústé
      • Podřád: Tubuliporina Milne Edwards, 1838
      • Podřád: Articulata Busk, 1859
      • Podřád: Cancellata Gregory, 1896
      • Podřád: Cerioporina von Hagenow, 1851
      • Podřád: Rectangulata Waters, 1887
  • Třída: Gymnolaemata Allman, 1856 - keřnatenky
    • Řád: Ctenostomata Busk, 1852 - mechovky hřebínkovité
    • Řád: Cheilostomata Busk, 1852 - mechovky oružnaté
      • Podřád: Malacostegina Levinsen, 1902
      • Podřád: Inovicellina Jullien, 1888
      • Podřád: Scrupariina Silén, 1941
      • Podřád: Neocheilostomina d’Hondt, 1985

Reference

  1. a b Introduction to the Bryozoa, http://www.ucmp.berkeley.edu/bryozoa/bryozoa.html
  2. http://bryozoa.net/bryointr.html
  3. a b MAŇAS, Michal. kmen mechovci (Bryozoa) [online]. Dostupné online.
  4. BOCK, Philip E.; GORDON, Dennis P. Phylum Bryozoa. Zootaxa [online]. 30. srpen 2013. Svazek 3703, čís. 1, s. 67-74. Publikováno též ve sborníku: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Dostupné online. PDF [1]. ISSN 1175-5334. DOI:10.11646/zootaxa.3703.1.14. (anglicky)
  5. BioLib: Mechovci

Externí odkazy

Pahýl
Tento článek je příliš stručný nebo postrádá důležité informace.
Pomozte Wikipedii tím, že jej vhodně rozšíříte. Nevkládejte však bez oprávnění cizí texty.
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia autoři a editory
original
visiter la source
site partenaire
wikipedia CZ

Mechovci: Brief Summary ( tchèque )

fourni par wikipedia CZ
Ecomare - fossiel mosdiertjes (fitis-fossiel-mosdiertje-vuursteen-01-sd).jpg

Mechovci (Bryozoa) je kmen vodních prvoústých živočichů ze skupiny Lophotrochozoa. Patří k nim asi 5000 recentních druhů a několikanásobně více těch fosilních. Jsou na první pohled podobní žahavcům, ale mají mnohem komplexnější tělní stavbu.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia autoři a editory
original
visiter la source
site partenaire
wikipedia CZ

Mosdyr ( danois )

fourni par wikipedia DA

Mosdyr (Bryozoa ) er en række af små vandlevende, fastsiddende, hvirvelløse dyr. De enkelte dyr er normalt under 1 mm store, men lever i kolonier som kan blive mange cm store. Mosdyr er filterædere, og filtrerer fødepartikler fra vandet ved en udskydelig "krone" af tentakler besat med fimrehår. Dyrenes bagkrop danner en skal (kaldet "zooecium") som hele dyret kan trække sig ind i. Kolonier af mosdyr dannes af mange sådanne zooecier siddende i et tæt "net", og kan danne en hvidlig overflade på sten, muslinger, alger og endog krebsdyr.

Mosdyr lever i eller i forbindelse med vand, enten permanent under vandet eller langs med kyster hvor de overskylles jævnligt. Visse arter lever på dybere vand, f.eks. i ocean-gravene. De fleste lever i tropiske vande, men der findes også arter som lever i koldere og endog arktiske vande. De flese lever i saltvand, men der findes også arter der lever brak- eller ferskvand. [1] [2] [3]

Kilder

  1. ^ Emiliani, C. (1992). "The Paleozoic". Planet Earth: Cosmology, Geology, & the Evolution of Life & the Environment. Cambridge University Press. s. 488-490. ISBN 0-19-503652-2. Hentet 2009-08-11.
  2. ^ Jones, R.W. (2006). "Principal fossil groups". Applied palaeontology. Cambridge University Press. s. 116. ISBN 0-521-84199-2. Hentet 2009-08-11.
  3. ^ Kuklinski, P.; Bader, Beate (2007). "Comparison of bryozoan assemblages from two contrasting Arctic shelf regions". Estuarine, Coastal and Shelf Science. 73 (3–4): 835-843. Bibcode:2007ECSS...73..835K. doi:10.1016/j.ecss.2007.03.024.
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia-forfattere og redaktører
original
visiter la source
site partenaire
wikipedia DA

Mosdyr: Brief Summary ( danois )

fourni par wikipedia DA

Mosdyr (Bryozoa ) er en række af små vandlevende, fastsiddende, hvirvelløse dyr. De enkelte dyr er normalt under 1 mm store, men lever i kolonier som kan blive mange cm store. Mosdyr er filterædere, og filtrerer fødepartikler fra vandet ved en udskydelig "krone" af tentakler besat med fimrehår. Dyrenes bagkrop danner en skal (kaldet "zooecium") som hele dyret kan trække sig ind i. Kolonier af mosdyr dannes af mange sådanne zooecier siddende i et tæt "net", og kan danne en hvidlig overflade på sten, muslinger, alger og endog krebsdyr.

Mosdyr lever i eller i forbindelse med vand, enten permanent under vandet eller langs med kyster hvor de overskylles jævnligt. Visse arter lever på dybere vand, f.eks. i ocean-gravene. De fleste lever i tropiske vande, men der findes også arter som lever i koldere og endog arktiske vande. De flese lever i saltvand, men der findes også arter der lever brak- eller ferskvand.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia-forfattere og redaktører
original
visiter la source
site partenaire
wikipedia DA

Moostierchen ( allemand )

fourni par wikipedia DE

Moostierchen (Ectoprocta (Gr.: mit äußerem After)), auch Bryozoa oder Polyzoa genannt, sind vielzellige Tiere, die im Wasser leben. Aufgrund ihrer mikroskopischen Größe sind Einzeltiere schwer auszumachen, ausgedehntere Kolonien sind aber leicht als flächige Struktur, zum Beispiel auf angeschwemmtem Seetang, zu erkennen.

Moostierchen gehören zu den Lophotrochozoen, also einer Großgruppe der Urmünder (Protostomia). Ihr genaues Verwandtschaftsverhältnis zu anderen Lophotrochozoa-Stämmen ist zurzeit unklar. Weder die häufig vermutete Beziehung zu den Kelchwürmern (Entoprocta), noch zu den Hufeisenwürmern (Phoronida) und Armfüßern (Brachiopoda) konnte durch molekulargenetische Testmethoden bestätigt werden. In älteren Lehrbüchern findet man sie aber oft mit den Phoronida und Brachiopoda zum Stamm der Tentaculata vereinigt.

Bau

 src=
Anatomie eines Moostierchens

Moostierchen bilden meist Kolonien (Zoarium) aus mehreren Einzeltieren (Zooiden). Das einzelne Zooid besteht aus einem Weichkörper und einer schützenden Schale, dem es umgebenden, extrazooidalem, Skelett (Zooecium). Der Weichkörper besteht aus dem Polypid (= Vorderkörper; frei bewegliche Teile) und dem Cystid (= Hinterkörper; in den das Polypid mittels Rückziehmuskeln komplett eingezogen werden kann). Das Polypid wird aus dem Cystid gebildet. Das Verdauungssystem ist in Mund, Mitteldarm, Enddarm und After gegliedert. Der After ist dabei nicht endständig, sondern kommt durch den U-förmigen Darm in der Nähe des Mundes außerhalb des Tentakelkranzes (Lophophor) zu liegen. Den Mund umgeben Tentakel, die auf einem kreisförmigen oder zweiteiligen Lophophor sitzen. Die Darmkanäle der Einzeltiere stehen nicht wie bei den Nesseltierkolonien miteinander in Verbindung.

Innerhalb der Kolonien kommt es zu Arbeitsteilungen. Stark rückgebildete Tiere bilden Stielglieder, Ranken oder Wurzelfäden. Andere Einzeltiere bilden Geschlechtszellen, wieder andere werden zu Ammentieren oder zu vogelkopfähnlichen Avicularien oder Vibrakularien, die das Festsetzen von Fremdorganismen auf der Kolonie verhindern. Bei den spezialisierten Tieren der Kolonie sind sowohl die Tentakelkrone als auch meist der Darm zurückgebildet.

Fortpflanzung und Entwicklung

 src=
Fossile Moostierchen

Die Tiere können sich geschlechtlich oder ungeschlechtlich fortpflanzen.

Geschlechtliche Fortpflanzung

Aus der geschlechtlichen Fortpflanzung gehen zwei verschiedene Typen von Larven hervor: Die als Cyphonaut bezeichnete planktotrophe Larve stellt die "primitive" Form dar. Sie ernährt sich über Wochen oder sogar Monate hinweg im Plankton. Die lecitothrophe Larve setzt sich schon nach einigen Stunden mit der Ventralfläche fest. Durch Metamorphose entsteht Ancestrula, die ersten 1–6 Zooide einer neuen Kolonie. Darauf folgt dann die ungeschlechtliche Fortpflanzung, durch welche die Kolonie weiter wächst.

Ungeschlechtliche Fortpflanzung

Die ungeschlechtliche Fortpflanzung geschieht durch Knospen, ähnlich wie bei einer Pflanze, die bei den Süßwasserarten als Statoblasten bezeichnet werden. Dadurch können große Kolonien entstehen. Die durch ungeschlechtliche Fortpflanzung entstandenen Zooide innerhalb einer Kolonie sind folglich Klone, genetisch identische Nachkommenschaft der Ursprungs-Larve.

Vorkommen

Es sind heute ca. 5.600 rezente und 16.000 fossile Arten von Moostierchen in Süß- und Salzwasser beschrieben. Die Klasse der Süßwassermoostierchen (Phylactolaemata) umfasst alle limnischen Arten.

In der Geologie haben sie aufgrund der weiten Verbreitung seit dem Ordovizium (Cyclostomata und Ctenostomata) eine hohe Bedeutung als Leitfossilien und für stratigraphische Bestimmungen. Im November 2021 wurde ein Fossil aus dem Kambrium gefunden. Es vereinigt Merkmale der Gruppen Stenolaemata und Ctenostomata. Zuvor waren keine sicheren Fossilien vor dem Ordovizium bekannt. Die neu entdeckte Art Protomelission gatehousei besitzt kein Kalk-Skelett (ein Merkmal der Ctenostomata) und eine zweiseitige Kolonialstruktur, ähnlich einem Blatt, mit Zooiden auf jeder Seite (wie bei den Stenolaemata). Von daher ist es anzunehmen, das Protomelission gatehousei einer der frühesten Vorfahren der Moostierchen ist.[1]

Wirtschaftliche Bedeutung

Über 125 Arten verursachen durch starkes Wachstum Schäden bzw. Unterhaltungskosten an Schiffen, Hafenanlagen und wasserwirtschaftlichen Anlagen (z. T. auch im Süßwasser).

Andererseits produzieren Bryozoen chemische Wirkstoffe, die hinsichtlich ihrer Wirkung Gegenstand medizinischer Forschung sind, darunter das mögliche Antikrebsmittel Bryostatin 1.

Einzelnachweise

  1. Zhiliang Zhang, Zhifei Zhang, Junye Ma, Paul D. Taylor, Luke C. Strotz, Sarah M. Jacquet, Christian B. Skovsted, Feiyang Chen, Jian Han und Glenn A. Brock: Fossil evidence unveils an early Cambrian origin for Bryozoa In: Nature, Band 599, S. 203–204 (2021) doi:10.1038/s41586-021-04033-w
licence
cc-by-sa-3.0
droit d’auteur
Autoren und Herausgeber von Wikipedia
original
visiter la source
site partenaire
wikipedia DE

Moostierchen: Brief Summary ( allemand )

fourni par wikipedia DE

Moostierchen (Ectoprocta (Gr.: mit äußerem After)), auch Bryozoa oder Polyzoa genannt, sind vielzellige Tiere, die im Wasser leben. Aufgrund ihrer mikroskopischen Größe sind Einzeltiere schwer auszumachen, ausgedehntere Kolonien sind aber leicht als flächige Struktur, zum Beispiel auf angeschwemmtem Seetang, zu erkennen.

Moostierchen gehören zu den Lophotrochozoen, also einer Großgruppe der Urmünder (Protostomia). Ihr genaues Verwandtschaftsverhältnis zu anderen Lophotrochozoa-Stämmen ist zurzeit unklar. Weder die häufig vermutete Beziehung zu den Kelchwürmern (Entoprocta), noch zu den Hufeisenwürmern (Phoronida) und Armfüßern (Brachiopoda) konnte durch molekulargenetische Testmethoden bestätigt werden. In älteren Lehrbüchern findet man sie aber oft mit den Phoronida und Brachiopoda zum Stamm der Tentaculata vereinigt.

licence
cc-by-sa-3.0
droit d’auteur
Autoren und Herausgeber von Wikipedia
original
visiter la source
site partenaire
wikipedia DE

Bryozoa ( tagalog )

fourni par wikipedia emerging languages

Ang Bryozoa ay isang phylum sa kahariang Animalia.

Sanggunian

  1. Halanych, K.M.; Bacheller, JD; Aguinaldo, AM; Liva, SM; Hillis, DM; Lake, JA (1995). "Evidence from 18S ribosomal DNA that the lophophorates are protostome animals". Science. 267 (5204): 1641–1643. doi:10.1126/science.7886451. PMID 7886451.
  2. Ernst, A. (2007). "A cystoporate bryozoan species from the Zechstein (Late Permian)". Paläontologische Zeitschrift. 81 (2): 113–117. doi:10.1007/BF02988385. Unknown parameter |doi_brokendate= ignored (tulong)
  3. Landing, E.; English, A.; Keppie, J. D. (2010). "Cambrian origin of all skeletalized metazoan phyla--Discovery of Earth's oldest bryozoans (Upper Cambrian, southern Mexico)". Geology. 38 (6): 547–550. doi:10.1130/G30870.1. ISSN 0091-7613.
  4. Fuchs, J.; Obst, M; Sundberg, P (2009). "The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes". Molecular Phylogenetics and Evolution. 52 (1): 225–233. doi:10.1016/j.ympev.2009.01.021. PMID 19475710. Unknown parameter |month= ignored (tulong)


Hayop Ang lathalaing ito na tungkol sa Hayop ay isang usbong. Makatutulong ka sa Wikipedia sa nito.

licence
cc-by-sa-3.0
droit d’auteur
Mga may-akda at editor ng Wikipedia

Bryozoa ( interlingua (association de langue auxilliaire internationale) )

fourni par wikipedia emerging languages

Bryozoa es un phylo de Spiralia.

Nota
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Bryozoa ( scots )

fourni par wikipedia emerging languages

Bryozoa (an aw kent as the Polyzoa, Ectoprocta or commonly as moss ainimals)[6] are a phylum o aquatic invertebrate ainimals.

References

  1. Taylor, P.D.; Berning, B.; Wilson, M.A. (November 2013). "Reinterpretation of the Cambrian 'bryozoan' Pywackia as an octocoral". Journal of Paleontology. 87 (6): 984–990. doi:10.1666/13-029.
  2. Ma, Junye; Taylor, Paul D.; Xia, Fengsheng; Zhan, Renbin (September 2015). "The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China". Palaeontology. 58 (5): 925–934. doi:10.1111/pala.12189.
  3. Ernst, A. (2007). "A cystoporate bryozoan species from the Zechstein (Late Permian)". Paläontologische Zeitschrift. 81 (2): 113–117. doi:10.1007/BF02988385.
  4. Halanych, K.M.; Bacheller, J.D.; Aguinaldo, A.M.; Liva, S.M.; Hillis, D.M.; Lake, J.A. (17 March 1995). "Evidence from 18S ribosomal DNA that the lophophorates are protostome animals". Science. 267 (5204): 1641–1643. Bibcode:1995Sci...267.1641H. doi:10.1126/science.7886451. PMID 7886451.
  5. Fuchs, J.; Obst, M; Sundberg, P (July 2009). "The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes". Molecular Phylogenetics and Evolution. 52 (1): 225–233. doi:10.1016/j.ympev.2009.01.021. PMID 19475710.
  6. Brusca; Brusca. "21: The Lophophorate Phyla". The Invertebrates.
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Bryozoa: Brief Summary ( scots )

fourni par wikipedia emerging languages

Bryozoa (an aw kent as the Polyzoa, Ectoprocta or commonly as moss ainimals) are a phylum o aquatic invertebrate ainimals.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Bryozoa: Brief Summary ( tagalog )

fourni par wikipedia emerging languages

Ang Bryozoa ay isang phylum sa kahariang Animalia.

licence
cc-by-sa-3.0
droit d’auteur
Mga may-akda at editor ng Wikipedia

Ectoprocta ( occitan (après 1500) )

fourni par wikipedia emerging languages

Introduccion

Classicament apelat grop dels briozoaris o Bryozoa.

Aqueste grop qu'aparten al superembrancament dels Lophophorata, aparegut a l'Ordovician, es totjorn actual.

Aquestes pichons animals son apelats los zoïdes, vivon dins de lòtjas successivas, las zoecias, que fòrman una colonia, lo zoarium. Produson de matèria carbonatada.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Ectoprocto ( lingua franca nova )

fourni par wikipedia emerging languages
 src=
"Bryozoa", de Kunstformen der Natur, par Ernst Haeckel, 1904

Briozones, ance nomida Polizon o Ectoprocto.

Arbor filojenetical

└─o Ectoprocto o Briozon ├─o Filactolamato o Plumatelido └─o ├─o Stenolemato │ ├─? Ederelido (estinguida) │ ├─o Trepostomato (estinguida) │ ├─o Sistoporato (estinguida) │ │ ├─o Seramoporino (estinguida) │ │ └─o Fistuliporino (estinguida) │ ├─o Criptostomato (estinguida) │ │ ├─o Streblotripino (estinguida) │ │ ├─o Goldfusitripino (estinguida) │ │ ├─o Timanodictino (estinguida) │ │ ├─o Rabdomesino (estinguida) │ │ └─o Ptilodictino (estinguida) │ ├─o Fenestrato (estinguida) │ └─o Tubuliporato o Cyclostomato │ ├─o Fasiculino │ ├─o Canselato │ ├─o Serioporino │ ├─o Rectangulato o Licenoporido │ ├─o Articulato │ ├─o Paleotubuliporino │ └─o Tubuliporino └─o Jimnolemato ├─o Ctenostomato │ ├─o Benedeniporoideo o Protoctenostomato │ ├─o Alsionidino │ ├─o Flustrelidrino │ │ └─o Flustrelidroideo │ ├─o Victorelino │ ├─o Paludiselino o Paludiselido │ ├─o Vesicularino │ └─o Stoloniferino │ ├─o Everilioideo │ ├─o Ualkerioideo │ ├─o Vesicularioideo │ └─o Terebriporoideo └─o Celostomato ├─o Inovicelato o Etedo ├─o Scruparino ├─o Malacostego o Membraniporoideo ├─o Flustrino │ ├─o Caloporoideo │ ├─o Buguloideo │ ├─o Selarioideo │ └─o Microporoideo └─o Ascoforo ├─o Acantostego │ ├─o Cribrilinoideo │ ├─o Bifaxarioideo │ ├─o Nefroporideo │ └─o Cateniseloideo ├─o Ipotomorfo ├─o Umbonulomorfo │ ├─o Aracnopusioideo │ ├─o Adeonoideo │ └─o Lepralieloideo └─o Lepraliomorfo ├─o Batoporoideo ├─o Seleporoideo ├─o Mamiloporoideo ├─o Urseoliporoideo ├─o Smitinoideo └─o Scizoporeloideo 
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Ectoprocto: Brief Summary ( lingua franca nova )

fourni par wikipedia emerging languages
 src= "Bryozoa", de Kunstformen der Natur, par Ernst Haeckel, 1904

Briozones, ance nomida Polizon o Ectoprocto.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Mahovnjaci ( bosnien )

fourni par wikipedia emerging languages
Ecomare - fossiel mosdiertjes (fitis-fossiel-mosdiertje-vuursteen-01-sd).jpg

Mahovnjaci (lat. Bryozoa – poznati i kao Polyzoa ili Ectoprocta[3] – su koljeno vodenih životina iz grupe beskičmenjaka. Obično su dugi oko 0,5 mm, a hrane se filtriranjem i prosijavanjem čestica hrane iz vode, koristeći se uvlačivim lofoforama, "krunama" pipaka koji su obloženi cilijama. Većina morskih vrsta živi u tropskim vodama, ali nekoliko vrsta je pronađeno u okeanskim brazdama, dok su drugi pronađeni i u polarnim vodama. Vrste jednog razreda žive samo u različitim slatkovodnim okruženjima, a nekoliko vrsta (uglavnom morskog razreda) vole slane vode. Danas je poznato više od 4.000 vrsta. Vrste jednog roda žive samotnjački, a ostale su grupisane u kolonijama.[4]

Koljeno se prvobitno zvalo "Polyzoa", ali ovaj naziv je zamijenjen sa "Bryozoa" 1831. godine. Druga grupa životinja koja je otkrivena kasnije, a čiji je mehanizam filtriranja izgledao slično, također je uključena u "Bryozoa" sve do 1869. godine. Međutim, tada se pokazalo da su dvije grupe bile međusobno veoma različite. Šta više, tada je nedavno otkrivena grupa dobila ime Entoprocta, dok su prvobitne "Bryozoa" zvali "Ectoprocta". Međutim, za drugu grupu je u širokoj upotrebi ostao naziv Bryozoa.

Pregled

Mahovnjaci obuhvataju prepoznatljivu i izdvojenu grupu morskih, rjeđe slatkovodnih, sitnih beskičmenjaka, koja je izdvojena iz koljena Tentaculata ili Lophophorata. Imaju sesilni način života organiziran u kolonijama. Obično prekrivaju stijene, druge predmete i biljke, osobito alge i to u gustim nakupinama koje liče na mahovine.

Tijelo mahovnjaka je u obliku čašice sa peteljkom koja je pričvršćena za podlogu. Donji dio izlučuje kućicu od sluzi, hitina ili krečnjaka, a na gornjem, mehkom kraju nalaze se usta s vjenčićem treplji koje stvaraju vrtložna strujanja sa sitnijim česticama hrane. Nemaju sistem provođenja tjelesnih tečnosti, a većina je hermafroditna. Morski oblici se razmnožavaju vanjskim, a slatkovodni unutrašnjim pupanjem. Kada se razmnožavaju spolno, iz oplođenih jaja razvija se larva, koja neko vrijeme slobodno pliva, a zatim se spusti na dno i preobrazi u odraslu životinju.[4]

Zajedničke osobine

Jedinke u kolonijama briozoa (Ectoprocta) nazivaju se zooidi, jer nisu u potpunosti nezavisne životinje. Sve kolonije sadrže autozooide, koji su odgovorni za hranjenje i izlučivanje. Kolonije nekih razreda imaju različite vrste nehranećih zooida specijalista od kojih su neke mrijestilišta za oplođena jaja, a neke klase imaju posebne zooide za odbranu kolonije. Najveći broj vrsta je u razredu Cheilostomata, možda zato što imaju najširi spektar specijalističkih zooida. Nekoliko vrsta može se uvući vrlo polahko pomoću bodljikavih defanzivnih zooida kao noge.

Autozooidi snabdijevaju hranjivim tvarima nehranjive zooide kanalima koji variraju između klasa. Svi zooidi, uključujući i one u usamljeničkih vrsta, sastoje se od cistida koji daje tjelesni zid i proizvodi egzoskelet i polipide koji sadrže unutrašnje organe i lofofore ili druge specijalizirana proširenja. Zooidi nemaju posebne organe za izlučivanje, a polipidi autozooida bivaju odbačeni kada polipidi postanu preopterećeni otpadnim proizvodima. Tada obično tjelesni zid raste zamjenjujuči polipide. Autozooidi imaju želudac je u obliku slova U, s ustima unutar "krune" pipaka i anusom izvan nje. Kolonije se razvijaju u različitim oblicima, uključujući uvijene, žbunaste i listaste. Cheilostomata proizvode mineralizirani egzoskelet i stvaraju jednoslojne listove koji prožimaju površine.

Zooidi svih slatkovodnih vrsta su simultani hermafroditi. Iako kao mnoge morske vrste funkcioniraju prvo kao mužjaci, a zatim kao ženke, njihove kolonije uvijek sadrže kombinaciju zooida koji su u svojim muškim i ženskim fazama. Sve vrste otpuštaju spermu u vodu. Neki otpuštaju jaja u vodu, dok drugi hvataju spermu pomoću pipaka i interno oplode svoja jaja. U nekih vrsta larve imaju velika žumanca, kojima se hrane i brzo se poravnaju na površini. Druge proizvode larve koje imaju malo žumance, ali plivaju i hrane za nekoliko dana prije toga. Nakon iscrpljivanja hrane, sve larve prolaze kroz radikalnu metamorfozu koja uništava i obnavlja gotovo sva unutrašnja tkiva. Slatkovodne vrste proizvode statoblaste koji leže uspavano dok su povoljni uslovi, što omogućava lozi kolonije da preživi, čak i ako se u teškim uslovima ubije matična kolonija.

U predatore morskih mahovnjaka spadaju: morski puževi, ribe, morski ježevi, piknogonide, rakovi, grinje i morske zvijezde. Slatkovodni mahovnjaci su plijen puževima, insektima i ribama. U Tajlandu, mnoge populacije jedne slatkovodne vrste su iskorijenjene dolaskom uvedene vrste puža. Brzo rastuća invazivna bryozoa sa sjeveroistočnih i sjeverozapadnih obala SAD-a je ograničila je kelpske šume do te mjere da je pogodila lokalne populacije riba i beskičmenjaka. Mahovnjaci su se proširili kao bolesti ribnjaka i ribara. Hemikalije koje su izvučene iz morskih vrsta mahovnjaka su u fazi istraživanja za liječenje raka i Alzheimerove bolesti, ali analize nisu ohrabrujuće.

Mineralizirani skeleti mahovnjaka prvo su se pojavili u stijenama sa početka ordovicijskog perioda,[1] čineći posljednje veliko koljeno koje se pojavilo u fosilnom zapisu. To je dovelo istraživače na sumnju da su mahovnjaci nastali ranije, ali su na početku bili nemineralizirani i možda su se značajno razlikovali od fosiliziranih i modernih oblicika. Rani fosili su uglavnom uspravnog oblika, ali inkrustrirani oblici postupno su postali preovladavajuċi. Neizvjesno je da li je koljeno monofiletsko. Evolucijski odnos mahovnjaka prema drugim koljenima su nejasni, dijelom zbog toga što je pogled naučnika na porodično stablo životinja uglavnom pod uticajem poznatijih koljena. Morfološka i molekulskofilogenijska analiza se ne slažu oko odnosa mahovnjaka s entoproktama, u tome da li mahovnjake treba grupisati sa brahiopodama i [[foronoid]ima u Lophophorata i da li mahovnjke treba svrstati u protostome ili deuterostome.

Opis

Anatomija odraslih

Struktura svih glista u peharu vrlo je ujednačena. Sastoje se od mišiće stapke, na čijem je donjem kraju oblikovano stopalo s ljepljivom žlijezdom i čašice, koja predstavlja stvarno tijelo i ima krunu šiljatih bodlji i čekinja. Veličina pojedinih životinja (zooida) obično je oko milimetar; najmanja poznata vrsta je Loxomespilon perezi s oko 0,1 milimetra, a najveća Barentsia robusta s visinom od oko sedam milimetara. Pojedinačne životinje su bilateralno simetrične strukture i slične površnine polipa u Hydrozoa, uključujući i Cnidariansu Za razliku od njih, čašice entoprokta nisu uvučene, već se mogu samonamotati.

Vanjski sloj životinja formira jednoslojna epiderma, koja je na vanjskoj strani ograničena želatinoznim slojem . Muskulatura, koja se sastoji od nagnutih vlakana u predjelu čašice i spaja se u uzdužnu mišiće u stabljici, leži ispod. Tjelesna šupljina kod ovih životinja je pseudocelom ispunjen tečnošću sa izoliranim nakupinama mezenhimskih ćelija, u kojima nema epitelnih obloga slobodnog prostora. Organi životinja se nalaze u peharu, pri čemu je crijevni kanal u obliku slova U i zauzima većinu prostora. Crijevo nema vlastite mišiće, a u unutrašnjosti se nalaze cilije , koje transportuju hranu do centralnog dijela, želuca. Tu se odvija probava i apsorpcija hranjivih sastojaka.Povrh toga, krov želuca, poput jetre kičmenjaka, glavno je skladište i metabolički organ, a služi i za izlučivanje, jer se krajnji metabolički proizvodi izbacuju iz tjelesne šupljine u crijevni trakt. Usni otvor i anus otvaraju se prema gore u predjelu atrija, u kojem se nalazi pipci. Kao organi za izlučivanje i osmoregulaciju služe uparene protonephridije, kao i za odvod iz kesastih gonada .

Nervni sistem je jednostavan i ima jednostavnu gangliju u obliku crijeva. Nervni snopovi od toga idu do mišića čašice, šipki i stapke. Na površini pehara nalaze se mehanoreceptori i dodatni čulni organi s unutarnje strane atena. Ove životinje nemaju organe osjetljive za svjetlost.

Anatomija larve

Larva ima prosječni promjer od samo 50 do 100 mikrometra i pokazuje niz sličnosti sa rasprostranjenom larvom zvanom trohrofora. Razlike postoje između ostalog i u kupolastoj izvedbi gornje polovine (episfera) s krunskim pločama na gornjem, apikalnom kraju. Zbog ove kupole, dolazi naziv "trohoforna larva" (grčkli throchos = kupolasti krov, svod) predložen (Salvini-Plawen) 1980. Na dnu episfere uzdiže se vijenac koji služi za kretanje tokom početnog plutajućeg (pelagiškog) načina života larve. U većini vrsta na epizefiri je formiran senzorni organ koji se sastoji od trepljastog nabora i para svjetlosnih senzornih organa (ocela) kod životinja koje bi se kasnije mogle oživjeti (predoralni organ). Praoralni organ je uparen u kasnijim samotnim oblicima, neparni u slučaju oblika koji formiraju kolonije. Donja polovina larve, hiposfera, u potpunosti je uronjena u episferu tokom plivanja i zato je spolja teško vidljiva. To je bio glavni razlog početnog izjednačavanja sa larvom trohofora. Tek kada je postalo jasno da se u drugoj, živoj sredini (bentoskoj), transformirana hiposfera koristi kao puzajuća potplata, izjednačavanje s trohoforom je relativizirano (međutim, kod nekih vrsta Kamptozoa, nema ove druge faza života u tlu).

Usni otvor je na rubu hiposfere, ispod vijenaca treplji i vodi kroz crijevni kanal u obliku slova U do anusa, koji je takođe u hiposferi. Trohofora takođe ima protonefridije, koje služe za izlučivanje tjelesnog otpada.

Način života

Peharasti crvi žive kao filtrirajući suspendirane materije iz vode, uz pomoć svojih antena i ostalih dodataka. Oni izlučuju ljepljivu sluz, na koju se čestice lijepe, na cilijaa pipaljki dovodeći ih do usnog otvora. Stiskanjem uzdužnih mišićnih vlakana, pojedine životinje izvode kretnje u vidu kretanja klatna i karakteristične pokrete pehara kako bi povećale performanse filtracije.

Većina vrsta su solitarni (samotni) oblici, pričvršćen za podlogu, ali otprilike trećina vrsta također formira kolonije s nekoliko jedinki, čije su grane povezane pomoću stapki.

Razmnožavanje i razvoj

Kamptozoa se mogu razmnožavati i seksualno i aseksualno. U porodici Pedicellinidae u osnovi su istovremeno hermafroditi , tj. trajno imaju i muške i ženske genitalne organe, Loxosomatidae su protandrični hermafroditi, što znači da se prvo razvijaju muški, a potom i ženski spolni organi.

Barentsidae imaju razdvojene spolove, a se javljaju u koloniji. U osnovi, mužjaci s testisima uvijek se formiraju prvi, a razvoj ženskih zooida ovisi o prisutnosti potpuno razvijenih mužjaka u koloniji. Životni vijek pojedinih životinja je oko šest nedjelja.

Aseksualna reprodukcija

Bespolna reprodukcija nastaje pupanjem ektoderma čašičnog zida, što je rezultira pojavom genetički iz identičnog (klonskog) potomstvA. Pupoljci nastaju u ZIDU čašice u predjelu usta ili, u slučaju oblika KOJI formiranja kolonije, na DRŠCI. Tek nakon završetka stvaranja pupoljka, majčinske mezenhimske ćelije migriraju u novostvorenu životinju i formiraju mišiće i vezivno tkivo. U kolonijalnim vrstama, mlade životinje ostaju povezane s matičnom životinjom preko stabljike i produžujući spojnu dršku na mjestu spajanja. Kao rezultat toga, nastaju matične ili visoko razgranate drvolike kolonije, koje kod nekih vrsta poput Pedicellinopsis fructiosa dostižu visine i do 2,5 centimetra s hiljadama pojedinih zooida . Regeneracijskii kapacitet od Kamptozoa je relativno ograničen i samo utiče na regeneraciju oštećenih pipaka. Pomoću stablolikih oblika kolonija mogu se obnoviti stabljike iz blastoderma stabljike, pa one mogu služiti kao stadiji opstanka (posebno u porodici Barentsiidae). Neke kolonije tvore i vrlo zakašnjele pupove, koji postaju pravi zooidi tek kada je ostatak kolonije ugine.

Seksualna reprodukcija

U slučaju seksualne reprodukcije, muške životinje ispuštaju spermu u slobodnu vodu, odakle se unosi u ženske životinje. Oplodnja se odvija u jajniku ženki, odakle oplođeni zigoti migriraju u atrij i skladište se u posebnim parovima džepova koji se nalaze na obje strane rektuma . U embrionskom razvoju spiranom gastrulacijom, svaka od formirane dvije manje (mikromere) i dvije veće ćelija (makromere) postavljaju se spiralno jedne protiv drugih. Od 4d ćelija razvijaju se telomezoblasne ćelije, porijeklom iz mezodermnog tkiva. To je kod Spiralia tipski spiralni kvartet-4D-brazdanja. Zbog ove osobine potrebno je uzeti u obzir bliski odnos vrčastog crva i drugih spiralijaa. Glavni fokus ovdje je na crve i mehkušce.

Distribucija i staništa

Peharasti crvi mogu se naći širom svijeta, u vodama obalnih područja. Većina vrsta je morska, a rasprostranjena Urnatella gracilis jedina je vrsta koja živi u slatkoj vodi. Njena veća brojnost je pronađena samo u Sjevernoj Americi, i odakle je unesena u Evropu i Aziju.

Pojedine životinje vrlo često se nastanjuju na drugim beskičmenjacima kao što su spužve, plućašice, bodljokošcii, a rjeđe i rakovi, gdje imaju koristi od turbulencije vode zbog kretanja i hranjenja većih životinja. Kolonije žive na svim podlogama koje su izložene struji, posebno na hidrodnim štapovima, školjkama i puževima .

Prepoznatljive osobine srodnih koljena

Mahovnjaci, foronidi i brahiopodi hrane se iz vode, filtrirajući čestice pomoću lofofora, "krune" šupljeg pipka. Mahovnjaci stvaraju kolonije koje se sastoje od klonova zvanih zooidi, koji su obično dugi oko 0,5 mm, rijetko 1 mm. Foronidi u cjelini imaju mahovnjačke zooide, ali su dugi oko 2 do 20 cm i iako često rastu u gomilam, ne stvaraju kolonije koje se sastoje od klonova.

Za brahiopode se općenito misli da su blisko srodni mahovnjacima i foronidima, ali se razlikuju po tome što imaju ljušturu koja liči na onu kod školjki Bivalvia. Svatri koljena imaju celom, unutrašnju duplju koja je prekrivena mezotelom.

Neke kolonije inkrustrirane mimahovnjacima sa mineraliziranim egzoskeletom izgledaju kao mali korali. Međutim, mahovnjačke kolonije osniva ancestrula koja je okrugla, a ne u obliku normalnog zooida date vrste. S druge strane, osnivački polip korala ima oblik kao i njegove kćeri polipi, a koralni zooidi nemaju celom ili lofofore.

Entoprokti, drugo koljeno sa filtriranjem hrane po tome dosta liče na mahovnjake, ali njihove strukture za uzimanje hrane koje liče na lofofore, imaju čvrste pipke i anus koji se nalazi u unutrašnjosti, a ne izvan baze "krune" i nemaju celom.

Pregled razdvajajućih svojstava

Svojstvo/Struktura Bryozoa
(Ectoprocta) Ostale Lophophoratae[5] Ostali Lophotrochozoa Koljena sličnog izgleda Phoronida[6] Brachiopoda[7] Annelida, Mollusca Entoprocta[8] Korali (razred koljena Cnidaria) Celom Trodijelni, uključujući epistomsku šupljinu Trodijelni Kod osnovnih oblika, jedan po segmentu; kod nekih taksona, spojeni Formiranje celoma Neizvjesno zbog metamorfoze larve u odrasle, čini to neizvodljivim Enterocoely Schizocoely Nije primjenjivo Lofofor Sa šupljim pipcima Nijedan Slična struktura načina hranjenja, ali sa tvrdim pipima Nijedan Hranjene iz vodenog vrtloga Od vrha do baze pipaka Nije primjenjivo Od baze do vrha pipaka Nije primjenjivo Multitrepljaste ćelije u epitelu Da Ne Nije primjenjivo Položaj anusa Izvan baze lofofora Varira, kod nekih vrsta nijedan Stražnji kraj, ali kod Siboglinidae nijedan Unutar baze organa koji liči na base of lofofor Nijedan Kolonijalni Kod većine, kolonije klonova; jedan rod solitarnih Sesilne vrste su često u gomilama, ali bez aktivne suradnje Kod nekih vrsta, kolonije; postoje neke usamljeničke vrste Kolonije klonova Oblik osnivačkog zooida okrugl, ne liče na normalne zooide Nije primjenjivo Isti kao ostali zooid Mineralizirani egzoskeleti Neki taksoni Ne Ljušture liče onima kod školjki Bivalvia Neke sesilne anelide grade mineralizirane cijevi;[9] Većina mehkušaca ima ljušture, ali današnji glavonošci (Cephalopoda) imaju je unutra ili nikako.[10] Ne Neki taksoni

Filogenija

Zbog svoje male veličine i nedostatka tvrdih tvari u njihovim tijelima, filogenetski dokazi o peharasim crvima vrlo su nepotpuni. Najstariji poznati oblici potječu iz kasnog jure, a nađeni su u Engleskoj.

Sistematika

Vanjska klasifikacija peharastih crva još uvijek nije u potpunosti razjašnjena. Prvobitno su ih potpuno svrstali umahovnjake (Bryozoa), ali većina je urednika odbacila ovu klasifikaciju. Na temelju ontogenetskih opažanja pojedini autori, posebno Nielsen (1979), ih smještaju u neposrednu blizinu Bryozoa. Ax 1999 [2] , s druge strane, predlaže alternativnu klasifikaciju u srodstvu sa mehkušcima (Mollusca) i rezultirajući takson naziva Lacunifera, uzimajući, kao argumente, u obzir finu strukturu kutikule, strukturu tjelesne šupljine kao sistem lakuna i finu strukturu cilija. Još jedna prednost ove hipoteze vidi se u činjenici da se između trohoforskih liarvi nekih mehkušaca i peharastih crva može uspostaviti evolucijska povezanost koja izgleda kao da je puzajuća larva (u ekstremnim slučajevima čak i stopalo pauka mehkušca potiče od larve crvenog luka!) , S molekularnobiološkog gledišta , međutim, ne može se potvrditi blizina vrčatih glista i Bryozoa niti aksijanska hipoteza Lacunifera. Ako se smatra da su larve celomskih crva modificirane trohofore, potrebno je formulirati najmanje dva evolucijska modela u odnosu na njihovo porijelo, od kojih se u svakom podrazumijeva loza tjelesnih slojeva sličnih Annelidama u najširem smislu. Zbog organizacije Entoprocta kao celomskih životinja sa spiralnim brazdanjem, ponekad se ne sumnja na bilo kakvu prepoznatljivu strukturu po kojoj se peharasti crvi mogu pratiti izravno do porodice Trochophorae, koji su već odrasli i u adolescenciji (progenetske Trochophorae). U drugoj verziji vide se Entoprocta, koji se postepeno selekcioniraju i transformiraju. Promjene u obliku larve odvijale bi se paralelno s preobražajem odraslih oblika. Izvjesna blizina vilinskih glista, potvrđena je prvim molekulskogenetičkim istraživanjima rRNK (Mackay i sur. 1995.), međutim mnoge druge linije Lophotrochozoa također pokazuju molekulskogenetičke sličnosti s oblim glistama (uključujući i mehkušce). Prema posljednjim genetičkim istraživanjima, trakavice formiraju sestrinsku grupu drugog sjedećeg patuljastog oblika, Cycliophora, koji je opisan tek 1995. (Halanych 2004). Stoga bi se mogla odbaciti pretpostavka odnosa sestrinske grupe prema mahovnjacima ili mehkušcima. Postoji oko 150 vrsta peharastih glista koje su razvrstani u četiri porodice. Izvorno smatrane kao samotne, Loxosomatidae sadrže oko dvije trećine poznatih vrsta i u poređenju s drugim porodicama nalaze se kao bazna sestrinska grupa Solitaria. Predstavnici ostalih porodica formiraju kolonije i svrstane su kao Coloniales; ovdje se Astolonata (Loxokalypodidae) opet uspoređuju sa Stolonata. Kao filogenetski sistem, to rezultira u:

Kelchwürmer Coloniales

Astolonata (Loxokalypodidae)


Stolonata

Barentsiidae



Pedicellinidae





Solitaria (Loxosomatidae)



Pojedinačno sadrže sljedeće rodove:

Također pogledajte

Reference

  1. ^ a b Taylor, P.D.; Berning, B.; Wilson, M.A. (2013). "Reinterpretation of the Cambrian 'bryozoan' Pywackia as an octocoral". Journal of Paleontology. 87 (6): 984–990. doi:10.1666/13-029.
  2. ^ Ma, Junye; Taylor, Paul D.; Xia, Fengsheng; Zhan, Renbin (2015). "The oldest known bryozoan:Prophyllodictya(Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China". Palaeontology. 58 (5): 925–934. doi:10.1111/pala.12189.
  3. ^ Brusca; Brusca. "21: The Lophophorate Phyla". The Invertebrates.
  4. ^ a b Sofradžija A., Šoljan D., Hadžiselimović R. (2004). Biologija 1. Svjetlost, Sarajevo. ISBN 9958-10-686-8.CS1 održavanje: više imena: authors list (link)
  5. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (7 izd.). Brooks / Cole. str. 817. ISBN 0-03-025982-7.
  6. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (7 izd.). Brooks / Cole. str. 817–821. ISBN 0-03-025982-7.
  7. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (7 izd.). Brooks / Cole. str. 821–829. ISBN 0-03-025982-7.
  8. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Kamptozoa and Cycliophora". Invertebrate Zoology (7 izd.). Brooks / Cole. str. 808–812. ISBN 0-03-025982-7.
  9. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 izd.). Brooks / Cole. str. 414–420. ISBN 0-03-025982-7.
  10. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). Invertebrate Zoology (7 izd.). Brooks / Cole. str. 284–291. ISBN 0-03-025982-7.

Dopunska literatura

licence
cc-by-sa-3.0
droit d’auteur
Autori i urednici Wikipedije

Mahovnjaci: Brief Summary ( bosnien )

fourni par wikipedia emerging languages
Ecomare - fossiel mosdiertjes (fitis-fossiel-mosdiertje-vuursteen-01-sd).jpg

Mahovnjaci (lat. Bryozoa – poznati i kao Polyzoa ili Ectoprocta – su koljeno vodenih životina iz grupe beskičmenjaka. Obično su dugi oko 0,5 mm, a hrane se filtriranjem i prosijavanjem čestica hrane iz vode, koristeći se uvlačivim lofoforama, "krunama" pipaka koji su obloženi cilijama. Većina morskih vrsta živi u tropskim vodama, ali nekoliko vrsta je pronađeno u okeanskim brazdama, dok su drugi pronađeni i u polarnim vodama. Vrste jednog razreda žive samo u različitim slatkovodnim okruženjima, a nekoliko vrsta (uglavnom morskog razreda) vole slane vode. Danas je poznato više od 4.000 vrsta. Vrste jednog roda žive samotnjački, a ostale su grupisane u kolonijama.

Koljeno se prvobitno zvalo "Polyzoa", ali ovaj naziv je zamijenjen sa "Bryozoa" 1831. godine. Druga grupa životinja koja je otkrivena kasnije, a čiji je mehanizam filtriranja izgledao slično, također je uključena u "Bryozoa" sve do 1869. godine. Međutim, tada se pokazalo da su dvije grupe bile međusobno veoma različite. Šta više, tada je nedavno otkrivena grupa dobila ime Entoprocta, dok su prvobitne "Bryozoa" zvali "Ectoprocta". Međutim, za drugu grupu je u širokoj upotrebi ostao naziv Bryozoa.

licence
cc-by-sa-3.0
droit d’auteur
Autori i urednici Wikipedije

Moostierchen ( alémanique )

fourni par wikipedia emerging languages

Mieschdierli (Ectoprocta (Gr.: mit usserem After)), au Bryozoa oder Polyzoa gnännt, sin vylzälligi Dierer, wu im Wasser läbe. Wäg ihre mikroskopische Greßi sin Ainzeldierer schwär uuszmache, uusdehnteri Kolonie sin aber lycht as flechigi Struktur, zem Byschpel uf aagschwämmtem Seetang, z chänne.

Mieschdierli ghere zue dr Lophotrochozoe, ere Großgruppe vu dr Urmyyler (Protostomia). Ihre gnau Verwandtschaftsverhältnis zue anderene Lophotrochozoa-Stämm isch zurzyt uuklar. Di hyfig vermuetet Beziehig zue dr Chelchwirmer (Entoprocta) het dur molekulargenetischi Teschtmethode nit chenne bstetigt wäre, au nit e necheri Verwandtschaft zue Huefyysewirmer (Phoronida) un dr [[ArmfüßerTentaculata verainigt.

Böu

 src=
Anatomi vun eme Mieschdierli

Mieschdierli bilde zmaischt Kolonie (Zoarium) us mehrere Ainzeldierer (Zooide). S ainzel Zooid bstoht us eme Waichlyyb un ere Schale as Schutz, em extrazooidale Skelett (Zooecium). Dr Waichlyyb bstoht us em Polypid (= Vorderlyyb; frei bewegligi Dail) un em Cystid (= Hinterlyyb; wu s Polypid dur Ruckziemuskle komplett cha yyzoge wäre). S Polypid wird us em Cystid bildet. S Verdauigssyschtem isch in Muul, Mitteldarm, Änddarm un After glideret. Dr After isch doderby nit ändständig, är lyt dur dr U-fermig Darm in dr Neche vum Muul usserhalb vum Tentakelchranz (Lophophor gnännt). S Muul isch umgee vu Tentakle, wu uf eme chraisfermige oder zwaidailige Lophophor hocke. D Darmkanäl vu dr Ainzeldierer stehn nit wie bi dr Nesseldierkolonie mitenander in Verbindig.

Innerhalb vu dr Kolonie chunnt s zue Arbetsdailige. Stark ruckbildeti Dierer bilde Stiilgliider, Hoke oder Wurzelfäde. Anderi Ainzeldierer bilde Gschlächtszälle, wider anderi wäre zue Ammedierer oder zue vogelchopfähnlige Avicularie oder Vibrakularie, wu s Feschtsetze vu Främdorganisme uf dr Kolonie verhindere. Bi dr spezialisierte Dierer vu dr Koloni sin d Tentakelchrone un au zmaischt dr Darm zruckbildet.

Furtpflanzig un Entwicklig

D dierer chenne sich gschächtlig oder uugschlächtlig furtpflanze.

Gschlächtligi Furtpflanzig

Us dr gschlächtlige Furtpflanzig gehn zwee verschideni Type vu Larven firi: Di Cyphonaut gnännt planktotroph Larve stellt di "primitiv" Form dar. Si nehrt sich iber Wuche oder sogar Monet vu Nahrigspartikel im Plankton. Di lecitothroph Larve setzt sich scho no ne baar Stund mit dr Ventralflechi fescht. Dur Metamorfos entstehn Ancestrula, di erschte 1-6 Zooide vun ere Koloni. Derno chunnt di uugschlächtlig Furtpflanzig, wu d Koloni wyter derdur wachst.

Uugschlächtligi Furtpflanzig

Di uugschlächtlig Furtpflanzig gschiht dur Chnoschpen, ähnlig wie bin ere Pflanze, wu bi dr Sießwasserarte Statoblaschte gnännt wäre. Doderdur chenne groß Kolonie entstoh. Di dur uugschlächtligi Furtpflanzig entstandene Zooide innerhalb vun ere Koloni sin wäge däm Klon, genetisch idäntischi Noochuu vu dr Ursprungs-Larve.

Vorchuu

Hite sin rund 5.600 rezenti un 16.000 fossili Arte vu Mieschdierli in Sieß- un Salzwasser bschribe. D Klasse vu dr Sießwassermieschdierli (Phylactolaemata) umfasst alli limnische Arte.

In dr Geologi hän d Mieschdierli wäg ihre wyter Verbraitig syt em Ordovizium (Cyclostomata un Ctenostomata) e großi Bedytig as Laitfossilie un fir stratigrafischi Bstimmige.

Wirtschaftligi Bedytig

Iber 125 Arte verursache dur stark Wachstum Schäde bzw. Unterhaltigscheschte an Schiff, Hafenaalage un wasserwirtschaftligen Aalage, zum Dail au im Sießwasser.

Uf dr andere Syte produziere Bryozoe chemischi Wirkstoff, wu di medizinisch Wirkig vun ene untersuecht wird, dodrunter s meglig Antichräbsmittel Bryostatin 1.

Literatur

  • Hayward, P.J., & Ryland, J.S., 1999: Cheilostomatous Bryozoa. Part 2. Hippothoidea - Celleporoidea. Synopses of the British Fauna (New Series), 14: 1-416, (Barnes, R.S.K., & Crothers, J.H., editors). Field Studies Council, Shrewsbury.

licence
cc-by-sa-3.0
droit d’auteur
Autorët dhe redaktorët e Wikipedia

Mosbieëster ( limbourgeois )

fourni par wikipedia emerging languages
 src=
Flustra foliacea.
 src=
Fossiel mosbieëster.

De mosbieëster, mosbieësjkes of mosdeerkes (Letien: Bryozoa of Ectoprocta; neet te verwarre mit de waterbaerkes) vörmen 'ne stam van oermunjige (Protostomata) die veural inne zieë laeve. Zoeaget 6000 laevendje saorte zeen besjreve geworen in deze stam, worónger de vleescelpoliep en 't blaadechtig häörewier.

Dees hoeagoet 1 mm lang waterbieësjkes laeven in doeasvörmige, toet kelonies verkitje huuskes. Sómtieds vörme ze koosjten op rotsen en zieëwier. Anger saorte vertuuenen euvereinkumste mit mos, det inne struiming haer en trögk wuuertj geweeg. Aafgestorve kelonies waere döks 't strandj op geworpe, wo ze waeren aangezeen veur verdruueg zieëwier. Mosbieëster gaeven euveren algemein de veurkäör aan werm, troeapische watere, meh kómmen euvere ganse werreld veur.

Binne de geologie, en mit naam de paleontologie, zeen Bryozoa wichtige indicatore veur 't aafzèttingsmiljeu van 'n bepaoldj saort aan stein. Ómdet de Bryozoa delicaat organisme zeen is 't veurkómme daovan in sedimentaire stein 'n indikaasje veur e roewig aafzèttingsmiljeu. Wen de Bryozoa hieël opgebraoke zeen (en zoea-geneumdje bioklaste vörme) is de innerzjie hoger gewaes t'n tieje vanne aafzètting.

Taxonomie

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Mosbieëster: Brief Summary ( limbourgeois )

fourni par wikipedia emerging languages
 src= Flustra foliacea.  src= Fossiel mosbieëster.

De mosbieëster, mosbieësjkes of mosdeerkes (Letien: Bryozoa of Ectoprocta; neet te verwarre mit de waterbaerkes) vörmen 'ne stam van oermunjige (Protostomata) die veural inne zieë laeve. Zoeaget 6000 laevendje saorte zeen besjreve geworen in deze stam, worónger de vleescelpoliep en 't blaadechtig häörewier.

Dees hoeagoet 1 mm lang waterbieësjkes laeven in doeasvörmige, toet kelonies verkitje huuskes. Sómtieds vörme ze koosjten op rotsen en zieëwier. Anger saorte vertuuenen euvereinkumste mit mos, det inne struiming haer en trögk wuuertj geweeg. Aafgestorve kelonies waere döks 't strandj op geworpe, wo ze waeren aangezeen veur verdruueg zieëwier. Mosbieëster gaeven euveren algemein de veurkäör aan werm, troeapische watere, meh kómmen euvere ganse werreld veur.

Binne de geologie, en mit naam de paleontologie, zeen Bryozoa wichtige indicatore veur 't aafzèttingsmiljeu van 'n bepaoldj saort aan stein. Ómdet de Bryozoa delicaat organisme zeen is 't veurkómme daovan in sedimentaire stein 'n indikaasje veur e roewig aafzèttingsmiljeu. Wen de Bryozoa hieël opgebraoke zeen (en zoea-geneumdje bioklaste vörme) is de innerzjie hoger gewaes t'n tieje vanne aafzètting.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Mööskdiarten ( frison du nord )

fourni par wikipedia emerging languages
Amrum.pngTekst üüb Öömrang

Mööskdiarten (Ectoprocta, Bryozoa of Polyzoa) san en stam faan diarten, diar uun't weeder lewe. Jo san böös letj, grater koloniin koon am oober sä üüb song.

Bilen

Klasen

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Mööskdiarten: Brief Summary ( frison du nord )

fourni par wikipedia emerging languages

Mööskdiarten (Ectoprocta, Bryozoa of Polyzoa) san en stam faan diarten, diar uun't weeder lewe. Jo san böös letj, grater koloniin koon am oober sä üüb song.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Мовести животни ( macédonien )

fourni par wikipedia emerging languages

Мовести животни е заедничко име за два типа (Endoprocta и Ectoprocta) на мали и едноставни водни животни кои се хранат со помош на круна од пипала наречена лофофор и кои обично формираат прикрепени, мовести колонии. Класификацијата на овие два типа варирала во зависност од промената во мислењата за врската на мовестите животни со другите типови на животни. Авторите кои мислат дека двете групи имаат близок заеднички предок го задржуваат името Bryozoa и ги третираат ендопроктите (мовести животни кај кои устата и аналниот отвор се наоѓаат во лофофорот) и ектопроктите (мовести животни каде анусот е надвор од лофофорот) како класи. Други го користат терминот бриозои само за ектопроктите.

Ендопроктите, кои се морски форми со исклучок на еден слатководен вид, имаат глобуларно тело кое е потпрено на дршка. Лофофорот ги обиколува и устата и анусот. Се размножуваат полово и бесполово, често формирајќи колонии на поврзани индивидуи. Кај ектопроктите, кои се воглавно морски, лофофорот не го обиколува анусот. Колониите кои ектопроктите ги формираат по пат на бесполово размножуавње се со различна структура, и секој член обично има цврста заштитна покривка.

Општи својства

Ендопроктите и ектопроктите се ситни, често микроскопски животни кои ретко достигнуваат повеќе од 1 mm во должина. Повеќето видови живеат во плитки води, иако некои се забележани и на длабочини оф 5,500 m. Многу видови се хермафродити.

licence
cc-by-sa-3.0
droit d’auteur
Автори и уредници на Википедија

Мовести животни: Brief Summary ( macédonien )

fourni par wikipedia emerging languages

Мовести животни е заедничко име за два типа (Endoprocta и Ectoprocta) на мали и едноставни водни животни кои се хранат со помош на круна од пипала наречена лофофор и кои обично формираат прикрепени, мовести колонии. Класификацијата на овие два типа варирала во зависност од промената во мислењата за врската на мовестите животни со другите типови на животни. Авторите кои мислат дека двете групи имаат близок заеднички предок го задржуваат името Bryozoa и ги третираат ендопроктите (мовести животни кај кои устата и аналниот отвор се наоѓаат во лофофорот) и ектопроктите (мовести животни каде анусот е надвор од лофофорот) како класи. Други го користат терминот бриозои само за ектопроктите.

Ендопроктите, кои се морски форми со исклучок на еден слатководен вид, имаат глобуларно тело кое е потпрено на дршка. Лофофорот ги обиколува и устата и анусот. Се размножуваат полово и бесполово, често формирајќи колонии на поврзани индивидуи. Кај ектопроктите, кои се воглавно морски, лофофорот не го обиколува анусот. Колониите кои ектопроктите ги формираат по пат на бесполово размножуавње се со различна структура, и секој член обично има цврста заштитна покривка.

licence
cc-by-sa-3.0
droit d’auteur
Автори и уредници на Википедија

Мшанкалар ( kirghize )

fourni par wikipedia emerging languages
 src=
Sertella septentrionalis.

Мшанкалар (лат. Bryozoa) – шапалактуулар тибиндеги суу жандыктарынын классы. Колониялуу организмдер, колониясы дарак сымал, чанда көлөмү чоң (бир нече смге чейин). Өзүнчө особдор – зооиддерден (узундугу 1 мм дей) турат. Ар бир особдун назик алдынкы бөлүгү – полипид колониянын үстүнө бир аз чыгып турат жана бир аз дүүлүктүргөндө арткы бөлүгү – цистиддин ичине кирип кетет. Полипидинде тегереги шапалакчалар менен курчалган оозу жана жон анусу жайгашкан. Денесинин экинчилик көңдөйү (целому) жука тосмо менен арткы (дене) жана алдынкы (шапалактуу) бөлүккө бөлүнгөн. Дем алуу жана бөлүп чыгаруу системасы жок. Ичегиси илмек сымал, нерв системасы ганглийден турат, андан нервдер чыгат. Гермофродиттер, жумурткасы сууда, дене көңдөйүндө же атайын камерасында өөрчүйт. Личинкасы раковиналуу же кээ биринде жок. Личинкасы суу түбүнө түшүп, колонияны пайда кылат. Мшанкалардын 4 түркүмү, 4,5 миңдей азыркы, 1,5 миңдей тукуму курут болгон түрү белгилүү. Деңизде, чандасы тузсуз сууда жашайт.

Колдонулган адабияттар

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia жазуучу жана редактор

Bryozoa ( anglais )

fourni par wikipedia EN

Bryozoa (also known as the Polyzoa, Ectoprocta or commonly as moss animals)[6] are a phylum of simple, aquatic invertebrate animals, nearly all living in sedentary colonies. Typically about 0.5 millimetres (164 in) long, they have a special feeding structure called a lophophore, a "crown" of tentacles used for filter feeding. Most marine bryozoans live in tropical waters, but a few are found in oceanic trenches and polar waters. The bryozoans are classified as the marine bryozoans (Stenolaemata), freshwater bryozoans (Phylactolaemata), and mostly-marine bryozoans (Gymnolaemata), a few members of which prefer brackish water. 5,869 living species are known.[7] At least two genera are solitary (Aethozooides and Monobryozoon); the rest are colonial.

The terms Polyzoa and Bryozoa were introduced in 1830 and 1831, respectively.[8][9] Soon after it was named, another group of animals was discovered whose filtering mechanism looked similar, so it was included in Bryozoa until 1869, when the two groups were noted to be very different internally. The new group was given the name "Entoprocta", while the original Bryozoa were called "Ectoprocta". Disagreements about terminology persisted well into the 20th century, but "Bryozoa" is now the generally accepted term.[10][11]

Colonies take a variety of forms, including fans, bushes and sheets. Single animals, called zooids, live throughout the colony and are not fully independent. These individuals can have unique and diverse functions. All colonies have "autozooids", which are responsible for feeding, excretion, and supplying nutrients to the colony through diverse channels. Some classes have specialist zooids like hatcheries for fertilized eggs, colonial defence structures, and root-like attachment structures. Cheilostomata is the most diverse order of bryozoan, possibly because its members have the widest range of specialist zooids. They have mineralized exoskeletons and form single-layered sheets which encrust over surfaces, and some colonies can creep very slowly by using spiny defensive zooids as legs.

Each zooid consists of a "cystid", which provides the body wall and produces the exoskeleton, and a "polypide", which holds the organs. Zooids have no special excretory organs, and autozooids' polypides are scrapped when they become overloaded with waste products; usually the body wall then grows a replacement polypide. Their gut is U-shaped, with the mouth inside the crown of tentacles and the anus outside it. Zooids of all the freshwater species are simultaneous hermaphrodites. Although those of many marine species function first as males and then as females, their colonies always contain a combination of zooids that are in their male and female stages. All species emit sperm into the water. Some also release ova into the water, while others capture sperm via their tentacles to fertilize their ova internally. In some species the larvae have large yolks, go to feed, and quickly settle on a surface. Others produce larvae that have little yolk but swim and feed for a few days before settling. After settling, all larvae undergo a radical metamorphosis that destroys and rebuilds almost all the internal tissues. Freshwater species also produce statoblasts that lie dormant until conditions are favorable, which enables a colony's lineage to survive even if severe conditions kill the mother colony.

Predators of marine bryozoans include sea slugs (nudibranchs), fish, sea urchins, pycnogonids, crustaceans, mites and starfish. Freshwater bryozoans are preyed on by snails, insects, and fish. In Thailand, many populations of one freshwater species have been wiped out by an introduced species of snail.[12] A fast-growing invasive bryozoan off the northeast and northwest coasts of the US has reduced kelp forests so much that it has affected local fish and invertebrate populations. Bryozoans have spread diseases to fish farms and fishermen. Chemicals extracted from a marine bryozoan species have been investigated for treatment of cancer and Alzheimer's disease, but analyses have not been encouraging.[13]

Mineralized skeletons of bryozoans first appear in rocks from the Early Ordovician period,[1] making it the last major phylum to appear in the fossil record. This has led researchers to suspect that bryozoans arose earlier but were initially unmineralized, and may have differed significantly from fossilized and modern forms. In 2021, some research suggested Protomelission, a genus known from the Cambrian period, could be an example of an early bryozoan,[14] but later research suggested that this taxon may instead represent a dasyclad alga.[3] Early fossils are mainly of erect forms, but encrusting forms gradually became dominant. It is uncertain whether the phylum is monophyletic. Bryozoans' evolutionary relationships to other phyla are also unclear, partly because scientists' view of the family tree of animals is mainly influenced by better-known phyla. Both morphological and molecular phylogeny analyses disagree over bryozoans' relationships with entoprocts, about whether bryozoans should be grouped with brachiopods and phoronids in Lophophorata, and whether bryozoans should be considered protostomes or deuterostomes.

Description

Distinguishing features

Bryozoans, phoronids and brachiopods strain food out of the water by means of a lophophore, a "crown" of hollow tentacles. Bryozoans form colonies consisting of clones called zooids that are typically about 0.5 mm (164 in) long.[15] Phoronids resemble bryozoan zooids but are 2 to 20 cm (1 to 8 in) long and, although they often grow in clumps, do not form colonies consisting of clones.[16] Brachiopods, generally thought to be closely related to bryozoans and phoronids, are distinguished by having shells rather like those of bivalves.[17] All three of these phyla have a coelom, an internal cavity lined by mesothelium.[15][16][17] Some encrusting bryozoan colonies with mineralized exoskeletons look very like small corals. However, bryozoan colonies are founded by an ancestrula, which is round rather than shaped like a normal zooid of that species. On the other hand, the founding polyp of a coral has a shape like that of its daughter polyps, and coral zooids have no coelom or lophophore.[18]

Entoprocts, another phylum of filter-feeders, look rather like bryozoans but their lophophore-like feeding structure has solid tentacles, their anus lies inside rather than outside the base of the "crown" and they have no coelom.[19]

Types of zooid

All bryozoans are colonial except for one genus, Monobryozoon.[24][25] Individual members of a bryozoan colony are about 0.5 mm (164 in) long and are known as zooids,[15] since they are not fully independent animals.[26] All colonies contain feeding zooids, known as autozooids. Those of some groups also contain non-feeding heterozooids, also known as polymorphic zooids, which serve a variety of functions other than feeding;[25] colony members are genetically identical and co-operate, rather like the organs of larger animals.[15] What type of zooid grows where in a colony is determined by chemical signals from the colony as a whole or sometimes in response to the scent of predators or rival colonies.[25]

The bodies of all types have two main parts. The cystid consists of the body wall and whatever type of exoskeleton is secreted by the epidermis. The exoskeleton may be organic (chitin, polysaccharide or protein) or made of the mineral calcium carbonate. The body wall consists of the epidermis, basal lamina (a mat of non-cellular material), connective tissue, muscles, and the mesothelium which lines the coelom (main body cavity)[15] – except that in one class, the mesothelium is split into two separate layers, the inner one forming a membranous sac that floats freely and contains the coelom, and the outer one attached to the body wall and enclosing the membranous sac in a pseudocoelom.[27] The other main part of the bryozoan body, known as the polypide and situated almost entirely within the cystid, contains the nervous system, digestive system, some specialized muscles and the feeding apparatus or other specialized organs that take the place of the feeding apparatus.[15]

Feeding zooids

Invert
Retractor muscle
Protective covering
Lophophore's tentacles
Coelom (body cavity)
Stomach
Funiculus
= Retractor muscle
= Outer covering
A generalized autozooid[15]

The most common type of zooid is the feeding autozooid, in which the polypide bears a "crown" of hollow tentacles called a lophophore, which captures food particles from the water.[25] In all colonies a large percentage of zooids are autozooids, and some consist entirely of autozooids, some of which also engage in reproduction.[28]

The basic shape of the "crown" is a full circle. Among the freshwater bryozoans (Phylactolaemata) the crown appears U-shaped, but this impression is created by a deep dent in the rim of the crown, which has no gap in the fringe of tentacles.[15] The sides of the tentacles bear fine hairs called cilia, whose beating drives a water current from the tips of the tentacles to their bases, where it exits. Food particles that collide with the tentacles are trapped by mucus, and further cilia on the inner surfaces of the tentacles move the particles towards the mouth in the center.[20] The method used by ectoprocts is called "upstream collecting", as food particles are captured before they pass through the field of cilia that creates the feeding current. This method is also used by phoronids, brachiopods and pterobranchs.[29]

The lophophore and mouth are mounted on a flexible tube called the "invert", which can be turned inside-out and withdrawn into the polypide,[15] rather like the finger of a rubber glove; in this position the lophophore lies inside the invert and is folded like the spokes of an umbrella. The invert is withdrawn, sometimes within 60 milliseconds, by a pair of retractor muscles that are anchored at the far end of the cystid. Sensors at the tips of the tentacles may check for signs of danger before the invert and lophophore are fully extended. Extension is driven by an increase in internal fluid pressure, which species with flexible exoskeletons produce by contracting circular muscles that lie just inside the body wall,[15] while species with a membranous sac use circular muscles to squeeze this.[27] Some species with rigid exoskeletons have a flexible membrane that replaces part of the exoskeleton, and transverse muscles anchored on the far side of the exoskeleton increase the fluid pressure by pulling the membrane inwards.[15] In others there is no gap in the protective skeleton, and the transverse muscles pull on a flexible sac which is connected to the water outside by a small pore; the expansion of the sac increases the pressure inside the body and pushes the invert and lophophore out.[15] In some species the retracted invert and lophophore are protected by an operculum ("lid"), which is closed by muscles and opened by fluid pressure. In one class, a hollow lobe called the "epistome" overhangs the mouth.[15]

The gut is U-shaped, running from the mouth, in the center of the lophophore, down into the animal's interior and then back to the anus, which is located on the invert, outside and usually below the lophophore.[15] A network of strands of mesothelium called "funiculi" ("little ropes")[30] connects the mesothelium covering the gut with that lining the body wall. The wall of each strand is made of mesothelium, and surrounds a space filled with fluid, thought to be blood.[15] A colony's zooids are connected, enabling autozooids to share food with each other and with any non-feeding heterozooids.[15] The method of connection varies between the different classes of bryozoans, ranging from quite large gaps in the body walls to small pores through which nutrients are passed by funiculi.[15][27]

There is a nerve ring round the pharynx (throat) and a ganglion that serves as a brain to one side of this. Nerves run from the ring and ganglion to the tentacles and to the rest of the body.[15] Bryozoans have no specialized sense organs, but cilia on the tentacles act as sensors. Members of the genus Bugula grow towards the sun, and therefore must be able to detect light.[15] In colonies of some species, signals are transmitted between zooids through nerves that pass through pores in the body walls, and coordinate activities such as feeding and the retraction of lophophores.[15]

The solitary individuals of Monobryozoon are autozooids with pear-shaped bodies. The wider ends have up to 15 short, muscular projections by which the animals anchor themselves to sand or gravel[31] and pull themselves through the sediments.[32]

Avicularia and vibracula

Some authorities use the term avicularia (plural of avicularium) to refer to any type of zooid in which the lophophore is replaced by an extension that serves some protective function,[28] while others restrict the term to those that defend the colony by snapping at invaders and small predators, killing some and biting the appendages of others.[15] In some species the snapping zooids are mounted on a peduncle (stalk), their bird-like appearance responsible for the term – Charles Darwin described these as like "the head and beak of a vulture in miniature, seated on a neck and capable of movement".[15][28] Stalked avicularia are placed upside-down on their stalks.[25] The "lower jaws" are modified versions of the opercula that protect the retracted lophophores in autozooids of some species, and are snapped shut "like a mousetrap" by similar muscles,[15] while the beak-shaped upper jaw is the inverted body wall.[25] In other species the avicularia are stationary box-like zooids laid the normal way up, so that the modified operculum snaps down against the body wall.[25] In both types the modified operculum is opened by other muscles that attach to it,[28] or by internal muscles that raise the fluid pressure by pulling on a flexible membrane.[15] The actions of these snapping zooids are controlled by small, highly modified polypides that are located inside the "mouth" and bear tufts of short sensory cilia.[15][25] These zooids appear in various positions: some take the place of autozooids, some fit into small gaps between autozooids, and small avicularia may occur on the surfaces of other zooids.[28]

In vibracula, regarded by some as a type of avicularia, the operculum is modified to form a long bristle that has a wide range of motion. They may function as defenses against predators and invaders, or as cleaners. In some species that form mobile colonies, vibracula around the edges are used as legs for burrowing and walking.[15][28]

Structural polymorphs

Kenozooids (from the Greek kenós 'empty')[33] consist only of the body wall and funicular strands crossing the interior,[15] and no polypide.[25] The functions of these zooids include forming the stems of branching structures, acting as spacers that enable colonies to grow quickly in a new direction,[25][28] strengthening the colony's branches, and elevating the colony slightly above its substrate for competitive advantages against other organisms. Some kenozooids are hypothesized to be capable of storing nutrients for the colony. [34] Because kenozooids' function is generally structural, they are called "structural polymorphs."

Some heterozooids found in extinct trepostome bryozoans, called mesozooids, are thought to have functioned to space the feeding autozooids an appropriate distance apart. In thin sections of trepostome fossils, mesozooids can be seen in between the tubes that held autozooids; they are smaller tubes that are divided along their length by diaphragms, making them look like rows of box-like chambers sandwiched between autozooidal tubes. [35]

Reproductive polymorphs

Gonozooids act as brood chambers for fertilized eggs.[25] Almost all modern cyclostome bryozoans have them, but they can be hard to locate on a colony because there are so few gonozooids in one colony. The aperture in gonozooids, which is called an ooeciopore, acts as a point for larvae to exit. Some gonozooids have very complex shapes with autozooidal tubes passing through chambers within them. All larvae released from a gonozooid are clones created by division of a single egg; this is called monozygotic polyembryony, and is a reproductive strategy also used by armadillos.[36]

Cheilostome bryozoans also brood their embryos; one of the common methods is through ovicells, capsules attached to autozooids. The autozooids possessing ovicells are normally still able to feed, however, so these are not considered heterozooids. [37]

"Female" polymorphs are more common than "male" polymorphs, but specialized zooids that produce sperm are also known. These are called androzooids, and some are found in colonies of Odontoporella bishopi, a species that is symbiotic with hermit crabs and lives on their shells. These zooids are smaller than the others and have four short tentacles and four long tentacles, unlike the autozooids which have 15–16 tentacles. Androzooids are also found in species with mobile colonies that can crawl around. It is possible that androzooids are used to exchange sperm between colonies when two mobile colonies or bryozoan-encrusted hermit crabs happen to encounter one another. [38]

Other polymorphs

Spinozooids are hollow, movable spines, like very slender, small tubes, present on the surface of colonies, which probably are for defense.[39] Some species have miniature nanozooids with small single-tentacled polypides, and these may grow on other zooids or within the body walls of autozooids that have degenerated.[28]

Colony forms and composition

A colony of the modern marine bryozoan Flustra foliacea.
Cheilostome bryozoan with serpulid tubes

Although zooids are microscopic, colonies range in size from 1 cm (12 in) to over 1 m (3 ft 3 in).[15] However, the majority are under 10 cm (4 in) across.[18] The shapes of colonies vary widely, depend on the pattern of budding by which they grow, the variety of zooids present and the type and amount of skeletal material they secrete.[15]

Some marine species are bush-like or fan-like, supported by "trunks" and "branches" formed by kenozooids, with feeding autozooids growing from these. Colonies of these types are generally unmineralized but may have exoskeletons made of chitin.[15] Others look like small corals, producing heavy lime skeletons.[40] Many species form colonies which consist of sheets of autozooids. These sheets may form leaves, tufts or, in the genus Thalamoporella, structures that resemble an open head of lettuce.[15]

The most common marine form, however, is encrusting, in which a one-layer sheet of zooids spreads over a hard surface or over seaweed. Some encrusting colonies may grow to over 50 cm (1 ft 8 in) and contain about 2,000,000 zooids.[15] These species generally have exoskeletons reinforced with calcium carbonate, and the openings through which the lophophores protrude are on the top or outer surface.[15] The moss-like appearance of encrusting colonies is responsible for the phylum's name (Ancient Greek words βρύον brúon meaning 'moss' and ζῷον zôion meaning 'animal').[41] Large colonies of encrusting species often have "chimneys", gaps in the canopy of lophophores, through which they swiftly expel water that has been sieved, and thus avoid re-filtering water that is already exhausted.[42] They are formed by patches of non-feeding heterozooids.[43] New chimneys appear near the edges of expanding colonies, at points where the speed of the outflow is already high, and do not change position if the water flow changes.[44]

Some freshwater species secrete a mass of gelatinous material, up to 1 m (3 ft 3 in) in diameter, to which the zooids stick. Other freshwater species have plant-like shapes with "trunks" and "branches", which may stand erect or spread over the surface. A few species can creep at about 2 cm (34 in) per day.[15]

Each colony grows by asexual budding from a single zooid known as the ancestrula,[15] which is round rather than shaped like a normal zooid.[18] This occurs at the tips of "trunks" or "branches" in forms that have this structure. Encrusting colonies grow round their edges. In species with calcareous exoskeletons, these do not mineralize until the zooids are fully grown. Colony lifespans range from one to about 12 years, and the short-lived species pass through several generations in one season.[15]

Species that produce defensive zooids do so only when threats have already appeared, and may do so within 48 hours.[25] The theory of "induced defenses" suggests that production of defenses is expensive and that colonies which defend themselves too early or too heavily will have reduced growth rates and lifespans. This "last minute" approach to defense is feasible because the loss of zooids to a single attack is unlikely to be significant.[25] Colonies of some encrusting species also produce special heterozooids to limit the expansion of other encrusting organisms, especially other bryozoans. In some cases this response is more belligerent if the opposition is smaller, which suggests that zooids on the edge of a colony can somehow sense the size of the opponent. Some species consistently prevail against certain others, but most turf wars are indecisive and the combatants soon turn to growing in uncontested areas.[25] Bryozoans competing for territory do not use the sophisticated techniques employed by sponges or corals, possibly because the shortness of bryozoan lifespans makes heavy investment in turf wars unprofitable.[25]

Bryozoans have contributed to carbonate sedimentation in marine life since the Ordovician period. Bryozoans take responsibility for many of the colony forms, which have evolved in different taxonomic groups and vary in sediment producing ability. The nine basic bryozoan colony-forms include: encrusting, dome-shaped, palmate, foliose, fenestrate, robust branching, delicate branching, articulated and free-living. Most of these sediments come from two distinct groups of colonies: domal, delicate branching, robust branching and palmate; and fenestrate. Fenestrate colonies generate rough particles both as sediment and components of stromatoporoids coral reefs. The delicate colonies however, create both coarse sediment and form the cores of deep-water, subphotic biogenic mounds. Nearly all post- bryozoan sediments are made up of growth forms, with the addition to free-living colonies which include significant numbers of various colonies. "In contrast to the Palaeozoic, post-Palaeozoic bryozoans generated sediment varying more widely with the size of their grains; they grow as they moved from mud, to sand, to gravel."[45]

Taxonomy

Peronopora, a trepostome bryozoan from the Whitewater Formation (Upper Ordovician) of eastern Indiana, United States
Evactinopora bryozoan found in Jefferson County, Missouri, United States

The phylum was originally called "Polyzoa", but this name was eventually replaced by Ehrenberg's term "Bryozoa".[11][46][47] The name "Bryozoa" was originally applied only to the animals also known as Ectoprocta (lit.'outside-anus'),[48] in which the anus lies outside the "crown" of tentacles. After the discovery of the Entoprocta (lit.'inside-anus'),[49] in which the anus lies within a "crown" of tentacles, the name "Bryozoa" was promoted to phylum level to include the two classes Ectoprocta and Entoprocta.[50] However, in 1869 Hinrich Nitsche regarded the two groups as quite distinct for a variety of reasons, and coined the name "Ectoprocta" for Ehrenberg's "Bryozoa".[5][51] Despite their apparently similar methods of feeding, they differed markedly anatomically; in addition to the different positions of the anus, ectoprocts have hollow tentacles and a coelom, while entoprocts have solid tentacles and no coelom. Hence the two groups are now widely regarded as separate phyla, and the name "Bryozoa" is now synonymous with "Ectoprocta".[50] This has remained the majority view ever since, although most publications have preferred the name "Bryozoa" rather than "Ectoprocta".[47] Nevertheless, some notable scientists have continued to regard the "Ectoprocta" and Entoprocta as close relatives and group them under "Bryozoa".[51]

The ambiguity about the scope of the name "Bryozoa" led to proposals in the 1960s and 1970s that it should be avoided and the unambiguous term "Ectoprocta" should be used.[52] However, the change would have made it harder to find older works in which the phylum was called "Bryozoa", and the desire to avoid ambiguity, if applied consistently to all classifications, would have necessitated renaming of several other phyla and many lower-level groups.[46] In practice, zoological naming of split or merged groups of animals is complex and not completely consistent.[53] Works since 2000 have used various names to resolve the ambiguity, including: "Bryozoa",[15][18] "Ectoprocta",[21][25] "Bryozoa (Ectoprocta)",[27] and "Ectoprocta (Bryozoa)".[54] Some have used more than one approach in the same work.[55]

The common name "moss animals" is the literal meaning of "Bryozoa", from Greek βρυόν ('moss') and ζῷα ('animals'), based on the mossy appearance of encrusting species.[56]

Until 2008 there were "inadequately known and misunderstood type species belonging to the Cyclostome Bryozoan family Oncousoeciidae."[57] Modern research and experiments have been done using low-vacuum scanning electron microscopy of uncoated type material to critically examine and perhaps revise the taxonomy of three genera belonging to this family, including Oncousoecia, Microeciella, and Eurystrotos. This method permits data to be obtained that would be difficult to recognize with an optical microscope. The valid type species of Oncousoecia was found to be Oncousoecia lobulata. This interpretation stabilizes Oncousoecia by establishing a type species that corresponds to the general usage of the genus. Fellow Oncousoeciid Eurystrotos is now believed to be not conspecific with O. lobulata, as previously suggested, but shows enough similarities to be considered a junior synonym of Oncousoecia. Microeciella suborbicularus has also been recently distinguished from O. lobulata and O. dilatans, using this modern method of low vacuum scanning, with which it has been inaccurately synonymized with in the past. A new genus has also been recently discovered called Junerossia in the family Stomachetosellidae, along with 10 relatively new species of bryozoa such as Alderina flaventa, Corbulella extenuata, Puellina septemcryptica, Junerossia copiosa, Calyptotheca kapaaensis, Bryopesanser serratus, Cribellopora souleorum, Metacleidochasma verrucosa, Disporella compta, and Favosipora adunca.[58]

Classification and diversity

Counts of formally described species range between 4,000 and 4,500.[59] The Gymnolaemata and especially Cheilostomata have the greatest numbers of species, possibly because of their wide range of specialist zooids.[25] Under the Linnaean system of classification, which is still used as a convenient way to label groups of organisms,[60] living members of the phylum Bryozoa are divided into:[15][25]

Fossil record

Bryozoan fossils in an Upper Ordovician oil shale (kukersite), northern Estonia.

Fossils of about 15,000 bryozoan species have been found. Bryozoans are among the three dominant groups of Paleozoic fossils.[66] Bryozoans with calcitic skeletons were a major source of the carbonate minerals that make up limestones, and their fossils are incredibly common in marine sediments worldwide from the Ordovician onward. However, unlike corals and other colonial animals found in the fossil record, Bryozoan colonies did not reach large sizes.[67] Fossil bryozoan colonies are typically found highly fragmented and scattered; the preservation of complete zoaria is uncommon in the fossil record, and relatively little study has been devoted to reassembling fragmented zoaria.[68] The largest known fossil colonies are branching trepostome bryozoans from Ordovician rocks in the United States, reaching 66 centimeters in height.[67]

The oldest species with a mineralized skeleton occurs in the Lower Ordovician.[1] It is likely that the first bryozoans appeared much earlier and were entirely soft-bodied, and the Ordovician fossils record the appearance of mineralized skeletons in this phylum.[5] By the Arenigian stage of the Early Ordovician period,[18][69] about 480 million years ago, all the modern orders of stenolaemates were present,[70] and the ctenostome order of gymnolaemates had appeared by the Middle Ordovician, about 465 million years ago. The Early Ordovician fossils may also represent forms that had already become significantly different from the original members of the phylum.[70] Ctenostomes with phosphatized soft tissue are known from the Devonian.[71] Other types of filter feeders appeared around the same time, which suggests that some change made the environment more favorable for this lifestyle.[18] Fossils of cheilostomates, another order of gymnolaemates, first appear in the Mid Jurassic, about 172 million years ago, and these have been the most abundant and diverse bryozoans from the Cretaceous to the present.[18] Evidence compiled from the last 100 million years show that cheilostomatids consistently grew over cyclostomatids in territorial struggles, which may help to explain how cheilostomatids replaced cyclostomatids as the dominant marine bryozoans.[72] Marine fossils from the Paleozoic era, which ended 251 million years ago, are mainly of erect forms, those from the Mesozoic are fairly equally divided by erect and encrusting forms, and more recent ones are predominantly encrusting.[73] Fossils of the soft, freshwater phylactolaemates are very rare,[18] appear in and after the Late Permian (which began about 260 million years ago) and consist entirely of their durable statoblasts.[62] There are no known fossils of freshwater members of other classes.[62]

Evolutionary family tree

An Upper Ordovician cobble with the edrioasteroid Cystaster stellatus and the thin branching cyclostome bryozoan Corynotrypa. Kope Formation, northern Kentucky, United States.

Scientists are divided about whether the Bryozoa (Ectoprocta) are a monophyletic group (whether they include all and only a single ancestor species and all its descendants), about what are the phylum's closest relatives in the family tree of animals, and even about whether they should be regarded as members of the protostomes or deuterostomes, the two major groups that account for all moderately complex animals.

Molecular phylogeny, which attempts to work out the evolutionary family tree of organisms by comparing their biochemistry and especially their genes, has done much to clarify the relationships between the better-known invertebrate phyla.[50] However, the shortage of genetic data about "minor phyla" such as bryozoans and entoprocts has left their relationships to other groups unclear.[51]

Traditional view

The traditional view is that the Bryozoa are a monophyletic group, in which the class Phylactolaemata is most closely related to Stenolaemata and Ctenostomatida, the classes that appear earliest in the fossil record.[74] However, in 2005 a molecular phylogeny study that focused on phylactolaemates concluded that these are more closely related to the phylum Phoronida, and especially to the only phoronid species that is colonial, than they are to the other ectoproct classes. That implies that the Entoprocta are not monophyletic, as the Phoronida are a sub-group of ectoprocts but the standard definition of Entoprocta excludes the Phoronida.[74]

Ropalonaria venosa, an etching trace fossil of a Late Ordovician ctenostome bryozoan on a strophomenid brachiopod valve; Cincinnatian of southeastern Indiana, United States.[75]

In 2009 another molecular phylogeny study, using a combination of genes from mitochondria and the cell nucleus, concluded that Bryozoa is a monophyletic phylum, in other words includes all the descendants of a common ancestor that is itself a bryozoan. The analysis also concluded that the classes Phylactolaemata, Stenolaemata and Gymnolaemata are also monophyletic, but could not determine whether Stenolaemata are more closely related to Phylactolaemata or Gymnolaemata. The Gymnolaemata are traditionally divided into the soft-bodied Ctenostomatida and mineralized Cheilostomata, but the 2009 analysis considered it more likely that neither of these orders is monophyletic and that mineralized skeletons probably evolved more than once within the early Gymnolaemata.[5]

Bryozoans' relationships with other phyla are uncertain and controversial. Traditional phylogeny, based on anatomy and on the development of the adult forms from embryos, has produced no enduring consensus about the position of ectoprocts.[21] Attempts to reconstruct the family tree of animals have largely ignored ectoprocts and other "minor phyla", which have received little scientific study because they are generally tiny, have relatively simple body plans, and have little impact on human economies – despite the fact that the "minor phyla" include most of the variety in the evolutionary history of animals.[76]

In the opinion of Ruth Dewel, Judith Winston, and Frank McKinney, "Our standard interpretation of bryozoan morphology and embryology is a construct resulting from over 100 years of attempts to synthesize a single framework for all invertebrates," and takes little account of some peculiar features of ectoprocts.[70]

Phaenopora superba, a ptilodictyine bryozoan from the Silurian of Ohio, United States
The flat, branching bryozoan Sulcoretepora, from the Middle Devonian of Wisconsin, United States

In ectoprocts, all of the larva's internal organs are destroyed during the metamorphosis to the adult form and the adult's organs are built from the larva's epidermis and mesoderm, while in other bilaterians some organs including the gut are built from endoderm. In most bilaterian embryos the blastopore, a dent in the outer wall, deepens to become the larva's gut, but in ectoprocts the blastopore disappears and a new dent becomes the point from which the gut grows. The ectoproct coelom is formed by neither of the processes used by other bilaterians, enterocoely, in which pouches that form on the wall of the gut become separate cavities, nor schizocoely, in which the tissue between the gut and the body wall splits, forming paired cavities.[70]

Entoprocts

When entoprocts were discovered in the 19th century, they and bryozoans (ectoprocts) were regarded as classes within the phylum Bryozoa, because both groups were sessile animals that filter-fed by means of a crown of tentacles that bore cilia.

From 1869 onwards increasing awareness of differences, including the position of the entoproct anus inside the feeding structure and the difference in the early pattern of division of cells in their embryos, caused scientists to regard the two groups as separate phyla,[51] and "Bryozoa" became just an alternative name for ectoprocts, in which the anus is outside the feeding organ.[50] A series of molecular phylogeny studies from 1996 to 2006 have also concluded that bryozoans (ectoprocts) and entoprocts are not sister groups.[51]

However, two well-known zoologists, Claus Nielsen and Thomas Cavalier-Smith, maintain on anatomical and developmental grounds that bryozoans and entoprocts are member of the same phylum, Bryozoa. A molecular phylogeny study in 2007 also supported this old idea, while its conclusions about other phyla agreed with those of several other analyses.[51]

Grouping into the Lophophorata

By 1891 bryozoans (ectoprocts) were grouped with phoronids in a super-phylum called "Tentaculata". In the 1970s comparisons between phoronid larvae and the cyphonautes larva of some gymnolaete bryozoans produced suggestions that the bryozoans, most of which are colonial, evolved from a semi-colonial species of phoronid.[77] Brachiopods were also assigned to the "Tentaculata", which were renamed Lophophorata as they all use a lophophore for filter feeding.[50]

The majority of scientists accept this,[50] but Claus Nielsen thinks these similarities are superficial.[21] The Lophophorata are usually defined as animals with a lophophore, a three-part coelom and a U-shaped gut.[77] In Nielsen's opinion, phoronids' and brachiopods' lophophores are more like those of pterobranchs,[21] which are members of the phylum Hemichordata.[78] Bryozoan's tentacles bear cells with multiple cilia, while the corresponding cells of phoronids', brachiopods' and pterobranchs' lophophores have one cilium per cell; and bryozoan tentacles have no hemal canal ("blood vessel"), which those of the other three phyla have.[21]

If the grouping of bryozoans with phoronids and brachiopods into Lophophorata is correct, the next issue is whether the Lophophorata are protostomes, along with most invertebrate phyla, or deuterostomes, along with chordates, hemichordates and echinoderms.

The traditional view was that lophophorates were a mix of protostome and deuterostome features. Research from the 1970s onwards suggested they were deuterostomes, because of some features that were thought characteristic of deuterostomes: a three-part coelom; radial rather than spiral cleavage in the development of the embryo;[50] and formation of the coelom by enterocoely.[21] However the coelom of ectoproct larvae shows no sign of division into three sections,[77] and that of adult ectoprocts is different from that of other coelomate phyla as it is built anew from epidermis and mesoderm after metamorphosis has destroyed the larval coelom.[70]

Lophophorate molecular phylogenetics

Molecular phylogeny analyses from 1995 onwards, using a variety of biochemical evidence and analytical techniques, placed the lophophorates as protostomes and closely related to annelids and molluscs in a super-phylum called Lophotrochozoa.[50][79] "Total evidence" analyses, which used both morphological features and a relatively small set of genes, came to various conclusions, mostly favoring a close relationship between lophophorates and Lophotrochozoa.[79] A study in 2008, using a larger set of genes, concluded that the lophophorates were closer to the Lophotrochozoa than to deuterostomes, but also that the lophophorates were not monophyletic. Instead, it concluded that brachiopods and phoronids formed a monophyletic group, but bryozoans (ectoprocts) were closest to entoprocts, supporting the original definition of "Bryozoa".[79]

They are the only major phylum of exclusively clonal animals, composed of modular units known as zooids. Because they thrive in colonies, colonial growth allows them to develop unrestricted variations in form. Despite this, only a small number of basic growth forms have been found and have commonly reappeared throughout the history of the bryozoa.[66]

Lophotrochozoa

Cycliophora CYC-000044 hab Symbion Z5v2v5N.png

Annelida Polychaeta (no) 2.jpg

Mollusca Grapevinesnail 01a.jpg

Lophophorata Brachiozoa

Brachiopoda LingulaanatinaAA (cropped).JPG

Phoronida Phoronopsis harmeri IZ 1643662.png

Bryozoa s.l.

Entoprocta Barentsia laxa 1498941 (no background).png

Ectoprocta Bugulina flabellata 272067784.png

Ectoproct molecular phylogenetics

The phylogenetic position of the ectoproct bryozoans remains uncertain, but it remains certain that they belong to the Protostomia and more specifically to the Lophotrochozoa. This implies that the ectoproct larva is a trochophore with the corona being a homologue of the prototroch; this is supported from the similarity between the coronate larvae and the Type 1 pericalymma larvae of some molluscs and sipunculans, where the prototroch zone is expanded to cover the hyposphere.[80]

A study of the mitochondrial DNA sequence suggests that the Bryozoa may be related to the Chaetognatha.[81]

Physiology

Feeding and excretion

Most species are filter feeders that sieve small particles, mainly phytoplankton (microscopic floating plants), out of the water.[15] The freshwater species Plumatella emarginata feeds on diatoms, green algae, cyanobacteria, non-photosynthetic bacteria, dinoflagellates, rotifers, protozoa, small nematodes, and microscopic crustaceans.[82] While the currents that bryozoans generate to draw food towards the mouth are well understood, the exact method of capture is still debated. All species also flick larger particles towards the mouth with a tentacle, and a few capture zooplankton (planktonic animals) by using their tentacles as cages. In addition the tentacles, whose surface area is increased by microvilli (small hairs and pleats), absorb organic compounds dissolved in the water.[15] Unwanted particles may be flicked away by tentacles or shut out by closing the mouth.[15] A study in 2008 showed that both encrusting and erect colonies fed more quickly and grew faster in gentle than in strong currents.[83]

In some species the first part of the stomach forms a muscular gizzard lined with chitinous teeth that crush armored prey such as diatoms. Wave-like peristaltic contractions move the food through the stomach for digestion. The final section of the stomach is lined with cilia (minute hairs) that compress undigested solids, which then pass through the intestine and out through the anus.[15]

There are no nephridia ("little kidneys") or other excretory organs in bryozoa,[25] and it is thought that ammonia diffuses out through the body wall and lophophore.[15] More complex waste products are not excreted but accumulate in the polypide, which degenerates after a few weeks. Some of the old polypide is recycled, but much of it remains as a large mass of dying cells containing accumulated wastes, and this is compressed into a "brown body". When the degeneration is complete, the cystid (outer part of the animal) produces a new polypide, and the brown body remains in the coelom, or in the stomach of the new polypide and is expelled next time the animal defecates.[15]

Respiration and circulation

There are no respiratory organs, heart or blood vessels. Instead, zooids absorb oxygen and eliminate carbon dioxide through diffusion. Bryozoa accomplish diffusion through the use of either a thin membrane (in the case of anascans and some polyzoa) or through pseudopores located on the outer dermis of the zooid.[84] The different bryozoan groups use various methods to share nutrients and oxygen between zooids: some have quite large gaps in the body walls, allowing the coelomic fluid to circulate freely; in others, the funiculi (internal "little ropes")[30] of adjacent zooids connect via small pores in the body wall.[15][27]

Reproduction and life cycles

Encrusting cyclostome bryozoans (B), the one on the right showing swollen gonozooids; T = thecideide brachiopod and S = sabellid worm tube; Jurassic of Poland.

Zooids of all phylactolaemate species are simultaneous hermaphrodites. Although those of many marine species are protandric, in other words function first as males and then as females, their colonies contain a combination of zooids that are in their male and female stages. In all species the ovaries develop on the inside of the body wall, and the testes on the funiculus connecting the stomach to the body wall.[25] Eggs and sperm are released into the coelom, and sperm exit into the water through pores in the tips of some of the tentacles, and then are captured by the feeding currents of zooids that are producing eggs.[15] Some species' eggs are fertilized externally after being released through a pore between two tentacles, which in some cases is at the tip of a small projection called the "intertentacular organ" in the base of a pair of tentacles. Others' are fertilized internally, in the intertentacular organ or in the coelom.[15] In ctenostomes the mother provides a brood chamber for the fertilized eggs, and her polypide disintegrates, providing nourishment to the embryo. Stenolaemates produce specialized zooids to serve as brood chambers, and their eggs divide within this to produce up to 100 identical embryos.[25]

The cleavage of bryozoan eggs is biradial, in other words the early stages are bilaterally symmetrical. It is unknown how the coelom forms, since the metamorphosis from larva to adult destroys all of the larva's internal tissues. In many animals the blastopore, an opening in the surface of the early embryo, tunnels through to form the gut. However, in bryozoans the blastopore closes, and a new opening develops to create the mouth.[15]

Bryozoan larvae vary in form, but all have a band of cilia round the body which enables them to swim, a tuft of cilia at the top, and an adhesive sac that everts and anchors them when they settle on a surface.[15] Some gymnolaemate species produce cyphonautes larvae which have little yolk but a well-developed mouth and gut, and live as plankton for a considerable time before settling. These larvae have triangular shells of chitin, with one corner at the top and the base open, forming a hood round the downward-facing mouth.[25] In 2006 it was reported that the cilia of cyphonautes larvae use the same range of techniques as those of adults to capture food.[85] Species that brood their embryos form larvae that are nourished by large yolks, have no gut and do not feed, and such larvae quickly settle on a surface.[15] In all marine species the larvae produce cocoons in which they metamorphose completely after settling: the larva's epidermis becomes the lining of the coelom, and the internal tissues are converted to a food reserve that nourishes the developing zooid until it is ready to feed.[15] The larvae of phylactolaemates produce multiple polypides, so that each new colony starts with several zooids.[15] In all species the founder zooids then grow the new colonies by budding clones of themselves. In phylactolaemates, zooids die after producing several clones, so that living zooids are found only round the edges of a colony.[15]

Phylactolaemates can also reproduce asexually by a method that enables a colony's lineage to survive the variable and uncertain conditions of freshwater environments.[25] Throughout summer and autumn they produce disc-shaped statoblasts, masses of cells that function as "survival pods" rather like the gemmules of sponges.[15] Statoblasts form on the funiculus connected to the parent's gut, which nourishes them.[25] As they grow, statoblasts develop protective bivalve-like shells made of chitin. When they mature, some statoblasts stick to the parent colony, some fall to the bottom ("sessoblasts"), some contain air spaces that enable them to float ("floatoblasts"),[15] and some remain in the parent's cystid to re-build the colony if it dies.[25] Statoblasts can remain dormant for considerable periods, and while dormant can survive harsh conditions such as freezing and desiccation. They can be transported across long distances by animals, floating vegetation, currents[15] and winds,[25] and even in the guts of larger animals.[86] When conditions improve, the valves of the shell separate and the cells inside develop into a zooid that tries to form a new colony. Plumatella emarginata produces both "sessoblasts", which enable the lineage to control a good territory even if hard times decimate the parent colonies, and "floatoblasts", which spread to new sites. New colonies of Plumatella repens produce mainly "sessoblasts" while mature ones switch to "floatoblasts".[82] A study estimated that one group of colonies in a patch measuring 1 square meter (11 sq ft) produced 800,000 statoblasts.[15]

Cupuladriid Bryozoa are capable of both sexual and asexual reproduction. The sexually reproducing colonies (aclonal) are the result of a larval cupuladriid growing into an adult stage whereas the asexual colonies(clonal) are a result of a fragment of a colony of cupuladriids growing into its own colony. The different forms of reproduction in cupuladriids are achieved through a variety of methods depending on the morphology and classification of the zooid.[87]

Ecology

Habitats and distribution

Most marine species live in tropical waters at depths less than 100 meters (330 ft; 55 fathoms). However, a few have been found in deep-sea trenches,[88] especially around cold seeps, and others near the poles.[89][90]

The great majority of bryozoans are sessile. Typically, sessile bryozoans live on hard substrates including rocks, sand or shells.[91] Encrusting forms are much the commonest of these in shallow seas, but erect forms become more common as the depth increases.[89] An example of incrustation on pebbles and cobbles is found in the diverse Pleistocene bryozoans found in northern Japan, where fossils have been found of single stones covered with more than 20 bryozoan species.[92] Sediments with smaller particles, like sand or silt, are usually unsuitable habitat for bryozoans, but tiny colonies have been found encrusting grains of coarse sand. [93] Some bryozoan species specialize in colonizing marine algae, seagrasses, and even mangrove roots; the genus Amphibiobeania lives on the leaves of mangrove trees and is called "amphibious" because it can survive regular exposure to air at low tide.[94]

There are a variety of "free-living" bryozoans that live un-attached to a substrate. A few forms such as Cristatella can move. Lunulitiform cheilostomes are one group of free-living bryozoans with mobile colonies. They form small round colonies un-attached to any substrate; colonies of the genus Selenaria have been observed to "walk" around using setae.[95] Another cheilostome family, the Cupuladriidae, convergently evolved similarly shaped colonies capable of movement. When observed in an aquarium, Selenaria maculata colonies were recorded to crawl at a speed of one meter per hour, climb over each other, move toward light, and right themselves when turned upside-down.[96] Later study of this genus showed that neuroelectrical activity in the colonies increased in correlation with movement toward light sources. It is theorized that the capacity for movement arose as a side effect when colonies evolved longer setae for unburying themselves from sediment.[96]

Watercolor of alcyonidium
1851 watercolor of Alcyonidium by Jacques Burkhardt.

Other free-living bryozoans are moved freely by waves, currents, or other phenomena. An Antarctic species, Alcyonidium pelagosphaera, consists of floating colonies. The pelagic species is between 5.0 and 23.0 mm (0.20 and 0.91 in) in diameter, has the shape of a hollow sphere and consists of a single layer of autozooids. It is still not known if these colonies are pelagic their whole life or only represents a temporarily and previously undescribed juvenile stage.[89][97] Colonies of the species Alcyonidium disciforme, which is disc-shaped and similarly free-living, inhabit muddy seabeds in the Arctic and can sequester sand grains they have engulfed, potentially using the sand as ballast to turn themselves right-side-up after they have been overturned. Some bryozoan species can form bryoliths, sphere-shaped free-living colonies that grow outward in all directions as they roll about on the seabed. [98]

In 2014 it was reported that the bryozoan Fenestrulina rugula had become a dominant species in parts of Antarctica. Global warming has increased the rate of scouring by icebergs, and this species is particularly adept at recolonizing scoured areas.[99]

The phylactolaemates live in all types of freshwater environment – lakes and ponds, rivers and streams, and estuaries[62] – and are among the most abundant sessile freshwater animals.[74] Some ctenostomes are exclusively freshwater while others prefer brackish water but can survive in freshwater.[62] Scientists' knowledge of freshwater bryozoan populations in many parts of the world is incomplete, even in some parts of Europe. It was long thought that some freshwater species occurred worldwide, but since 2002 all of these have been split into more localized species.[62]

Bryozoans grow in clonal colonies. A larval Bryozoan settles on a hard substance and produces a colony asexually through budding. These colonies can grow thousands of individual zooids in a relatively short period of time. Even though colonies of zooids grow through asexual reproduction, Bryozoans are hermaphrodites and new colonies can be formed through sexual reproduction and the generation of free swimming larvae. When colonies grow too large, however, they can split in two. This is the only case where asexual reproduction results in a new colony separate from its predecessor. Most colonies are stationary. Indeed, these colonies tend to be settled on immobile substances such as sediment and coarse substances. There are some colonies of freshwater species such as Cristatella mucedo that are able to move slowly on a creeping foot.[100]

Interactions with non-human organisms

Marine species are common on coral reefs, but seldom a significant proportion of the total biomass. In temperate waters, the skeletons of dead colonies form a significant component of shell gravels, and live ones are abundant in these areas.[101] The marine lace-like bryozoan Membranipora membranacea produces spines in response to predation by several species of sea slugs (nudibranchs).[102] Other predators on marine bryozoans include fish, sea urchins, pycnogonids, crustaceans, mites[103] and starfish.[104] In general marine echinoderms and molluscs eat masses of zooids by gouging pieces of colonies, breaking their mineralized "houses", while most arthropod predators on bryozoans eat individual zooids.[105]

In freshwater, bryozoans are among the most important filter feeders, along with sponges and mussels.[106] Freshwater bryozoans are attacked by many predators, including snails, insects, and fish.[82]

In Thailand the introduced species Pomacea canaliculata (golden apple snail), which is generally a destructive herbivore, has wiped out phylactolaemate populations wherever it has appeared. P. canaliculata also preys on a common freshwater gymnolaemate, but with less devastating effect. Indigenous snails do not feed on bryozoans.[12]

Several species of the hydroid family Zancleidae have symbiotic relationships with bryozoans, some of which are beneficial to the hydroids while others are parasitic. Modifications appear in the shapes of some these hydroids, for example smaller tentacles or encrustation of the roots by bryozoans.[107] The bryozoan Alcyonidium nodosum protects the whelk Burnupena papyracea against predation by the powerful and voracious rock lobster Jasus lalandii. While whelk shells encrusted by the bryozoans are stronger than those without this reinforcement, chemical defenses produced by the bryozoans are probably the more significant deterrent.[108]

Mauritanian bryolith formed by circumrotatory growth of the bryozoan species Acanthodesia commensale

In the Banc d'Arguin offshore Mauritania the species Acanthodesia commensale, which is generally growing attached to gravel and hard-substrate, has formed a facultative symbiotic relationship with hermit crabs of the species Pseudopagurus cf. granulimanus resulting in egg-size structures known as bryoliths.[109] Nucleating on an empty gastropod shell, the bryozoan colonies form multilamellar skeletal crusts that produce spherical encrustations and extend the living chamber of the hermit crab through helicospiral tubular growth.

Some phylactolaemate species are intermediate hosts for a group of myxozoa that have also been found to cause proliferative kidney disease, which is often fatal in salmonid fish,[110] and has severely reduced wild fish populations in Europe and North America.[62]

Membranipora membranacea, whose colonies feed and grow exceptionally fast in a wide range of current speeds, was first noticed in the Gulf of Maine in 1987 and quickly became the most abundant organism living on kelps.[83] This invasion reduced the kelp population by breaking their fronds,[15] so that its place as the dominant "vegetation" in some areas was taken by another invader, the large alga Codium fragile tomentosoides.[83] These changes reduced the area of habitat available for local fish and invertebrates. M. membranacea has also invaded the northwest coast of the US.[15] A few freshwater species have been also found thousands of kilometers from their native ranges. Some may have been transported naturally as statoblasts. Others more probably were spread by humans, for example on imported water plants or as stowaways on ships.[86]

Interaction with humans

Fish farms and hatcheries have lost stock to proliferative kidney disease, which is caused by one or more myxozoans that use bryozoans as alternate hosts.[110]

Some fishermen in the North Sea have had to find other work because of a form of eczema (a skin disease) known as "Dogger Bank itch",[89] caused by contact with bryozoans that have stuck to nets and lobster pots.[111]

Marine bryozoans are often responsible for biofouling on ships' hulls, on docks and marinas, and on offshore structures. They are among the first colonizers of new or recently cleaned structures.[101] Freshwater species are occasional nuisances in water pipes, drinking water purification equipment, sewage treatment facilities, and the cooling pipes of power stations.[62][112]

A group of chemicals called bryostatins can be extracted from the marine bryozoan Bugula neritina. In 2001 pharmaceutical company GPC Biotech licensed bryostatin 1 from Arizona State University for commercial development as a treatment for cancer. GPC Biotech canceled development in 2003, saying that bryostatin 1 showed little effectiveness and some toxic side effects.[113] In January 2008 a clinical trial was submitted to the United States National Institutes of Health to measure the safety and effectiveness of Bryostatin 1 in the treatment of Alzheimer's disease. However, no participants had been recruited by the end of December 2008, when the study was scheduled for completion.[114] More recent work shows it has positive effects on cognition in sufferers of Alzheimer's disease with few side effects.[115] About 1,000 kilograms (2,200 lb) of bryozoans must be processed to extract 1 gram (132 oz) of bryostatin, As a result, synthetic equivalents have been developed that are simpler to produce and apparently at least as effective.[116]

See also

References

  1. ^ a b c Taylor, P.D.; Berning, B.; Wilson, M.A. (November 2013). "Reinterpretation of the Cambrian 'bryozoan' Pywackia as an octocoral". Journal of Paleontology. 87 (6): 984–990. doi:10.1666/13-029. S2CID 129113026. Archived from the original on 7 June 2019. Retrieved 20 April 2018.
  2. ^ Ma, Junye; Taylor, Paul D.; Xia, Fengsheng; Zhan, Renbin (September 2015). "The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China". Palaeontology. 58 (5): 925–934. doi:10.1111/pala.12189. S2CID 130040324.
  3. ^ a b Yang, Jie; Lan, Tian; Zhang, Xi-guang; Smith, Martin R. (8 March 2023). "Protomelission is an early dasyclad alga and not a Cambrian bryozoan". Nature: 1–5. doi:10.1038/s41586-023-05775-5.
  4. ^ Ernst, A. (2007). "A cystoporate bryozoan species from the Zechstein (Late Permian)". Paläontologische Zeitschrift. 81 (2): 113–117. doi:10.1007/BF02988385. S2CID 129637643.
  5. ^ a b c d Fuchs, J.; Obst, M.; Sundberg, P (July 2009). "The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes". Molecular Phylogenetics and Evolution. 52 (1): 225–233. doi:10.1016/j.ympev.2009.01.021. PMID 19475710.
  6. ^ Brusca, Richard C. (1980) [1973]. "21: The Lophophorate Phyla". Common intertidal invertebrates of the Gulf of California (revised & expanded, 2nd ed.). Tucson, AZ: University of Arizona Press. ISBN 9780816506828. OCLC 1029265317.
  7. ^ Bock, P.; Gordon, D.P. (August 2013). "Phylum Bryozoa Ehrenberg, 1831". Zootaxa. 3703 (1): 67–74. doi:10.11646/zootaxa.3703.1.14.
  8. ^ Thompson, John V. (1830). "Memoir V: On Polyzoa, a new animal discovered as an inhabitant of some Zoophites". Zoological researches and illustrations; or Natural history of nondescript or imperfectly known animals. Cork, IE: King and Ridings. pp. 89–102.
  9. ^ Ehrenberg, Christian G. (1831). "Pars zoologica. Animalia evertebrata exclusis insectis [Invertebrata other than Insecta]". Symbolae physicae, seu lcones et descriptiones corporum naturalium novorum aut minus cognitorum (in Latin). Berolini Ex officina Academica. pp. 1–126.
  10. ^ Stebbing, T.R.R. (1911). "The terms Polyzoa and Bryozoa". Proceedings of the Linnean Society of London. Session 123 (Symposium): 61–72.
  11. ^ a b Muir-Wood, H.M. (1955). A history of the classification of the phylum Brachiopoda. London: British Museum (Natural History). p. 13.
  12. ^ a b Wood, T.S. (May 2006). "Heavy Predation on Freshwater Bryozoans by the Golden Apple Snail, Pomacea canaliculata" (PDF). Natural History Journal of Chulalongkorn University. 6 (1): 31–36. Archived from the original (PDF) on 6 October 2011. Retrieved 18 August 2009.
  13. ^ "Introduction to the Bryozoa". Berkeley, CA: University of California Museum of Paleontology. Archived from the original on 8 December 2019. Retrieved 8 December 2019.
  14. ^ Zhang, Zhiliang; Zhang, Zhifei; Ma, J.; Taylor, P. D.; Strotz, L. C.; Jacquet, S. M.; Skovsted, C. B.; Chen, F.; Han, J.; Brock, G. A. (2021). "Fossil evidence unveils an early Cambrian origin for Bryozoa". Nature. 599 (7884): 251–255. Bibcode:2021Natur.599..251Z. doi:10.1038/s41586-021-04033-w. PMC 8580826. PMID 34707285. S2CID 240073948.
  15. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 829–845. ISBN 978-0-03-025982-1.
  16. ^ a b c Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 817–821. ISBN 978-0-03-025982-1.
  17. ^ a b c Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 821–829. ISBN 978-0-03-025982-1.
  18. ^ a b c d e f g h i j Rich, T.H.; Fenton, M.A.; Fenton, C.L. (1997). ""Moss Animals", or Bryozoans". The fossil book. Dover Publications. pp. 142–152. ISBN 978-0-486-29371-4. Retrieved 7 August 2009.
  19. ^ a b Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Kamptozoa and Cycliophora". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 808–812. ISBN 978-0-03-025982-1.
  20. ^ a b Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (7 ed.). Brooks / Cole. p. 817. ISBN 978-0-03-025982-1.
  21. ^ a b c d e f g h i Nielsen, C. (July 2002). "The Phylogenetic Position of Entoprocta, Ectoprocta, Phoronida, and Brachiopoda". Integrative and Comparative Biology. 42 (3): 685–691. doi:10.1093/icb/42.3.685. PMID 21708765.
  22. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 414–420. ISBN 978-0-03-025982-1.
  23. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 284–291. ISBN 978-0-03-025982-1.
  24. ^ Giere, O. (2009). "Tentaculata". Meiobenthology (2 ed.). Springer Verlag. p. 227. ISBN 978-3-540-68657-6. Archived from the original on 8 March 2023. Retrieved 7 July 2009.
  25. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Doherty, P.J. (2001). "The Lophophorates". In Anderson, D.T. (ed.). Invertebrate Zoology (2 ed.). Oxford University Press. pp. 363–373. ISBN 978-0-19-551368-4.
  26. ^ Little, W.; Fowler, H.W; Coulson, J. & Onions, C.T. (1964). "Zooid". Shorter Oxford English Dictionary. Oxford University Press. ISBN 978-0-19-860613-0.
  27. ^ a b c d e Nielsen, C. (2001). "Bryozoa (Ectoprocta: 'Moss' Animals)". Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. doi:10.1038/npg.els.0001613. ISBN 978-0470016176.
  28. ^ a b c d e f g h McKinney, F.K.; Jackson, J.B.C. (1991). "Bryozoans as modular machines". Bryozoan evolution. University of Chicago Press. pp. 1–13. ISBN 978-0-226-56047-2. Archived from the original on 8 March 2023. Retrieved 29 July 2009.
  29. ^ Riisgård, H.U.; Nielsen, C; Larsen, PS (2000). "Downstream collecting in ciliary suspension feeders: the catch-up principle" (PDF). Marine Ecology Progress Series. 207: 33–51. Bibcode:2000MEPS..207...33R. doi:10.3354/meps207033. Archived (PDF) from the original on 9 October 2022. Retrieved 12 September 2009.
  30. ^ a b "funiculus". Random House Dictionary. Random House. Archived from the original on 13 May 2010. Retrieved 2 August 2009.
  31. ^ Hayward, P.J. (1985). "Systematic part". Ctenostome Bryozoans. Synopses of the British fauna. Linnean Society of London. pp. 106–107. ISBN 978-90-04-07583-2. Archived from the original on 8 March 2023. Retrieved 2 August 2009.
  32. ^ Giere, O. (2009). "Tentaculata". Meiobenthology (2 ed.). Springer-Verlag. p. 227. ISBN 978-3-540-68657-6. Archived from the original on 8 March 2023. Retrieved 2 August 2009.
  33. ^ Liddell, H.G.; Scott R. (1940). "kenos". A Greek-English Lexicon. Clarendon Press. ISBN 978-0-19-864226-8. Archived from the original on 8 March 2023. Retrieved 1 August 2009.
  34. ^ Taylor 2020, p. 72–73.
  35. ^ Taylor 2020, p. 74.
  36. ^ Taylor 2020, p. 59.
  37. ^ Taylor 2020, p. 60.
  38. ^ Taylor 2020, p. 65.
  39. ^ Taylor 2020, p. 75.
  40. ^ Branch, M.L.; Griffiths, C.I.; Beckley, L.E. (2007). "Bryozoa: Moss or Lace Animals". Two Oceans – A Guide to the Marine Life of Southern Africa. Struik. pp. 104–110. ISBN 978-1-77007-633-4. Retrieved 2 August 2009.
  41. ^ Little, W.; Fowler, H.W.; Coulson, J. & Onions, C.T. (1959). "Bryozoa". Shorter Oxford English Dictionary. Oxford University. ISBN 978-0-19-860613-0.
  42. ^ Eckman, J.E.; Okamura, B (December 1998). "A Model of Particle Capture by Bryozoans in Turbulent Flow: Significance of Colony Form". The American Naturalist. 152 (6): 861–880. doi:10.1086/286214. PMID 18811433. S2CID 5535013.
  43. ^ Vogel, S. (1996). "Life in velocity gradients". Life in moving fluids (2 ed.). Princeton University Press. p. 191. ISBN 978-0-691-02616-9. Archived from the original on 8 March 2023. Retrieved 5 August 2009.
  44. ^ von Dassow, M. (1 August 2006). "Function-Dependent Development in a Colonial Animal". Biological Bulletin. 211 (1): 76–82. doi:10.2307/4134580. ISSN 0006-3185. JSTOR 4134580. PMID 16946244. Archived from the original on 6 July 2009. Retrieved 5 August 2009.
  45. ^ Taylor, Paul D.; James, Noel P. (August 2013). "Secular changes in colony-forms and bryozoan carbonate sediments through geological history". Sedimentology. 60 (5): 1184–1212. doi:10.1111/sed.12032. S2CID 128939236.
  46. ^ a b Beatty, J.A.; Blackwelder (1974). "Names of Invertebrate Phyla". Systematic Zoology. 23 (4): 545–547. doi:10.2307/2412472. JSTOR 2412472.
  47. ^ a b Mayr, E. (June 1968). "Bryozoa versus Ectoprocta". Systematic Zoology. 17 (2): 213–216. doi:10.2307/2412368. JSTOR 2412368.
  48. ^ Little, W.; Fowler, H.W; Coulson, J. & Onions, C.T. (1964). "Ecto-". Shorter Oxford English Dictionary. Oxford University Press. ISBN 978-0-19-860613-0.
  49. ^ Little, W.; Fowler, H.W.; Coulson, J. & Onions, C.T. (1964). "Ento-". Shorter Oxford English Dictionary. Oxford University Press. ISBN 978-0-19-860613-0.
  50. ^ a b c d e f g h Halanych, K.M. (2004). "The new view of animal phylogeny" (PDF). Annual Review of Ecology, Evolution, and Systematics. 35: 229–256. doi:10.1146/annurev.ecolsys.35.112202.130124. Archived (PDF) from the original on 9 October 2022. Retrieved 26 August 2016.
  51. ^ a b c d e f Hausdorf, B.; Helmkampf, M.; Meyer, A.; Witek, A.; Herlyn, H.; Bruchhaus, I.; Hankeln, T.; Struck, T.H.; Lieb, B. (2007). "Spiralian Phylogenomics Supports the Resurrection of Bryozoa Comprising Ectoprocta and Entoprocta". Molecular Biology and Evolution. 24 (12): 2723–2729. doi:10.1093/molbev/msm214. PMID 17921486.
  52. ^ Cuffey, R. J. (1969). "Bryozoa versus Ectoprocta – The Necessity for Precision". Systematic Zoology. 18 (2): 250–251. doi:10.2307/2412617. JSTOR 2412617.
  53. ^ Ghiselin, M.T. (1977). "On Changing the Names of Higher Taxa". Systematic Zoology. 26 (3): 346–349. doi:10.2307/2412681. JSTOR 2412681.
  54. ^ Yokobori, S.; Iseto, T; Asakawa, S; Sasaki, T; Shimizu, N; Yamagishi, A; Oshima, T; Hirose, E (May 2008). "Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: Implications for lophotrochozoan phylogeny". Molecular Phylogenetics and Evolution. 47 (2): 612–628. doi:10.1016/j.ympev.2008.02.013. PMID 18374604.
  55. ^ Reynolds, K.T. (2000). "Taxonomically Important Features on the Surface of Floatoblasts in Plumatella (Bryozoa)". Microscopy and Microanalysis. 6 (3): 202–210. Bibcode:2000MiMic...6..202R. doi:10.1017/S1431927600000349. PMID 10790488. The text begins "Phylum Ectoprocta (Bryozoa) ..."
  56. ^ Trumble, W; Brown, L (2002). "Bryozoa". Shorter Oxford English Dictionary. Oxford University Press. ISBN 978-0-19-860457-0.
  57. ^ Taylor, Zaton 2008
  58. ^ Taylor, Paul D (October 2008). "Taxonomy of the bryozoan genera Oncousoecia, Microeciella and Eurystrotos". Journal of Natural History. 42 (39–40): 2557–2574. doi:10.1080/00222930802277640. S2CID 84315311.
  59. ^ Chapman, A.D. (2006). Numbers of Living Species in Australia and the World (PDF). Department of the Environment and Heritage, Australian Government. p. 34. ISBN 978-0-642-56849-6. Archived (PDF) from the original on 9 October 2022. Retrieved 7 August 2009.
  60. ^ Ruppert, E.E.; Fox, R.S. & Barnes, R.D. (2004). "Introduction to Invertebrates". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 2–9. ISBN 978-0-03-025982-1.
  61. ^ "ITIS Standard Report Page: Phylactolaemata". Integrated Taxonomic Information System. Archived from the original on 18 January 2018. Retrieved 12 August 2009.
  62. ^ a b c d e f g h Massard, J.A.; Geimer, Gaby (2008). "Global diversity of bryozoans (Bryozoa or Ectoprocta) in freshwater". Hydrobiologia. 595: 93–99. doi:10.1007/s10750-007-9007-3. S2CID 13057599.
  63. ^ a b Fish, J.D.; Fish, S. (1996). "Bryozoa". A student's guide to the seashore (2 ed.). Cambridge: Cambridge University Press. pp. 418–419. ISBN 978-0-521-46819-0.
  64. ^ Jablonski, D.; Lidgard, S.; Taylor, P.D. (1997). "Comparative Ecology of Bryozoan Radiations: Origin of novelties in cyclostomes and Cheilostomes". PALAIOS. 12 (6): 505–523. Bibcode:1997Palai..12..505J. doi:10.2307/3515408. JSTOR 3515408.
  65. ^ a b Hayward, P.J.; Ryland, J.S. (1985). "Key to the higher taxa of marine Bryozoa". Cyclostome bryozoans. Linnean Society of London. p. 7. ISBN 978-90-04-07697-6. Archived from the original on 8 March 2023. Retrieved 9 August 2009.
  66. ^ a b McKinney; Frank K; Jeremy. "Bryozoan Evolution". Boston: Unwin & Hyman, 1989.
  67. ^ a b Ernst, Andrej (2020). "2- Fossil record and evolution of Bryozoa". Phylum Bryozoa. pp. 11–56.
  68. ^ Jackson, Patrick N. Wyse; Key, Marcus M. Key Jr. (2019). "Epizoan and endoskeletozoan distribution across reassembled ramose stenolaemate bryozoan zoaria from the Upper Ordovician (Katian) of the Cincinnati Arch region, USA". Australasian Palaeontological Memoirs. 52: 169–178.
  69. ^ Torsvik, T.H.; Ryan, Paul D.; Trench, Allan; Harper, David A.T. (January 1991). "Cambrian-Ordovician paleogeography of Baltica". Geology. 19 (1): 7–10. Bibcode:1991Geo....19....7T. doi:10.1130/0091-7613(1991)019<0007:COPOB>2.3.CO;2.
  70. ^ a b c d e Dewel, R.A.; Winston, J.E.; McKinney, F.J. (2002). "Deconstructing byozoans: origin and consequences of a unique body plan". In Wyse Jacksdon, P.E.; Buttler, C.E.; Spencer Jones, M.E. (eds.). Bryozoan studies 2001: proceedings of the Twelfth International Bryozoology Conference. M.E. Lisse: Swets and Zeitlinger. pp. 93–96. ISBN 978-90-5809-388-2. Archived from the original on 8 March 2023. Retrieved 13 August 2009.
  71. ^ Olempska, E. (2012). "Exceptional soft-tissue preservation in boring ctenostome bryozoans and associated "fungal" borings from the Early Devonian of Podolia, Ukraine". Acta Palaeontologica Polonica. 57 (4): 925–940. doi:10.4202/app.2011.0200.
  72. ^ McKinney, F.K. (1994). "One hundred million years of competitive interactions between bryozoan clades: asymmetrical but not escalating". Biological Journal of the Linnean Society. 56 (3): 465–481. doi:10.1111/j.1095-8312.1995.tb01105.x.
  73. ^ Wood, R. (1999). Reef evolution. Oxford University Press. pp. 235–237. ISBN 978-0-19-857784-3. Archived from the original on 8 March 2023. Retrieved 11 August 2009.
  74. ^ a b c Wood, T.S.; Lore M. (2005). "The higher phylogeny of phylactolaemate bryozoans inferred from 18S ribosomal DNA sequences" (PDF). In Moyano, H. I.; Cancino, J.M.; Wyse-Jackson, P.N. (eds.). Bryozoan Studies 2004: Proceedings of the 13th International Bryozoology Association. London: Taylor & Francis Group. pp. 361–367. Archived (PDF) from the original on 9 October 2022. Retrieved 24 August 2009.
  75. ^ Pohowsky, R.A. (1978). "The boring ctenostomate bryozoa: taxonomy and paleobiology based on cavities in calcareous substrata". Bulletins of American Paleontology. 73: 192p.
  76. ^ Garey, J.R.; Schmidt-Rhaesa, Andreas (1998). "The Essential Role of "Minor" Phyla in Molecular Studies of Animal Evolution". American Zoologist. 38 (6): 907–917. doi:10.1093/icb/38.6.907.
  77. ^ a b c Nielsen, C. (2001). "Phylum Ectoprocta". Animal evolution: interrelationships of the living phyla (2 ed.). Oxford University Press. pp. 244–264. ISBN 978-0-19-850681-2. Archived from the original on 8 March 2023. Retrieved 14 August 2009.
  78. ^ "Introduction to the Hemichordata". University of California Museum of Paleontology. Archived from the original on 1 February 2019. Retrieved 22 September 2008.
  79. ^ a b c Helmkampf, M.; Bruchhaus, Iris; Hausdorf, Bernhard (2008). "Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept". Proceedings of the Royal Society B: Biological Sciences. 275 (1645): 1927–1933. doi:10.1098/rspb.2008.0372. PMC 2593926. PMID 18495619.
  80. ^ Nielsen, C.; Worsaae, K. (September 2010). "Structure and occurrence of cyphonautes larvae (Bryozoa, Ectoprocta)". Journal of Morphology. 271 (9): 1094–1109. doi:10.1002/jmor.10856. PMID 20730922. S2CID 11453241.
  81. ^ Shen, X.; Tian, M.; Meng, X.; Liu, H.; Cheng, H.; Zhu, C.; Zhao, F. (September 2012). "Complete mitochondrial genome of Membranipora grandicella (Bryozoa: Cheilostomatida) determined with next-generation sequencing: The first representative of the suborder Malacostegina". Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 7 (3): 248–253. doi:10.1016/j.cbd.2012.03.003. PMID 22503287.
  82. ^ a b c Callaghan, T.P.; R., Karlson (June 2002). "Summer dormancy as a refuge from mortality in the freshwater bryozoan Plumatella emarginata". Oecologia. 132 (1): 51–59. Bibcode:2002Oecol.132...51C. doi:10.1007/s00442-002-0946-0. PMID 28547286. S2CID 19925846.
  83. ^ a b c Pratt, M.C. (2008). "Living where the flow is right: How flow affects feeding in bryozoans". Integrative and Comparative Biology. 48 (6): 808–822. doi:10.1093/icb/icn052. PMID 21669834.
  84. ^ Ryland, J.S. (1967). "Respiration in polyzoa (ectoprocta)". Nature. 216 (5119): 1040–1041. Bibcode:1967Natur.216.1040R. doi:10.1038/2161040b0. S2CID 4207120.
  85. ^ Strathmann, R.R. (March 2006). "Versatile ciliary behaviour in capture of particles by the bryozoan cyphonautes larva". Acta Zoologica. 87 (1): 83–89. doi:10.1111/j.1463-6395.2006.00224.x.
  86. ^ a b Wood, T.S.; Okamura, Beth (December 1998). "Asajirella gelatinosa in Panama: a bryozoan range extension in the Western Hemisphere". Hydrobiologia. 390 (1–3): 19–23. doi:10.1023/A:1003502814572. S2CID 1525771.
  87. ^ O'Dea, Aaron; Jackson, Jeremy B. C.; Taylor, Paul D.; Rodríguez, Felix (2008). "Modes of reproduction in recent and fossil cupuladriid bryozoans". Palaeontology. 51 (4): 847–864. doi:10.1111/j.1475-4983.2008.00790.x. S2CID 41016220.
  88. ^ Emiliani, C. (1992). "The Paleozoic". Planet Earth: Cosmology, Geology, & the Evolution of Life & the Environment. Cambridge University Press. pp. 488–490. ISBN 978-0-19-503652-7. Retrieved 11 August 2009.
  89. ^ a b c d Jones, R.W. (2006). "Principal fossil groups". Applied palaeontology. Cambridge University Press. p. 116. ISBN 978-0-521-84199-3. Archived from the original on 8 March 2023. Retrieved 11 August 2009.
  90. ^ Kuklinski, P.; Bader, Beate (2007). "Comparison of bryozoan assemblages from two contrasting Arctic shelf regions". Estuarine, Coastal and Shelf Science. 73 (3–4): 835–843. Bibcode:2007ECSS...73..835K. doi:10.1016/j.ecss.2007.03.024.
  91. ^ Brusca, R; Brusca, G. "Invertebrates (2nd Edition)". Sunderland, MA: Sinauer Associates.
  92. ^ Taylor 2020, p. 159.
  93. ^ Taylor 2020, p. 164.
  94. ^ Taylor 2020, p. 162–163.
  95. ^ Taylor 2020, p. 112–113.
  96. ^ a b Taylor 2020, p. 79.
  97. ^ Peck, L. S.; Hayward, P. J.; Spencer-Jones, M. E. (October 1995). "A pelagic bryozoan from Antarctica | SpringerLink". Marine Biology. 123 (4): 757–762. doi:10.1007/BF00349118. S2CID 83529565. Archived from the original on 3 August 2017. Retrieved 28 August 2017.
  98. ^ Taylor 2020, p. 114.
  99. ^ Matt McGrath (16 June 2014). "'Weedy thing' thrives as Antarctic shores warm". BBC News. Archived from the original on 17 June 2014. Retrieved 16 June 2014.
  100. ^ Ramel, Gordon (5 March 2020). "Bryozoans: The Fascinating Colonies Of Phylum Ectoprocta". Earthlife. Archived from the original on 27 March 2022. Retrieved 19 May 2022.
  101. ^ a b Margulis, L.; Schwartz K.V. (1998). "Bryozoa". Five kingdoms: an illustrated guide to the phyla of life on earth. Elsevier. p. 335. ISBN 978-0-7167-3027-9. Retrieved 20 August 2009.
  102. ^ Iyengar, E.V.; Harvell, CD (2002). "Specificity of cues inducing defensive spines in the bryozoan Membranipora membranacea". Marine Ecology Progress Series. 225: 205–218. Bibcode:2002MEPS..225..205I. doi:10.3354/meps225205. Archived from the original on 26 January 2012. Retrieved 18 August 2009.
  103. ^ Hayward, P. J.; Ryland, J.S. (1985). "Predators". Cyclostome bryozoans: keys and notes for the identification of the species. Brill Archive. p. 27. ISBN 978-90-04-07697-6. Archived from the original on 8 March 2023. Retrieved 18 August 2009.
  104. ^ Day, R.W.; Osman, R.W. (January 1981). "Predation by Patiria miniata (Asteroidea) on bryozoans". Oecologia. 51 (3): 300–309. Bibcode:1981Oecol..51..300D. doi:10.1007/BF00540898. PMID 28310012. S2CID 19976956.
  105. ^ McKinney, F.K.; Taylor, P.D.; Lidgard, S. (2003). "Predation on Bryozoans and its Reflection in the Fossil Record". In Kelley, P.H.; Kowalewski, M.; Hansen, T.A. (eds.). Predator-prey interactions in the fossil record. Springer. pp. 239–246. ISBN 978-0-306-47489-7. Archived from the original on 8 March 2023. Retrieved 18 August 2009.
  106. ^ Wood, T.S. (October 2006). "Freshwater Bryozoans of Thailand (Ectoprocta and Entoprocta)" (PDF). The Natural History Journal of Chulalongkorn University. 6 (2): 83–119. Archived (PDF) from the original on 9 October 2022. Retrieved 24 August 2009.
  107. ^ Puce, S. (2007). "Symbiotic relationships between hydroids and bryozoans". International Symbiosis Society Congress Number 5. 44 (1–3): 137–143. Archived from the original on 26 January 2012. Retrieved 18 August 2009.
  108. ^ Gray, C.A.; McQuaid, CD; Davies-Coleman, MT (December 2005). "A symbiotic shell-encrusting bryozoan provides subtidal whelks with chemical defence against rock lobsters". African Journal of Marine Science. 27 (3): 549–556. doi:10.2989/18142320509504115. S2CID 84531235.
  109. ^ Klicpera, André; Taylor, Paul D.; Westphal, Hildegard (30 July 2013). "Bryoliths constructed by bryozoans in symbiotic associations with hermit crabs in a tropical heterozoan carbonate system, Golfe d'Arguin, Mauritania". Marine Biodiversity. 43 (4): 429–444. doi:10.1007/s12526-013-0173-4. S2CID 15841444. Archived from the original on 11 January 2020. Retrieved 19 August 2019.
  110. ^ a b Anderson, C.; Canning, E.U.; Okamura, B. (1999). "Molecular data implicate bryozoans as hosts for PKX (Phylum Myxozoa) and identify a clade of bryozoan parasites within the Myxozoa". Parasitology. 119 (6): 555–561. doi:10.1017/S003118209900520X. PMID 10633916. S2CID 2851575. Archived from the original on 26 January 2012. Retrieved 18 August 2009.
  111. ^ Clin, B. (2008). "Professional photosensitive eczema of fishermen by contact with bryozoans: disabling occupational dermatosis" (PDF). International Maritime Health. 59 (1–4): 1–4. PMID 19227737. Archived (PDF) from the original on 9 October 2022. Retrieved 18 August 2009.
  112. ^ Wood, T.S.; Marsh, Terrence G (February 1999). "Biofouling of wastewater treatment plants by the freshwater bryozoan, Plumatella vaihiriae". Water Research. 33 (3): 609–614. doi:10.1016/S0043-1354(98)00274-7.
  113. ^ "Bryostatin 1". 19 June 2006. Archived from the original on 9 May 2007. Retrieved 20 August 2009.
  114. ^ "Safety, Efficacy, Pharmacokinetics, and Pharmacodynamics Study of bryostatin 1 in Patients With Alzheimer's Disease". National Institutes of Health. 19 August 2009. Archived from the original on 13 June 2011. Retrieved 20 August 2009.
  115. ^ Nelson, T. J.; Sun, M. K.; Lim, C.; Sen, A.; Khan, T.; Chirila, F. V.; Alkon, D. L. (2017). "Bryostatin Effects on Cognitive Function and PKCɛ in Alzheimer's Disease Phase IIA and Expanded Access Trials". Journal of Alzheimer's Disease. 58 (2): 521–535. doi:10.3233/JAD-170161. PMC 5438479. PMID 28482641.
  116. ^ Wender, P.A.; Baryza, JL; Bennett, CE; Bi, FC; Brenner, SE; Clarke, MO; Horan, JC; Kan, C; et al. (20 November 2002). "The Practical Synthesis of a Novel and Highly Potent Analogue of Bryostatin". Journal of the American Chemical Society. 124 (46): 13648–13649. doi:10.1021/ja027509+. PMID 12431074.
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors
original
visiter la source
site partenaire
wikipedia EN

Bryozoa: Brief Summary ( anglais )

fourni par wikipedia EN

Bryozoa (also known as the Polyzoa, Ectoprocta or commonly as moss animals) are a phylum of simple, aquatic invertebrate animals, nearly all living in sedentary colonies. Typically about 0.5 millimetres (1⁄64 in) long, they have a special feeding structure called a lophophore, a "crown" of tentacles used for filter feeding. Most marine bryozoans live in tropical waters, but a few are found in oceanic trenches and polar waters. The bryozoans are classified as the marine bryozoans (Stenolaemata), freshwater bryozoans (Phylactolaemata), and mostly-marine bryozoans (Gymnolaemata), a few members of which prefer brackish water. 5,869 living species are known. At least two genera are solitary (Aethozooides and Monobryozoon); the rest are colonial.

The terms Polyzoa and Bryozoa were introduced in 1830 and 1831, respectively. Soon after it was named, another group of animals was discovered whose filtering mechanism looked similar, so it was included in Bryozoa until 1869, when the two groups were noted to be very different internally. The new group was given the name "Entoprocta", while the original Bryozoa were called "Ectoprocta". Disagreements about terminology persisted well into the 20th century, but "Bryozoa" is now the generally accepted term.

Colonies take a variety of forms, including fans, bushes and sheets. Single animals, called zooids, live throughout the colony and are not fully independent. These individuals can have unique and diverse functions. All colonies have "autozooids", which are responsible for feeding, excretion, and supplying nutrients to the colony through diverse channels. Some classes have specialist zooids like hatcheries for fertilized eggs, colonial defence structures, and root-like attachment structures. Cheilostomata is the most diverse order of bryozoan, possibly because its members have the widest range of specialist zooids. They have mineralized exoskeletons and form single-layered sheets which encrust over surfaces, and some colonies can creep very slowly by using spiny defensive zooids as legs.

Each zooid consists of a "cystid", which provides the body wall and produces the exoskeleton, and a "polypide", which holds the organs. Zooids have no special excretory organs, and autozooids' polypides are scrapped when they become overloaded with waste products; usually the body wall then grows a replacement polypide. Their gut is U-shaped, with the mouth inside the crown of tentacles and the anus outside it. Zooids of all the freshwater species are simultaneous hermaphrodites. Although those of many marine species function first as males and then as females, their colonies always contain a combination of zooids that are in their male and female stages. All species emit sperm into the water. Some also release ova into the water, while others capture sperm via their tentacles to fertilize their ova internally. In some species the larvae have large yolks, go to feed, and quickly settle on a surface. Others produce larvae that have little yolk but swim and feed for a few days before settling. After settling, all larvae undergo a radical metamorphosis that destroys and rebuilds almost all the internal tissues. Freshwater species also produce statoblasts that lie dormant until conditions are favorable, which enables a colony's lineage to survive even if severe conditions kill the mother colony.

Predators of marine bryozoans include sea slugs (nudibranchs), fish, sea urchins, pycnogonids, crustaceans, mites and starfish. Freshwater bryozoans are preyed on by snails, insects, and fish. In Thailand, many populations of one freshwater species have been wiped out by an introduced species of snail. A fast-growing invasive bryozoan off the northeast and northwest coasts of the US has reduced kelp forests so much that it has affected local fish and invertebrate populations. Bryozoans have spread diseases to fish farms and fishermen. Chemicals extracted from a marine bryozoan species have been investigated for treatment of cancer and Alzheimer's disease, but analyses have not been encouraging.

Mineralized skeletons of bryozoans first appear in rocks from the Early Ordovician period, making it the last major phylum to appear in the fossil record. This has led researchers to suspect that bryozoans arose earlier but were initially unmineralized, and may have differed significantly from fossilized and modern forms. In 2021, some research suggested Protomelission, a genus known from the Cambrian period, could be an example of an early bryozoan, but later research suggested that this taxon may instead represent a dasyclad alga. Early fossils are mainly of erect forms, but encrusting forms gradually became dominant. It is uncertain whether the phylum is monophyletic. Bryozoans' evolutionary relationships to other phyla are also unclear, partly because scientists' view of the family tree of animals is mainly influenced by better-known phyla. Both morphological and molecular phylogeny analyses disagree over bryozoans' relationships with entoprocts, about whether bryozoans should be grouped with brachiopods and phoronids in Lophophorata, and whether bryozoans should be considered protostomes or deuterostomes.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors
original
visiter la source
site partenaire
wikipedia EN

Briozooj ( espéranto )

fourni par wikipedia EO

Briozojmuskanimaloj[3] (science: BryozoaPolyzoa; el la greka βρύον, musko —aŭ πολύς, multaj— + ζῷον, animalo)[4][5] estas filumo de akvaj senvertebruloj. Tipe ĉirkaŭ 0.5 milimetrojn longaj, ili estas filtromanĝantoj kiuj kribras partiklojn el akvo uzante retireblan lofoforon, neom "krono" de tentakloj kovritaj per cilioj. La filumo estas dividita en 3 klasoj, kiuj inkluzivas proksimume 6.008 speciojn.[6]

Plaj maraj specioj vivas en tropikaj akvoj, sed kelkaj loĝas en oceanaj fosejoj, kaj aliaj troviĝas en polusaj akvoj. Unu klaso vivas nur en vario de nesalakvaj medioj, kaj kelkaj membroj de ĉefa mara klaso preferas saletan akvon. Oni konas ĉirkaŭ 4,000 vivantajn speciojn. Unu genro estas solema kaj la cetero estas kolonia.

La filumo estis origine nomita "Polyzoa", sed tiu termino estis superŝutita per "Bryozoa" en 1831. Alia grupo de bestoj malkovritaj poste, kies filtromekanismo aspektis simila, estis inkluditaj ankaŭ en "Bryozoa" ĝis 1869, kiam oni notis ke ambaŭ grupoj estas tre diferencaj interne. La pli ĵusa malkovrita grupo estis nomita Entoprocta, dum la originaj "Bryozoa" estis nomitaj "Ectoprocta". Tamen, "Bryozoa" restis la plej disvastigita uzita termino por la lasta grupo.

Referencoj

  1. (November 2013) “Reinterpretation of the Cambrian 'bryozoan' Pywackia as an octocoral”, Journal of Paleontology 87 (6), p. 984–990. doi:10.1666/13-029.
  2. (September 2015) “The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China”, Palaeontology 58 (5), p. 925–934. doi:10.1111/pala.12189.
  3. Brusca; Brusca. "21: The Lophophorate Phyla". The Invertebrates.
  4. Wiktionary contributors (2019-03-13). Bryozoon. (angle) (HTML). Wiktionary, The Free Dictionary.. Alirita 2019-06-28.
  5. Wiktionary contributors (2019-04-10). Polyzoon. (angle) (HTML). Wiktionary, The Free Dictionary.. Alirita 2019-06-28.
  6. Catalogue of Life (angle) (HTML). ITIS (2019). Arkivita el la originalo je 2019-06-22. Alirita 2019-06-22.
licence
cc-by-sa-3.0
droit d’auteur
Vikipedio aŭtoroj kaj redaktantoj
original
visiter la source
site partenaire
wikipedia EO

Briozooj: Brief Summary ( espéranto )

fourni par wikipedia EO

Briozoj aŭ muskanimaloj (science: Bryozoa aŭ Polyzoa; el la greka βρύον, musko —aŭ πολύς, multaj— + ζῷον, animalo) estas filumo de akvaj senvertebruloj. Tipe ĉirkaŭ 0.5 milimetrojn longaj, ili estas filtromanĝantoj kiuj kribras partiklojn el akvo uzante retireblan lofoforon, neom "krono" de tentakloj kovritaj per cilioj. La filumo estas dividita en 3 klasoj, kiuj inkluzivas proksimume 6.008 speciojn.

Plaj maraj specioj vivas en tropikaj akvoj, sed kelkaj loĝas en oceanaj fosejoj, kaj aliaj troviĝas en polusaj akvoj. Unu klaso vivas nur en vario de nesalakvaj medioj, kaj kelkaj membroj de ĉefa mara klaso preferas saletan akvon. Oni konas ĉirkaŭ 4,000 vivantajn speciojn. Unu genro estas solema kaj la cetero estas kolonia.

La filumo estis origine nomita "Polyzoa", sed tiu termino estis superŝutita per "Bryozoa" en 1831. Alia grupo de bestoj malkovritaj poste, kies filtromekanismo aspektis simila, estis inkluditaj ankaŭ en "Bryozoa" ĝis 1869, kiam oni notis ke ambaŭ grupoj estas tre diferencaj interne. La pli ĵusa malkovrita grupo estis nomita Entoprocta, dum la originaj "Bryozoa" estis nomitaj "Ectoprocta". Tamen, "Bryozoa" restis la plej disvastigita uzita termino por la lasta grupo.

licence
cc-by-sa-3.0
droit d’auteur
Vikipedio aŭtoroj kaj redaktantoj
original
visiter la source
site partenaire
wikipedia EO

Bryozoa ( espagnol ; castillan )

fourni par wikipedia ES

Los briozoos (Bryozoa, griego "animales musgo") o ectoproctos (Ectoprocta, gr. "ano externo") son un filo de pequeños animales coloniales, que presentan un lofóforo, corona de tentáculos ciliados que sirven para captar alimento, en los que el ano se abre fuera de dicha corona tentacular. Se han descrito unas 5.700 especies[2]​ mayoritariamente marinas; solo unos 50 viven en agua dulce.

Durante años se les clasificó junto a los entoproctos, en los que el ano se abre dentro de la corona tentacular,[3]​ pero hoy se sabe que el grupo hermano de los entoproctos es Cycliophora.[4]

Características

Véase también: Anexo:Animales bilaterales
 src=
Briozoo de agua dulce.

Como los braquiópodos, se caracterizan por presentar un lofóforo evaginable, rasgo que ubica a los braquiópodos y a los briozoos dentro del clado Lophophorata. Su función es principalmente la alimentación. Se trata de una corona de tentáculos que generan corrientes de agua hacia la boca del individuo. A su vez, dichos tentáculos secretan una sustancia pegajosa que favorece la captura del plancton, principal dieta de los briozoos, y lo dirigen hacia la boca.

El zoecio, o cubierta protectora, puede ser quitinoso o calcáreo, de forma cilíndrica y con una abertura para la salida del polípido. Esta abertura puede presentar opérculo o no.

En muchos grupos puede haber zooides especializados, dando un rasgo más avanzado al grupo. Los zooides especializados en la defensa de la colonia se los conoce como "avicularios". Los encargados de la limpieza, "vibracularios", y los que se ocupan exclusivamente de la reproducción, "gonozooides".

Biología y ecología

Los briozoos filtran el agua y se alimentan de minúsculos organismos. Prefieren aguas no contaminadas, quietas y sin corriente, como las de los lagos pequeños.

Forman grandes colonias de miembros microscópicos o casi. Quedan en las orillas cuando hay vientos fuertes o actividad en el lago. El nombre del grupo ("animales musgo") se debe a que muchas veces su aspecto recuerda una cubierta subacuática de musgo.

La colonia se desarrolla a partir de una larva nadadora, la cual se fija al substrato mediante un disco quitinoso o estolón del cual se desarrolla el primer individuo o ancéstrula, el cual por sucesivas brotaciones y gemaciones da origen a la colonia o zoario. El zoario se halla constituido por miles de individuos o zooides que constan de dos partes; la polípida (partes blandas), y la zoecia (parte esqueletal).

Referencias

  1. Landing, E.; English, A.; Keppie, J. D. (2010). «Cambrian origin of all skeletalized metazoan phyla--Discovery of Earth's oldest bryozoans (Upper Cambrian, southern Mexico)». Geology 38 (6): 547. doi:10.1130/G30870.1.
  2. Chapman, A. D., 2009. Numbers of Living Species in Australia and the World, 2nd edition. Australian Biodiversity Information Services ISBN (online) 9780642568618
  3. Brusca, R. C. & Brusca, G. J., 2005. Invertebrados, 2ª edición. McGraw-Hill-Interamericana, Madrid (etc.), XXVI+1005 pp. ISBN 0-87893-097-3.
  4. Torsten H. Struck et al. 2014, Platyzoan Paraphyly Based on Phylogenomic Data Supports a Noncoelomate Ancestry of Spiralia. Molecular Biology and Evolution, Volume 31, Issue 7, 1 July 2014, Pages 1833–1849, https://doi.org/10.1093/molbev/msu143
  • Sharp, J.H., Winson, M.K. and Porter, J.S. 2007. Bryozoan metabolites: an ecological perspective. Natureal Product Reports 24: 659-673.

 title=
licence
cc-by-sa-3.0
droit d’auteur
Autores y editores de Wikipedia
original
visiter la source
site partenaire
wikipedia ES

Bryozoa: Brief Summary ( espagnol ; castillan )

fourni par wikipedia ES

Los briozoos (Bryozoa, griego "animales musgo") o ectoproctos (Ectoprocta, gr. "ano externo") son un filo de pequeños animales coloniales, que presentan un lofóforo, corona de tentáculos ciliados que sirven para captar alimento, en los que el ano se abre fuera de dicha corona tentacular. Se han descrito unas 5.700 especies​ mayoritariamente marinas; solo unos 50 viven en agua dulce.

Durante años se les clasificó junto a los entoproctos, en los que el ano se abre dentro de la corona tentacular,​ pero hoy se sabe que el grupo hermano de los entoproctos es Cycliophora.​

licence
cc-by-sa-3.0
droit d’auteur
Autores y editores de Wikipedia
original
visiter la source
site partenaire
wikipedia ES

Sammalloomad ( estonien )

fourni par wikipedia ET

Sammalloomad (Bryozoa ehk Ectoprocta) on loomade hõimkond, kuhu kuuluvad väikesed kolooniates elavad loomad. Neid kolooniate üksikisendeid kutsutakse loomikuteks.

Paljudel sammalloomadel on väline lubitoes. Sammalloomadel puuduvad ringe-, hingamis- ja erituselundid.

Vaatamata sellele, et nad on levinud kogu maailmas, eelistavad nad elutseda soojades troopilistes meredes. Tuntakse umbes 5000 sammalloomaliiki.

Eesti elab umbes 10 liiki sammalloomi.[1]

Taksonoomia

Klassid

Eesti liike

Pilte

Vaata ka

Viited

Kirjandus

  • Ristkok, Jüri 1964. Selgrootute loomade süsteem. Teine trükk. Tartu: Tartu Riiklik Ülikool, lk. 60.
licence
cc-by-sa-3.0
droit d’auteur
Vikipeedia autorid ja toimetajad
original
visiter la source
site partenaire
wikipedia ET

Sammalloomad: Brief Summary ( estonien )

fourni par wikipedia ET

Sammalloomad (Bryozoa ehk Ectoprocta) on loomade hõimkond, kuhu kuuluvad väikesed kolooniates elavad loomad. Neid kolooniate üksikisendeid kutsutakse loomikuteks.

Paljudel sammalloomadel on väline lubitoes. Sammalloomadel puuduvad ringe-, hingamis- ja erituselundid.

Vaatamata sellele, et nad on levinud kogu maailmas, eelistavad nad elutseda soojades troopilistes meredes. Tuntakse umbes 5000 sammalloomaliiki.

Eesti elab umbes 10 liiki sammalloomi.

licence
cc-by-sa-3.0
droit d’auteur
Vikipeedia autorid ja toimetajad
original
visiter la source
site partenaire
wikipedia ET

Bryozoa ( basque )

fourni par wikipedia EU

Bryozoa (grezieratik, bryo, goroldio eta zooa, animalia) -batzuetan Ectoprocta izendatuak- animalia ornogabe filum bat dira. 0,5 milimetro luze neurtu ohi dute eta aurkitzen duten janaria iragazten dute lofoforo batzuekin. Hauek koroa egitura batean lerrokatzen dira zilio ezberdinekin. Itsas espezie gehienak tropikoetan bizi dira, baina poloetan ere aurkitu daitezke. Ur gezatan ere badira hainbat espezie. 4.000 bat espezie ezagutzen dira eta generoetako bat bakartia da eta beste guztiak kolonialak.

(RLQ=window.RLQ||[]).push(function(){mw.log.warn("Gadget "ErrefAurrebista" was not loaded. Please migrate it to use ResourceLoader. See u003Chttps://eu.wikipedia.org/wiki/Berezi:Gadgetaku003E.");});
licence
cc-by-sa-3.0
droit d’auteur
Wikipediako egileak eta editoreak
original
visiter la source
site partenaire
wikipedia EU

Bryozoa: Brief Summary ( basque )

fourni par wikipedia EU
(RLQ=window.RLQ||[]).push(function(){mw.log.warn("Gadget "ErrefAurrebista" was not loaded. Please migrate it to use ResourceLoader. See u003Chttps://eu.wikipedia.org/wiki/Berezi:Gadgetaku003E.");});
licence
cc-by-sa-3.0
droit d’auteur
Wikipediako egileak eta editoreak
original
visiter la source
site partenaire
wikipedia EU

Sammaleläimet ( finnois )

fourni par wikipedia FI

Sammaleläimet (Bryozoa tai Ectoprocta) on yksi eläinkunnan pääjaksoista. Ne ovat vedessä eläviä, tavallisesti runkokuntia muodostavia selkärangattomia, jotka ovat sukua pikarimadoille. Ne muodostavat sammalmaisen peitteen esimerkiksi kiviin tai vesikasveihin. Runkokunnan eri yksilöt voivat olla kehittyneitä eri tehtäviin. Sammaleläimet lisääntyvät joko suvullisesti tai kuroutumalla. Erilajiset sammaleläimet ovat muodoiltaan hyvin erilaisia ja ne sekoitetaan usein muihin eliöihin, koralleihin tai fossilistoissa jopa leviin.

 src=
Korallimainen sammaleläin Costazia costazi

Sammaleläimet ilmestyivät meriin viimeistään varhaisella ordovikikaudella. Niitä saattoi elää pehmeäkuorisina jo kambrikaudella.

Sammaleläimet elävät yleensä merissä, mutta myös makeassa ja murtovedessä. Suomessa tavattavia sammaleläimiä ovat muun muassa Itämeressä elävä levärupi, sisävesien kulkusammaleläin sekä tulokaslaji Pectinatella magnifica.[1]

Lähteet

Aiheesta muualla

Tämä eläimiin liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.
licence
cc-by-sa-3.0
droit d’auteur
Wikipedian tekijät ja toimittajat
original
visiter la source
site partenaire
wikipedia FI

Sammaleläimet: Brief Summary ( finnois )

fourni par wikipedia FI

Sammaleläimet (Bryozoa tai Ectoprocta) on yksi eläinkunnan pääjaksoista. Ne ovat vedessä eläviä, tavallisesti runkokuntia muodostavia selkärangattomia, jotka ovat sukua pikarimadoille. Ne muodostavat sammalmaisen peitteen esimerkiksi kiviin tai vesikasveihin. Runkokunnan eri yksilöt voivat olla kehittyneitä eri tehtäviin. Sammaleläimet lisääntyvät joko suvullisesti tai kuroutumalla. Erilajiset sammaleläimet ovat muodoiltaan hyvin erilaisia ja ne sekoitetaan usein muihin eliöihin, koralleihin tai fossilistoissa jopa leviin.

 src= Korallimainen sammaleläin Costazia costazi

Sammaleläimet ilmestyivät meriin viimeistään varhaisella ordovikikaudella. Niitä saattoi elää pehmeäkuorisina jo kambrikaudella.

Sammaleläimet elävät yleensä merissä, mutta myös makeassa ja murtovedessä. Suomessa tavattavia sammaleläimiä ovat muun muassa Itämeressä elävä levärupi, sisävesien kulkusammaleläin sekä tulokaslaji Pectinatella magnifica.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedian tekijät ja toimittajat
original
visiter la source
site partenaire
wikipedia FI

Ectoprocta

fourni par wikipedia FR

Les ectoproctes (Ectoprocta, du grec ektós « dehors » et prōktós « anus », ce néologisme manifestant un aspect de l’anatomie de certains individus), appelés également Bryozoaires (Bryozoa, du grec brúon « mousse » et zōon « animal »), sont des animaux coloniaux et sessiles (à une espèce près[1]). Quelques espèces (de la classe des Phylactolaemata) vivent en eau douce (dont Pectinatella magnifica, qui, importée d'Amérique, est devenue localement envahissante en France, Allemagne, Autriche, etc.), ou saumâtre, mais ils sont en majorité marins[2].

Ces métazoaires (pluricellulaires) sont dits triploblastiques (c'est-à-dire qu'ils sont constitués de trois feuillets : endoderme, mésoderme, ectoderme) et cœlomates (cavité interne). Ils forment un groupe de Lophotrochozoaires apparu à l'Ordovicien.

Chaque individu, appelé zoïde ou zoécie, forme une petite loge chitineuse, sécrétée par le mésoderme et vit le plus souvent fixé au sein d'une colonie, le zoarium. La plupart des espèces produisent une matière carbonatée qui constitue ces loges, et plusieurs espèces contribuent à la construction des récifs coralliens.

Quelques espèces (dont P. magnifica) ne produisent aucune calcification, mais développent des structures mucilagineuses ; elles sont en majorité marines. Certaines espèces sont parfois confondues avec les coraux. Elles contribuent avec ces dernières, au même titre, au puits de carbone océanique.

Anatomie et biologie

 src=
Planche des Bryozoa, d'Ernst Haeckel (Kunstformen der Natur, 1904).

Les colonies prennent des formes très variées, mais propres à chaque espèce. Cette forme est l’un des critères d'identification des espèces. Chez les centaines d'espèces observées, entre autres dans des faluns miocènes tourangeaux, il est avéré que nombre d'entre elles peuvent constituer des colonies de formes différentes selon le niveau bathymétrique de vie. Certaines espèces ont toujours la même forme. Et donc la forme de la colonie ne constitue pas une preuve d'identification certaine : on se repère dans le doute des colonies multiformes pour une même espèce possible, à la forme de la zoécie et surtout son ouverture, partie la plus facilement visible et identifiable.
La colonie se présente sous de nombreux aspects ; en baguette, en disque, en éventail ou en croûte (dite alors encroûtante).
Elle est souvent étendue à plat, tapissant un substrat, d’où le nom bryozoaire, littéralement « animal mousse », mais elle forme également des monticules, ou bien se dresse en lamelles, en branches ramifiées et même en forme de tire-bouchon.

Le zoïde, animal élémentaire de taille millimétrique, a grossièrement l'aspect d'un énorme estomac replié en « U » dans sa loge, avec d’un côté la tête entourée d’un panache de tentacules appelé lophophore, au milieu duquel s'ouvre la bouche. L’œsophage prolonge la bouche vers l’estomac qui remonte de l’autre côté vers le rectum. L’anus s’ouvre à l’extérieur des tentacules, d’où le nom ectoprocte.

Le lophophore crée un courant d'eau qui assure la nutrition et la respiration à travers les tissus, mais aussi le nettoyage et la dispersion des œufs, pour les ovipares. La sortie du lophophore sur sa tige s’effectue progressivement et lentement, mais un muscle contractile puissant, lui permet de se rétracter rapidement, en fermant l’orifice par un opercule ou une membrane élastique.

Le zoïde est également connecté à tous ses congénères, depuis son ganglion cérébroïde situé près de la bouche, par un réseau qui passe d'une zoécie à l'autre par des pores dans la paroi appelés pores à rosette et constitués d'un groupe de cellules en forme de diabolo. C’est également par ces pores que circulent les éléments nutritifs.

Polymorphisme

Le zoïde présente un polymorphisme caractéristique (encroûtante, dressée ou arbustive), plus ou moins accentué et plus ou moins diversifié selon les espèces. Certaines colonies regroupent des individus identiques, d’autres des individus spécialisés dans une fonction (reproduction, ventilation, défense, nettoyage et alimentation[3]). L’autozoïde, la zoécie standard, semble en effet capable de se spécialiser et de changer de forme au cours de son existence, pour s’adapter à diverses fonctions telles que la fixation, le nettoyage ou bien encore la défense de la colonie.
On la désigne alors sous le terme d'hétérozoïde :

  • Les plus évidents sont les autozoïdes, appelés gastrozoïdes dans leur spécialité, grands consommateurs de microorganismes, principalement de phytoplancton. Les microalgues et diatomées, les bactéries et autres débris organiques sont aspirés et filtrés par les cils vibratiles des tentacules.
  • Les aviculaires en forme de bec d'oiseau, basculent pour ôter les corps étrangers tombés sur la colonie, prédateurs compris ; essentiellement des oursins et certains poissons.
  • Les vibraculaires dotés d'une longue tige, se balancent comme des essuie-glaces, pour faire circuler l’eau, chassant les limons et autres particules.
  • Les cénocystides dépourvus de polype, semblent s’occuper de la fixation de la colonie sur le substrat.
  • Les gonozoïdes, spécialisés dans la reproduction, sont hermaphrodites, c’est-à-dire à la fois mâle et femelle, mais ils n’ont pas besoin de s’accoupler. Ils assurent leur propre fécondation et pondent des œufs.
  • Les ovicelles, de forme ronde, assurent parfois l’incubation de ces œufs. L’œuf donne enfin une larve planctonique ciliée, qui se métamorphose à son tour et donne naissance à l'ancestrula, loge fondatrice d'une nouvelle colonie.

Le principal mode de reproduction des ectoproctes reste toutefois le bourgeonnement. Les nouveaux bourgeons, dotés d'un flotteur et d'un crochet, sont parés pour se fixer au substrat et assurer la pérennité de l'espèce. Cette méthode assure également la prolifération et l’extension de la colonie, de même que la survie des fragments qui se brisent.

Les zoïdes sont capables de communiquer entre eux[4] à travers des plaques poreuses situées sur leurs parois.

Écologie

 src=
Janolus cristatus est un mollusque prédateur de bryozoaires marins.
 src=
Schizoporella japonica (A : observation en microscopie optique) qui encroûtent les rochers (B, C et D).
 src=
Une situation de commensalisme est celle des balanes fixés sur la coquille de la moule commune, et des colonies de bryozoaire, du type Conopeum reticulum, qui l'encroûtent[5].

Diversité biologique : Les ectoproctes sont les plus nombreux et les plus diversifiés dans les eaux tropicales chaudes, avec des patterns de biodiversité et d'endémisme encore mal compris, mais on les rencontre dans toutes les mers du globe. Quelques espèces se sont adaptées aux eaux douces.

Les substrats : On retrouve des colonies sur tous les types de supports ; sur la roche, en milieu détritique côtier ou au large, sur des grains de sable, cailloux où coquillages (exemple : Conopeum reticulum sur des coquilles de bivalves comme les moules)[5], sur le bois, le métal des épaves, ou encore sur d'autres organismes vivants comme les éponges, des algues ou les gorgones.

Mobilité : Quelques colonies sont capables de ramper et certaines espèces « non-coloniales » se déplacent entre les grains de sable. Cependant, la plupart sont sessiles, c'est-à-dire définitivement fixées à leur substrat

Alimentation : Les bryozoaires se nourrissent de diatomées et d’autres micro-organismes planctoniques au moyen d’une couronne de tentacules ciliés (lophophore) entourant la bouche. Cette couronne leur permet également de respirer.

Prédateurs : Leurs principaux prédateurs sont des poissons, des crustacés, des gastéropodes, des oursins, des étoiles de mer et des nudibranches[6].

Potentiel invasif

Quelques espèces, probablement transportées de port en port par les navires, sont en train de coloniser les ports et les littoraux européens.
Par exemple, Tricellaria inopinata d'Hondt & Occhipinti ambrogi, 1985, bryozoaire cheilostome originaire du Pacifique Nord-Est, pullulait déjà à Venise en 1982[7]. Il a continué à s'étendre dans la lagune durant 15 ans[8] avant de régresser[9]. On l'a ensuite signalé en mer Adriatique en 2000[10] puis sur la façade ouest-européenne (En Espagne tout d'abord, dans la ria de Ribadeo (Galice) [11] et depuis janvier 2003 dans le Port du Havre[12]. Elle est suspectée depuis à Dunkerque. L'exemple de Bugula neritina montre que la capacité invasive des ectoproctes est liée à la fois à s'implanter dans de nombreuses régions du globe sauf les régions polaires et subpolaires et à se fixer massivement sur des substrats rocheux ou artificiels des littoraux avec des eaux riches en particules via un réseau de filaments très élaboré[13].

En eau douce

On a identifié dès les années 1850[14] quelques espèces vivant en eau douce, et dont le mode de reproduction intriguait et intrigue encore les biologistes[15], elles ont été classées en tant que taxon dans la classe Phylactolaemata (qui contient l'ordre unique des Plumatellida), dont :

Fossiles

 src=
Bryozoaires fossilisés.

Classification

Les bryozoaires étaient jusqu’alors constitués des ectoproctes et des entoproctes, sur la base de critères morphologiques et de modes de vie semblables. Certains chercheurs incluaient également les cycliophores, dont on pense qu'ils sont étroitement liés aux entoproctes. Toutefois, des études plus récentes ont révélé que les ectoproctes sont cœlomates (cavité interne) et que leurs embryons subissent un clivage radial, tandis que les entoproctes sont acœlomates, leurs embryons subissant un clivage en spirale. Les études de phylogénie moléculaire, basée sur le gènes nucléaires (du noyau cellulaire) et mitochondriaux[16] ne lèvent pas l’ambiguïté de la position exacte des entoproctes, mais permettent de les distinguer nettement des ectoproctes et de préciser leur phylogénie[17]

Pour ces raisons, les entoproctes (Entoprocta, du grec entós « dedans » et prōktós « derrière ») sont maintenant considérés comme un embranchement à part entière. La suppression de 150 espèces a laissé le terme bryozoaire synonyme d'ectoprocte. Certains auteurs ont adopté ce nom pour désigner l'embranchement, alors que la majorité d'entre eux continuent d'utiliser l'ancien terme. D’où le flottement qui perdure à propos du bryozoaire.

Taxinomie

Le nombre d’espèces récentes (non fossiles) se situe entre 6 000[18] et 8 000, et au moins 20 000 fossiles[19].

La classification des ectoproctes s'est longtemps divisées en deux ordres, « coloniales » et « solitaires », mais les travaux récents en phylogénie ont mis en doute cette bipartition.

Selon World Register of Marine Species (25 février 2016)[20] :

Selon Palaeos[21] :

Recherche

Les Ectoproctes sont facilement observés dans la nature par les plongeurs, mais leur identification ne peut parfois être faite qu'en laboratoire et sous microscope ou forte loupe.

Certaines espèces ont été maintenues un certain temps ou élevées en laboratoire (ce qui implique de pouvoir produire ou rapporter le plancton et les nutriments qui leur sont nécessaires)[22]. En les faisant croitre sur un substrat amovible et/ou transparent, elles sont ensuite plus faciles à observer.

Voir aussi

licence
cc-by-sa-3.0
droit d’auteur
Auteurs et éditeurs de Wikipedia
original
visiter la source
site partenaire
wikipedia FR

Ectoprocta: Brief Summary

fourni par wikipedia FR

Les ectoproctes (Ectoprocta, du grec ektós « dehors » et prōktós « anus », ce néologisme manifestant un aspect de l’anatomie de certains individus), appelés également Bryozoaires (Bryozoa, du grec brúon « mousse » et zōon « animal »), sont des animaux coloniaux et sessiles (à une espèce près). Quelques espèces (de la classe des Phylactolaemata) vivent en eau douce (dont Pectinatella magnifica, qui, importée d'Amérique, est devenue localement envahissante en France, Allemagne, Autriche, etc.), ou saumâtre, mais ils sont en majorité marins.

Ces métazoaires (pluricellulaires) sont dits triploblastiques (c'est-à-dire qu'ils sont constitués de trois feuillets : endoderme, mésoderme, ectoderme) et cœlomates (cavité interne). Ils forment un groupe de Lophotrochozoaires apparu à l'Ordovicien.

Chaque individu, appelé zoïde ou zoécie, forme une petite loge chitineuse, sécrétée par le mésoderme et vit le plus souvent fixé au sein d'une colonie, le zoarium. La plupart des espèces produisent une matière carbonatée qui constitue ces loges, et plusieurs espèces contribuent à la construction des récifs coralliens.

Quelques espèces (dont P. magnifica) ne produisent aucune calcification, mais développent des structures mucilagineuses ; elles sont en majorité marines. Certaines espèces sont parfois confondues avec les coraux. Elles contribuent avec ces dernières, au même titre, au puits de carbone océanique.

licence
cc-by-sa-3.0
droit d’auteur
Auteurs et éditeurs de Wikipedia
original
visiter la source
site partenaire
wikipedia FR

Bryozoa ( irlandais )

fourni par wikipedia GA

Brainse ainmhithe beaga uisciúla a chruthaíonn coilíneachtaí de ghnáth, suas le milliún ainmhí i gcoilíneacht. Bíonn struchtúr cosúil le hadharcán mar chóras ite gar don bhéal. Déanann an choilíneacht creatlach chailcreach, chneasach nó ghlóthach. Suas le 4,000 speiceas beo, muirí, ceangailte le foshraith chrua nó feamainn den chuid is mó, le dríodair bhoga go hannamh. Faightear cuid bheag díobh in uisce úr. An-fhlúirseach mar iontaisí.

 src=
Tá an t-alt seo bunaithe ar ábhar as Fréamh an Eolais, ciclipéid eolaíochta agus teicneolaíochta leis an Ollamh Matthew Hussey, foilsithe ag Coiscéim sa bhliain 2011. Tá comhluadar na Vicipéide go mór faoi chomaoin acu beirt as ucht cead a thabhairt an t-ábhar ón leabhar a roinnt linn go léir.
 src=
Is síol é an t-alt seo. Cuir leis, chun cuidiú leis an Vicipéid.
Má tá alt níos forbartha le fáil i dteanga eile, is féidir leat aistriúchán Gaeilge a dhéanamh.


licence
cc-by-sa-3.0
droit d’auteur
Údair agus eagarthóirí Vicipéid
original
visiter la source
site partenaire
wikipedia GA

Briozoos ( galicien )

fourni par wikipedia gl Galician

Os briozoos (Bryozoa, do grego βρύον brýon, "musgo", e ζωον zōon, "animal"), o que xustifica o nome que lle dan algúns[quen?] de animais musgo,[Cómpre referencia] tamén chamados polizoos (Polyzoa) e ectoproctos (Ectoprocta, do grego εκτός ektós, "fóra", "afora", e πρωκτόσ prōktós, "ano").[5] son un filo de pequenos animalis coloniais, que presentan un lofóforo, coroa de tentáculos ciliados que serven para captar alimento, nos que o ano se abre fóra de diita coroa tentacular.

Describíronse unhas 5.700 especies [6] maioritariamente mariñas; só unhas 50 viven en auga doce.

Durante anos clasificáronse xunto aos entoproctos, nos que o ano se abre dentro da coroa tentacular, pero hoxe dubídase de que ambos os grupos estean realmente relacionados.[5]

Son animais triblásticos, deuteróstomos e esquizocelomados, con tentáculos lofoforais retráctiles nunha vaíña tentacular. Carecen de nefridios e de aparato circulatorio.

Estes animais posúen algúns caracteres que os achegan aos protóstomos, porén outras características como a orixe do mesoderma ou a natureza do celoma aproxímanos máis aos deuteróstomos.

Características

O Phylum Briozoo está composto por unhas 4.500 especies vivas e máis de 4.000 especies fósiles atopadas.

As súas principais características son:

  1. Caracterízanse por teren un lofóforo empregado na captura de alimento e na respiración.
  2. A cavidade celómica presenta un celoma dividido en tres partes, estando esta separada por un septo nun mesocele e un metacele.
  3. O tubo dixestivo ten forma de U, cunha boca e ano próximos ao lofóforo.
  4. Son coloniais, formando masas incrustantes xelatinosas ou duras ou ben arborescentes.
  5. Epístoma e protocele ausentes na maioría das especies.
  6. Cutícula externa, denominada zoecio, xeralmente de carbonato de calcio ou quitina.
  7. Carecen de nefridios e de aparato circulatorio.
  8. Habitualmente son case exclusivamente coloniais, tendo unha elevada capacidade de reprodución asexual .
  9. A maioría son exclusivamente mariños, e só algunhas especies son de augas doces.

Anatomía

A suma dos individuos completos constitúen unha colonia. Un zooide ou zoecio está formado por dous tipos de individuos: unha teca protectora que recibe o nome de cistidio e o encargado da alimentación ou polípido. Trátase, por tanto, de dúas partes dun mesmo animal. O conxunto dos zooides que forman a colonia leva o nome de zoario.

  • Os briozoos carecen de aparato respiratorio e a intercambio respiratorio acontece na superficie do corpo grazas á acción do lofóforo.
  • O sistema nervioso inclúe un anel nervioso arredor da farinxe ao que está unido un ganglio “cerebroide” que posúe algunhas neuronas periféricas. Carece de órganos dos sentidos especiais aínda que ten células especializadas en captaren estímulos químicos ou táctiles.
  • Carecen de aparato circulatorio e ao teren un tamaño tan pequeno o líquido que hai no celoma chégalles para o seu transporte interno. Ademais as paredes internas do peritoneo están tapizadas por cilios que xeran correntes ciliares no interior do corpo do animal.
  • O aparato dixestivo é completo, empezando na boca seguida dunha curta farinxe que desemboca nun esófago e un estómago separados pola válvula do cardia. Algúns individuos posúen molexa e outros píloro. Tamén teñen un cego gástrico que continúa cun intestino e remata nun ano.
  • Carece de órganos excretores, aínda que algúns autores pensan que nos canais bifurcados da base dos tentáculos poderían existir algúns restos de nefridios. As células das paredes do intestino encárganse dalgúns dos produtos da excreción.
  • A musculatura é escasa, sendo os movementos máis habituais os de meter e sacar o lofóforo e mover os tentáculos. Existen músculos que pechan o opérculo e moven o epistoma. Un pequeno grupo de individuos ten un tipo de locomoción especial mediante arrastramento empregando os músculos da parede inferior do corpo.

Reprodución

O briozoos son dioicos (incluso os membros dunha mesma colonia poden ter sexos diferentes) ou hermafroditas. Teñen os ovarios situados de varias maneiras: unidos ao funículo (prolongación da parede do corpo que ten fibras musculares e atópase suxeitando o cego gástrico) ou unidos á parede do corpo ou ao tubo dixestivo. Os óvulos e espermatozoides forman embrións que ás veces se incuban dentro do celoma e se liberan ao dexenerar o pólipo adulto. Poucos individuos poñen os seus ovos directamente no mar.

Notas

  1. Landing, E.; English, A.; Keppie, J. D. (2010). "Cambrian origin of all skeletalized metazoan phyla--Discovery of Earth's oldest bryozoans (Upper Cambrian, southern Mexico)". Geology 38 (6): 547. doi:10.1130/G30870.1.
  2. Halanych, K. M.; Bacheller, J. D. ; Aguinaldo, A. M.; Liva, S. M.; Hillis, D. M. e Lake, J. A. (1995): "Evidence from 18S ribosomal DNA that the lophophorates are protostome animals". Science 267 (5204): 1641–3. Bibcode 1995Sci...267.1641H. doi:10.1126/science.7886451. PMID 7886451.
  3. Ernst, A. (2007). "A cystoporate bryozoan species from the Zechstein (Late Permian)". Paläontologische Zeitschrift 81 (2): 113–117.
  4. Fuchs, J., Obst, M. e Sundberg, P. (2009): "The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes". Molecular Phylogenetics and Evolution 52 (1): 225–233. doi:10.1016/j.ympev.2009.01.021. PMID 19475710.
  5. 5,0 5,1 Brusca & Brusca (2005).
  6. Chapman, A. D. (2009): . Numbers of Living Species in Australia and the World, 2nd edition. Australian Biodiversity Information Services ISBN (online) 9780642568618].

Véxase tamén

Bibliografía

  • Brusca, R. C. & G. J. Brusca (2005): Invertebrados. 2ª ed. Madrid: McGraw-Hill Interamericana de España. ISBN 978-84-486-0246-8.
  • Meglitsch, P. A. (1986): Zoología de invertebrados, 2ª ed. Madrid: Pirámide. ISBN 84-368-0316-7.
  • Rupppert, E. E.; R. S. Fox & R. D. Barnes (2004): Invertebrate Zoology 7ª ed. Stamford, Connecticut (EE.UU.): Brooks/Cole. ISBN 0-03-025982-7.

Outros artigos

licence
cc-by-sa-3.0
droit d’auteur
Autores e editores de Wikipedia
original
visiter la source
site partenaire
wikipedia gl Galician

Briozoos: Brief Summary ( galicien )

fourni par wikipedia gl Galician

Os briozoos (Bryozoa, do grego βρύον brýon, "musgo", e ζωον zōon, "animal"), o que xustifica o nome que lle dan algúns[quen?] de animais musgo,[Cómpre referencia] tamén chamados polizoos (Polyzoa) e ectoproctos (Ectoprocta, do grego εκτός ektós, "fóra", "afora", e πρωκτόσ prōktós, "ano"). son un filo de pequenos animalis coloniais, que presentan un lofóforo, coroa de tentáculos ciliados que serven para captar alimento, nos que o ano se abre fóra de diita coroa tentacular.

Describíronse unhas 5.700 especies maioritariamente mariñas; só unhas 50 viven en auga doce.

Durante anos clasificáronse xunto aos entoproctos, nos que o ano se abre dentro da coroa tentacular, pero hoxe dubídase de que ambos os grupos estean realmente relacionados.

Son animais triblásticos, deuteróstomos e esquizocelomados, con tentáculos lofoforais retráctiles nunha vaíña tentacular. Carecen de nefridios e de aparato circulatorio.

Estes animais posúen algúns caracteres que os achegan aos protóstomos, porén outras características como a orixe do mesoderma ou a natureza do celoma aproxímanos máis aos deuteróstomos.

licence
cc-by-sa-3.0
droit d’auteur
Autores e editores de Wikipedia
original
visiter la source
site partenaire
wikipedia gl Galician

Bryozoa ( indonésien )

fourni par wikipedia ID

Bryozoa, disebut juga Polyzoa, atau Ectoprocta atau secara umum disebut sebagai hewan lumut,[2] adalah filum hewan invertebrata air. Biasanya panjangnya sekitar 0,5 milimeter (0,020 in), mereka pengumpan filter yang menyaring partikel makanan dari air menggunakan lofofor yang dapat ditarik, sebuah "mahkota" dari tentakel dilapisi dengan silia. Kebanyakan spesies laut hidup di perairan tropis, tetapi beberapa hidup di palung samudera, dan lain-lain yang ditemukan di perairan kutub. Satu kelas hanya hidup di berbagai lingkungan air tawar, dan beberapa anggota dari kelas sebagian besar laut lebih suka air payau. Lebih dari 4.000 spesies hidup diketahui. Satu genus adalah soliter dan sisanya kolonial.

Filum ini awalnya disebut "Polyzoa", tetapi istilah ini digantikan oleh "Bryozoa" pada tahun 1831. Kelompok lain hewan ditemukan kemudian, yang mekanisme penyaringannya tampak mirip, juga termasuk dalam "Bryozoa" sampai 1869, ketika dua kelompok diketahui sangat berbeda secara internal. Kelompok yang baru ditemukan diberi nama Entoprocta, sedangkan "Bryozoa" yang asli disebut "Ectoprocta". Namun, "Bryozoa" tetap merupakan istilah yang lebih banyak digunakan untuk kelompok kedua.

Individu dalam koloni briozoa (ektoprokta) disebut zooid, karena mereka bukan binatang yang sepenuhnya independen. Semua koloni mengandung autozooid, yang bertanggung jawab untuk makan dan ekskresi. Koloni beberapa kelas memiliki berbagai jenis zooid spesialis non-makan, beberapa di antaranya adalah tempat penetasan telur yang sudah dibuahi, dan beberapa kelas juga memiliki zooid khusus untuk membela koloni. Kelas Cheilostomata memiliki jumlah terbesar dari spesies, mungkin karena mereka memiliki jangkauan terluas zooid spesialis. Beberapa spesies dapat merayap sangat lambat dengan menggunakan zooid defensif berduri sebagai kaki. Autozooid memasok nutrisi ke zooid non-makan oleh saluran yang bervariasi antara kelas. Semua zooid, termasuk yang dari spesies soliter, terdiri dari kistid yang menyediakan dinding tubuh dan menghasilkan eksoskeleton dan polypide yang berisi organ internal dan lofofor atau ekstensi spesialis lainnya. Zooid tidak memiliki organ ekskresi khusus, dan polypide dari autozooid dilepaskan ketika polypide menjadi penuh dengan produk-produk limbah; biasanya dinding tubuh kemudian menumbuhkan sebuah polypide pengganti. Dalam autozooid usus adalah berbentuk U, dengan mulut di dalam "mahkota" dari tentakel dan anus luar. Koloni mengambil berbagai bentuk, termasuk fans, semak-semak dan lembar. Cheilostomata menghasilkan eksoskeleton termineralisasi dan membentuk lembaran satu-lapis yang menatah atas permukaan.

Zooid dari semua spesies air tawar adalah hermafrodit simultan. Meskipun zooid dari banyak spesies laut berfungsi sebagai laki-laki pertama dan kemudian sebagai perempuan, koloni mereka selalu mengandung kombinasi zooid yang berada di tahapan laki-laki dan perempuan. Semua spesies memancarkan sperma ke dalam air. Beberapa juga melepaskan ovum ke dalam air, sementara yang lain menangkap sperma melalui tentakel mereka untuk membuahi ovum mereka secara internal. Pada beberapa spesies larva memiliki kuning telur besar, pergi untuk memberi makan, dan cepat menetap di permukaan. Lainnya menghasilkan larva yang memiliki sedikit kuning telur tetapi berenang dan makan selama beberapa hari sebelum menetap. Setelah menetap, semua larva mengalami metamorfosis radikal yang menghancurkan dan membangun kembali hampir semua jaringan internal. Spesies air tawar juga memproduksi statoblas yang dorman sampai kondisi memungkinkan, yang memungkinkan keturunan koloni untuk bertahan hidup bahkan jika kondisi parah membunuh koloni ibu.

Predator dari briozoa laut termasuk nudibranchia (siput laut), ikan, landak laut, pycnogonida, krustasea, tungau dan bintang laut. Bryozoa air tawar dimangsa oleh siput, serangga, dan ikan. Di Thailand, banyak populasi satu spesies air tawar telah hancur oleh spesies siput yang diintroduksi. Sebuah briozoa cepat tumbuh invasif dari timur laut dan barat laut pantai AS telah mengurangi hutan kelp begitu banyak yang telah mempengaruhi populasi ikan lokal dan invertebrata. Briozoa telah menyebarkan penyakit ke peternakan ikan dan nelayan. Bahan kimia yang diekstrak dari spesies briozoa laut telah diteliti untuk pengobatan kanker dan penyakit Alzheimer, tetapi analisis belum menggembirakan.

Kerangka mineral dari briozoa pertama muncul dalam batuan dari periode Ordovisium Awal,[3] menjadikannya filum besar terakhir muncul dalam catatan fosil. Hal ini telah menyebabkan peneliti untuk menduga bahwa briozoa telah muncul sebelumnya tetapi awalnya tidak termineralisasi, dan mungkin berbeda secara signifikan dari bentuk fosil dan modern. Fosil awal terutama dari bentuk tegak, tetapi bentuk encrusting secara bertahap menjadi dominan. Tidak pasti apakah filum adalah monofiletik. Hubungan evolusioner briozoa dengan filum lainnya juga tidak jelas, sebagian karena pandangan para ilmuwan dari pohon keluarga hewan terutama dipengaruhi oleh filum yang lebih terkenal. Analisis filogeni morfologi dan molekuler tidak setuju atas hubungan briozoa dengan entoprocta, apakah briozoa harus dikelompokkan dengan brakiopoda dan phoronida di Lophophorata, dan apakah briozoa adalah protostom atau deuterostom.

Deskripsi

Ciri yang membedakan

Briozoa, phoronida dan brakiopoda menyaring makanan dari air dengan lofofor, sebuah "mahkota" dari tentakel berongga. Briozoa membentuk koloni yang terdiri dari klon yang disebut zooid yang biasanya panjangnya sekitar 0,5 milimeter.[4] Phoronida menyerupai zooid briozoa tetapi panjangnya 2-20 cm dan, meskipun mereka sering tumbuh dalam rumpun, lakukan tidak membentuk koloni yang terdiri dari klon.[5] Brakiopoda, umumnya dianggap terkait erat dengan briozoa dan phoronida, dibedakan dengan memiliki kerang seperti pada bivalvia.[6] Ketiga filum ini memiliki selom, rongga internal yang dilapisi oleh mesotelium.[4][5][6] Beberapa koloni briozoa encrusting dengan eksoskeleton termineralisasi terlihat sangat seperti koral kecil. Namun, koloni briozoa didirikan oleh ancestrula, yang bulat dan bukannya berbentuk seperti zooid normal spesies itu. Di sisi lain, polip pendiri karang memiliki bentuk seperti polip anaknya, dan zooid koral tidak memiliki selom atau lofofor.[7]

Entoprocta, filum hewan penyaring lain, terlihat agak seperti briozoa tetapi struktur makan seperti-lofofor mereka memiliki tentakel yang padat, anus mereka terletak di dalam daripada di luar dasar "mahkota" dan mereka tidak memiliki selom.[8]

Ringkasan ciri yang membedakan Bryozoa[4]
(Ectoprocta) Lophophorata lain[9] Lophotrochozoa lain Filum yang tampak mirip Phoronida[5] Brachiopoda[6] Annelida, Mollusca Entoprocta[8] Koral (kelas dalam filum Cnidaria)[7] Selom Tiga-bagian, jika rongga epistom termasuk Tiga-bagian Satu per segmen dalam bentuk dasar; menyatu pada beberapa taksa tidak ada Pembentukan selom Tidak jelas karena metamorfosis larva menjadi dewasa menjadikan ini tidak mungkin untuk diikuti Enterocoely Schizocoely tidak berlaku Lofofor Dengan tentakel berongga tidak ada Struktur makan yang mirip, tetapi dengan tentakel padat tidak ada Arus makan Dari ujung ke dasar tentakel tidak berlaku Dari dasar ke ujung tentakel tidak berlaku Sel multisilia di epitelium Ya[10] tidak[10] Ya[10] tidak berlaku Posisi anus Di luar dasar lofofor Bervariasi, tidak ada di beberapa spesies Ujung belakang, tetapi tidak ada di Siboglinidae Di dalam dasar organ seperti-lofofor tidak ada Kolonial Koloni dari klon sebagian besar; satu genus soliter Spesies sesil sering membentuk kelompok, tetapi tanpa ko-operasi aktif Koloni dari klon pada beberapa spesies; beberapa spesies soliter Koloni dari klon Bentuk zooid pendiri Bulat, tidak seperti zooid normal[7] tidak berlaku Sama seperti zooid lainnya Eksoskeleton termineralisasi Beberapa taksa tidak Cangkang seperti-bivalvia Beberapa annelida sesil membangun tabung termineralisasi;[11] sebagian besar moluska mempunyai cangkang, tetapi sebagian besar sefalopoda modern memiliki cangkang internal atau tidak ada.[12] tidak Beberapa taksa

Jenis zooid

Semua briozoa kolonial kecuali untuk satu genus, Monobryozoon.[13][14] Setiap anggota dari koloni briozoa panjangnya sekitar 0,5 milimeter dan dikenal sebagai zooid,[4] karena mereka bukan hewan yang sepenuhnya independen.[15] Semua koloni berisi zooid makan, yang dikenal sebagai autozooid, dan beberapa kelompok juga mengandung heterozooid spesialis non-makan;[14] anggota koloni secara genetik identik dan bekerja sama, seperti organ hewan yang lebih besar.[4] Jenis zooid yang tumbuh di mana di koloni ditentukan oleh sinyal kimia dari koloni secara keseluruhan atau kadang-kadang dalam menanggapi aroma predator atau koloni saingannya.[14]

Tubuh semua jenis memiliki dua bagian utama. Kistid terdiri dari dinding tubuh dan apa pun jenis eksoskeleton disekresikan oleh epidermis. Eksoskeleton mungkin organik (kitin, polisakarida atau protein) atau terbuat dari mineral kalsium karbonat. Dinding tubuh terdiri dari epidermis, lamina basal (tikar dari bahan non-seluler), jaringan ikat, otot, dan mesotelium yang melapisi selom (rongga tubuh utama)[4] - kecuali bahwa dalam satu kelas, mesotelium dibagi menjadi dua lapisan yang terpisah, bagian dalam membentuk kantung bermembran yang mengapung bebas dan mengandung selom, dan yang luar melekat pada dinding tubuh dan melampirkan kantung bermembran di pseudoselom.[16] Bagian utama lain dari tubuh briozoa, dikenal sebagai polypide dan terletak hampir seluruhnya dalam kistid, berisi sistem saraf, sistem pencernaan, beberapa otot khusus dan aparatus makan atau organ khusus lain yang mengambil tempat aparatus makan.[4]

Saat ini ada sekitar 5.000 spesies yang dikenal dari briozoa yang diketahui. Briozoa dikenal sebagai "hewan lumut". Spesies yang berbeda bisa datang bersama-sama untuk membentuk koloni yang dapat melampirkan berbagai jenis permukaan batu serta kerang dan ganggang. Dari 5.000 spesies 125 yang memiliki populasi paling banyak diketahui menempel ke bagian bawah kapal, tiang, dermaga dan dermaga. Spesies ini dianggap gangguan bagi pelaut karena mereka memperlambat kapal jika mereka melekat pada bagian bawah lambung kapal. Namun, ada spesies yang memiliki senyawa kimia yang dapat digunakan untuk obat. Satu spesies umum briozoa digunakan untuk obat anti kanker serius yang saat ini sedang digunakan untuk pengujian.[17]

Zooid makan

 src=
Invert
otot
retraktor
Penutup
pelindung
Tentakel
lofofor
Selom
(rongga tubuh)
Perut
Funikulus
= Otot retraktor
= Penutup luar
 src=
Sebuah autozooid umum[4]

Jenis yang paling umum dari zooid adalah autozooid makan, di mana polypide menanggung "mahkota" dari tentakel berongga disebut lofofor, yang menangkap partikel makanan dari air.[14] Dalam semua koloni persentase besar zooid adalah autozooid, dan beberapa seluruhnya terdiri dari autozooid, beberapa di antaranya juga terlibat dalam reproduksi.[18]

Bentuk dasar dari "mahkota" adalah lingkaran penuh. Di kelas Phylactolaemata mahkota seperti berbentuk U, tetapi kesan ini diciptakan oleh penyok dalam di tepi mahkota, yang tidak memiliki celah di pinggiran tentakel.[4] Sisi tentakel menanggung rambut-rambut halus yang disebut silia, yang menggerakkan arus air dari ujung tentakel ke dasarnya, di mana ia keluar. Partikel makanan yang bertabrakan dengan tentakel terjebak oleh mukus, dan silia lebih lanjut pada permukaan bagian dalam dari tentakel menyampaikan partikel ke arah mulut, yang terletak di pusat dasar "mahkota".[19] Metode yang digunakan oleh ektoprokta dikenal sebagai "mengumpulkan ke hulu", sebagai partikel makanan yang ditangkap sebelum mereka melewati bidang silia yang menciptakan arus makan. Metode ini juga digunakan oleh phoronida, brakiopoda dan pterobranchia.[20]

Lofofor dan mulut terpasang pada tabung fleksibel, yang disebut "invert" karena bisa berubah dalam-keluar dan ditarik ke polypide itu,[4] agak seperti jari sarung tangan karet; dalam posisi ini lofofor terletak di dalam invert dan dilipat seperti jari-jari payung. Invert ditarik, kadang-kadang dalam waktu 60 milisekon, oleh sepasang otot retraktor yang berlabuh di ujung kistid tersebut. Sensor di ujung tentakel dapat memeriksa tanda-tanda bahaya sebelum invert dan lofofor sepenuhnya diperpanjang. Ekstensi didorong oleh peningkatan tekanan fluida internal, yang spesies dengan eksoskeleton fleksibel hasilkan oleh kontraksi otot melingkar yang terletak hanya di dalam dinding tubuh,[4] sementara spesies dengan menggunakan kantung bermembran otot melingkar memeras ini.[16] Beberapa spesies dengan eksoskeleton kaku memiliki membran fleksibel yang menggantikan bagian dari eksoskeleton, dan otot melintang berlabuh di sisi yang jauh dari eksoskeleton meningkatkan tekanan fluida dengan menarik membran dalam.[4] Di lain tidak ada jarak dalam kerangka pelindung, dan otot melintang menarik pada kantung fleksibel yang terhubung ke air luar oleh pori kecil; perluasan kantung meningkatkan tekanan di dalam tubuh dan mendorong invert dan lofofor keluar.[4] Pada beberapa spesies invert dan lofofor yang ditarik dilindungi oleh operkulum ("tutup"), yang ditutup oleh otot-otot dan dibuka oleh cairan tekanan. Dalam satu kelas, lobus berongga disebut "epistome" overhands mulut.[4]

Usus adalah berbentuk U, dari mulut, di tengah lophophore, turun ke interior hewan dan kemudian kembali ke anus, yang terletak di invert, di luar dan biasanya di bawah lofofor.[4] Sebuah jejaring helai mesotelium disebut "funiculi" ("tali kecil"[21]) menghubungkan mesotelium yang meliputi usus dengan yang melapisi dinding tubuh. Dinding setiap helai terbuat dari mesothelium, dan mengelilingi ruang berisi cairan, dianggap darah.[4] Zooid dalam koloni terhubung, memungkinkan autozooid untuk berbagi makanan dengan satu sama lain dan dengan heterozooid non-makan.[4] Metode koneksi bervariasi antara kelas yang berbeda dari briozoa, mulai dari celah yang cukup besar di dinding tubuh sampai pori-pori kecil di mana nutrisi dilewatkan oleh funiculi.[4][16]

Ada cincin saraf di sekeliling faring (tenggorokan) dan ganglion yang berfungsi sebagai otak untuk satu sisi ini. Saraf berjalan dari cincin dan ganglion ke tentakel dan ke seluruh tubuh.[4] Briozoa tidak memiliki organ-organ indra khusus, tetapi silia pada tentakel bertindak sebagai sensor. Anggota dari genus Bugula tumbuh ke arah matahari, dan karena itu harus mampu mendeteksi cahaya.[4] Dalam koloni beberapa spesies, sinyal tersebut dikirimkan antara zooid melalui saraf yang melalui pori-pori di dinding tubuh, dan mengkoordinasikan kegiatan seperti makan dan penarikan lofofor.[4]

Individu-individu soliter dari Monobryozoon adalah autozooid dengan tubuh berbentuk buah pir. Ujung yang lebih luas memiliki hingga 15 proyeksi otot pendek, dimana hewan menjangkarkan diri pada pasir atau kerikil[22] dan menarik diri melalui sedimen.[23]

Avicularia dan vibracula

Beberapa pihak menggunakan istilah avicularia untuk menyebut jenis zooid yang lofofornya digantikan oleh ekstensi yang melayani beberapa fungsi pelindung,[18] sementara yang lain membatasi istilah itu untuk zooid yang mempertahankan koloni dengan menggigit penyerang dan predator kecil, membunuh beberapa dan menggigit embel-embel dari yang lainnya.[4] Pada beberapa spesies zooid gertakan terdapat pada peduncle (tangkai), penampilan mirip burung mereka yang bertanggung jawab untuk istilah – Charles Darwin menjelaskan ini sebagai "miniatur kepala dan paruh dari burung bangkai, duduk di leher dan mampu bergerak".[4][18] Avicularia bertangkai ditempatkan terbalik pada tangkai mereka.[14] "Rahang bawah" adalah versi modifikasi dari opercula yang melindungi lofofor tertarik di autozooid dari beberapa spesies, dan ditutup "seperti perangkap tikus" oleh otot-otot yang sama,[4] sementara rahang atas berbentuk-paruh adalah dinding tubuh terbalik.[14] Dalam spesies lain avicularia adalah zooid seperti-kotak stasioner diletakkan secara biasa ke ataas, sehingga operkulum dimodifikasi terkunci turun terhadap dinding tubuh.[14] Dalam kedua jenis operkulum termodifikasi dibuka oleh otot-otot lain yang menempel padanya,[18] atau dengan otot internal yang menaikkan tekanan fluida dengan menarik membran fleksibel.[4] Tindakan zooid gertakan ini dikendalikan oleh polypide kecil, sangat dimodifikasi yang terletak di dalam "mulut" dan menanggung jumbai silia sensoris pendek.[4][14] Zooid ini muncul dalam berbagai posisi: beberapa mengambil tempat autozooids, beberapa masuk ke celah kecil antara autozooid, dan avicularia kecil dapat terjadi pada permukaan zooid lainnya.[18]

Dalam vibracula, dianggap oleh sebagian orang sebagai sejenis avicularia, operkulum diubah untuk membentuk bulu panjang yang memiliki berbagai macam gerak. Mereka dapat berfungsi sebagai pertahanan terhadap predator dan penyerang, atau sebagai pembersih. Dalam beberapa spesies yang membentuk koloni yang dapat bergerak, vibracula sekitar tepi digunakan sebagai kaki untuk menggali dan berjalan.[4][18]

Jenis lain dari zooid kolonial

Kenozooid (dari bahasa Yunani κενος yang berarti "kosong"[24]) hanya terdiri dari dinding tubuh dan helai funikular melintasi interior,[4] dan tidak ada polypide.[14] Pada beberapa spesies mereka membentuk batang dari struktur bercabang, sementara di spesies lain mereka bertindak sebagai spacer yang memungkinkan koloni berkembang dengan cepat ke arah yang baru.[14][18]

Spinozooid membentuk duri defensif, dan kadang-kadang muncul di atas autozooid. Gonozooid bertindak sebagai ruang mengeram untuk telur dibuahi.[14] Beberapa spesies memiliki nanozooid miniatur dengan polypide kecil dengan satu tentakel, dan ini dapat tumbuh pada zooid lain atau dalam dinding-dinding tubuh autozooid yang telah berdegenerasi.[18]

Bentuk dan komposisi koloni

 src=
Sebuah koloni briozoa laut modern Flustra foliacea.
 src=
Briozoa cheilostomata dengan tabung serpulid; Saat ini; Cape Cod Bay, Duck Creek, dekat Wellfleet, Massachusetts.

Meskipun zooid adalah mikroskopis, koloni berukuran dari 1 sentimeter sampai lebih dari 1 meter.[4] Namun, mayoritas berada di bawah 10 cm.[7] Bentuk koloni sangat bervariasi, tergantung pada pola tunas dimana mereka tumbuh, jenis zooid yang hadir dan jenis dan jumlah bahan rangka yang mereka sekresikan.[4]

Beberapa spesies laut berbentuk seperti-semak atau seperti-kipas, didukung oleh "batang" dan "cabang" yang dibentuk oleh kenozooid, dengan autozooid makan tumbuh dari ini. Koloni jenis ini umumnya tidak termineralisasi tetapi mungkin memiliki eksoskeleton yang terbuat dari kitin.[4] Lainnya seperti koral kecil, memproduksi kerangka kapur berat.[25] Banyak spesies membentuk koloni yang terdiri dari lembaran autozooid. Lembaran-lembaran ini dapat membentuk daun, jumbai atau, dalam genus Thalmoporella, struktur yang menyerupai kepala terbuka selada.[4]

Bentuk laut yang paling umum, bagaimanapun, adalah encrusting, di mana lembaran satu lapisan zooid menyebar di atas permukaan keras atau di atas rumput laut. Beberapa koloni encrusting mungkin tumbuh lebih dari 50 cm dan mengandung sekitar 2.000.000 zooid.[4] Spesies ini umumnya memiliki eksoskeleton yang diperkuat dengan kalsium karbonat, dan bukaan melalui mana lofofor menonjol ada pada permukaan atas atau luar.[4] Penampilan seperti-lumut koloni encrusting bertanggung jawab atas nama filum ini (kata Yunani Kuno βρυος bryos berarti "lumut" dan ζωον zoon yang berarti "binatang").[26] Koloni besar spesies encrusting sering memiliki "cerobong asap", celah dalam kanopi lofofor, melalui mana mereka dengan cepat mengusir air yang sudah disaring, dan dengan demikian menghindari penyaringan-ulang air yang sudah habis.[27] Mereka dibentuk oleh bercak heterozooid non-makan.[28] Cerobong asap baru muncul dekat tepi memperluas koloni, pada titik-titik di mana kecepatan arus keluar sudah tinggi, dan tidak mengubah posisi jika aliran air berubah.[29]

Beberapa spesies air tawar mengeluarkan massa material bergelatin, hingga diameter 1 meter, tempat zooid menempel. Spesies air tawar lainnya memiliki bentuk seperti-tanaman dengan "batang" dan "cabang", yang dapat berdiri tegak atau tersebar di permukaan. Beberapa spesies dapat merayap sekitar 2 cm per hari.[4]

Setiap koloni tumbuh dengan tunas aseksual dari zooid tunggal yang dikenal sebagai ancestrula,[4] yang bulat, tidak seperti zooid normal.[7] Hal ini terjadi di ujung "batang" atau "cabang" dalam bentuk yang memiliki struktur ini. Koloni encrusting tumbuh di sepanjang tepi mereka. Dalam spesies dengan eksoskeleton berkapur, ini tidak termineralisasi sampai zooid sepenuhnya tumbuh. Rentang hidup koloni berkisar dari satu sampai sekitar 12 tahun, dan spesies berumur pendek melewati beberapa generasi dalam satu musim.[4]

Spesies yang menghasilkan zooid defensif melakukannya hanya ketika ancaman sudah muncul, dan dapat melakukannya dalam waktu 48 jam.[14] Teori "pertahanan diinduksi" menunjukkan bahwa produksi pertahanan mahal dan bahwa koloni yang mempertahankan diri terlalu dini atau terlalu berat akan memiliki tingkat pertumbuhan dan rentang hidup berkurang. Pendekatan "menit terakhir" pertahanan layak karena hilangnya zooid untuk serangan tunggal tidak mungkin signifikan.[14] Koloni beberapa spesies encrusting juga memproduksi heterozooid khusus untuk membatasi ekspansi organisme encrusting lainnya, terutama briozoa lainnya. Dalam beberapa kasus respons ini lebih agresif jika oposisi lebih kecil, yang menunjukkan bahwa zooid di tepi koloni entah bagaimana bisa merasakan ukuran lawan. Beberapa spesies konsisten menang melawan musuh tertentu, tetapi kebanyakan konflik tidak menentukan dan kombatan segera beralih untuk tumbuh di daerah yang tidak diperebutkan.[14] Briozoa yang bersaing untuk wilayah tidak menggunakan teknik canggih yang digunakan oleh spons atau koral, mungkin karena pendeknya rentang hidup briozoa membuat investasi besar dalam konflik tidak menguntungkan.[14]

Briozoa telah berkontribusi terhadap sedimentasi karbonat dalam kehidupan laut sejak zaman Ordovisium. Briozoa bertanggung jawab atas banyak bentuk koloni, yang telah berevolusi dalam kelompok taksonomi yang berbeda dan bervariasi dalam kemampuan menghasilkan sedimen. Sembilan bentuk dasar koloni briozoa meliputi: encrusting, kubah, palmate, foliose, fenestrate, percabangan kuat, percabangan halus, articulated dan hidup bebas. Sebagian besar sedimen ini berasal dari dua kelompok koloni yang berbeda: kubah, percabangan halus, percabangan kuat dan palmate; dan fenestrate. Koloni fenestrate menghasilkan partikel kasar baik sebagai sedimen maupun komponen terumbu karang stomatoporiod. Koloni yang rapuh bagaimanapun, membentuk sedimen kasar dan membentuk inti gumpalan subfotik biogenik air-dalam. Hampir semua endapan pasca-briozoa terbentuk dari bentuk pertumbuhan, dengan tambahan koloni bebas yang mencakup sejumlah besar koloni. "Berbeda dengan Paleozoik, briozoa pasca-Paleozoik menghasilkan sedimen yang bervariasi lebih luas dengan ukuran butirannya; mereka tumbuh saat mereka bergerak dari lumpur, ke pasir, sampai kerikil."[30]

Referensi

  1. ^ Fuchs, J.; Obst, M; Sundberg, P (July 2009). "The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes". Molecular Phylogenetics and Evolution. 52 (1): 225–233. doi:10.1016/j.ympev.2009.01.021. PMID 19475710.
  2. ^ Brusca; Brusca. "21: The Lophophorate Phyla". The Invertebrates.
  3. ^ Kesalahan pengutipan: Tag tidak sah; tidak ditemukan teks untuk ref bernama Taylor2013
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (edisi ke-7). Brooks / Cole. hlm. 829–845. ISBN 0-03-025982-7.Pemeliharaan CS1: Banyak nama: authors list (link)
  5. ^ a b c Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (edisi ke-7). Brooks / Cole. hlm. 817–821. ISBN 0-03-025982-7.Pemeliharaan CS1: Banyak nama: authors list (link)
  6. ^ a b c Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (edisi ke-7). Brooks / Cole. hlm. 821–829. ISBN 0-03-025982-7.Pemeliharaan CS1: Banyak nama: authors list (link)
  7. ^ a b c d e Rich, T.H.; Fenton, M.A.; Fenton, C.L. (1997). ""Moss Animals", or Bryozoans". The fossil book. Dover Publications. hlm. 142–152. ISBN 978-0-486-29371-4. Diakses tanggal 7 Agustus 2009.
  8. ^ a b Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Kamptozoa and Cycliophora". Invertebrate Zoology (edisi ke-7). Brooks / Cole. hlm. 808–812. ISBN 0-03-025982-7.Pemeliharaan CS1: Banyak nama: authors list (link)
  9. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (edisi ke-7). Brooks / Cole. hlm. 817. ISBN 0-03-025982-7.Pemeliharaan CS1: Banyak nama: authors list (link)
  10. ^ a b c Kesalahan pengutipan: Tag tidak sah; tidak ditemukan teks untuk ref bernama Nielsen2002PhyloPosOfEntoproctaEctoproctaPhoronidaBrachiopoda
  11. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (edisi ke-7). Brooks / Cole. hlm. 414–420. ISBN 0-03-025982-7.Pemeliharaan CS1: Banyak nama: authors list (link)
  12. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). Invertebrate Zoology (edisi ke-7). Brooks / Cole. hlm. 284–291. ISBN 0-03-025982-7.Pemeliharaan CS1: Banyak nama: authors list (link)
  13. ^ Giere, O. (2009). "Tentaculata". Meiobenthology (edisi ke-2). Springer Verlag. hlm. 227. ISBN 978-3-540-68657-6. Diakses tanggal 2009-07-07.
  14. ^ a b c d e f g h i j k l m n o Doherty, P.J. (2001). "The Lophophorates". Dalam Anderson, D.T. Invertebrate Zoology (edisi ke-2). Oxford University Press. hlm. 363–373. ISBN 0-19-551368-1.
  15. ^ Little, W.; Fowler, H.W, Coulson, J. and Onions, C.T. (1964). "Zooid". Shorter Oxford English Dictionary. Oxford University Press. ISBN 0-19-860613-3.Pemeliharaan CS1: Banyak nama: authors list (link)
  16. ^ a b c Nielsen, C. (2001). "Bryozoa (Ectoprocta: 'Moss' Animals)". Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. doi:10.1038/npg.els.0001613.
  17. ^ Smith, Doug. "ALIEN LIFE FORMS? NO, JUST BRYOZOANS". umass.edu. Diakses tanggal 24 October 2014.
  18. ^ a b c d e f g h McKinney, F.K.; Jackson, J.B.C. (1991). "Bryozoans as modular machines". Bryozoan evolution. University of Chicago Press. hlm. 1–13. ISBN 978-0-226-56047-2. Diakses tanggal 2009-07-29.
  19. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (edisi ke-7). Brooks / Cole. hlm. 817. ISBN 0-03-025982-7.Pemeliharaan CS1: Banyak nama: authors list (link)
  20. ^ Riisgård, H.U.; Nielsen, C; Larsen, PS (2000). "Downstream collecting in ciliary suspension feeders: the catch-up principle" (PDF). Marine Ecology Progress Series. 207: 33–51. doi:10.3354/meps207033. Diakses tanggal 12 September 2009.
  21. ^ "funiculus". Random House Dictionary. Random House. Diakses tanggal 2009-08-02.
  22. ^ Hayward, P.J. (1985). "Systematic part". Ctenostome Bryozoans. Synopses of the British fauna. Linnean Society of London. hlm. 106–107. ISBN 90-04-07583-6. Diakses tanggal 2009-08-02.
  23. ^ Giere, O. (2009). "Tentaculata". Meiobenthology (edisi ke-2). Springer-Verlag. hlm. 227. ISBN 978-3-540-68657-6. Diakses tanggal 2009-08-02.
  24. ^ Liddell, H.G.; Scott (1940). "kenos". A Greek-English Lexicon. R. Clarendon Press. ISBN 0-19-864226-1. Diakses tanggal 2009-08-01.
  25. ^ Branch, M.L.; Griffiths, C.I.; Beckley, L.E. (2007). "Bryozoa: Moss or Lace Animals". Two Oceans – A Guide to the Marine Life of Southern Africa. Struik. hlm. 104–110. ISBN 978-1-77007-633-4. Diakses tanggal 2009-08-02.
  26. ^ Little, W.; Fowler, H.W., Coulson, J. and Onions, C.T. (1959). "Bryozoa". Shorter Oxford English Dictionary. Oxford University. ISBN 0-19-860613-3.Pemeliharaan CS1: Banyak nama: authors list (link)
  27. ^ Eckman, J.E.; Okamura, B (Desember 1998). "A Model of Particle Capture by Bryozoans in Turbulent Flow: Significance of Colony Form". The American Naturalist. 152 (6): 861–880. doi:10.1086/286214. PMID 18811433.
  28. ^ Vogel, S. (1996). "Life in velocity gradients". Life in moving fluids (edisi ke-2). Princeton University Press. hlm. 191. ISBN 978-0-691-02616-9. Diakses tanggal 2009-08-05.
  29. ^ von Dassow, M. (1 Agustus 2006). "Function-Dependent Development in a Colonial Animal". Biological Bulletin. 211 (1): 76–82. doi:10.2307/4134580. ISSN 0006-3185. JSTOR 4134580. PMID 16946244. Diakses tanggal 2009-08-05.
  30. ^ Taylor, Paul D.; James, Noel P. (August 2013). "Secular changes in colony-forms and bryozoan carbonate sediments through geological history". Sedimentology. 60 (5): 1184–1212. doi:10.1111/sed.12032. Diakses tanggal 23 October 2014.

Bacaan lebih lanjut

Pranala luar

licence
cc-by-sa-3.0
droit d’auteur
Penulis dan editor Wikipedia
original
visiter la source
site partenaire
wikipedia ID

Bryozoa: Brief Summary ( indonésien )

fourni par wikipedia ID

Bryozoa, disebut juga Polyzoa, atau Ectoprocta atau secara umum disebut sebagai hewan lumut, adalah filum hewan invertebrata air. Biasanya panjangnya sekitar 0,5 milimeter (0,020 in), mereka pengumpan filter yang menyaring partikel makanan dari air menggunakan lofofor yang dapat ditarik, sebuah "mahkota" dari tentakel dilapisi dengan silia. Kebanyakan spesies laut hidup di perairan tropis, tetapi beberapa hidup di palung samudera, dan lain-lain yang ditemukan di perairan kutub. Satu kelas hanya hidup di berbagai lingkungan air tawar, dan beberapa anggota dari kelas sebagian besar laut lebih suka air payau. Lebih dari 4.000 spesies hidup diketahui. Satu genus adalah soliter dan sisanya kolonial.

Filum ini awalnya disebut "Polyzoa", tetapi istilah ini digantikan oleh "Bryozoa" pada tahun 1831. Kelompok lain hewan ditemukan kemudian, yang mekanisme penyaringannya tampak mirip, juga termasuk dalam "Bryozoa" sampai 1869, ketika dua kelompok diketahui sangat berbeda secara internal. Kelompok yang baru ditemukan diberi nama Entoprocta, sedangkan "Bryozoa" yang asli disebut "Ectoprocta". Namun, "Bryozoa" tetap merupakan istilah yang lebih banyak digunakan untuk kelompok kedua.

Individu dalam koloni briozoa (ektoprokta) disebut zooid, karena mereka bukan binatang yang sepenuhnya independen. Semua koloni mengandung autozooid, yang bertanggung jawab untuk makan dan ekskresi. Koloni beberapa kelas memiliki berbagai jenis zooid spesialis non-makan, beberapa di antaranya adalah tempat penetasan telur yang sudah dibuahi, dan beberapa kelas juga memiliki zooid khusus untuk membela koloni. Kelas Cheilostomata memiliki jumlah terbesar dari spesies, mungkin karena mereka memiliki jangkauan terluas zooid spesialis. Beberapa spesies dapat merayap sangat lambat dengan menggunakan zooid defensif berduri sebagai kaki. Autozooid memasok nutrisi ke zooid non-makan oleh saluran yang bervariasi antara kelas. Semua zooid, termasuk yang dari spesies soliter, terdiri dari kistid yang menyediakan dinding tubuh dan menghasilkan eksoskeleton dan polypide yang berisi organ internal dan lofofor atau ekstensi spesialis lainnya. Zooid tidak memiliki organ ekskresi khusus, dan polypide dari autozooid dilepaskan ketika polypide menjadi penuh dengan produk-produk limbah; biasanya dinding tubuh kemudian menumbuhkan sebuah polypide pengganti. Dalam autozooid usus adalah berbentuk U, dengan mulut di dalam "mahkota" dari tentakel dan anus luar. Koloni mengambil berbagai bentuk, termasuk fans, semak-semak dan lembar. Cheilostomata menghasilkan eksoskeleton termineralisasi dan membentuk lembaran satu-lapis yang menatah atas permukaan.

Zooid dari semua spesies air tawar adalah hermafrodit simultan. Meskipun zooid dari banyak spesies laut berfungsi sebagai laki-laki pertama dan kemudian sebagai perempuan, koloni mereka selalu mengandung kombinasi zooid yang berada di tahapan laki-laki dan perempuan. Semua spesies memancarkan sperma ke dalam air. Beberapa juga melepaskan ovum ke dalam air, sementara yang lain menangkap sperma melalui tentakel mereka untuk membuahi ovum mereka secara internal. Pada beberapa spesies larva memiliki kuning telur besar, pergi untuk memberi makan, dan cepat menetap di permukaan. Lainnya menghasilkan larva yang memiliki sedikit kuning telur tetapi berenang dan makan selama beberapa hari sebelum menetap. Setelah menetap, semua larva mengalami metamorfosis radikal yang menghancurkan dan membangun kembali hampir semua jaringan internal. Spesies air tawar juga memproduksi statoblas yang dorman sampai kondisi memungkinkan, yang memungkinkan keturunan koloni untuk bertahan hidup bahkan jika kondisi parah membunuh koloni ibu.

Predator dari briozoa laut termasuk nudibranchia (siput laut), ikan, landak laut, pycnogonida, krustasea, tungau dan bintang laut. Bryozoa air tawar dimangsa oleh siput, serangga, dan ikan. Di Thailand, banyak populasi satu spesies air tawar telah hancur oleh spesies siput yang diintroduksi. Sebuah briozoa cepat tumbuh invasif dari timur laut dan barat laut pantai AS telah mengurangi hutan kelp begitu banyak yang telah mempengaruhi populasi ikan lokal dan invertebrata. Briozoa telah menyebarkan penyakit ke peternakan ikan dan nelayan. Bahan kimia yang diekstrak dari spesies briozoa laut telah diteliti untuk pengobatan kanker dan penyakit Alzheimer, tetapi analisis belum menggembirakan.

Kerangka mineral dari briozoa pertama muncul dalam batuan dari periode Ordovisium Awal, menjadikannya filum besar terakhir muncul dalam catatan fosil. Hal ini telah menyebabkan peneliti untuk menduga bahwa briozoa telah muncul sebelumnya tetapi awalnya tidak termineralisasi, dan mungkin berbeda secara signifikan dari bentuk fosil dan modern. Fosil awal terutama dari bentuk tegak, tetapi bentuk encrusting secara bertahap menjadi dominan. Tidak pasti apakah filum adalah monofiletik. Hubungan evolusioner briozoa dengan filum lainnya juga tidak jelas, sebagian karena pandangan para ilmuwan dari pohon keluarga hewan terutama dipengaruhi oleh filum yang lebih terkenal. Analisis filogeni morfologi dan molekuler tidak setuju atas hubungan briozoa dengan entoprocta, apakah briozoa harus dikelompokkan dengan brakiopoda dan phoronida di Lophophorata, dan apakah briozoa adalah protostom atau deuterostom.

licence
cc-by-sa-3.0
droit d’auteur
Penulis dan editor Wikipedia
original
visiter la source
site partenaire
wikipedia ID

Mosadýr ( islandais )

fourni par wikipedia IS

Mosadýr (fræðiheiti: Bryozoa, Ectoprocta eða Polyzoa)[1] eru fylking hryggleysingja sem lifa í vatni. Þau eru yfirleitt um 0,5 mm löng og nærast á fæðuögnum í vatni sem þau sía frá með kórónu af örmum með örsmáum bifhárum.[2] Ein ætt mosadýra hefst eingöngu við í ferskvatni og nokkrar tegundir kjósa sér ísalt umhverfi en langflestar tegundir þeirra lifa í höfunum og finnast helst í hitabeltinu, en þau hafa þó líka fundist í djúpsjávarrennum og á heimskautunum. Rúmlega 4000 tegundir eru þekktar. Ein ættkvísl mosadýra lifir sem einstaklingar en annars lifa þau í þyrpingum.[3][4]

Í fyrstu var fræðiheiti þessarar fylkingar Polyzoa en það vék fyrir Bryozoa árið 1831. Í kjölfarið annar hópur dýra sem þóttu lík mosadýrunum, sérstaklega hvað varðar síunarbúnað þeirra, og voru þau dýr talin með undir Bryozoa fylkingunni þangað til 1869 þegar það uppgötvaðist að þessir hópar dýra voru ólík að innri gerð. Hópurinn sem uppgötvaðist síðar fékk þá fræðiheitið Entoprocta (stilkormar) en farið var að kalla mosadýrin Ectoprocta. Bryazoa heitið hefur þó aldrei fallið úr notkun er notað jafnhliða Ectoprocta.

Einstaklingar í þyrpingum mosadýra eru ósjálfstæðar einingar (zooid) í stærri heild þyrpingarinnar.[5] Í öllum þyrpingum eru "hreyfanlegir" (autozooid) einstaklingar sem eru sérhæfðir í fæðuöflun og þveiti fyrir þyrpinguna sem heild. Sumar ættir dýranna hafa sérhæfða einstaklinga sem t.d. sjá um að klekja út eggjum eða að verja þyrpinguna fyrir afræningjum. Cheilostomata-ætt mosadýra hefur mestan fjölda tegunda, mögulega vegna þess að sú ætt hefur gengið lengst í sérhæfingu einstaklinganna. Sumar tegundir geta fært sig úr stað með því að nota broddótt varnardýr sem fætur fyrir þyrpinguna. Þau dýr sem sjá um fæðuöflun koma næringarefnum til hinna dýranna um rásir í þyrpingunni.[2]

Á meðal ferskvatnstegunda mosadýra eru eru öll dýrin tvíkynja alla sína ævi. Margar sjávartegundanna er hins vegar þannig að dýrin eru fyrst karlkyns en kvenkyns síðar á ævinni. Allar tegundirnar losa sæði sitt út í vatnið en misjafnt er hvort að þær losi líka egg sín út í vatnið eða hvort að dýrin noti arma sína til þess að safna sæði og beina í því í innvortis hólf þar sem eggið er frjóvgað. Sumar tegundir mosadýr klekjast úr eggjunum sem feitar lirfur með góðan næringarforða sem finna sér fljótlega yfirborðsflöt til þess að festa sig við en aðrar tegundir hafa minni forða við klak og eyða lengri tíma í að synda á lifrustiginu og nærast áður en þær setjast varanlega. Allar lirfunar undirgangast algjöra myndbreytingu þar sem nánast allir líkamsvefir þeirra eru leystir upp og byggðir á ný í annari mynd. Ferskvatnsmosadýr hafa einnig sérstæða leið til þess að tryggja framtíð sína þó að aðstæður verði óhagstæðar í umhverfinu um stund. Sú leið felst í því að sleppa litlum kítín-hylkjum sem innihalda frumur foreldrisins í dvala. Ef eitthvað veldur því að þyrpingin þurrkast út, þá geta þessi hylki þraukað í erfiðum aðstæðum og opnast svo þegar betur árar. Þá vaxa upp af þeim ný mosadýr.[4]

Skeljar mosadýra hafa fundist í 490 milljón ára jarðlögum frá kambríumtímbilinu sem gerir þau að síðustu fylkingunni til þess að koma fram á sjónarsviðið þannig að það hafi skilið eftir steingervinga. Mögulega voru þau komin fram fyrr en án þess að byggja sér skeljar úr steinefnum sem hafa varðveist. Flokkun mosadýra er umdeild og margt á huldu um skyldleika þeirra við aðrar fylkingar svosem stilkorma annars vegar eða armfætlur hins vegar. Jafnframt er ekki ljóst hvort að þau teljist til frummunna (Protostomia) eða nýmunna (Deuterostomia).

Heimildir

Fyrirmynd greinarinnar var „Bryozoa“ á ensku útgáfu Wikipedia. Sótt 20. desember 2012.

  1. Brusca; Brusca. „21: The Lophophorate Phyla“. The Invertebrates.
  2. 2,0 2,1 Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). „Lophoporata“. Invertebrate Zoology (7. útgáfa). Brooks / Cole. bls. 829–845. ISBN 0-03-025982-7.
  3. Giere, O. (2009). „Tentaculata“. Meiobenthology (2. útgáfa). Springer Verlag. bls. 227. ISBN 978-3-540-68657-6. Sótt 7. júlí 2009.
  4. 4,0 4,1 Doherty, P.J. (2001). „The Lophophorates“. Í Anderson, D.T. Invertebrate Zoology (2. útgáfa). Oxford University Press. bls. 363–373. ISBN 0-19-551368-1.
  5. Little, W. (1964). „Zooid“. Shorter Oxford English Dictionary. Oxford University Press. ISBN 0-19-860613-3.
licence
cc-by-sa-3.0
droit d’auteur
Höfundar og ritstjórar Wikipedia
original
visiter la source
site partenaire
wikipedia IS

Mosadýr: Brief Summary ( islandais )

fourni par wikipedia IS

Mosadýr (fræðiheiti: Bryozoa, Ectoprocta eða Polyzoa) eru fylking hryggleysingja sem lifa í vatni. Þau eru yfirleitt um 0,5 mm löng og nærast á fæðuögnum í vatni sem þau sía frá með kórónu af örmum með örsmáum bifhárum. Ein ætt mosadýra hefst eingöngu við í ferskvatni og nokkrar tegundir kjósa sér ísalt umhverfi en langflestar tegundir þeirra lifa í höfunum og finnast helst í hitabeltinu, en þau hafa þó líka fundist í djúpsjávarrennum og á heimskautunum. Rúmlega 4000 tegundir eru þekktar. Ein ættkvísl mosadýra lifir sem einstaklingar en annars lifa þau í þyrpingum.

Í fyrstu var fræðiheiti þessarar fylkingar Polyzoa en það vék fyrir Bryozoa árið 1831. Í kjölfarið annar hópur dýra sem þóttu lík mosadýrunum, sérstaklega hvað varðar síunarbúnað þeirra, og voru þau dýr talin með undir Bryozoa fylkingunni þangað til 1869 þegar það uppgötvaðist að þessir hópar dýra voru ólík að innri gerð. Hópurinn sem uppgötvaðist síðar fékk þá fræðiheitið Entoprocta (stilkormar) en farið var að kalla mosadýrin Ectoprocta. Bryazoa heitið hefur þó aldrei fallið úr notkun er notað jafnhliða Ectoprocta.

Einstaklingar í þyrpingum mosadýra eru ósjálfstæðar einingar (zooid) í stærri heild þyrpingarinnar. Í öllum þyrpingum eru "hreyfanlegir" (autozooid) einstaklingar sem eru sérhæfðir í fæðuöflun og þveiti fyrir þyrpinguna sem heild. Sumar ættir dýranna hafa sérhæfða einstaklinga sem t.d. sjá um að klekja út eggjum eða að verja þyrpinguna fyrir afræningjum. Cheilostomata-ætt mosadýra hefur mestan fjölda tegunda, mögulega vegna þess að sú ætt hefur gengið lengst í sérhæfingu einstaklinganna. Sumar tegundir geta fært sig úr stað með því að nota broddótt varnardýr sem fætur fyrir þyrpinguna. Þau dýr sem sjá um fæðuöflun koma næringarefnum til hinna dýranna um rásir í þyrpingunni.

Á meðal ferskvatnstegunda mosadýra eru eru öll dýrin tvíkynja alla sína ævi. Margar sjávartegundanna er hins vegar þannig að dýrin eru fyrst karlkyns en kvenkyns síðar á ævinni. Allar tegundirnar losa sæði sitt út í vatnið en misjafnt er hvort að þær losi líka egg sín út í vatnið eða hvort að dýrin noti arma sína til þess að safna sæði og beina í því í innvortis hólf þar sem eggið er frjóvgað. Sumar tegundir mosadýr klekjast úr eggjunum sem feitar lirfur með góðan næringarforða sem finna sér fljótlega yfirborðsflöt til þess að festa sig við en aðrar tegundir hafa minni forða við klak og eyða lengri tíma í að synda á lifrustiginu og nærast áður en þær setjast varanlega. Allar lirfunar undirgangast algjöra myndbreytingu þar sem nánast allir líkamsvefir þeirra eru leystir upp og byggðir á ný í annari mynd. Ferskvatnsmosadýr hafa einnig sérstæða leið til þess að tryggja framtíð sína þó að aðstæður verði óhagstæðar í umhverfinu um stund. Sú leið felst í því að sleppa litlum kítín-hylkjum sem innihalda frumur foreldrisins í dvala. Ef eitthvað veldur því að þyrpingin þurrkast út, þá geta þessi hylki þraukað í erfiðum aðstæðum og opnast svo þegar betur árar. Þá vaxa upp af þeim ný mosadýr.

Skeljar mosadýra hafa fundist í 490 milljón ára jarðlögum frá kambríumtímbilinu sem gerir þau að síðustu fylkingunni til þess að koma fram á sjónarsviðið þannig að það hafi skilið eftir steingervinga. Mögulega voru þau komin fram fyrr en án þess að byggja sér skeljar úr steinefnum sem hafa varðveist. Flokkun mosadýra er umdeild og margt á huldu um skyldleika þeirra við aðrar fylkingar svosem stilkorma annars vegar eða armfætlur hins vegar. Jafnframt er ekki ljóst hvort að þau teljist til frummunna (Protostomia) eða nýmunna (Deuterostomia).

licence
cc-by-sa-3.0
droit d’auteur
Höfundar og ritstjórar Wikipedia
original
visiter la source
site partenaire
wikipedia IS

Bryozoa ( italien )

fourni par wikipedia IT

Il phylum Bryozoa (Briozoi) o, più correttamente, Ectoprocta, è composto da piccoli animali invertebrati acquatici, quasi esclusivamente marini, che vivono in colonie arborescenti ancorate ad un substrato sommerso.

Etimologia

Dal greco brýon = muschio e zôion = animale, poiché l'aspetto delle colonie ricorda quello del muschio.

Distribuzione e habitat

I Briozoi vivono fissati su fondali rocciosi, ma anche sabbiosi e limosi, preferiscono ambienti marini tropicali, tuttavia per la loro distribuzione mondiale possono definirsi cosmopoliti.

I Briozoi sono detti anche organismi incrostanti in quanto causano incrostazioni sulle carene delle navi e su strutture marine sommerse.

La maggior parte delle specie marine vive in acque tropicali a meno di 100 metri di profondità. Tuttavia, alcune sono state trovate in fosse di acque profonde[1], soprattutto intorno alle correnti fredde, e altre vicino ai poli[2]. La grande maggioranza è sessile. Le forme incrostanti sono le più comuni nei mari poco profondi, ma le forme erette diventano più comuni con l'aumentare della profondità. Alcune forme come la Cristatella possono muoversi, e una specie antartica, la Alcyonidium pelagosphaera, è costituita da colonie galleggianti. Le specie pelagiche hanno un diametro compreso tra 5 e 23 mm, presentano una forma a sfera cava e sono costituite da un unico strato di autozooidi. Non si sa ancora se queste colonie sono pelagiche per tutto il loro ciclo vitale o se rappresentano solo uno stadio giovanile temporaneo e non ancora descritto[2][3].

Descrizione

Una colonia di Briozoi è formata da singoli individui, detti zooidi, che raggiungono al massimo mezzo millimetro. Ogni zooide vive racchiuso in un involucro di forma allungata, a doppia parete, calcareo o chitinoso, detto zooecio, a volte chiuso da un opercolo.

Un autozooide generico[4]
cistìde
muscolo
retrattore
ovaie
zooecio
lofoforo
ganglio nervoso
stomaco
= Muscolo retrattore
= Zooecio
Ectoproct generalized 01.png
Un autozooide generico[4]

Ciascun individuo è costituito da una parte che si trova permanentemente dentro la teca, detta cistìde, ed una che ne fuoriesce, detta polipìde. Quest'ultima è munita di una cresta rilevata, il lofoforo, che porta una corona di tentacoli intorno all'apertura buccale, i quali fungono da organi per l'alimentazione, la respirazione e la percezione degli stimoli esterni. Il cistide costituisce la parte fondamentale dell'animale in quanto è lui stesso a secernere lo zooecio e a rigenerare il polipide se necessario.

Il lofoforo nei Briozoi marini ha forma circolare, mentre in quelli di acqua dolce è a forma di ferro di cavallo.

Il polipide può essere velocemente retratto nello zooecio grazie ad un muscolo retrattore detto funicolo e può essere successivamente estratto grazie a muscoli parietali. L'eversione avviene molto più lentamente, secondo due diversi meccanismi:

  1. Nel caso in cui lo zooecio sia poco calcificato e dunque elastico, i muscoli parietali collegati al cistide si contraggono, deformando il corpo dell'animale e facendo aumentare la pressione del liquido interno, la quale causa l'eversione del polipide verso l'unico foro d'uscita.
  2. Se invece lo zooecio è molto calcificato e dunque rigido, esso non può essere deformato e viene quindi sfruttato un altro meccanismo: un sacco interno ripieno d'acqua e comunicante con l'esterno (asco) viene espanso tramite contrazione di muscoli ad esso collegati in modo che la sua espansione di volume causi l'aumento di pressione dei liquidi interni e l'eversione dei polipide.

I Briozoi non hanno un apparato circolatorio. Hanno un apparato digerente ricurvo ad U, con la bocca vicina all'ano nella parte superiore e stomaco e intestino in quella inferiore.

Alcune specie hanno, come apparato nervoso, un ganglio nervoso situato sotto il lofoforo.

Le colonie sono generalmente polimorfiche, cioè gli zooidi possono assumere una morfologia diversa a seconda della loro funzione. Caratteristiche sono le avicularie e le vibracularie. Le avicularie hanno una forma che ricorda la testa di un uccello (da cui il nome), con l'opercolo modificato a formare un becco con funzione difensiva. Le vibracularie invece hanno un opercolo notevolmente allungato e muscolarizzato che passano sulla colonia per ripulirla dai detriti.

Biologia

Riproduzione

Questi animali si riproducono sia asessualmente che sessualmente. Il fondatore della nuova colonia, detto ancestrula, origina per gemmazione gli altri zooidi, che di conseguenza hanno tutti lo stesso patrimonio genetico. Nell'ambito di una stessa colonia è tuttavia presente un'ampia differenziazione morfologica tra i vari individui a seconda del ruolo che svolgono (pulizia, riproduzione, difesa ecc.).

I Briozoi sono generalmente ermafroditi. Gran parte delle specie marine appartenenti a questo phylum trattiene l'embrione in una camera incubatrice annessa allo zooecio, nutrendolo tramite un tessuto di tipo placentare. Dall'embrione si sviluppa una larva ciliata tipo trocofora, chiamata cifonauta, che ha l'aspetto di un cono appiattito con ciuffo apicale di ciglia. Le larve, dopo la schiusa, scendono sul fondale del mare e, con l'apice rivolto verso il basso, si fissano ad un substrato fondando una nuova colonia per gemmazione.

Inoltre, è opportuno precisare che i Bryozoa comprendono anche il sottotipo Entoprocta, con bocca e ano che si aprono all'interno del lofoforo. Di queste forme non esiste una testimonianza fossile, poiché esse sono prive di scheletro.

Alimentazione

I Briozoi si cibano di plancton e di particelle organiche che catturano filtrando l'acqua.

Evoluzione

 src=
Briozoo fossile (Ordoviciano)

Da studi su ritrovamenti fossili emerge che i Briozoi sono comparsi, con innumerevoli specie, nel Cambriano, ed ebbero la massima espansione nel periodo tra l'Ordoviciano e il Carbonifero, con la comparsa di numerose nuove specie, e nel periodo tra Giurassico e Cretaceo.

Attualmente si conoscono circa 4 000 specie viventi, buona parte delle quali risale al Paleozoico, e più di 15 000 specie fossili.

Note

  1. ^ (EN) Cesare Emiliani, The Paleozoic, in Dictionary of the physical sciences : terms, formulas, data, Oxford University Press, 1987, pp. 488–490, ISBN 0-19-503652-2, OCLC 12132666. URL consultato il 9 febbraio 2020.
  2. ^ a b (EN) Robert Wynn Jones e Wynn Robert Jones, Applied Palaeontology, Cambridge University Press, 4 maggio 2006, p. 116, ISBN 978-0-521-84199-3. URL consultato il 9 febbraio 2020.
  3. ^ (EN) L. S. Peck, P. J. Hayward e M. E. Spencer-Jones, A pelagic bryozoan from Antarctica, in Marine Biology, vol. 123, n. 4, 1º ottobre 1995, pp. 757–762, DOI:10.1007/BF00349118. URL consultato il 9 febbraio 2020.
  4. ^ (EN) Ruppert, E.E., Fox, R.S. e Barnes, R.D., Lophoporata, in Invertebrate Zoology, 7ª ed., Brooks / Cole, 2004, pp. 829–845, ISBN 978-0-03-025982-1.

Bibliografia

  • T.I. Storer, et al., Zoologia, a cura di P.Brignoli, Bologna, Zanichelli, 1994, pp. 481-484, ISBN 88-08-00606-9.
  • R. Argano et al. Zoologia. Diversità animale, Bologna, Monduzzi Editore, 2007. ISBN 978-88-323-6107-0

 title=
licence
cc-by-sa-3.0
droit d’auteur
Autori e redattori di Wikipedia
original
visiter la source
site partenaire
wikipedia IT

Bryozoa: Brief Summary ( italien )

fourni par wikipedia IT

Il phylum Bryozoa (Briozoi) o, più correttamente, Ectoprocta, è composto da piccoli animali invertebrati acquatici, quasi esclusivamente marini, che vivono in colonie arborescenti ancorate ad un substrato sommerso.

licence
cc-by-sa-3.0
droit d’auteur
Autori e redattori di Wikipedia
original
visiter la source
site partenaire
wikipedia IT

Samangyviai ( lituanien )

fourni par wikipedia LT

Samangyviai (Bryozoa) - smulkūs vandeniniai kolonijiniai gyvūnai, dažniausiai turintys kalcio karbonato skeletus. Išoriškai jie panašūs į koralus. Samangyvių kolonijai būdingas funkcinis jungimasis – kolonijos gali elgtis kaip individualūs organizmai. Nors paplitę visame pasaulyje, gausiausi šiltuose tropiniuose vandenyse. Tai gana gausus gyvūnų tipas.

Lietuvoje gyvena 3 rūšys:

  • Cristatella mucedo
  • Plumatella repens
  • Plumatella fungosa
OilShaleFossilsEstonia.jpg
Nebaigta Šis straipsnis apie zoologiją yra nebaigtas. Jūs galite prisidėti prie Vikipedijos papildydami šį straipsnį.
licence
cc-by-sa-3.0
droit d’auteur
Vikipedijos autoriai ir redaktoriai
original
visiter la source
site partenaire
wikipedia LT

Sūneņi ( letton )

fourni par wikipedia LV

Sūneņi (Bryozoa) ir bezmugurkaulnieku dzīvnieku tips. Citās klasifikācijās tie tiek uzskatīti par vainagtaustekļaiņu tipa klasi. Tie parasti ir sēdoši, koloniāli ūdens dzīvnieki, dažreiz ar masīvu kaļķa skeletu. Atsevišķu indivīdu izmēri ir 1-3mm, savukārt kolonijas var noklāt vairāk kā 1m2 lielus laukumus. Sūneņi dzīvo galvenokārt jūrās. Mūsdienās pazīstamas virs 5000 sūneņu sugām, no tām saldūdeņos ap 50 sugām. Formas, kam ir cietais skelets, labi saglabājas fosilā stāvoklī. Zināms līdz 5000 fosilām sugām.

Morfoloģija

Ārēja uzbūve

Ārējais skelets

Sūneņu kolonijas pēc formas un uzbūves ļoti daudzveidīgas. Vieni veido tievus kociņus vai masīvākus veidojumus, kas paceļas no substrāta un ārēji ir līdzīgi hidroīdiem vai koraļļiem. Savukārt, citi sedz substrātu plāna tīkliņa vai blīva slāņa veidā. Koloniju izmēri ir ļoti dažādi — no dažiem milimetriem līdz vairākiem desmitiem centimetru. Var būt recekļainas, kaļķa vai hitīnveida kolonijas. Kolonijas parasti veido ļoti daudz īpatņu. Dažām kolonijām visi īpatņi vienādi (monomorfās kolonijas), citām novērojams diezgan krasi izteikts polimorfisms (polimorfās kolonijas).

Cistīds

Katrs sūneņa īpatnis atrodas kausiņam līdzīgā padziļinājumā — cistīdā. Cistīds ir neliels un parasti nepārsniedz 1 mm. Cistīdam ir atvere, caur kuru var izvirzīties uz āru īpatņa ķermeņa priekšējā daļa jeb lofofors. Lofoforā ir mutes atvere, ko apņem dobu, ar sīkam skropstiņām klātu taustekļu vainags. Taustekļi var būt novietoti gredzenveidīgi (sūneņu lielākajai daļai) vai pakavveidīgi (saldūdens formu vairumam). Lofofors parasti izvirzās uz āru hidrostatiski, bet to ievelk iekšā ar īpašiem muskuļiem — retraktoriem. Cistīda atvere var aizvērties dažādi. Dažām formām to savelk speciāli muskuļi, citām to aizver īpašs vāciņš (operculum).

Ķermeņa dobums

Ķermeņa sekundāro dobumu norobežo cistīdu sienas. Tam ir mezodermāls izklājs, kas piepildīts ar dobuma šķidrumu, kurā peld mezenhimatozās šūnas un amebocīti. Ķermeņa dobumā izvietoti sūneņa iekšējie orgāni.

Iekšējā uzbūve

Gremošana

Gremošanas orgānu sistēma sākas ar mutes atveri. Lielai saldūdens sūneņu daļai virs mutes atveres ir īpašs izaugums — epistomijs, kas pārsedz muti, pārējie sūneņi ir bez epistomija. Mutes atvere ved rīklē, kas tālāk pāriet barības vadā un plašā viduszarnā (kuņģī). Viduszarna vispirms virzās atpakaļ, bet pēc tam krasi saliecas uz priekšu un pāriet galazarnā, kas atveras ar anālo atveri priekšgalā ārpus taustekļu vainaga. No viduszarnas gala uz cistīda sienu stiepjas īpaša mezenteriāla saite (funiculus), kas gremošanas kanālu fiksē pie cistīda sienas.

Asinsrite un elpošana

Asinsrites un elpošanas orgānu sistēmu sūneņiem nav. Elpošanas funkcijas veic taustekļi, bet asins funkcijas — dobuma šķidrums. Tiem sūneņiem, kuriem cistīdi nav klāti ar kalcīta slāni, gāzu apmaiņa var notikt caur visa ķermeņa virsmu.

Izvadsistēma

Izvadorgānu sistēmas lielākai daļai arī nav; dažiem sūneņiem tā tomēr sastopama un sastāv no diviem īsiem kanāliem. Viens šāda kanāla gals atveras ar skropstainu piltuvi ķermeņa dobumā, otrs — uz āru, turklāt parasti abi kanāli beigu daļā saplūst kopā un atveras ar vienu atveri priekšdaļā. Skropstainā piltuve, kas atveras ķermeņa dobumā, ļauj sūneņu izvadorgānus salīdzināt ar metanefrīdijiem.

Nervu sistēma

Nervu sistēma ir stipri reducēta un sastāv tikai no viena starp mutes atveri un ānusu izvietota nervu mezgla, no kura atiet nervi, kas inervē iekšējos un ārējos orgānos.

Vairošanās un attīstība

Dzimumvairošanās

Dzimumorgāni

Dzimumorgānu sistēma sūneņu lielākai daļai ir hermafrodītiska. Dzimumšūnas, kuras tāpat kā posmtārpiem rodas no celotēlija, veido gonādas, kas atrodas ķermeņa dobumā. Gonādas parasti koncentrētas uz mezenteriālās saites. Spermatozoīdus izvada ārā pa izvadorgānu sistēmas kanāliem vai pa īpašām atverēm ķermeņa sienā. Olas, savukārt, paliek ķermeņa dobumā, un tās apaugļo cita īpatņa spermatozoīdi.

Attīstība

Apaugļoto olu sākotnējās attīstības stadijas noris mātes īpatņa ķermeņa dobumā vai arī īpašos pārveidotos īpatņos. Sūneņu kāpuri ir diezgan daudzveidīgi kā pēc ārējās formas, tā arī pēc iekšējās uzbūves. Kāpuri ir brīvi peldoši, un, papeldot noteiktu laiku ūdenī, tie nolaižas dibenā un piestiprinās pie substrāta. Daudziem sūneņiem pēc piestiprināšanās kāpura iekšējā uzbūvē notiek dziļas pārmaiņas. Visi tā iekšējie orgāni pilnīgi sairst, saglabājas tikai ektoderma un mezodermas elementi. Pieauguša īpatņa zarnu kanāls attīstās no ektodermas, bet no mezodermas rodas gonādas, muskulatūra un ķermeņa dobuma izklājs. Metamorfozes ciklam beidzoties tie kļūst par pieaugušām formām.

Bezdzimumvairošanās

Ārējā pumpurošanās

Bez dzimumvairošanās sūneņiem ļoti liela nozīme ir bezdzimumvairošanās proti pumpurošanās procesam. Tiem pumpurojoties veidojas lielas kolonijas. Pumpuri rodas noteiktās ķermeņa vietās un no tiem ir atkarīga kolonijas forma. Interesanti atzīmēt, ka pumpuri veidojas tikai no ektodermas un mezodermas.

Iekšējā pumpurošanās

Īpatnēja bezdzimumvairošanās forma, kas sastopama saldūdens sūneņiem, ir iekšējā pumpurošanās. Šeit mezenteriālajā saitē veidojas īpaši, lielākoties diskveida ķermeņi — statoblasti, kas pēc tam izkrīt ķermeņa dobumā. Statoblastus sedz blīva divvāku čaula, un vairākumā gadījumu tos apņem īpašs tīklveida cistīds, tā sauktais peldgredzens, bet dažreiz tiem ir arī hitīna kāši. Kad rudenī sūneņu kolonija nobeidzas un sairst, statoblasti izkrīt ārā un blīvajā apvalkā pārziemo. Tādējādi statoblasti ir pielāgojums, ar kuru pārdzīvo nelabvēlīgus apstākļus. Mērenajā klimata joslā tas notiek ziemas periodos, tropos — sausuma periodos, daudziem ūdensbaseiniem izžūstot. Pavasarī vai lietus perioda sākumā statoblasta čaula pārplīst, abas tās puses atveras, dīglis iznāk ārā un attīstās par jaunu sūneni, kas pēc tam, parastā veidā pumpurodamies, izveido koloniju. Statoblastu peldgredzens un hitīna kāši statoblastu pasīvi iznēsā, sekmējot statoblastu izplatību.

Polimorfisms

 src=
Evactinopora bryozoan no Jefferson County, Misūri. Tagad pastāvīgā krājuma Bērnu Museum of Indianapolis.

Polimorfajām kolonijām bez galvenajiem parastajiem īpatņiem, kas veic barošanas funkciju un veido dzimumšūnas, ir arī virkne pārveidotu īpatņu. Šie īpatņi parasti ir trejādi.

  • Avikulārijas, ar putna knābja formu, ir īpatņi, kuriem visi iekšējie orgāni reducējušies, bet stipri attīstīts cistīda vāciņš, kas ir pārveidojies īpašā «žoklī», kuru kustina muskuļi — retraktori. Avikulārijas sargā un tīra kolonijas, no sīkiem dzīvniekiem un svešķermeņiem.
  • Vibrakulārijas arī aizsargā kolonijas — tām ir gara vica, kas spēcīgi attīstīto muskuļu darbības dēļ visu laiku svārstās.
  • Oēcijas pilda perējamo kameru funkciju, kur pēc apaugļošanās nokļūst un attīstās olas.

Bez augstāk minētajām polimorfisma formām dažiem sūneņiem vēl ir pārveidojušies īpatņi, kas stiprina kolonijas pie substrāta.

Ekoloģija un izplatība.

Sūneņu lielākā daļa dzīvo jūrās. Saldūdeņos pazīstamas tikai ap 50 sugām, kas galvenokārt pieder pie sūneņu grupas ar segtu muti. Jūrās sūneņi dzīvo dažādā dziļumā, sākot no bēguma joslas un līdz vairāku kilometru dziļumam; tie sastopami gan arktiskajās, gan tropiskajās jūrās, kur to gan ir visvairāk. Sūneņi dzīvo kā stāvošos, tā arī tekošos saldūdeņos, turklāt galvenokārt piekrastē uz ūdensaugiem. Latvijā saldūdens sūneņi, kaut arī nav sastopami lielā skaitā, tomēr plaši izplatīti daudzos ūdensbaseinos. Visparastākās ir ģints Plumatella sugas. Bez tām sevišķi jāatzīmē Cristatella mucedo, kuras kolonijas atšķirībā no visiem pārējiem sūneņiem, ir kustīgas un spēj ar plato pēdu, kas veido kolonijas pamatu, lēni rāpot pa substrātu. Sūneņu koloniju forma ļoti stipri pārmainās atkarībā no eksistences apstākļiem: ūdens kustības, dziļuma, substrāta rakstura utt. Vienai un tai pašai sugai var būt dažādas formas kolonijas - tādas, kas rāpo pa substrātu, kā arī tādas, kas veido blīvas masas uz dažādiem zemūdens priekšmetiem. Sūneņi barojas, filtrējot ūdeni ar taustekļiem. Dubultā skropstiņu rinda uz taustekļiem rada divas ūdens plūsmas, kas plūst uz muti un prom no mutes. Atfiltrētās detrīta daļiņas, sīkie dzīvnieki un augu organismi (pārsvarā vienšūņi un kramaļģes) nokļūst mutē un tālāk zarnu traktā. Kolonijas, sūneņiem pumpurojoties, labvēlīgos apstakļos veidojas ļoti intensīvi. Savairodamies uz dažāda veida hidrotehniskajām un ūdensvadu iekārtām, tās noslēdzot un piesārņojot, sūneņi reizēm var nodarīt lielus materiālus zaudējumus.

Filoģenētika

Sūneņi ir sena un ļoti īpatnēja grupa, kuras stāvoklis sistēmā un filoģēnijā vēl nav pilnīgi skaidrs. Sekundārais ķermeņa dobums, metanefrīdija tipa izvadorgāni, dzimumšūnu veidošanās no celotēlija un, beidzot, vairākumam sastopamais trohoforveida kāpurs liecina, ka sūneņiem neapšaubāmi ir kopīgas saknes ar posmtārpiem. Acīmredzot, tie ļoti sen atdalījušies no posmtārpiem un sakarā ar pāreju uz sēdošu dzīves veidu ieguvuši virkni pazīmju, kas ir līdzīgas zarndobumaino (polipu) pazīmēm, ar kurām tos sākumā arī apvienoja. Šī līdzība gan ir tīri konverģenta, jo sūneņi neapšaubāmi jāuzskata par trīsslāņainiem dzīvniekiem. Fosilā veida sūneņi ir pazīsrtami jau no apakšējā ordovika.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia autori un redaktori
original
visiter la source
site partenaire
wikipedia LV

Sūneņi: Brief Summary ( letton )

fourni par wikipedia LV

Sūneņi (Bryozoa) ir bezmugurkaulnieku dzīvnieku tips. Citās klasifikācijās tie tiek uzskatīti par vainagtaustekļaiņu tipa klasi. Tie parasti ir sēdoši, koloniāli ūdens dzīvnieki, dažreiz ar masīvu kaļķa skeletu. Atsevišķu indivīdu izmēri ir 1-3mm, savukārt kolonijas var noklāt vairāk kā 1m2 lielus laukumus. Sūneņi dzīvo galvenokārt jūrās. Mūsdienās pazīstamas virs 5000 sūneņu sugām, no tām saldūdeņos ap 50 sugām. Formas, kam ir cietais skelets, labi saglabājas fosilā stāvoklī. Zināms līdz 5000 fosilām sugām.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia autori un redaktori
original
visiter la source
site partenaire
wikipedia LV

Mosdiertjes ( néerlandais ; flamand )

fourni par wikipedia NL
 src=
Fossiele mosdiertjes

De mosdiertjes (Bryozoa of Ectoprocta, niet te verwarren met de mosbeertjes) zijn een stam van Protostomata, die vooral in zee leven. Er zijn ongeveer 6000 levende soorten beschreven in deze stam, waaronder de vliescelpoliep en het bladachtig hoornwier.

Beschrijving

Deze hooguit 1 mm lange waterdiertjes leven in doosvormige, tot kolonies verkitte huisjes. Soms vormen ze korsten op rotsen en zeewier. Andere soorten vertonen overeenkomsten met mosjes, die in de stroming heen en weer worden gewiegd. Afgestorven kolonies worden vaak op het strand geworpen, waar ze voor verdroogd zeewier worden aangezien. Mosdiertjes geven over het algemeen de voorkeur aan warme, tropische wateren, maar komen over de hele wereld voor.

Geologie

Binnen de geologie, en met name de paleontologie zijn Bryozoa belangrijke indicatoren voor het afzettingsmilieu van een bepaald gesteente. Omdat de Bryozoa delicate organismen zijn, is het voorkomen ervan in een sedimentair gesteente een indicatie voor een rustig afzettingsmilieu. Zodra de Bryozoa erg opgebroken zijn (en zogenaamde bioklasten vormen) is de energie ten tijde van afzetting hoger geweest.

Taxonomie

De mosdiertjes wordt als volgt onderverdeeld:

Bronnen, noten en/of referenties
  • David Burnie (2001) - Animals, Dorling Kindersley Limited, London. ISBN 90-18-01564-4 (naar het Nederlands vertaald door Jaap Bouwman en Henk J. Nieuwenkamp).
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia-auteurs en -editors
original
visiter la source
site partenaire
wikipedia NL

Mosdiertjes: Brief Summary ( néerlandais ; flamand )

fourni par wikipedia NL
 src= Fossiele mosdiertjes

De mosdiertjes (Bryozoa of Ectoprocta, niet te verwarren met de mosbeertjes) zijn een stam van Protostomata, die vooral in zee leven. Er zijn ongeveer 6000 levende soorten beschreven in deze stam, waaronder de vliescelpoliep en het bladachtig hoornwier.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia-auteurs en -editors
original
visiter la source
site partenaire
wikipedia NL

Mosdyr ( norvégien )

fourni par wikipedia NO
Question book-new.svg
Denne artikkelen mangler kildehenvisninger, og opplysningene i den kan dermed være vanskelige å verifisere. Kildeløst materiale kan bli fjernet. Helt uten kilder. (10. okt. 2015)
 src=
Det karakteristiske «overtrekket» en mosdyrkoloni lager på f.eks. alger. Denne kolonien av arten Membranipora membranacea er imidlertid død, bare «eskene» står igjen.

Mosdyr er en rekke av små vannlevende, fastsittende dyr. Enkeltdyrene er vanligvis under 1 mm store, men lever i kolonier som kan bli mange centimeter store (opptil 1 m). Dyrenes bakkropp danner et eskeformet skall (kalt zooecium), som hele dyret kan trekke seg tilbake i.

Koloniene består av mange slike zooecier som sitter tett i tett, og kan danne et hvit- eller gråaktig «belegg» på steiner, muslingskall, krepsdyr eller alger. De fleste artene er marine, men klassen Phylactolaemata lever i ferskvann.

Mosdyrene har et coelom, men mangler et sirkulasjonssystem og ekskresjonssystem. Forkroppen danner en tentakelkrans som dyrene filtrerer vannet med, for å livnære seg på organiske partikler og plankton. Tarmkanalen er U-formet, slik at endetarmsåpningen også ligger på forkroppen.

Til forskjell fra kamptozoene, som ligner litt i sin kroppsbygning, munner endetarmen ikke i tentakkelkransen. Dette er bakgrunnen for det vitenskapelige navnet Ectoprocta (gresk ektos = «utenfor», proktos = endetarmsåpning). Kamptozoer ble til tider betegnet som «Bryozoa Entoprocta» (entos = «innenfor»). I dag har man gått bort ifra å sammenfatte disse to gruppene.

Tidligere antok man at mosdyr var nærmest beslektet med armføttinger og foronider, og at de stod nærmere deuterostomiene enn protostomiene. Nyere fylogenetisk forskning har vist at de hører til protostomiene, men de nøyaktige slektskapsforholdene er ikke klarlagt ennå.

Mosdyr har en karakteristisk, lueformet larve (cyphonautes).

OilShaleFossilsEstonia.jpg

Eksterne lenker

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia forfattere og redaktører
original
visiter la source
site partenaire
wikipedia NO

Mosdyr: Brief Summary ( norvégien )

fourni par wikipedia NO
 src= Det karakteristiske «overtrekket» en mosdyrkoloni lager på f.eks. alger. Denne kolonien av arten Membranipora membranacea er imidlertid død, bare «eskene» står igjen.

Mosdyr er en rekke av små vannlevende, fastsittende dyr. Enkeltdyrene er vanligvis under 1 mm store, men lever i kolonier som kan bli mange centimeter store (opptil 1 m). Dyrenes bakkropp danner et eskeformet skall (kalt zooecium), som hele dyret kan trekke seg tilbake i.

Koloniene består av mange slike zooecier som sitter tett i tett, og kan danne et hvit- eller gråaktig «belegg» på steiner, muslingskall, krepsdyr eller alger. De fleste artene er marine, men klassen Phylactolaemata lever i ferskvann.

Mosdyrene har et coelom, men mangler et sirkulasjonssystem og ekskresjonssystem. Forkroppen danner en tentakelkrans som dyrene filtrerer vannet med, for å livnære seg på organiske partikler og plankton. Tarmkanalen er U-formet, slik at endetarmsåpningen også ligger på forkroppen.

Til forskjell fra kamptozoene, som ligner litt i sin kroppsbygning, munner endetarmen ikke i tentakkelkransen. Dette er bakgrunnen for det vitenskapelige navnet Ectoprocta (gresk ektos = «utenfor», proktos = endetarmsåpning). Kamptozoer ble til tider betegnet som «Bryozoa Entoprocta» (entos = «innenfor»). I dag har man gått bort ifra å sammenfatte disse to gruppene.

Tidligere antok man at mosdyr var nærmest beslektet med armføttinger og foronider, og at de stod nærmere deuterostomiene enn protostomiene. Nyere fylogenetisk forskning har vist at de hører til protostomiene, men de nøyaktige slektskapsforholdene er ikke klarlagt ennå.

Mosdyr har en karakteristisk, lueformet larve (cyphonautes).

OilShaleFossilsEstonia.jpg
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia forfattere og redaktører
original
visiter la source
site partenaire
wikipedia NO

Mszywioły ( polonais )

fourni par wikipedia POL
Commons Multimedia w Wikimedia Commons

Mszywioły (Bryozoa) – typ wodnych, głównie morskich, kolonijnych zwierząt bezkręgowych o najwyższym – wśród wtórnojamowców – stopniu organizacji kolonii, zwanej zoarium. Pojedyncze osobniki, nazywane zooidami, mają w części głowowej aparat czułkowy zwany lofoforem. Zewnętrznie są podobne do polipów stułbiopławów.

Typ obejmuje około 5 tys. gatunków[2] żyjących współcześnie i prawie cztery razy tyle wymarłych. Polska nazwa wywodzi się od "mchu", ponieważ kolonie mszywiołów porastają podwodne przedmioty niczym mchy na lądzie. Przeważnie żyją w morzach, niektóre w wodach słodkich. Większość prowadzi osiadły tryb życia. Niektóre (np. Cristatella) przemieszczają się z prędkością do 3 cm dziennie. Tylko wyjątkowo spotykane są pojedyncze zooidy[3]

Pojedyncze osobniki (zooidy) są drobne, dobrze widzialne tylko pod mikroskopem. Ich ciało składa się z ruchomego odcinka głowowego (polypid) zaopatrzonego w lofofor oraz nieruchomego odcinka dolnego (cystid). Ciało okryte jest pochewką (zooecjum) galaretowatą, błoniastą lub zwapniałą. Dokoła otworu gębowego znajdują się liczne orzęsione czułki, osadzone okółkiem na brzegu tarczy okrągłej lub w kształcie podkowy. Nie mają układu krwionośnego ani wydalniczego. Żywią się planktonem, który napędzają do otworu gębowego za pomocą ramion. Rozmnażają się płciowo oraz przez pączkowanie[4]. U morskich mszywiołów występuje rozwój złożony, a u słodkowodnych – prosty[3].

Kolonie (zoaria) osiągają do 90 cm wysokości i do 2 m długości [3] – mogą zawierać do kilkuset tysięcy osobników[2].

Najstarsze znane zwierzęta, które niewątpliwie można zaliczyć do mszywiołów żyły w ordowiku (wczesny tremadok)[5]. W 2010 r. na podstawie skamieniałości odkrytych w utworach górnego kambru Meksyku opisany został gatunek Pywackia baileyi, sklasyfikowany przez autorów jego opisu jako najstarszy znany mszywioł[6]. Interpretację tę podważyli Taylor, Berning i Wilson (2013), w których ocenie bardziej prawdopodobne jest, że P. baileyi był koralowcem ośmiopromiennym[7]; w ocenie Landinga i współpracowników (2015) P. baileyi nie ma jednak cech budowy, które uzasadniałyby zaliczenie go do koralowców i najprawdopodobniej jest mszywiołem spokrewnionym ze szczupnicami[8].

Mszywioły dzieli się na trzy gromady:

W Polsce stwierdzono 12 gatunków występujących w wodach słodkich i słonawych[2].

Pierwszą pracą w Polsce skupiającą się nad bryozoami była publikacja autorstwa Józefa Premika[9] (w dysertacji doktorskiej pt. Studia nad bryozoami sylurskimi Podola, w której jako pierwszy w Polsce zilustrował 39 gatunków mszywiołów[10]).

Zobacz też

Przypisy

  1. Bryozoa, w: Integrated Taxonomic Information System (ang.).
  2. a b c Fauna Polski - charakterystyka i wykaz gatunków. Bogdanowicz W., Chudzicka E., Pilipiuk I. i Skibińska E. (red.). T. III. Warszawa: Muzeum i Instytut Zoologii PAN, 2008, s. 355–356. ISBN 978-83-88147-09-8.
  3. a b c Zoologia : bezkręgowce. T. 1. Red. nauk. Czesław Błaszak. Warszawa: Wydawnictwo Naukowe PWN, 2009. ISBN 978-83-01-16108-8.
  4. Henryk Jakubowski, Jerzy Ring: Ryby w akwarium. Warszawa: Wydawnictwa Szkolne i Pedagogiczne, 1990 str.77.
  5. Junye Ma, Paul D. Taylor, Fengsheng Xia i Renbin Zhan. The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China. „Palaeontology”. w druku, 2015. DOI: 10.1111/pala.12189 (ang.).
  6. Ed Landing, Adam English i John D. Keppie. Cambrian origin of all skeletalized metazoan phyla—Discovery of Earth's oldest bryozoans (Upper Cambrian, southern Mexico). „Geology”. 38 (6), s. 547–550, 2010. DOI: 10.1130/G30870.1 (ang.).
  7. Paul D. Taylor, Björn Berning i Mark A. Wilson. Reinterpretation of the Cambrian ‘Bryozoan' Pywackia as an Octocoral. „Journal of Paleontology”. 87 (6), s. 984–990, 2013. DOI: 10.1666/13-029 (ang.).
  8. Ed Landing, Jonathan B. Antcliffe, Martin D. Brasier i Adam B. English. Distinguishing Earth’s oldest known bryozoan (Pywackia, late Cambrian) from pennatulacean octocorals (Mesozoic–Recent). „Journal of Paleontology”. 89 (2), s. 292–317, 2015. DOI: 10.1017/jpa.2014.26 (ang.).
  9. Stanisław Węcławik: (Sub specie aeternitatis) Józef Premik (1890–1963). W: Księga pamiątkowa (obchodów 100-lecia Gimnazjum oraz I Liceum Ogólnokształcącego w Sanoku). Sanok: 1980, s. 106.
  10. Zbigniew Zadruski: Józef Premik (1890-1963). gazetacz.com.pl. [dostęp 4 lipca 2014].

Bibliografia

  • Henryk Jakubowski, Jerzy Ring: Ryby w akwarium. Warszawa: Wydawnictwa Szkolne i Pedagogiczne, 1990. ISBN 83-02-03493-2.
p d e
Klasyfikacja typów zwierząt na podstawie hipotezy ekdyzonu (Lophotrochozoa-Ecdysozoa-Deuterostomia) Królestwo: zwierzęta (Animalia sensu Metazoa)Parazoa
gąbki (Porifera)płaskowce (Placozoa)
Eumetazoa
Dwuwarstwowce
(Diploblastica)
parzydełkowce (Cnidaria)żebropławy (Ctenophora)
wtórouste
(Deuterostomia)
strunowce (Chordata)
szkarłupnie (Echinodermata)półstrunowce (Hemichordata)
pierwouste
(Protostomia)
incertae sedis
szczecioszczękie (Chaetognatha)
wrotki (Rotifera)szczękogębe (Gnathostomulida)drobnoszczękie (Micrognathozoa)
płazińce (Platyhelminthes)brzuchorzęski (Gastrotricha)
lofotrochorowce
(Lophotrochozoa)
czułkowce
(Lophophorata)
mszywioły (Bryozoa)ramienionogi (Brachiopoda)kryzelnice (Phoronida)
mięczaki (Mollusca)pierścienice (Annelida)wstężnice (Nemertea)kielichowate (Kamptozoa)rombowce (Dicyemida)prostopływce (Orthonectida)lejkogębce (Cycliophora)
wylinkowce
(Ecdysoza)
ryjkogłowy (Kinorhyncha)kolczugowce (Loricifera)niezmogowce (Priapulida)
nicienie (Nematoda)nitnikowce (Nematomorpha)
stawonogi (Arthropoda)niesporczaki (Tardigrada)pazurnice (Onychophora)
nieaktualne
przeniesione do parzydełkowców
myksosporidiowce (Myxozoa)
przeniesione do wrotków
kolcogłowy (Acanthocephala)
przeniesione do pierścienic
krążkokształtne (Myzostomida)rurkoczułkowce (Pogonophora)sikwiaki (Sipuncula)szczetnice (Echiura)
nomen dubium
jednowarstwowce (Monoblastozoa)

Na podstawie:
Halanych et al. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. „Science”. 267 (5204), s. 1641–1643, 1995. DOI: 10.1126/science.7886451 (ang.).
Edgecombe et al. Higher-level metazoan relationships: recent progress and remaining questions. „Organisms Diversity and Evolution”. 11, s. 151–172, 2011. DOI: 10.1007/s13127-011-0044-4 (ang.).

Laumer et al. Spiralian Phylogeny Informs the Evolution of Microscopic Lineages. „Current Biology”. 25, s. 1-7, 2015. DOI: 10.1016/j.cub.2015.06.068 (ang.).
licence
cc-by-sa-3.0
droit d’auteur
Autorzy i redaktorzy Wikipedii
original
visiter la source
site partenaire
wikipedia POL

Mszywioły: Brief Summary ( polonais )

fourni par wikipedia POL

Mszywioły (Bryozoa) – typ wodnych, głównie morskich, kolonijnych zwierząt bezkręgowych o najwyższym – wśród wtórnojamowców – stopniu organizacji kolonii, zwanej zoarium. Pojedyncze osobniki, nazywane zooidami, mają w części głowowej aparat czułkowy zwany lofoforem. Zewnętrznie są podobne do polipów stułbiopławów.

Typ obejmuje około 5 tys. gatunków żyjących współcześnie i prawie cztery razy tyle wymarłych. Polska nazwa wywodzi się od "mchu", ponieważ kolonie mszywiołów porastają podwodne przedmioty niczym mchy na lądzie. Przeważnie żyją w morzach, niektóre w wodach słodkich. Większość prowadzi osiadły tryb życia. Niektóre (np. Cristatella) przemieszczają się z prędkością do 3 cm dziennie. Tylko wyjątkowo spotykane są pojedyncze zooidy

Pojedyncze osobniki (zooidy) są drobne, dobrze widzialne tylko pod mikroskopem. Ich ciało składa się z ruchomego odcinka głowowego (polypid) zaopatrzonego w lofofor oraz nieruchomego odcinka dolnego (cystid). Ciało okryte jest pochewką (zooecjum) galaretowatą, błoniastą lub zwapniałą. Dokoła otworu gębowego znajdują się liczne orzęsione czułki, osadzone okółkiem na brzegu tarczy okrągłej lub w kształcie podkowy. Nie mają układu krwionośnego ani wydalniczego. Żywią się planktonem, który napędzają do otworu gębowego za pomocą ramion. Rozmnażają się płciowo oraz przez pączkowanie. U morskich mszywiołów występuje rozwój złożony, a u słodkowodnych – prosty.

Kolonie (zoaria) osiągają do 90 cm wysokości i do 2 m długości – mogą zawierać do kilkuset tysięcy osobników.

Najstarsze znane zwierzęta, które niewątpliwie można zaliczyć do mszywiołów żyły w ordowiku (wczesny tremadok). W 2010 r. na podstawie skamieniałości odkrytych w utworach górnego kambru Meksyku opisany został gatunek Pywackia baileyi, sklasyfikowany przez autorów jego opisu jako najstarszy znany mszywioł. Interpretację tę podważyli Taylor, Berning i Wilson (2013), w których ocenie bardziej prawdopodobne jest, że P. baileyi był koralowcem ośmiopromiennym; w ocenie Landinga i współpracowników (2015) P. baileyi nie ma jednak cech budowy, które uzasadniałyby zaliczenie go do koralowców i najprawdopodobniej jest mszywiołem spokrewnionym ze szczupnicami.

Mszywioły dzieli się na trzy gromady:

Gymnolaematakrążelnice Phylactolaematapodkówczaki Stenolaemataszczupnice

W Polsce stwierdzono 12 gatunków występujących w wodach słodkich i słonawych.

Pierwszą pracą w Polsce skupiającą się nad bryozoami była publikacja autorstwa Józefa Premika (w dysertacji doktorskiej pt. Studia nad bryozoami sylurskimi Podola, w której jako pierwszy w Polsce zilustrował 39 gatunków mszywiołów).

licence
cc-by-sa-3.0
droit d’auteur
Autorzy i redaktorzy Wikipedii
original
visiter la source
site partenaire
wikipedia POL

Ectoprocta ( portugais )

fourni par wikipedia PT

O filo Ectoprocta (do grego ektos, externo + proktos, ânus) compreende um dos grupos de invertebrados mais diversos, abundantes e complexos. Devido a sua fragilidade e seu pequeno tamanho tendem a ser menos familiares do que outros grupos zoológicos. No passado eram conhecidos como briozoários ou "animais-musgo" (Bryozoa - do grego bryon, musgo + zoon, animal), denominação que incluia também os Entoprocta. No entanto, devido ao fato de os entoproctos serem pseudocelomados e possuírem o ânus localizado no interior da coroa de tentáculos, eles têm sido geralmente separados dos ectoproctos, os quais, à semelhança dos demais lofoforados, são eucelomados e possuem o ânus fora do círculo de tentáculos.

São frequentes em rochas sedimentares carbonáticas, e abundantes nos mares atuais. Raramente encontrados em água doce. Com raríssimas exceções, são animais coloniais, sésseis e cosmopolitas. Esses organismos distribuem-se em todas as profundidades e latitudes no ambiente marinho, sendo porém mais comuns nas águas rasas de mares tropicais. Habitam preferencialmente, águas límpidas, e alimentam-se de microorganismos planctônicos (diatomáceas e radiolários). Ocorrem desde o Ordoviciano até os dias atuais. Existem cerca de 3.500 espécies viventes e 1.500 fósseis descritas.

Morfologia geral: arquitetura corpórea, bauplan e sinapomorfias

Características Dentre as principais características estão:

  1. Lofoforados triméricos, celomados, coloniais.
  2. Opérculo e protocele ausentes na maioria das espécies.
  3. Lofóforo circular ou em forma de U.
  4. Cutícula externa, denominada zoécio, geralmente de carbonato de cálcio ou quitina.
  5. Estruturas circulatórias ou excretórias típicas ausentes.
  6. Intestino em forma de U, ânus perto da boca.
  7. Colônias produzidas por brotamento assexual; zoóides freqüentemente polimórficos.
  8. Zoóides comumente gonocorísticos, mas ambos os sexos podem ocorrer numa mesma colônia.
  9. A maioria tem desenvolvimento misto.
  10. Geralmente sésseis e marinhos, com algumas espécies de vida livre ou dulcículas.

O filo Bryozoa,também chamado de ectoprocta, é o maior e mais comum dos filos lofoforados e contém aproximadamente 5.000 espécies vivas. Os briozoários são colonias sésseis compostas de zoóídes, tendo cada um aproximadamente 0.5mm de comprimento. Os zoóides. São geralmente polimórficos mas o corpo de cada um deles consiste tipicamente de um tronco estacionário e de uma invaginação eversível que possui um lofóforo. Na maioria das espécies, o tronco de cada zoóide secreta uma cobertura protetora e possui uma abertura especializada destinada à protrusão do lofóforo. O interior do corpo é ocupado predominantemente por um celoma espaçoso (metacele) e pelo trato digestivo em forma de “U“. Os órgãos especializados na troca gasosa e na excreção encontram-se ausentes. A maioria das peculiaridades dos briozoários está associada a seu pequeno tamanho de zoóide, à organização colonial ao polimorfismo e à cobertura esquelética rígida. O filo divide-se em três classes: os Phylactolaemata. os Gymnolaemata e os Stenolaemata . A classe Stenolaemata contém algumas espécies marínhas vivas e mais de 500 gêneros fósseis. A classe Gymnolaemata é quase completamente marinha e inclui a grande maioria dos briozoários vivos, bem como muitas espécies fósseis. A classe Phylactolaemata restringe-se à água doce e, embora distribua-se amplamente, contém somente cerca de 50 espécies.

Bauplan

Uma terminologia especial que se estabeleceu entre os especialistas em ectoproctos, especialmente em relação à morfologia dos zooides. A colônia em si é chamada zoário e o exoesqueleto secretado, zoécio. Os primeiros especialistas erroneamente pensavam que zoóides ectoproctos eram realmente compostos de dois organismos, o compartimento esquelético e as partes internas moles, que eles chamaram de cistídio e polipídio, respectivamente. Esses termos foram redefinidos por Hyman (1959), e agora têm algum significado relativo à morfologia funcional dos ectoproctos. O cistídio consiste no envoltório externo, ou zoécio, e as partes da parede do corpo a ele ligadas - isto é, a porção não-viva e a porção viva do envoltório de cada zoóide. O polipídio incluí o lofóforo e as Vísceras, que são móveis dentro do envoltório. A abertura do cístídio através do qual o lofóforo distende-se é chamada orifício e frequentemente possui uma cobertura em forma de aba, ou opérculo. Os ectoproctos diferem entre si tanto quanto à natureza do exoesqueleto como na forma da colônia. O exoesqueleto pode ser gelatinoso ou quitinoso, como em Phylactolaemata e Ctenostomata, ou calçificado, como o é nos Stenolaemata e Cheilostomata. Os diferentes padrões de crescimento entre os ectoproctos resultam em uma grande variedade na forma das colônias. A maior parte dos filactolemados exibe formas coloniais lofopodidas ou plumatelidaa No primeiro tipo, o revestimento gelatinoso forma uma projeção de forma irregular a partir da qual os zooides protraem-se, como visto em Lophophus . Colônias plumatelidas são geralmente eretas ou prostradas, e com frequência são altamente ramificadas como Plumatellm Um filactolemado notável Cristatellm Cresce na forma de uma fita gelatinosa distinta, que lembra a de uma lesma, e é capaz de locomoção, rastejando a taxas superiores a 1 cm por dia. Os Stenolaemata e Gymnolaemata incluem um conjunto impressionante de formas coloniais que podem ser geralmente classificadas como estoloníferas ou não-estoloníferas. Colônias estoloníferas são características de alguns membros° da ordem Ctenostomata, em que os zoóides se originam separadamente a partir de "ramas" horizontais, ou estolões. Colônias não estoloníferas podem ser incrustantes, arborescentes, diseoidais . em todos os casos os zooides são compactados e adjacentes uns aos outros, ao invés de originarem-se separadamente e a alguma distância um do outro. Além da Variação na forma geral das colônias, zooides de muitos gimnolemados e alguns estenolemados são polimórficos (dentro de uma colônia). Indivíduos portadores de lofóforo típicos são chamados autozoóídes e são responsáveis pela alimentação e digestão Todos os outros indivíduos de uma colônia são coletivamente referidos como heterozoóides, dos quais há vários tipos, todos incapazes de alimentação Cenozoóides são indivíduos reduzidos modificados para fixação ao substrato; vários tipos de discos de fixação, "apressóríos" e estolões pertencem a essa categoria. Muitos gimnolemados possuem aviculários, cada um deles possuindo um opérculo modificado em uma mandíbula móvel que se articula contra um rostro (ou palato) rígida Zoóides que possuem aviculários defendem a colônia contra pequenos organismos e mantêm a superfície livre de detritos. Essa últíma função é também facílitada por um outro tipo de heterozoóide chamado víbráculo. Esses indivíduos são Considerados aviculários modificados e têm um opérculo na forma de um flagelo que varre a superfície da colônia. Vibráculos podem ajudar a remover partículas de sedimento e outros materiais, mas ainda se procura evidência convincente dessa função.

Organização Colonial

A forma de uma colônia de briozoários depende do padrão de brotamento assexuado dos zooides. do grau de polimorfismo do arranjo dos polimorfos dentro da colônia e da composição e extensão da secreção do material esquelético. Além da sustentação fornecida pelo substrato no qual a colônia cresce. existem três fontes de sustentação esquelética nas colônias de briozoários São elas a pressão de turgor do fluido celômico (como por exemplo a do Zoobotryon tem aproximadamente 2 atmosferas) a calcificação(maioria dos briozoários) é a produção de um material extracelular gelatinoso (como por exemplo. a Pectinatella) ou elástico (o Alcyonidium). Os gimnolemos são animais marinhos muito comuns e abundantes que exibem ampla variedade de formas coloniais. Embora se tenham registrado algumas espécies a partir de profundidades de até 8.200m, a maioria das espécies é encontrada em águas costeiras presas a rochas, estacarias, conchas. algas e outros animais. Os membros de gêneros tais como Bowerbankia, Amathia e Zoobotryon formam colônias estoloníferas que lembram as colônias hidróides. .O estolhos eretos ou rastejantes. A vasta maioria dos briozoários marinhos não é estolonífera. e a colônia é formada pela conexão mais direta e pela fusão dos zooides adjacentes. Além disso, a orientação do corpo com relação ao substrato toma-se diferente. A superfície dorsal prende-se ao substrato ou a outros zooides. e a superfície ventral (então chamada de superfície frontal) é exposta à água circundante. Os padrões de crescimento das colônias de briozoários não-estoloníferos varia muito. Muitas espécies ligeiramente calcificadas (tais como a Bugula, neritina comum do Atlântico) formam colônias cerradas que se parecem superficialmente com a grama-do-mar.

Integração Colonial

Os zooides de uma colônia se conectam por meio de poros que se localizam nas paredes finais transversais, nas paredes laterais ou em ambas, dependendo do padrão de crescimento da colônia. Nas duas classes (Phylac- tolaemata e Stenolaemata). pelo menos alguns dos poros e encontram-se abertos, e o líquido pode fluir entre os zooides interconectados da colônia. Nos filactolemos o fluido celômico passa através dos poros mas. nos estonolemos, o fluido do tecido conjuntivo (hemolinfa) é trocado entre os zooides. Os poros dos gimnolemos diferem por serem fechados por uma tampa de células. que se arranja em uma maneira polarizada e ordenada. Algumas dessas células se associam com ramos do funículo.

Polimorfismo

Embora as colônias de filactolemos sejam estritamente monomórficas as da maioria dos gimnolemos são polimórficas. Nessas colônias polimórficas um zooide alimentar típico (chamado de autozooide) constitui o volume da colônia. Os zooides reduzidos ou modificados que servem para outras funções são conhecidos como heterozooides. Um tipo comum de heterozooide modificou-se formando estolhos (cenozooide). discos de fixação. estruturas radiculares e outras partes vegetativas da colônia. Esses zoides modificaram-se tanto que são pouco mais que uma parede corporal e fios de tecido funicular que passam através de seu interior. Em muitos queilóstomos, encontram-se dois outros tipos de heterozooides chamados de aviculários e vibráculos. Um aviculário é geralmente menor que um autozooide e sua estrutura interna encontra-se bastante reduzida. No entanto. o opérculo e seus músculos encontram-se tipicamente bem desenvolvidos e modificados. convertendo a pálpebra em uma poderosa mandíbula móvel.

Ecologia, habitat e diversidade no mundo e no Brasil

Existem aproximadamente 5.500 espécies recentes de briozoários e outras 15.000 fósseis descritas em todo o mundo (ROCHA & D'HONDT, 1999). Muitas dessas espécies são cosmopolitas ocupando uma grande variedade de habitats em diferentes ecossistemas. As colônias de briozoários podem ser encontradas em substratos consolidados diversos, vivos ou monos, como pedras, algas, hidrozoários, corais, esqueletos de crustáceos e conchas de moluscos. Além destes, os briozoários também podem colonizar substratos artificiais variados, como pilares, cascos de navios, plataformas petrolíferas e lixo flutuante (e.g. garrafas, sacos plásticos, etc.). Os representantes do filo Bryozoa apresentam geralmente colônias diminutas e formas variadas: discóides, incrustantes estoloníferas eretas, foliáceas e arborescentes (MCKINNEY JACKSON, 1989). Eles são pobres competidores por apresentar crescimento lento da colônia, geralmente perdendo espaço para outros organismos tais como poríferos, cnidários e ascidiáceos Entretanto, muitas espécies de briozoários são abundantes e componentes importantes dos ecossistemas costeiros, algumas das quais construtoras de ecossistemas recifais (WINSTON, 1986). Os briozoários são consumidos por uma variedade de invertebrados como nudibrânquios e suas colônias são colonizadas por muitos invertebrados sésseis, inclusive outros briozoários. Foi registrado 346 espécies de briozoários marinhos no Brasil (Cyclostomata: 33; Ctenostomata: 42; CheiIostomata: 271), distribuídos em 167 gêneros e 85 fámiIias. Os registros brasileiros representam aproximadamente 6,3% do total do número de espécies de briozoários conhecidas no mundo ( 5500 espécies).

Habitats e distribuição

A maioria das espécies marinhas vivem em águas tropicais em profundidades inferiores a 100 metros (330 pés). No entanto, alguns foram encontrados em águas profundas, especialmente em torno de fontes frias , e outros perto dos pólos . A grande maioria são sésseis. Formas incrustantes são muito mais comuns em mares rasos, mas formas eretas tornam-se mais comuns à medida que a profundidade aumenta. Algumas espécies marinhas pode se mover. Os phylactolaemata vivem em todos os tipos de ambiente de água doce - lagos e lagoas, rios e córregos, e estuários e estão entre os mais abundantes animais de água doce sésseis. Alguns ctenostomata são exclusivamente de água doce, enquanto outros preferem água salobra, mas podem sobreviver em água doce.

Sistemática: Filogenia e taxonomia

Classe Phylactolaemata - Briozoários de água doce nos quais o zoóide cilíndrico possuí um lofóforo em forma de ferradura (exceto na Fredericella). um epístomo, uma musculatura na parede corporal e uma cobertura não calcificada. O celoma é contínuo entre os indivíduos. As colônias não são polimórficas.

Classe Stenolaemata - Briozoários marinhos. Zoóides tubulares, com paredes calcificadas que se fundem nos zoóides adjacentes. Orifícios circular e temúnal. A protração do lofóforo não depende da deformação da parede corporal.

Ordem Cyclostomata - Contém algumas espécies vivas e muitas fósseis: Crisia, Lichenopora, Stomatopora e Tubulipora . Ordens Cystoporata- Trepostomata e Cryptostomata Extinguiram-se no final do Paleozóico.

Classe GymnoIaemata - Briozoários primariamente marinhos com colônias polimórficas Zoóides cilíndricos ou achatados; lofóforo circular; encontram-se ausentes um epístomo e uma musculatura intrínseca na parede corporal. A protração do lofóforo circular depende da deformação da parede corporal.

Ordem Ctenostomata - Colônias estoloníferas ou compactas nas quais o exoesqueleto nào-calcificado é membranosa quitinoso ou gelatinosa. O orifício geralmente terminal não tem um Opérculo. Amathia, Alcyonidiurn Aeverñllía Bowerbankia Monobryozoon Zoobotryon e Paludicella de água doce.

Ordem Cheilostomata - Colônias compostas de zoóide em forma de caixa são adjacentes, mas têm paredes calcárias separadas. O orifício é provido de um opérculo (exceto na Bugula).Podem se encontrar presentes aviculários, vibráculos ou ambos. Os ovos são comumente incubados em ovicélulas.

Subordem Anasca - Pele membranosa frontal . Aetea, Callopora Electra Flustra. Mernbranipora, Tendra. Bugula. Scrupocellaria Cupuladria Discoporella. Thalamoporella e Cellaria.

Subordem Cribrimorpha - Membrana frontal coberta por uma abóbada de espinhos em arco, que podem se encontrar parcialmente fundidos. Cribrillina .

Subordem Ascophora - Parede frontal calcificada. A protração do lofóforo envolve a dilatação de um saco invaginado ou asco. Microporella. Schizoporellm Smittina e Watersipora.

Tegumento e parede corpórea

A parede do corpo compreende o zoécio externo secretado, epiderme subjacente e peritônio. Os ectoproctos diferem dos outros lofoforados pela capacidade de retrair o lofóforo para dentro do zoécio(também conhecido como cutícula, exoesqueleto ou ectocisto), que funciona como um dispositivo protetor de suas partes moles.

O zoécio pode ser de calcário o que profere rigidez, ou orgânico compostos de músculos arranjados em uma camada circular externa e outra longitudinal interna. A membrana basal compõe-se de fibrilas de colágeno arranjadas irregularmente.

A porção viva da parede do corpo é muito fina e composta de epiderme, lâmina basal, tecido conjuntivo, músculos e mesotélio celômico; também é chamada de endocisto. Em todos os ectoproctos, os celomas provem de espaços preenchidos de líquidos nos quais músculos atuam direta ou indiretamente para aumentar a pressão hidráulica para a protração do lofóforo.

Os tentáculos do lofóforo possuem cílios, sob a epiderme de cada tentáculo se encontra um nervo longitudinal, uma lâmina basal e um mesotélio que delimitam a mesocele. Algumas das células mesoteliais formam um trato muscular longitudinal na margem frontal do tentáculo.

Podem possuir superfície ornamentada exclusiva de uma determinada espécie, com espinhos, depressões e protuberâncias.

Sustentação e locomoção

Em sua grande maioria são seres sésseis, o tipo mais comum de colônia é a forma incrustante na qual zooides dispostos lado a lado e um após o outro estão unidos em uma crosta ou lâmina bidimensional, da espessura de um zoóide fixa a rochas, algas ou conchas. Além do apoio provido pelo substrato exitem três formas de suporte esquelético: a pressão de turgor do fluido celômico, a calcificação (maioria dos briozoários) e a produção de material extracelular quitinoso, gelatinoso ou borrachento.

Existem algumas ocorrências raras de espécies que podem ser mover sobre o substrato ou através dele. Elas possuem vibráculos como apêndices ambulatórios. Conforme os vibráculos ambulatórios se movem, a colônia desloca-se para frente, dando passadas trôpegas de 3mm de comprimento.

Nutrição e digestão

Aparentemente alimentam-se de protozoários e pequenas larvas. O mecanismo de alimentação é um sistema coletor ciliar contra corrente. Quando o lofóforo é estendido, os cílios laterais criam uma corrente descendente em direção à extremidade aberta do funil. Partículas pequenas são levadas para dentro do funil com a corrente de água, e ficam pressas nos tentáculos, essas partículas são levadas para boca pelos cílios da superfície interna de cada tentáculo. A rejeição de partículas pode ser feita a través do fechamento da boca, flexões rápidas dos tentáculos, fechamento do funil ou simplesmente passagem entre os tentáculos. Em alguns ectoproctos, os zoóides da colônia funcionam juntos na alimentação e na rejeição de alimentos e detritos. A boca no ápice do lofóforo abre-se em uma faringe muscular sugadora que leva ao esôfago tubular. O trato digestivo é em forma de U, o estômago é tripartido composto de cárdia, ceco e piloro. A cárdia funciona como uma moela muscular que consegue esmagar diatomáceas. A digestão é extra e intracelular no interior do estômago, principalmente no ceco. Contrações peristálticas deslocam o alimento ao longo do estômago, atividades ciliar no piloro giram e compactam materiais de refugo que passam para dentro do intestino, e finalmente para fora através do ânus. Também possuem a capacidade de absorver moléculas orgânicas dissolvidas na água por meio de microvilosidades da epiderme dos tentáculos.

Sistema Nervoso e Órgãos Sensoriais

O sistema nervoso de briozoários consiste em uma massa de neurônios, ou gânglio cerebral, localizado dorsalmente no mesossomo, próximo a faringe. Surge dessa estrutura um anel nervoso circum-entérico e de onde partem nervos para as vísceras. Nervos motores e sensoriais estendem-se para cada tentáculo.

Em algumas espécies, há ocorrência de fibras nervosas interzoóidais, porem sua função ainda não foi esclarecida. Células tácteis presentes nos aviculários e no lofóforo são os únicos receptores conhecidos.

As larvas têm ocelos bem desenvolvidos, sendo fototáticas positivas quando livres-nadantes que mudam para fototaxia negativa para realização do assentamento.

Sistema Circulatório e Excretório

Não há sistema circulatório por causa de seu pequeno tamanho, sendo a circulação de metabólitos feita por difusão. O fluido celomático serve como meio de transporte passivo, sendo a circulação interzoóidal facilitada pelo celoma confluente em filactolemados, pelos poros do cistídio nos estemolemados e pelos cordões funiculares da maioria dos gimnolemados.

A troca gasosa é feita através das paredes do lofóforo e dos tentáculos, que fornecem maior área de superfície. Os gases são levados em solução, devido a ausência de pigmentos respiratórios.

A excreção de metabólicos se da pela acumulação destes, formando estruturas chamadas de corpos marrons. Com o aparecimento dos corpos marrons, o polipídio se degenera seguido pela reconstituição de um novo polipídio. Na maioria dos gimnolemados, o corpo marrom é deixado dentro do cistídio, porém em alguns queilostomados o novo polipídio se regenera ficando o corpo marrom dentro do intestino do novo zoóide, para ser expelido pelo ânus.

Ciclos de vida, Embriogênese e Sistema Reprodutivo

Ectoproctos são hermafroditas, porém a reprodução assexuada é indispensável em seu ciclo de vida. Cada colônia se inicia através de um único zoóide, resultado de reprodução sexuada, chamado ancéstrula. Essa ancéstrula sofre brotamento assexuado gerando zoóides-filhos que irão se reproduzir também assexuadamente formando assim uma colônia.

•Reprodução assexuada

O broto contém componentes do cistídio e um compartimento celomático interno. Um novo polipídio é gerado a partir da epiderme e do peritônio do broto, estes invaginam-se produzindo lofóforo, trato digestivo, e revestimentos celomáticos e ao funículo. Ectoproctos de água doce reproduzem-se também por formação de estatoblastos, estruturas essas extremamente resistentes a dessecação e congelamento. Estratoblastos se formam sobre o funículo de um autozoóide e incluem células peritoneais e epidêmicas mais um material nutritivo de reserva. Cada massa celular secreta um par de valvas quitinosas protetoras. A colônia parental geralmente degenera liberando os estatoblastos. Com as condições favoráveis, a massa de células gera um novo zoóide que se fixa como individuo funcional.

•Reprodução Sexuada

Cada zoóide é capaz de produzir gametas. Colônias de espécies dióicas podem conter espécies de um único sexo ou de ambos. Os gametas originam-se de pacotes transifóricos de tecidos germinativos originários de áreas especiais do peritônio, da metacele ou do funículo. Apenas em estenolemados existe um órgão verdadeiro.

Gametas são produzidos na metacele por proliferação, e antes de serem liberados migram para a mesocele. Os espermatozóides migram para o lúmem celomático dos tentáculos, em algumas espécies são liberados por celomoporos especiais em determinados tentáculos. Em alguns queilostomados, óvulos e espermatozóides são livremente liberados, ocorrendo fertilização e desenvolvimento externos, porém em todas as outras espécies, os ovos são retidos nos zoóides parentais em incubados, exceto no período inicial da ontogenia.

Ectoproctos sofrem clivagem radial, holoblástica é quase igual para formar uma celoblástula, porém o desenvolvimento posterior difere entre cada grupo, envolve uma forma livre-natante em todos. Sendo assim o desenvolvimento é totalmente indireto (ocorre em poucas espécies) ou misto, havendo estágio planctônico após um período de incubação.

A celoblástula de filactolemados se desenvolve como um cistidio sem endoderme, que gera um polipídio com formação similar a do broto. Esse zoóide é ciliado e deixa o saco embrionário para uma vida livre-natante antes do assentamento e fixação. Estenolemados clivam para formar uma bola oca, homóloga a celoblástula, e a partir disto, o embrião libera uma larva ciliada com metamorfose semelhante a de gimnolemados.

Celoblastulas sofrem gastrulações por delaminação em gimnolemados onde quatro células se dividem de forma em que uma de cada par é empurrada para o interior da blastocele formando mesoderme e endoderme. Eventualmente larvas livre-natantes são liberadas. Muitas espécies liberam larvas cifonautas (triangulares e achatadas). Essas larvas podem permanecer no plâncton por meses devido ao trato digestivo funcional ao contrario de espécies incubadoras, que possuem vida pelágica muito curta. Como semelhanças, possuem um órgão piriforme sensorial e um saco adesivo, sendo ambas estruturas importantes no assentamento e metamorfose.

Relação com o homem e relevância econômica

Fazendas de peixes e incubadoras perderam estoques por causa de uma doença renal proliferativa , que é aparentemente causada por um ou mais myxozoans que também parasitam briozoários .

Pescadores no Mar do Norte tiveram que encontrar outro trabalho por causa de uma forma de eczema ( uma doença de pele ), conhecida como "coceira Dogger Bank" , causada pelo contato com briozoários que ficaram presos em redes e armadilhas de lagosta .

Briozoários marinhos são muitas vezes responsáveis ​​por bioincrustantes nos cascos dos navios, nos cais e marinas , e em estruturas offshore . Eles estão entre os primeiros colonizadores de estruturas novas ou recentemente limpas.

Espécies de água doce são perturbações ocasionais em tubulações de água potável , equipamentos de purificação de água , instalações de tratamento de esgotos, e os canos de refrigeração de centrais elétricas.

Um grupo de produtos químicos chamados bryostatins pode ser extraído a partir de briozoários marinhos Bugula neritina . Em 2001, empresa farmacêutica GPC Biotech licenciado Bryostatin 1 da Universidade do Estado do Arizona para o desenvolvimento comercial como um tratamento para o câncer. GPC Biotech cancelou seu desenvolvimento em 2003 , dizendo que o Bryostatin 1 mostrou pouca efetividade e alguns efeitos colaterais tóxicos . Em janeiro de 2008 um ensaio clínico foi submetid aos United States National Institutes of Health para medir a segurança e a eficácia do Bryostatin 1 no tratamento da Doença de Alzheimer . No entanto, nenhum participante foi recrutado até o final de dezembro de 2008, quando o estudo foi programado para ser concluído . Cerca de 1 tonelada de briozoários deve ser processada para extrair 1 grama de bryostatin. Como resultado , equivalentes sintéticos têm sido desenvolvidos, estes são mais simples de produzir e, aparentemente , pelo menos, tão eficaz .

Referências

  • Brusca, R.C. & G. J. Brusca. 2007. Invertebrados. 2a ed. Guanabara Koogan, Rio de Janeiro.
  • RUPPERT, E. E.; BARNES, R.D. Zoologia dos Invertebrados. 6 ed. São Paulo: Ed. Roca. 1996.
  • TÁVORA, V. A. Briozoários (2000). In: CARVALHO, I. S. (Ed.) Paleontologia. Rio de Janeiro: Interciência. pp. 329–350.
  • ____ . Animais Lofoforados (2004). In: HICKMAN; ROBERTS; LARSON. Princípios Integrados de Zoologia. Rio de Janeiro: GuanabaraKoogan. pp. 429–433.
  • BOCK, P. (2008). Systematic List of Families of Bryozoa. The Bryozoa Home Page. Acessado em 10 de novembro de 2008.
  • BryoZone. (2004). Taxa Hierarchy. BryoZone: a Unified Bryozoan Reference. Acessado em 10 de novembro de 2008.

 title=
licence
cc-by-sa-3.0
droit d’auteur
Autores e editores de Wikipedia
original
visiter la source
site partenaire
wikipedia PT

Ectoprocta: Brief Summary ( portugais )

fourni par wikipedia PT

O filo Ectoprocta (do grego ektos, externo + proktos, ânus) compreende um dos grupos de invertebrados mais diversos, abundantes e complexos. Devido a sua fragilidade e seu pequeno tamanho tendem a ser menos familiares do que outros grupos zoológicos. No passado eram conhecidos como briozoários ou "animais-musgo" (Bryozoa - do grego bryon, musgo + zoon, animal), denominação que incluia também os Entoprocta. No entanto, devido ao fato de os entoproctos serem pseudocelomados e possuírem o ânus localizado no interior da coroa de tentáculos, eles têm sido geralmente separados dos ectoproctos, os quais, à semelhança dos demais lofoforados, são eucelomados e possuem o ânus fora do círculo de tentáculos.

São frequentes em rochas sedimentares carbonáticas, e abundantes nos mares atuais. Raramente encontrados em água doce. Com raríssimas exceções, são animais coloniais, sésseis e cosmopolitas. Esses organismos distribuem-se em todas as profundidades e latitudes no ambiente marinho, sendo porém mais comuns nas águas rasas de mares tropicais. Habitam preferencialmente, águas límpidas, e alimentam-se de microorganismos planctônicos (diatomáceas e radiolários). Ocorrem desde o Ordoviciano até os dias atuais. Existem cerca de 3.500 espécies viventes e 1.500 fósseis descritas.

licence
cc-by-sa-3.0
droit d’auteur
Autores e editores de Wikipedia
original
visiter la source
site partenaire
wikipedia PT

Machovky ( slovaque )

fourni par wikipedia SK

Machovky (Bryozoa) sú trieda chytadlovcov. Sú to drobné vodné živočíchy s pohárikovitým až červovitým telom, veľké len niekoľko milimetrov. Sladkovodné machovky vytvárajú na princípe pučania agregácie z rovnakých jedincov, ale u morských druhov pozorujeme aj kolónie s diferencovanými jedincami. V oboch prípadoch jedince spolu súvisia telovými dutinami. Tielka jednotlivých machoviek sú ukryté v chitinóznych puzdierkach, ktoré u morských druhov bývajú často inkrustované CaCO3, takže pripomínajú koraly. Sú to hermafrodity, vývin morských druhov prebieha cez obrvenú guľovitú larvu (bugula) alebo cez zvončekovitú larvu (cyfonautes), larválne štádium u sladkovodných machoviek je potlačené. Sladkovodné machovky mierneho pásma na jeseň zahynú, zimu prečkávajú len hibernačné púčiky – statoblasty, ktoré vznikajú vnútorným pučaním, podobne ako gemuly u hubiek. Stavba tela je vďaka drobným rozmerom zjednodušená: majú len 1 nervovú uzlinu a chýba im obehová, dýchacia i vylučovacia sústava. Exkréciu zabezpečujú zrejme chlorakogénne bunky coelomového peritonea. Veľká väčšina machoviek žije v moriach, v strednej Európe sa vyskytuje iba asi 10 druhov. U nás sú časté machovka plazivá (Plumatella repens) a machovka hubovitá (Plumatella fungosa).

Iné projekty

  • Spolupracuj na Commons Commons ponúka multimediálne súbory na tému Machovky
  • Spolupracuj na Wikidruhoch Wikidruhy ponúkajú informácie na tému Machovky

licence
cc-by-sa-3.0
droit d’auteur
Autori a editori Wikipédie
original
visiter la source
site partenaire
wikipedia SK

Machovky: Brief Summary ( slovaque )

fourni par wikipedia SK

Machovky (Bryozoa) sú trieda chytadlovcov. Sú to drobné vodné živočíchy s pohárikovitým až červovitým telom, veľké len niekoľko milimetrov. Sladkovodné machovky vytvárajú na princípe pučania agregácie z rovnakých jedincov, ale u morských druhov pozorujeme aj kolónie s diferencovanými jedincami. V oboch prípadoch jedince spolu súvisia telovými dutinami. Tielka jednotlivých machoviek sú ukryté v chitinóznych puzdierkach, ktoré u morských druhov bývajú často inkrustované CaCO3, takže pripomínajú koraly. Sú to hermafrodity, vývin morských druhov prebieha cez obrvenú guľovitú larvu (bugula) alebo cez zvončekovitú larvu (cyfonautes), larválne štádium u sladkovodných machoviek je potlačené. Sladkovodné machovky mierneho pásma na jeseň zahynú, zimu prečkávajú len hibernačné púčiky – statoblasty, ktoré vznikajú vnútorným pučaním, podobne ako gemuly u hubiek. Stavba tela je vďaka drobným rozmerom zjednodušená: majú len 1 nervovú uzlinu a chýba im obehová, dýchacia i vylučovacia sústava. Exkréciu zabezpečujú zrejme chlorakogénne bunky coelomového peritonea. Veľká väčšina machoviek žije v moriach, v strednej Európe sa vyskytuje iba asi 10 druhov. U nás sú časté machovka plazivá (Plumatella repens) a machovka hubovitá (Plumatella fungosa).

licence
cc-by-sa-3.0
droit d’auteur
Autori a editori Wikipédie
original
visiter la source
site partenaire
wikipedia SK

Mossdjur ( suédois )

fourni par wikipedia SV

Mossdjur, även kallade Bryozoa och Ectoprocta, är en stam av vattenlevande ryggradslösa djur som tillhör domänen Eukaryoter, och överstammen Lophotrochozoa. De delas in i tre klasser: Stenolaemata, Gymnolaemata och Phylactolaemata. Ungefär 4000 nu levande arter är kända idag, cirka 15 000 fossila arter. Djuren är oftast cirka 0,5 mm långa men bildar kolonier av kloner (hos mossdjuren kallade zooider) som kan vara från 1 cm ända till 1 meter långa.

Livnäring och andning

Mossdjuren bildar kolonier av zooider, vilka det finns olika varianter av. De zooider som har ansvar för livnäring och exkretion kallas autozooider. De är den vanligaste typen av zooider. Autozooiderna använder sig av en så kallad lofofor för att filtrera det vatten som passerar på föda. Födan består mestadels av smådjur, encelliga djur och olika sorters alger och plankton. Lofoforen består av slemmiga tentakler med små cilier som fångar bytet och för det till djurets svalg. Därefter bryts födan ned i magen och näringen går till zooiden men också till kolonin. Detta sker genom en vätska som fyller kroppshålan och kan röra sig fritt genom hela kolonin, eller genom funiculus, ett slags ådror som har kontakt med de olika djuren. Resterna förs ut genom djurets anus.

Mossdjuren har inga andningsorgan. Syreupptagandet sker främst genom lofoforen och syret sprids på samma sätt som näringen.

Fortplantning

De flesta mossdjursarter är hermafroditer, men de många marina arter är först hannar och sedan honor. Djuret producerar ägg i kroppshålan och sperma i testikeln. Sperman släpps sedan ut i vattnet genom lofoforen och tas emot av andra kolonier som filtrerar vattnet. Äggen behålls däremot hos de flesta arter inne i djuret för att sedan befruktas av sperma som tas upp ur vattnet, men kan hos vissa arter släppas ut och fastna precis vid basen av lofoforen för att befruktas där. Äggen blir till larver som är frisimmande, med hjälp av cilier, under en tid. Larven genomgår sedan metamorfos och blir till en s.k. ancestrula. Därefter bildas hela kolonin genom asexuell kloning från denna. Djur av klassen Phylactolaemata använder sig av statoblaster, som bildas asexuellt. Statoblasterna kan överleva svåra yttre omständigheter, färdas långa vägar i vattnet och bilda helt nya kolonier från grunden, de är som en slags ancestrula för nödsituationer.

Typer av zooider

I en mossdjurskoloni finns det i de flesta arter ett antal olika arter av zooider. Den allra vanligaste är autozooiden som hos vissa arter kan vara den enda varianten. Alla andra kan gemensamt kallas för heterozooider men brukar delas in i avicularia, vibracularia, kenozooider, spinozooider och gonozooider.

Autozooiden använder sig av en lofofor för att fånga föda. Denna kan dras in med hjälp av kraftiga muskler, s.k. retraktorsmuskler. Avicularia har istället för en lofofor en slags ”näbb” som den använder för att bita eventuella angripare. Vibracularia har även de ”bytt” sin lofofor mot något annat, i deras fall mot ett långt borst som de använder antingen för att rengöra kolonin, och på så sätt förhindra sedimentation, eller som försvar mot angripare. Kenozooider fungerar som grenar och består bara av själva kroppsväggen och funiculus som går genom kroppen. Dessa kan hjälpa kolonin om den skulle behöva växa snabbt i en ny riktning. Spinozooider är likt till för kolonins försvar och bildar taggar. Gonozoider finns hos vissa arter och är som förvarings utrymmen för befruktade ägg, yngelrum. När en zooid dör blir den till en s.k. ”brun kropp” som senare stöts ut. I samma zooecium (en zooids ”kroppshåla”) kan sedan en ny zooid växa upp.

Mossdjuren har inga specialiserade känselorgan förutom cilierna på lofoforen som fungerar som censorer. Zooiderna har en ganglie som fungerar som hjärna. I vissa arters kolonier kommunicerar zooiderna med varandra med hjälp av nerver som går genom porer i kroppsväggarna. På så sätt kan de koordinera t.ex. indragandet av lofoforerna. Släktet Monobryoozon bildar inte kolonier, djuren är autozooider som lever ensamma.

Koloniform

Kolonierna kan vara från 1 cm till 1 meter långa men är oftast mindre än 10 cm, och kan innehålla 100 tusentals individer. En mossdjurskoloni kan ha många olika former beroende på art. Det finns arter som bildar kolonier som ser ut som växter eller buskar med grenar i olika riktningar, medan andra är mer korallika. Den vanligaste marina formen är den övertäckande (encrusting), där zooiderna täcker underlaget med ett lager zooider. Hos dessa är kroppsväggarna ofta mineraliserade. I sötvatten bildar vissa arter en gelatinös massa som zooiderna sitter fast på. Men den vanligaste sötvattensformen är busklik. Koloniernas livslängd varierar, men de kan bli upp till 12 år.

Mossdjuren är vattenlevande, och de flesta arter marina, men klassen Phylactolaemata lever endast i sötvatten. De marina lever oftast tropiskt på djup ner till hundra meter. Endast ett fåtal arter kan förflytta sig, och i sådana fall mycket långsamt. En art kan flyta omkring och på så sätt röra sig med relativt hög hastighet.

Förhållande till andra djur

Mossdjuren har ett ganska stort antal naturliga fiender. De marina arterna kan angripas av fiskar, nakensnäckor, kvalster, sjöborrar, sjöstjärnor och olika kräftdjur. Sötvattensarterna angrips även de av en mängd djur som fiskar, sniglar och insekter. Bryozoer kan växa på levande fastsittande organismer och i något enstaka fall (arten Triticella korenii) på rörliga djur, men påverkar inte dessa i högre grad.

Förhållande till människan

Icke biologer stöter främst på mossdjuren i vardagen då man ser dem leva på t.ex. skeppsskrov och i öppningar till vattenledningar o.s.v. Nyligen har man gjort ett försök att tillverka medicin mot Alzheimers av att utvinna bryostatiner från arten Bugula neritina, men detta visade sig vare ett misslyckande. Det var lättare att framställa ämnet på syntetisk väg. I Sverige finns cirka 100 arter längs med västkusten, ett fåtal i Östersjön och några få i svenska insjöar.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia författare och redaktörer
original
visiter la source
site partenaire
wikipedia SV

Mossdjur: Brief Summary ( suédois )

fourni par wikipedia SV

Mossdjur, även kallade Bryozoa och Ectoprocta, är en stam av vattenlevande ryggradslösa djur som tillhör domänen Eukaryoter, och överstammen Lophotrochozoa. De delas in i tre klasser: Stenolaemata, Gymnolaemata och Phylactolaemata. Ungefär 4000 nu levande arter är kända idag, cirka 15 000 fossila arter. Djuren är oftast cirka 0,5 mm långa men bildar kolonier av kloner (hos mossdjuren kallade zooider) som kan vara från 1 cm ända till 1 meter långa.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia författare och redaktörer
original
visiter la source
site partenaire
wikipedia SV

Yosun hayvancıkları ( turc )

fourni par wikipedia TR

Yosun hayvancıkları ya da Bryozoa (Ectoprocta); mikroskobik sucul omurgasız hayvanlar şubesidir. Genellikle sesil ve dallanmış koloniler oluştururlar. "U" şeklinde sindirim sistemleri ve beslenmeyi sağlayan silli dokungaçları vardır. Gerçek sölom bulundurmalarına rağmen, yalancısölomlu Entoproct türlerine benzerler. Yaklaşık 4.000 kadar türü bilinmektedir.

 src=
Tatlısu yosun hayvancığı
 src=
Costazia costazi, bir mercanımsı yosun hayvancığı

Notlar

Dış bağlantılar

Wikispecies-logo.svg
Wikispecies'te konuyla ilgili sayfa mevcuttur:
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia yazarları ve editörleri
original
visiter la source
site partenaire
wikipedia TR

Yosun hayvancıkları: Brief Summary ( turc )

fourni par wikipedia TR

Yosun hayvancıkları ya da Bryozoa (Ectoprocta); mikroskobik sucul omurgasız hayvanlar şubesidir. Genellikle sesil ve dallanmış koloniler oluştururlar. "U" şeklinde sindirim sistemleri ve beslenmeyi sağlayan silli dokungaçları vardır. Gerçek sölom bulundurmalarına rağmen, yalancısölomlu Entoproct türlerine benzerler. Yaklaşık 4.000 kadar türü bilinmektedir.

 src= Tatlısu yosun hayvancığı  src= Costazia costazi, bir mercanımsı yosun hayvancığı
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia yazarları ve editörleri
original
visiter la source
site partenaire
wikipedia TR

Мохуватки ( ukrainien )

fourni par wikipedia UK

Мохува́тки (Bryozoa, Ectoprocta) — тип дрібних колоніальних, переважно морських тварин, що нараховує близько 8 тисяч видів, більшість з яких формують жорсткі скелети з карбонату кальцію.

Опис

Розміри окремих особин не перевищують 1—3 мм, колонії мохуваток, що стеляться, можуть займати площу понад 1 м². Колонії мають безліч форм: одні обростають різні поверхні (камені, раковини, водорості) у вигляді скориночок і грудок; інші мають віяловий, дерево- або кущоподібний вигляд. Як випливає з назви, колонії деяких мохуваток зовні схожі на моховий покрив; інші ж можна сплутати з гідроїдними або коралами.

У зв'язку з сидячим способом життя всі системи органів спрощені. Рот веде в глотку, далі йде стравохід, шлунок, вигнута у вигляді петлі кишка. Анальний отвір лежить на спинній стороні тіла поблизу рота, але поза віночком щупальців. Дихальна, кровоносна і видільна системи у більшості мохуваток відсутні. Дихання здійснюється через щупальця і поверхню тіла. Наявна вторинна порожнина, рідина якої виконує функції крові. Видільні речовини збираються у фагоцитах і виводяться через кишечник. Нервова система складається з ганглія та нервів, що відходять від нього.

Джерела


licence
cc-by-sa-3.0
droit d’auteur
Автори та редактори Вікіпедії
original
visiter la source
site partenaire
wikipedia UK

Мохуватки: Brief Summary ( ukrainien )

fourni par wikipedia UK

Мохува́тки (Bryozoa, Ectoprocta) — тип дрібних колоніальних, переважно морських тварин, що нараховує близько 8 тисяч видів, більшість з яких формують жорсткі скелети з карбонату кальцію.

licence
cc-by-sa-3.0
droit d’auteur
Автори та редактори Вікіпедії
original
visiter la source
site partenaire
wikipedia UK

Động vật hình rêu ( vietnamien )

fourni par wikipedia VI

Bryozoa, hay Polyzoa, Ectoprocta hoặc động vật hình rêu,[5] là một ngành động vật không xương sống sống trong môi trường nước. Chúng dài khoảng 0,5mm, chúng là các động vật ăn lọc, lọc các hạt thức ăn trong nước dùng lophophore, là một hàng tua với các lông mao. Hầu hết các loài sống trong biển phân bố ở các vực nước nhiệt đới, nhưng một số ít cũng xuất hiện trong các rãnh đại dương, và số khác được tìm thấy trong các vùng nước ở hai cực. Một lớp chỉ sống trong các môi trường nước ngọt, và một số ít loài trong hầu hết các lớp sống ở biển có thể thích nghi trong môi trường nước lợ. Có hơn 4.000 loài con sinh tồn đã được biết đến. Chỉ có một chi là sống đơn độc, còn lại sống thành tập đoàn.

Hình ảnh

Chú thích

  1. ^ Taylor, P.D.; Berning, B.; Wilson, M.A. (2013). “Reinterpretation of the Cambrian 'bryozoan' Pywackia as an octocoral”. Journal of Paleontology 87 (6): 984–990.
  2. ^ PMID 7886451 (PMID 7886451)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  3. ^ Ernst, A. (2007). “A cystoporate bryozoan species from the Zechstein (Late Permian)”. Paläontologische Zeitschrift 81 (2): 113–117. doi:10.1007/BF02988385.
  4. ^ Fuchs, J.; Obst, M; Sundberg, P (tháng 7 năm 2009). “The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes”. Molecular Phylogenetics and Evolution 52 (1): 225–233. PMID 19475710. doi:10.1016/j.ympev.2009.01.021.
  5. ^ Brusca; Brusca. “21: The Lophophorate Phyla”. The Invertebrates.

Liên kết ngoài

 src= Wikimedia Commons có thư viện hình ảnh và phương tiện truyền tải về Động vật hình rêu


Hình tượng sơ khai Bài viết chủ đề động vật này vẫn còn sơ khai. Bạn có thể giúp Wikipedia bằng cách mở rộng nội dung để bài được hoàn chỉnh hơn.
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia tác giả và biên tập viên
original
visiter la source
site partenaire
wikipedia VI

Động vật hình rêu: Brief Summary ( vietnamien )

fourni par wikipedia VI

Bryozoa, hay Polyzoa, Ectoprocta hoặc động vật hình rêu, là một ngành động vật không xương sống sống trong môi trường nước. Chúng dài khoảng 0,5mm, chúng là các động vật ăn lọc, lọc các hạt thức ăn trong nước dùng lophophore, là một hàng tua với các lông mao. Hầu hết các loài sống trong biển phân bố ở các vực nước nhiệt đới, nhưng một số ít cũng xuất hiện trong các rãnh đại dương, và số khác được tìm thấy trong các vùng nước ở hai cực. Một lớp chỉ sống trong các môi trường nước ngọt, và một số ít loài trong hầu hết các lớp sống ở biển có thể thích nghi trong môi trường nước lợ. Có hơn 4.000 loài con sinh tồn đã được biết đến. Chỉ có một chi là sống đơn độc, còn lại sống thành tập đoàn.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia tác giả và biên tập viên
original
visiter la source
site partenaire
wikipedia VI

Мшанки ( russe )

fourni par wikipedia русскую Википедию
У этого термина существуют и другие значения, см. Мшанка.
 src=
Peronopora.
 src=
Ископаемые мшанки Evactinopora radiata Meek & Worthen, 1865, найденные в графстве Джефферсон, штат Миссури, США[1]. Из коллекции Детского музея Индианаполиса.

Известно порядка 5000 видов мшанок, в пресных водах — около 50 видов. В России — около 620 видов[2].

Делятся на 3 класса:

  • Класс голоротые (Gymnolaemata). Преимущественно морские формы с цилиндрическими или коробчатыми зооидами. Эпистома нет. Лофофор круговой, полипид выдвигается за счёт сокращения стенок тела. Для колоний характерен полиморфизм;
  • Класс покрыторотые (Phylactolaema). Исключительно пресноводные формы с хитиноидными или студенистыми зооециями. Лофофоры подковоподобные, над ротовым отверстием нависает губа (эпистом). Полиморфизмом не обладают; образуют статобласты;
  • Класс узкоротые (Stenolaemata). Морские виды, часто с известковыми зооециями. Характерна полиэмбриония.

Древнейшие остатки мшанок известны из нижнего ордовика. Всего насчитывают порядка 15 000 вымерших видов. Наибольшего разнообразия мшанки достигали в палеозое. Большинство палеозойских колоний мшанок были массивные и тяжеловесные; иногда они строили настоящие мшанковые рифы. На рубеже пермского и триасового периодов мшанки почти полностью вымерли. Из уцелевших развилась новая, мезо-кайнозойская группа мшанок.

Примечания

  1. Evactinopora radiata Meek & Worthen, 1865. (англ.) (Проверено 22 июля 2012)
  2. ZOOINT Part21
licence
cc-by-sa-3.0
droit d’auteur
Авторы и редакторы Википедии

Мшанки: Brief Summary ( russe )

fourni par wikipedia русскую Википедию
У этого термина существуют и другие значения, см. Мшанка.  src= Peronopora.  src= Ископаемые мшанки Evactinopora radiata Meek & Worthen, 1865, найденные в графстве Джефферсон, штат Миссури, США. Из коллекции Детского музея Индианаполиса.

Известно порядка 5000 видов мшанок, в пресных водах — около 50 видов. В России — около 620 видов.

Делятся на 3 класса:

Класс голоротые (Gymnolaemata). Преимущественно морские формы с цилиндрическими или коробчатыми зооидами. Эпистома нет. Лофофор круговой, полипид выдвигается за счёт сокращения стенок тела. Для колоний характерен полиморфизм; Класс покрыторотые (Phylactolaema). Исключительно пресноводные формы с хитиноидными или студенистыми зооециями. Лофофоры подковоподобные, над ротовым отверстием нависает губа (эпистом). Полиморфизмом не обладают; образуют статобласты; Класс узкоротые (Stenolaemata). Морские виды, часто с известковыми зооециями. Характерна полиэмбриония.

Древнейшие остатки мшанок известны из нижнего ордовика. Всего насчитывают порядка 15 000 вымерших видов. Наибольшего разнообразия мшанки достигали в палеозое. Большинство палеозойских колоний мшанок были массивные и тяжеловесные; иногда они строили настоящие мшанковые рифы. На рубеже пермского и триасового периодов мшанки почти полностью вымерли. Из уцелевших развилась новая, мезо-кайнозойская группа мшанок.

licence
cc-by-sa-3.0
droit d’auteur
Авторы и редакторы Википедии

外肛动物门 ( chinois )

fourni par wikipedia 中文维基百科
Tango-nosources.svg
本条目需要补充更多来源(2017年11月5日)
请协助添加多方面可靠来源改善这篇条目无法查证的内容可能會因為异议提出而移除。

外肛动物门學名Ectoprocta)是动物界的一个,其下的物種通稱苔蘚蟲bryozoans)。外肛动物过去常与内肛动物合称为苔藓动物门學名Bryozoa),目前所称的苔藓动物已专指外肛动物。目前生存的种类有近4000种。自奥陶纪生存至现代,约有15000个化石种。

特徵

苔蘚蟲是行是固著生活的群體動物。群體的形狀各不相同,有的像被單一樣蓋在貝殼岩石上;有的則像小或網狀複葉。每個群體都由數千個單體組成,每個單體都有管狀或盒狀的骨骼[3] 牠們的外觀雖然很像植物,但具一套完整的消化器官,包括食道肛門等。其個體小,不分節,具體腔。 體外分泌一層膠質,形成群體的骨胳。蟲體前端有口,口的周圍有一冠狀物,稱“總擔”,其上生許多觸手。消化道呈U字形,口和肛門十分靠近。無排泄循環器官。

習性

多數苔蘚蟲生活在海床上,是固定生活的群體動物,常和海藻伴生在一起。也有產於淡水的種類。苔蘚蟲喜歡生活在較潔淨、富含藻類、溶量充足的水域中,能適應各地的溫度,故廣泛分佈於世界各地。

苔蘚蟲石灰岩

苔蘚蟲石灰岩主要由苔蘚蟲群體的石灰質骨骼碎片組成,在新生代時期的淺水沉積中十分常見。現今從亞熱帶至冷水環境皆可見到正在形成的苔蘚蟲石灰岩,但在熱帶地區卻很少見,熱帶區域有著豐富的珊瑚石灰岩。[3]

分類

外肛动物门分为3个:

參考文獻

  1. ^ Taylor, P.D.; Berning, B.; Wilson, M.A. Reinterpretation of the Cambrian 'bryozoan' Pywackia as an octocoral. Journal of Paleontology. November 2013, 87 (6): 984–990. doi:10.1666/13-029.
  2. ^ Ma, Junye; Taylor, Paul D.; Xia, Fengsheng; Zhan, Renbin. The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China. Palaeontology. September 2015, 58 (5): 925–934. doi:10.1111/pala.12189.
  3. ^ 3.0 3.1 Walker, Cyril; Ward, David. Fossils. Smithsonian Handbooks revised, illustrated. Dorling Kindersley. 2002: 36. ISBN 0789489848.


后鞭毛生物:动物现存分类表
侧生动物 中生动物 真后生动物
肾管动物英语Nephrozoa
未命名基群
合皮动物英语Syndermata
地位未定
吮食动物英语Rouphozoa
(?)为地位未定
 title=
licence
cc-by-sa-3.0
droit d’auteur
维基百科作者和编辑

外肛动物门: Brief Summary ( chinois )

fourni par wikipedia 中文维基百科

外肛动物门(學名:Ectoprocta)是动物界的一个,其下的物種通稱苔蘚蟲(bryozoans)。外肛动物过去常与内肛动物合称为苔藓动物门(學名:Bryozoa),目前所称的苔藓动物已专指外肛动物。目前生存的种类有近4000种。自奥陶纪生存至现代,约有15000个化石种。

licence
cc-by-sa-3.0
droit d’auteur
维基百科作者和编辑

外肛動物 ( japonais )

fourni par wikipedia 日本語
外肛動物門 Haeckel Bryozoa 33.jpg 分類 ドメ
イン
: 真核生物 Eukaryota : 動物界 Animalia : 外肛動物門 Bryozoa 学名 外肛動物門 和名 Bryozoa 綱

外肛動物(がいこうどうぶつ、学名:Bryozoa または Ectoprocta)は、小さな群体を作って生活する動物である。サンゴに似た炭酸カルシウムなどの外壁からなる群体を作る。一般にはコケムシの名で呼ばれる。温帯から熱帯の海を好むが、世界中に分布する。約8,000種が確認され、その何倍もの種類の化石が知られている。

形態[編集]

外肛動物の群体は、山型、扇型、小枝型、栓抜き型など様々な形をとる。外壁には小さな穴が無数に開いていて、それぞれが個虫 (zooid) と呼ばれる個々の個体である。これらは口から肛門まで続く消化管からなる真体腔の構造も持っている。口の周りの触手には繊毛が生えている総担(ふさかつぎ)と呼ばれる構造があり、珪藻藻類を含む微生物を捕まえて餌とする。これは繊毛の生えた触手が口を囲んで配置したもので、全体をまとめて触手冠をなす。触手冠は、完全に動物体の内部に引き込むことができる。

 src=
サンゴ様のCostazia costazi
 src=
チゴケムシの触手

触手冠[編集]

触手冠はこの動物のよく目立つ特徴であるが、その形には大きく2つの形がある。1つは円形に配置するもので、もう1つはそれが大きく曲がってU字型(馬蹄型)になったものである。前者は主に海産である裸喉綱と狭喉綱にみられ、後者はすべて淡水産の掩喉綱にのみみられる。ただし、掩喉綱Fredericella 科は例外的に円形の触手冠を有している。裸喉綱や狭喉綱にみられる円形の触手冠では、その内側は例えばイソギンチャクの口盤のような広い面を持っておらず、触手の寄り集まったところに口が開く。掩喉綱のU字型の触手冠では、U字の底にあたる部分に口が開き、その両側の触手の列が大きく同一方向に伸びたような形になっている。肛門は触手冠のすぐ外に開く。掩口綱ではU字の底、口のある位置近くに開く。触手は繊毛に覆われていて、繊毛を使うことによって水流を作り、餌を口まで運ぶ。

 src=
掩喉類の触手冠

内部構造[編集]

外肛動物は小さすぎるため、きちんとした呼吸器系循環器系を持たないが、神経系骨格系は持っている。骨格の結晶学的解析によると、方解石アラレ石に似た構造が見られた。

消化管はU字型に湾曲しており、咽頭から食道を通り、噴門、盲嚢、幽門と3つの部分に分かれたへと続く。幽門から小腸を経て直腸肛門につながっている。ある種では、噴門の前に砂嚢がある。消化管系は、個虫がそれぞれ持つ器官であるが、群体を作る時に再構成される。多くの外肛動物では一部の若い個虫しか消化機能を持たない。

大きさが小さいために、外肛動物には循環系がない。ガス交換は体表全体で行うが、特に触手の部分で盛んである。

群体内の多形[編集]

裸喉綱では、群体を構成する個虫に多形がみられる例が多い。触手を持ち、えさをとる普通の個虫を常個虫という。これに対して、特殊な形になったものを異形個虫と呼んでいる。以下のようなものが知られる。

  • 空個虫:個虫本体は退化し、個虫の部屋のみが残ったもの。群体の支持を担う。
  • 鳥頭体:個室の入り口がくちばし状になって突出したもの。外敵の防衛や群体の清掃。
  • 振鞭体:長い鞭状の突起が生じたもの。同じく外敵の防衛や群体の清掃。
  • 卵室:卵を保持。

群体内の個虫はすべて無性生殖によって増えたもののため、遺伝的に同一である。そのため、自ら繁殖しない個虫も、他の個虫の繁殖を助けることによって、次世代に遺伝子を残すことができると考えられる。すなわち、個虫の機能分化は、社会性昆虫のカースト分化などと同様に、血縁淘汰によって説明することができる[1]

生殖と発生[編集]

OilShaleFossilsEstonia.jpg

一部の例外を除いて外肛動物の個虫は雌雄同体である。外肛動物は無性生殖有性生殖も行う。有性生殖ではキフォナウテス幼生などの幼生を生じる。無性生殖では新しい個虫を出芽によって形成することにより、群体が大きく成長する。群体の一部が壊れることにより、それぞれの破片が成長して新しい群体となる場合もある。このようにしてできた群体は、群体内の個虫同様にクローンである。

掩喉綱では、無性生殖により休芽が形成される。これは二枚のキチン質の殻に包まれたもので、耐久性があり、冬をこれで乗り切るほか、水鳥の足などにくっついて分布を拡大するにも役立っているとされる。

なお、幼生が変態したり休芽が発芽して生じた最初の個虫のことは、初虫 (ancestrula) と呼ばれる。

生態[編集]

ほとんどの外肛動物は海に生息するが、淡水中に生息する種類も70種ほど知られている。水中では、砂地、岩地、貝殻や木、海草の上などどのような場所にも存在する。しかしある種は固い基質の上では育てず、堆積物上で生活する。また、8,200mもの深海で生息する種もいるが、多くは浅い場所で生活する。多くの外肛動物は固着性で自分では動けないが、一部の種は砂地を這うことができ、単独で動き回りながら生活する種もある。また南極海を漂いながら生きる種もいる。

外肛動物の群体は数百万匹もの個体が集まってできることもある。個体の大きさはミリメートル以下だが、群体の大きさは数ミリメートルから時には数メートルにも達する。一部では、群体を構成する各個虫に機能分化がみられる。餌を集める通常の個体に対して、群体を支持・強化する個虫や、掃除をする個虫もいる。

一方、外肛動物自体はウニや魚の餌となっている。淡水産の掩喉綱には特殊な寄生虫として軟胞子虫Buddenbrockia が知られている。

利害[編集]

フサコケムシホンダワラコケムシなど、多くの種類が人工的な基盤上によく繁殖する。生簀に繁殖すると網目を詰まらせ、あるいは船底に付着して船足を止めるので嫌われる。淡水産のオオマリコケムシは巨大なゼラチン質の群体となって水中に浮遊し、人を驚かせることがあり、また水質悪化を招く場合もある。

一部の種は毒性を持ち、漁夫の皮膚病の原因となる。フサコケムシ Bugula neritinaは、抗がん剤になりうる細胞毒性を持つブリオスタチンという化合物を生成するとして、注目を集めている。

化石[編集]

外肛動物の化石はオルドビス紀初期以降の地層から発見されている。オルドビス紀の海底生態系の中では主要なものの1つで、現代の外肛動物と同じように堆積物の固定化や深海底での食物源として重要な役割を果たしていた。3億5400万年から3億2300万年前のミシシッピ紀には、外肛動物の外骨格はほとんどの石灰岩の元になっている。これまでに1000種以上の外肛動物の化石が見つかっている。カンブリア紀も外肛動物は存在していたと思われるが、骨格が軟らかかったかその他の理由で化石が残っていない。

外肛動物の化石の多くは鉱物質の骨格である。個虫の骨格は管状のものから箱状のものまで様々な形であるが、繊毛で餌を取り込むための開口がついている。オルオビス紀の外肛動物の化石のほとんどには穴が開いているのは見られないが、個虫同士が上皮細胞でつながれていた証拠が見つかっている。

外肛動物の進化上の最も大きな出来事の1つは、石灰質の骨格の獲得と触手の構造の変化である。固い外骨格を獲得することによって個虫同士はより接近することが可能となり、群体としての進化が始まった。

なお、化石が得られるのは裸喉綱のみであり、掩喉綱の化石は発見されたことがない。

歴史[編集]

この類は古くはサンゴなどとともに植虫 (Zoophyta) などと呼ばれたが、その内部構造などが明らかになると、間違いなく動物であり、しかもサンゴなどよりはるかに複雑な構造であることが判明したことから独立に扱われるようになり、Ehrenberg (1831) によりコケムシ類 (bryozoa) とされた。当初はスズコケムシ類もこれに含めたが、両者の違いがはっきり理解されるに従い、それぞれ独立した群と見なされるようになった。外肛動物の名は、スズコケムシ類との関連で、コケムシ類の場合は肛門が触手冠の外にあるのに対して、スズコケムシ類ではその内側にあるため、この類を内肛動物と呼んだのに対比させたものである。

分類[編集]

構造と生活様式の類似性から、外肛動物は、かつては外肛動物と内肛動物の2つの亜門に分かれると考えられていた。また有輪動物をこの仲間に入れる研究者もいた。しかし内肛動物は体腔を持たずらせん卵割が行われるのに対して、外肛動物は体腔を持ち、放射卵割が行われる。また分子生物学的な研究によっても外肛動物と内肛動物の系統的な位置は離れていることが示された。これらのことから、現在では内肛動物は150種ほどが含まれる独立の門と見なされている[2]

外肛動物は、裸喉綱と狭喉綱、掩喉綱の3綱に分類される。このうち掩喉綱は他の二綱と似た点も多いが、相違点も多いため、異なる系統に属する可能性も示唆されている。

脚注[編集]

  1. ^ 馬渡峻輔 「群体性の利点:群体と個虫分化」『無脊椎動物の多様性と系統(節足動物を除く)』、p.223。
  2. ^ James W. Valentine (2004). On the origins of phyla. University of Chicago Press.

参考文献[編集]

  • Hall, S.R., Taylor, P.D., Davis, S.A. and Mann, S., 2002. Electron diffraction studies of the calcareous skeletons of bryozoans. Journal of Inorganic Biochemistry 88: 410-419. [1]
  • Taylor, P.D. and Wilson, M.A., 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62: 1-103. [2]
  • 白山義久編集;岩槻邦男・馬渡峻輔監修 『無脊椎動物の多様性と系統』 2000, 裳華房
  • 岡田要 『新日本動物図鑑』 1976, 図鑑の北隆館
 title=
licence
cc-by-sa-3.0
droit d’auteur
ウィキペディアの著者と編集者
original
visiter la source
site partenaire
wikipedia 日本語

外肛動物: Brief Summary ( japonais )

fourni par wikipedia 日本語

外肛動物(がいこうどうぶつ、学名:Bryozoa または Ectoprocta)は、小さな群体を作って生活する動物である。サンゴに似た炭酸カルシウムなどの外壁からなる群体を作る。一般にはコケムシの名で呼ばれる。温帯から熱帯の海を好むが、世界中に分布する。約8,000種が確認され、その何倍もの種類の化石が知られている。

licence
cc-by-sa-3.0
droit d’auteur
ウィキペディアの著者と編集者
original
visiter la source
site partenaire
wikipedia 日本語

태형동물 ( coréen )

fourni par wikipedia 한국어 위키백과

태형동물(苔形動物) 또는 이끼벌레류태형동물문에 속하는 동물의 총칭이다. 외항동물(外肛動物) 또는 태충류(苔蟲類)라고도 부른다.

특징

몸의 길이가 1mm 안팎인 매우 작은 동물로서, 이들이 많이 모여 나뭇가지·경단 모양 등의 군체를 이룬다. 각각의 벌레는 주로 키틴질로 된 외골격(蟲室)과 그 속의 충체(蟲體)로 이루어져 있다. 촉수관은 동그란 말굽 모양으로서, 순환계와 신관을 가지지 않으며, 입 위에 돌기가 있는 종류도 있다. 군체는 원칙적으로 암수한몸으로서 다른 물체에 붙어 생활한다. 전 세계에 약 5,000종이 알려져 있으며 한국에는 120여 종이 밝혀져 있다.

외부 링크

Heckert GNU white.svgCc.logo.circle.svg 이 문서에는 다음커뮤니케이션(현 카카오)에서 GFDL 또는 CC-SA 라이선스로 배포한 글로벌 세계대백과사전의 내용을 기초로 작성된 글이 포함되어 있습니다.
 title=
licence
cc-by-sa-3.0
droit d’auteur
Wikipedia 작가 및 편집자